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Subdiffusive transport close to thermal equilibrium: From the Langevin equation
to fractional diffusion

Ralf Metzler* and Joseph Klafter†

School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
~Received 10 September 1999!

Subdiffusion in the presence or absence of an external force field is established on the basis of an extension
of conventional Langevin dynamics to include long-tailed trapping events. It is demonstrated how the presence
of the trapping events leads to the macroscopic observation of fractional diffusion, described by a fractional
Klein-Kramers equation.
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In his treatment of the Brownian motion of a scalar te
particle in a bath of smaller atoms or molecules exert
random collisions upon that particle, Langevin@1# amended
Newton’s law of motion with a fluctuating force. On th
basis of the resulting Langevin equation, the correspond
fluctuation-averaged phase space dynamics is governe
the Klein-Kramers equation@2–5#. Its solution, the probabil-
ity density function~PDF! W(x,v,t) to find the test particle
at the positionx, . . . ,x1dx with the velocity v, . . . ,v
1dv, at time t, describes the macroscopic dynamics of t
system. Thereby, two limiting cases can be distinguish
these being the Rayleigh equation controlling the veloc
distribution W(v,t) in the force-free limit, and the Fokker
Planck equation from which the PDFW(x,t) can be derived.

Brownian transport processes are intimately related to
validity of the central limit theorem@6–8#. The latter is en-
sured by the existence of the first and second momentsX̄ and
X̄2 of the step lengths, as well as the mean jump timeDt of
the transfer statistics which govern the random motion un
consideration. Such systems are characterized by the m
velocity V[X̄/Dt and the diffusion coefficientK[@X̄2

2X̄2#/(2Dt) @6,7#.
There exist systems in which not all of these moments

finite @7–10#. This may come about if Le´vy stable distribu-
tions replace the transfer statistics of the above Brown
process. Accordingly, the associated process drops out o
basin of attraction of the central limit theorem. Instead,
Lévy-Gnedenko generalized central limit theorem takes o
and guarantees the existence of a limit distribution wh
determines the macroscopic dynamics of the system@7,9#.
The description of such non-Brownian diffusion in terms
fractional equations has recently been extensively studie
the presence as well as absence of an external force
@10–22#.

Lévy flights, on the one hand, are ruled by broad dis
butions of the jump lengths, leading to the divergence ofX̄2.
In the presence of an external force field, they are descr
by fractional Fokker-Planck or fractional Klein-Krame
equations@16–19#. Lévy flights are Markovian processe
and it has been shown that they can be derived from a La
vin equation with Le´vy noise@16,17,23#.
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Subdiffusion, on the other hand, is characterized by
sublinear power-law dependence^x2&}ta,0,a,1, of the
force-free mean square displacement, a situation where
finite mean jump timeDt exists@10#. In the long-time limit,
subdiffusion with and without an external force field h
been described by fractional diffusion equations@11,12#,
fractional diffusion-advection equations@13,14#, and frac-
tional Fokker-Planck equations@20,21#. Although these can
be derived from the generalized master equations or cont
ous time random walk models@21#, a foundation on micro-
scopic dynamics within the Langevin picture has not y
been established. On the footing of a Langevin equation
three-stage description of subdiffusion is developed wh
allows for a physical interpretation of the crossover to m
roscopic fractional dynamics.

These three stages comprise the fundamental Newto
motion of the scalar test particle experiencing a rand
force; its combination with trapping events which leads
temporary immobilization in between Langevin-dominat
motion events; and the averaged macroscopic predomin
of subdiffusion, respectively. In the course of the derivatio
fractional analogs of the Klein-Kramers, the Rayleigh, a
the Fokker-Planck equations emerge which are close to t
mal equilibrium, i.e., they approach the Maxwell- or Gibb
Boltzmann distributions. This temporal approach is slow
than predicted by Brownian statistics, and follows t
Mittag-Leffler pattern@10,21#. Moreover, the origin of the
generalized transport coefficients and the existence of
generalized Einstein relations are shown to be a direct
come of the competition between long-tailed trapping eve
and the Langevin dynamics. In this competition, the gen
alized central limit theorem ensures that the long-tailed tr
ping mechanism wins out asymptotically, bringing about t
fractional dynamics.

First stage.On this stage, the motion of the particle
Brownian. Thereby, the Langevin equation of the test p
ticle of massm in the external force fieldF(x)52F8(x),

m
d2x

dt2
52mhv1F~x!1mG~ t !, v5

dx

dt
~1!

describes the ongoing erroneous bombardment through s
surrounding atoms or molecules via the fluctuatin
d-correlated Gaussian noiseG(t). The velocity-proportional
damping caused by effective interactions with the enviro
6308 ©2000 The American Physical Society
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ment, is characterized by the friction constanth. Averaging
out the fluctuations, one finds the moments of the mean
locity increments@3#

^Dv&5S hv2
F~x!

m DDt,

^~Dv !2&5
2hkBT

m
Dt1O~@Dt#2! ~2!

from the Langevin equation~1!. Note the proportionality of
both moments to the mean jump timeDt. Furthermore, the
noise-averaged Eq.~1!, m^ ẍ&G52mh^v&G1F(x), corre-
sponds to Newton’s law of motion.

In the usual derivations of the Klein-Kramers equatio
the moments of the velocity increments, Eq.~2!, are taken as
expansion coefficients in the Chapman-Kolmogorov eq
tion @3#. Generalizations of this procedure start off with t
assumption of a memory integral in the Langevin equation
finally produce a Fokker-Planck equation with tim
dependent coefficients@24#. In order to derive an evolution
equation which itself is nonlocal in time, a generalization
the picture based on the Langevin equation~1! is introduced.
This generalization is of stochastic origin and produces
fractional operator in the resulting evolution equations, i
the inclusion of memory.

Second stage.To this end, trapping events are superim
posed to the Langevin dynamics. Trapping describes the
casional immobilization of the random walking test partic
for a waiting time which defines the time span elapsing
tween the immobilization and the subsequent release of
test particle. This waiting time is drawn from the waitin
time PDFw(t). Here we assume that following a trappin
event the particle is released with the same velocity whic
had prior to the immobilization. Trapping has been reco
nized as the mechanism underlying the dispersive charge
rier transport in amorphous semiconductors@25,26#, the mo-
tion of excess electrons in liquids@27#, and it occurs in the
phase space dynamics of chaotic Hamiltonian systems@28#.
It has also been conjectured as the source for the nonstan
dynamics encountered in protein folding in a generaliz
master equation description@29#.

Choosing a waiting time PDFw(t) with a finite first mo-
ment, the characteristic waiting timeT[*0

`dt tw(t),T,`,
one can show that the following model reduces to
Brownian picture as described by the standard Kle
Kramers equation. It is only for such cases where the ch
acteristic waiting time divergesT→`, that a different situ-
ation arises which is finally observable as fraction
dynamics, manifested as subdiffusion. This divergence oT
comes about by a Le´vy-type waiting time PDF with the long
tail behaviorw(t);ta/t11a, 0,a,1 @30# where t is an
intrinsic time scale of the waiting process.

In addition to trapping, it is supposed that each trapp
period is followed by a motion event during which the pa
ticle moves in the bath of surrounding smaller particles
which it undergoes the same collisions as underly the s
dard Brownian counterpart. Each of these motion events
ter release from the trap, is supposed to endure for the m
time t* . This means that while not being trapped, the t
particle features a Markov behavior described by the Lan
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vin equation~1!. The immobilizing-release-walking scenar
therefore combines trapping periods and Langevin dynam
in a sequential manner The combined process is basically
multiple trapping model@25#. Note that, due to the relatively
sharply peaked velocity distribution, the average dista
x* 5vt* covered during one of these motion events is
measure for the distance between adjacent traps.

Third stage.The last step concerns the task of drawing t
macroscopic limit of this multistage process. After straig
forward calculations based on the continuous time version
the Chapman-Kolmogorov equation@31,32# which are valid
in the long-time limit t@ max$t,t* %, one obtains the frac-
tional Klein-Kramers equation

]W

]t
50Dt

12aF2v*
]

]x
1

]

]v S h* v2
F* ~x!

m D
1h*

kBT

m

]2

]v2GW~x,v,t !. ~3!

Hereby, the Klein-Kramers operator in the square brack
has the same structure as in the Brownian case, except fo
occurrence of the starred quantities which are defin
through v* [vq, h* [hq, and F* (x)[F(x)q whereby
the factorq is the ratioq[t* /ta of the intertrapping time
scalet* and the internal waiting time scalet. The fractional
Riemann-Liouville operator0Dt

12a5(]/]t) 0Dt
2a is defined

through

0Dt
2aW~x,v,t !5

1

G~a!
E

0

t

dt8
W~x,v,t8!

~ t2t8!12a
. ~4!

The Riemann-Liouville operator introduces a convolution
tegral into Eq.~3! with the power-law kernelK(t)5ta21.
Therefore, the fractional Klein-Kramers equation~3! in-
volves a slowly decaying memory so that the present s
W(x,v,t) of the system depends strongly on its histo
W(x,v,t8),t8,t, in contrast to the Brownian counterpa
which is local in time. The stationary solution of th
fractional Klein-Kramers equation, Eq.~3!, Wst(x,v)
[ lim

t→`
W(x,v,t) is given by the Gibbs-Boltzmann

equilibrium distribution Wst(x,v)5N exp$2bE% where b
[(kBT)21 denotes the Boltzmann factor,E5 1

2 mv2

1F(x), andN is the appropriate normalization constant.
the limit a→1, Eq. ~3! reduces to the Brownian Klein
Kramers equation.

The Klein-Kramers equation is central to the modeling
particle escape over a barrier, and to various other proce
including Josephson junctions@5#. Thus, the fractional Klein-
Kramers equation~3! derived here, is of broad interest fo
the wide range of systems which display slow dynam
@8,25–27,37#.

Integration of Eq.~3! over velocity, and ofv times Eq.~3!
over velocity results in two equations which together lead
the fractional equation@32#

]W

]t
1 0Dt

11a 1

h*
W50Dt

12aF2
]

]x

F~x!

mha
1Ka

]2

]x2GW~x,t !.

~5!
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Equation~5! reduces to the telegrapher’s type equation fou
in the Brownian limita51 @33#. In the usual high-friction or
long-time limit, one recovers the fractional Fokker-Plan
equation

]W

]t
50Dt

12aF2
]

]x

F~x!

mha
1Ka

]2

]x2GW~x,t ! ~6!

which was discussed in detail in Ref.@20#. Equation~6! was
also derived from a generalized master equation and a
homogeneous continuous time random walk, in Refs.@21#.
The generalized friction and diffusion coefficients in Eq.~6!
are defined byha[h/q andKa[kBT/@mha# @32# and are
thus to be understood as a rescaled version of the phy
quantities h and K. Moreover, the generalized Einstein
Stokes relation@20,38# connecting the generalized coeffi
cientsha andKa has now been obtained as a direct con
quence of the interplay between the Langevin diffusion w
the long-tailed trapping process. Note that there is exp
mental support for the validity of this relation in cases
subdiffusion@34#. The fractional Fokker-Planck equation~6!
also fulfills the generalized Einstein relation̂x&F
5 1

2 (F^x2&/kBT) connecting the first moment^x&F in pres-
ence of the constant forceF with the second moment̂x2&
5Kata/G(11a) in absence ofF as demonstrated in Re
@26#. The stationary solution of the fractional Fokker-Plan
equation ~6! equals the Gibbs-Boltzmann formWst(x)
5N exp$2bF(x)%. In the Brownian limita→1, Eq. ~6! re-
duces to the standard Fokker-Planck equation.

The integration of the fractional Klein-Kramers equati
~3! over the position coordinate, leads in the force-free lim
to the fractional Rayleigh equation

]W

]t
5 0Dt

12ah* F ]

]v
v1

kBT

m

]2

]v2GW~v,t !. ~7!

Its solution, the PDFW(v,t), describes the equilibration o
the velocity distribution towards the Maxwell distributio
Wst(v)5A(bm/2p) exp$2b(m/2)v2%.

In Laplace space@35#, the generalization leading to Eq
~3!, ~6!, or ~7! involving the fractional Riemann-Liouville
operator looks more ‘‘natural,’’ due to the relatio
L$0Dt

2aW(x,v,t)%5u2aW(x,v,u). As for the mathemati-
cal properties of this operator, the fractional evolution eq
tions can be solved in a similar way as the standard eq
tions, and they are thus a convenient model for
description of dynamics in complex systems@10#.

On the macroscopic level, the dynamics is governed
the fractional Riemann-Liouville operator, Eq.~4!. This is
the origin for the subexponential relaxation of the Klei
Kramers, Fokker-Planck and Rayleigh modes according
the Mittag-Leffler pattern@10,20,21,32#

Tn~ t !5Ea~2ln,ata![ (
n50

`
~2ln,ata!n

G~11an!
, ~8!

whereln,a is an eigenvalue of the respective equations~3!,
~6!, or ~7!. This relation is obtained from the tempor
eigenequation (d/dt)Tn52ln,a 0Dt

12aTn(t) which can be
obtained by the separation ansatzW(x,v,t)5T(t)w(x,v)
@10,14,20,21#. The interesting property of the Mittag-Leffle
function ~8! is its interpolation between an initial stretche
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exponential behaviorTn; exp$2ln,ata/G(11a)% and an in-
verse power-law patternTn;@ln,ataG(12a)#21 at long
times.

The presented model for subdiffusion in the external fo
field F(x)52F8(x) provides a basis for fractional evolu
tion equations, starting from Langevin dynamics which
combined with long-tailed trapping events possessing a
verging characteristic waiting timeT. The first stage hosts
the microscopic Brownian process, characterized by
mean stepping timet* which is basically equivalent to a
multiple of the mean jump timeDt in Eq. ~2!. If the charac-
teristic waiting time is finite,T,`, the trapping mechanism
also possesses its characteristic time scale. Therefore
second stage brings two processes together, and the m
scopic process defined as the long-time limit in respect tot*
or T is determined by the standard Klein-Kramers equati
Conversely, ifT→` diverges, the time scales of the micro
scopic Brownian motiont* separates from the combine
immobilization-release process. The latter occasionally f
tures very long waiting times so that individual trappin
events do not have a typical time scale and cannot be dis
guished from the sampling of many trapping events on
macroscopic level, a situation which is typical for se
similar processes. The overall dynamics becomes fractio

The combined process is governed by the long-tailed fo
of the waiting time PDF, manifested in the fractional natu
of the associated Eq.~3!. Physically, this causes the rescalin
of the fundamental quantityh by the scaling factorq, to
result in the generalized friction constantha5h/q. It is in-
teresting to note that a similar process depicting a force-
trapping-walk scenario on a kinematics level was descri
in Ref. @27# in (x,t) coordinates, revealing the subdiffusiv
mean square displacement^x2&}ta.

The Langevin picture rules the Markov motion parts
between successive trapping states. On this Ist stage the
particle consequently obeys Newton’s law, in the nois
averaged sense defined above. Conversely, averaging
fractional Klein-Kramers equation~3! over velocity and po-
sition, one recovers the memory relation (d/dt)^^x&&
5q0Dt

12a^^v&& between the mean position̂̂x&& and the
mean velocity^^v&&. This ‘‘violation’’ is only due to the
additional waiting time averaging which camouflages t
Newtonian, Langevin-dominated motion events.

The stationary solutions of the fractional evolution equ
tions ~3!, ~6!, and ~7! are given by the Maxwell or Gibbs
Boltzmann equilibrium distributions. Thus, the present
model for subdiffusion in the external force fieldF(x) is
close to thermal equilibrium, and it is fundamentally diffe
ent to those models of anomalous transport which are ba
on Tsallis q thermostatistics and which lead to nonline
transport equations@36#.

It has been shown how the interplay between the Lan
vin diffusion and the trapping process which is governed
a Lévy-type waiting time PDF gives rise to the fraction
dynamics, preserving the existence of~generalized! Einstein
relations and revealing the physical origin of the generaliz
transport coefficients.
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