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Subdiffusive transport close to thermal equilibrium: From the Langevin equation
to fractional diffusion
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Subdiffusion in the presence or absence of an external force field is established on the basis of an extension
of conventional Langevin dynamics to include long-tailed trapping events. It is demonstrated how the presence
of the trapping events leads to the macroscopic observation of fractional diffusion, described by a fractional
Klein-Kramers equation.
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In his treatment of the Brownian motion of a scalar test Subdiffusion, on the other hand, is characterized by the
particle in a bath of smaller atoms or molecules exertingsublinear power-law dependen¢e?)=t® 0<a<1, of the
random collisions upon that particle, Langeyiii amended force-free mean square displacement, a situation where no
Newton’s law of motion with a fluctuating force. On the finite mean jump time\t exists[10]. In the long-time limit,
basis of the resulting Langevin equation, the correspondingubdiffusion with and without an external force field has
fluctuation-averaged phase space dynamics is governed yen described by fractional diffusion equatioisl,12),
the Klein-Kramers equatiof2-5]. Its solution, the probabil-  fractional diffusion-advection equatiorfd3,14, and frac-
ity density function(PDF) W(x,v,t) to find the test particle tional Fokker-Planck equatiorjg0,21]. Although these can
at the positionx, ... x+dx with the velocity v, ... v be derived from the generalized master equations or continu-
+dv, at timet, describes the macroscopic dynamics of theous time random walk mode[21], a foundation on micro-
system. Thereby, two limiting cases can be distinguishedscopic dynamics within the Langevin picture has not yet
these being the Rayleigh equation controlling the velocitybeen established. On the footing of a Langevin equation, a
distribution W(v ,t) in the force-free limit, and the Fokker- three-stage description of subdiffusion is developed which
Planck equation from which the PDN(x,t) can be derived. allows for a physical interpretation of the crossover to mac-

Brownian transport processes are intimately related to theoscopic fractional dynamics.
validity of the central limit theorenj6—8]. The latter is en- These three stages comprise the fundamental Newtonian

sured by the existence of the first and second mom¢mtsd ~ motion of the scalar test particle experiencing a random
X2 of the step lengths, as well as the mean jump tieof force; its combination with trapping events which leads to

the transfer statistics which govern the random motion undefemporary immobilization in between Langevin-dominated

consideration. Such systems are characterized by the meg}Ption events; and the averaged macroscopic predominance
locity V=X/At and the diffusion coefficiemK=[Y2 of subdiffusion, respectively. In the course of the derivation,
velocity V= = fractional analogs of the Klein-Kramers, the Rayleigh, and

—X?]/(2At) [6,7]. the Fokker-Planck equations emerge which are close to ther-
There exist systems in which not all of these moments argna| equilibrium, i.e., they approach the Maxwell- or Gibbs-
finite [7—10]. This may come about if e/ stable distribu-  Boltzmann distributions. This temporal approach is slower
tions replace the transfer statistics of the above Browniagngn predicted by Brownian statistics, and follows the
process. Accordingly, the associated process drops out of thittag-Leffler pattern[10,21). Moreover, the origin of the
basin of attraction of the central limit theorem. Instead, thegeneralized transport coefficients and the existence of the
Levy-Gnedenko generalized central limit theorem takes ovegeneralized Einstein relations are shown to be a direct out-
and gu_arantees the EXIStehce of a .I|m|t distribution Whlcrbome of the Competition between |0ng-tai|ed trapping events
determines the macroscopic dynamics of the sysé/8].  and the Langevin dynamics. In this competition, the gener-
The description of such non-Brownian diffusion in terms of gjized central limit theorem ensures that the long-tailed trap-
fractional equations has recently been extensively studied i ing mechanism wins out asymptotically, bringing about the
the presence as well as absence of an external force ﬁeﬁ?’actional dynamics.
[10-22. First stage.On this stage, the motion of the particle is
Levy flights, on the one hand, are ruled by broad distri-Brownian. Thereby, the Langevin equation of the test par-
butions of the jump lengths, leading to the divergencX®of ticle of massm in the external force fieldF(x)=—®'(x),
In the presence of an external force field, they are described

by fractional Fokker-Planck or fractional Klein-Kramers d2x dx
equations[16—19. Levy flights are Markovian processes, m—=—mnv+F(x)+ ml(t), v=— (1)
and it has been shown that they can be derived from a Lange- dt dt

vin equation with Ley noise[16,17,23.
describes the ongoing erroneous bombardment through small
surrounding atoms or molecules via the fluctuating,
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ment, is characterized by the friction constantAveraging  vin equation(1). The immobilizing-release-walking scenario

out the fluctuations, one finds the moments of the mean vetherefore combines trapping periods and Langevin dynamics

locity incrementq 3] in a sequential manner The combined process is basically the
multiple trapping modef25]. Note that, due to the relatively

( Av>:( m}_@) At sharply peaked velocity distribution, the average distance
m ' x*=v7* covered during one of these motion events is a
measure for the distance between adjacent traps.
o 27mkgT ) Third stage.The last step concerns the task of drawing the
((Av)%)= m At+O([At]9) (2) macroscopic limit of this multistage process. After straight-

forward calculations based on the continuous time version of
from the Langevin equatiofil). Note the proportionality of the Chapman-Kolmogorov equati¢8l,32 which are valid
both moments to the mean jump timé. Furthermore, the in the long-time limitt> maxXr,7}, one obtains the frac-
noise-averaged Eq(1), m(X)r=—mzn(v)r+F(x), corre- tional Klein-Kramers equation
sponds to Newton'’s law of motion.

In the usual derivations of the Klein-Kramers equation, W L9 a P
the moments of the velocity increments, E2), are taken as St CoDe | Tt et o v — 0
expansion coefficients in the Chapman-Kolmogorov equa-
tion [3]. Generalizations of this procedure start off with the keT &2
assumption of a memory integral in the Langevin equation to + 7" m 392 W(X,v,t). ()

finally produce a Fokker-Planck equation with time-
dependent coefficienf{R4]. In order to derive an evolution
equation which itself is nonlocal in time, a generalization of
the picture based on the Langevin equaiibnis introduced.
This generalization is of stochastic origin and produces th
fractional operator in the resulting evolution equations, i.e.
the inclusion of memory.

Second stageTo this end, trapping events are superim- " R 2. s .
posed to the Langevin dynamics. Trapping describes the O(Blemann-Lmuvnle operatoaDtl =(d/t) oD * is defined
casional immobilization of the random walking test p(:lrticlethm“gh
for a waiting time which defines the time span elapsing be-
tween the immobilization and the subsequent release of the D~ YW, _ 1 ft ,W(x,v,t")

: . ” . : i~ oD{ “W(x,v,1)= dt —. 4

test particle. This waiting time is drawn from the waiting Pla))o  (t—t")t~@
time PDFw(t). Here we assume that following a trapping
event the particle is released with the same velocity which itThe Riemann-Liouville operator introduces a convolution in-
had prior to the immobilization. Trapping has been recog+tegral into Eq.(3) with the power-law kerneK(t)=t*"1.
nized as the mechanism underlying the dispersive charge carherefore, the fractional Klein-Kramers equati@8) in-
rier transport in amorphous semiconductfis,26], the mo-  volves a slowly decaying memory so that the present state
tion of excess electrons in liquid&7], and it occurs in the W(x,v,t) of the system depends strongly on its history
phase space dynamics of chaotic Hamiltonian systé@k  W(x,v,t’),t’<t, in contrast to the Brownian counterpart
It has also been conjectured as the source for the nonstandakghich is local in time. The stationary solution of the
dynamics encountered in protein folding in a generaﬁzed‘ractional Klein-Kramers equation, Eq(3), Wst(xvv)
master equation descriptig@9). S =lim__W(x,,t) is given by the Gibbs-Boltzmann
e (S 17Le 3117 oquibrum dsition W gs.0)-Nes—4E] whre

’ g 0 ’ ' =(kgT)"! denotes the Boltzmann factorE=3}muv?

one can show that the following model reduces to the . . o
; : . L+ .
Brownian picture as described by the standard Klein- ®(x), andN is the appropriate normalization constant. In

Kramers equation. It is only for such cases where the chart-he limit a—1, Eq.(3) reduces to the Brownian Klein-

acteristic waiting time diverges—«, that a different situ- Kramers equation.
. i g Jdiverg ’ ! The Klein-Kramers equation is central to the modeling of
ation arises which is finally observable as fractional

dynamics, manifested as subdiffusion. This divergence of particle escape over a barrier, and to various other processes

; R . including Josephson junctiofS]. Thus, the fractional Klein-
comes about by a Iuy-type waiting time PDF with the long- : : ; .
tail behaviorw(t)~ r%/tL* %, 0<a<1 [30] where 7 is an Kramers equatior{3) derived here, is of broad interest for

T ” the wide range of systems which display slow dynamics
intrinsic time scale of the waiting process. 8,25-27,37
In addition to trapping, it is supposed that each trappmg[ ’Integra’tion of Eq(3) over velocity, and ob times Eq.(3)

lt?celrfleo:jn:)sv;z"?r\:v?hde bga?hn;(f)tlsounrrg\tljigtindursl,?nganver;l(:ha:tri]celepsarihover velocity results in two equations which together lead to
9 P the fractional equatiof32]

which it undergoes the same collisions as underly the stan-
dard Brownian counterpart. Each of these motion events af- 9
ter release from the trap, is supposed to endure for the meaﬁv_v _ i lx) + (9_
time 7*. This means that while not being trapped, the test Jt XM, % ox?
particle features a Markov behavior described by the Lange- (5)

Hereby, the Klein-Kramers operator in the square brackets
has the same structure as in the Brownian case, except for the
occurrence of the starred quantities which are defined
$hrough v*=v ¥, 7*=79, and F*(x)=F(x)9 whereby

the factord is the ratiod=7*/7* of the intertrapping time
scaler™ and the internal waiting time scate The fractional

W(x,t).

1
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Equation(5) reduces to the telegrapher’s type equation foundexponential behaviol ,~ exp{—\, tT(1+a)} and an in-
in the Brownian limita=1 [33]. In the usual high-friction or  verse power-law patter,~[\, t*T(1—a)] ! at long
long-time limit, one recovers the fractional Fokker-Plancktimes.

equation The presented model for subdiffusion in the external force
) field F(x)=—®’(x) provides a basis for fractional evolu-

M_ 1-a _i@Jr ‘?_ W(x.1) 6) tion equations, starting from Langevin dynamics which is

ot ot ax my, “ ox2 X, combined with long-tailed trapping events possessing a di-

verging characteristic waiting tim&. The first stage hosts

which was discussed in detail in RgR0]. Equation(6) was  the microscopic Brownian process, characterized by the
also derived from a generalized master equation and a nomnean stepping time* which is basically equivalent to a
homogeneous continuous time random walk, in REZ4].  multiple of the mean jump timat in Eq. (2). If the charac-
The generalized friction and diffusion coefficients in E6).  teristic waiting time is finiteT <o, the trapping mechanism
are defined byyp,= /9 andK ,=kgT/[m#,] [32] and are also possesses its characteristic time scale. Therefore, the
thus to be understood as a rescaled version of the physicaécond stage brings two processes together, and the macro-
quantities » and K. Moreover, the generalized Einstein- scopic process defined as the long-time limit in respeet‘to
Stokes relation[20,38 connecting the generalized coeffi- or T is determined by the standard Klein-Kramers equation.
cients 7, andK, has now been obtained as a direct conseConversely, ifT—c diverges, the time scales of the micro-
quence of the interplay between the Langevin diffusion withscopic Brownian motionr* separates from the combined
the long-tailed trapping process. Note that there is experiimmobilization-release process. The latter occasionally fea-
mental support for the validity of this relation in cases oftures very long waiting times so that individual trapping
subdiffusion[34]. The fractional Fokker-Planck equati¢®) events do not have a typical time scale and cannot be distin-
also fulfills the generalized Einstein relatiofx)r  9uished from the sampling of many trapping events on the
=21(F(x?)/kgT) connecting the first momer) in pres- macroscopic level, a situation whlch is typical for sglf-
ence of the constant forde with the second momerix?) ~ Similar processes. The overall dynamics becomes fractional.
=K, tYT(1+a) in absence of as demonstrated in Ref. The combined process is governed by the long-tailed form
[26]. The stationary solution of the fractional Fokker-PlanckOf the waiting time PDF, manifested in the fractional nature
equation (6) equals the Gibbs-Boltzmann formi(x) of the associated E@3). Physmally, this causes the rescaling
=N exp{—BP(X)}. In the Brownian limita—1, Eq.(6) re-  ©f the fundamental quantity; by the scaling factonj, to
duces to the standard Fokker-Planck equation. result in the generalized fngtlon constam,];:_n/_ﬂ. Itis in-

The integration of the fractional Klein-Kramers equation teresting to note that a similar process depicting a force-free

(3) over the position coordinate, leads in the force-free limittrapping-walk scenario on a kinematics level was described
to the fractional Ray|e|gh equa’[ion in Ref. [27] n (X,t) coordinates, reveallng the subdiffusive

mean square displacemept®)oct®.

The Langevin picture rules the Markov motion parts in
between successive trapping states. On this Ist stage the test
particle consequently obeys Newton’s law, in the noise-
Its solution, the PDRVN(v,t), describes the equilibration of averaged sense defined above. Conversely, averaging the
the velocity distribution towards the Maxwell distribution fractional Klein-Kramers equatio(8) over velocity and po-
W(v) = (Bmi27) exp{—B(M/2)v?}. sition, one recovers the memory relatiord/dt){{x))

In Laplace spacg35], the generalization leading to Egs. =9,D! ™ *((v)) between the mean positiof{x)) and the
(3), (6), or (7) involving the fractional Riemann-Liouville mean velocity((v)). This “violation” is only due to the
operator looks more “natural,” due to the relation additional waiting time averaging which camouflages the
L{oDy “W(X,v,t)}=u"*W(x,v,u). As for the mathemati- Newtonian, Langevin-dominated motion events.
cal properties of this operator, the fractional evolution equa- The stationary solutions of the fractional evolution equa-
tions can be solved in a similar way as the standard equaions (3), (6), and (7) are given by the Maxwell or Gibbs-
tions, and they are thus a convenient model for theBoltzmann equilibrium distributions. Thus, the presented
description of dynamics in complex systefi®)]. model for subdiffusion in the external force fiek(x) is

On the macroscopic level, the dynamics is governed bylose to thermal equilibrium, and it is fundamentally differ-
the fractional Riemann-Liouville operator, EGH. This is  ent to those models of anomalous transport which are based
the origin for the subexponential relaxation of the Klein-on Tsallis g thermostatistics and which lead to nonlinear
Kramers, Fokker-Planck and Rayleigh modes according teransport equationg36].

IW
ot

d keT &2

— )+ — —

Jdv m gp?

oDi *n* W(u,t). (7)

the Mittag-Leffler patterri10,20,21,32 It has been shown how the interplay between the Lange-
o on vin diffusion and the trapping process which is governed by
T ()=E,(—\, at“)Ez (=An,at®) , (8) a Levy-type waiting time PDF gives rise to the fractional
' ni=o I'(1+an) dynamics, preserving the existence(géneralized Einstein

relations and revealing the physical origin of the generalized

wherel, , is an eigenvalue of the respective equati¢®is transport coefficients

(6), or (7). This relation is obtained from the temporal
eigenequation d/dt) T,=—\,, ,oD{ *Tn(t) which can be Financial assistance from the GIF and the TMR of the
obtained by the separation ansat#(x,v,t)=T(t)¢(X,v) European Commission is acknowledged. R.M. was sup-
[10,14,20,21 The interesting property of the Mittag-Leffler ported in part by the Minerva Foundation and by the Alex-
function (8) is its interpolation between an initial stretched ander von Humboldt Stiftung, Bonn.
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