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Elastic moduli, dislocation core energy, and melting of hard disks in two dimensions
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Elastic moduli and dislocation core energy of the triangular solid of hard disks of diameter obtained
in the limit of vanishing dislocation-antidislocation pair density, from Monte Carlo simulations that incorporate
a constraint, namely that all moves altering the local connectivity away from that of the ideal triangular lattice
are rejected. In this limit we show that the solid is stable against all other fluctuations at least up to densities
as low aspo?=0.88. Our system does not show any phase transition so diverging correlation lengths leading
to finite size effects and slow relaxations do not exist. The dislocation pair formation probability is estimated
from the fraction of moves rejected due to the constraint which yields, in turn, the core dheryd the
(bare dislocation fugacityy. Using these quantities, we check the relative validity of first order and Kosterlitz-
Thouless-Halperin-Nelson-YourigTHNY') melting scenarios and obtain numerical estimates of the typical
expected transition densities and pressures. We conclude that a KTHNY transition from the solid to a hexatic
phase preempts the solid to liquid first order transition in this system albeit by a very small margin, easily
masked by crossover effects in unconstrained “brute- force” simulations with a small number of particles.

PACS numbg(s): 64.60.Fr, 64.70.Dv, 05.16.a, 05.10.Cc

[. INTRODUCTION ing the order of the transition. In this paper we take an ap-

proach complementary to Jaster’s, and investigate the melt-

One of the first continuous systems to be studied by coming transition of the solid phase. We show that the hard disk
puter simulation$1,2] is the system of hard disks interacting solid is unstable to perturbations that attempt to produce free

with the two-body potential, dislocations leading to a solidhexatic transition in accor-
dance with KTHNY theory[9]. Though this has been at-
V(r)y=w, r<o tempted in the pagtl0,11], numerical difficulties, especially

with regard to equilibration of defect degrees of freedom,

V(r)=0, r>ao, (1) makes this task highly challenging. We also show that this

transition lies close to a first order solid to liquid melting
whereo, the hard disk diametdtaken to be 1 in the rest of line. We calculate quantitatively the relative positions of the
the paper, sets the length scale for the system and the energfjrst order and the KTHNY transitions in the parameter space
scale is set bkgT=1. Despite its simplicity 3], this system for this system and explain why earlier simulations failed to
was shown to undergo a phase transition from solid to liquicRrrive at a consensus.
as the densityp was decreased. The nature of this phase The coarse grained density of a crystalline solid can be
transition, however, is still being debated. Early simulationsexpanded ag(r)==gpce'®", where G) is a reciprocal
[2,4] always found strong first order transitions. As compu-lattice vector. The order parametepg are complex pg
tational power increased the observed strength of the first|pg|e' ©, and the displacement vectaris the deviation
order transition progressively decreased. Using sophisticateef an atom from the nearest perfect lattice pdritlf fluc-
techniques Lee and Strandbufgj and Zollweg and Chester tuations of the amplitude qgig can be neglected then a solid
[6] found evidence for, at best, a weak first order transitioncan be described in terms afalone—the fundamental as-
A first order transition has also been predicted by theoreticadumption of elasticity theory. The elastic Hamiltonian for
approaches based on density functional thd@fy On the hard disks is given by
other hand, recent simulations of hard dii&$ by Jaster,
using as many adl=65536 particles, find evidence for a F=—Pe.+B/2e +(u+P)(e_12+2¢,), 2
continuous, Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY)) transition[9] from liquid to a hexatic phase, with whereB is the bulk modulus. The quantityes=u+P is
orientational order but no translational order,&t0.899. the “effective” shear modulusthe slope of the shear stress
Nothing could be ascertained, however, about the expecteés shear strain curyeand P is the pressure. The hard disk
hexatic to the crystalline solid transition at higher densitiessolid, being a purely repulsive system, is always under a
because the computations became prohibitively expensivéniform hydrostatic pressuie(p) at any densityp. The La-
The solid to hexatic melting transition was estimated to oc-grangian elastic strains are defined as
cur at a densityp.=0.91. A priori, it is difficult to assess
why various simulations give contradicting results concern- E”_E ﬁJrﬂ du; duy
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I - ordered free dislocationsand the disordered phase is a phase where
II - disordered free dislocations proliferate. Proliferation of dislocations,
howeverdoes noproduce a liquid, rather a liquid crystalline
phase called a “hexatic” with quasi-long rangé@LR) ori-
entational order but short-ranged positional ordeiseksond
KT transition destroys QLR orientational order and takes the
hexatic to the liquid phase by the proliferation of “disclina-
tions” (scalar charggsApart from T, there are several uni-
versal predictions from KTHNY theory; for example, the
order parameter correlation length and susceptibility has es-
FIG. 1. Schematic flows of the coupling constdfitand the  gsential singularities (vebf”, t=T/T,—1) near T.. All
defect fugacityy under the action of the KTHNY recursion rela- these predictions can, in principle, be checked in simulations
tions. The dashed line is the separatrix whose intersection with theg].
line of the initial state[solid line connec.t.ing fillgd circlesy(T,I Note that, in order to use the KTHNY theory to study the
=0),K™(T,1=0)] determines the transition poiff . solid-hexatic transition in hard disks we have to bear in mind
that for the hard disk solid, which is always under a uniform
Sr’nydrostatic pressurB(p), the effective shear modulys,;
has to be used in the definitigal] of K.
The KTHNY theory predicts when a 2D solid becomes
stable to the proliferation of dislocations. However, there
is a second possibility. The free energy of the liquid may

2,42—d H H
We~G*a /(d,_z)_ (@ IS the_lattlce parameter ardlthe  pooome higher than that of the stable solid at a density
number of spatial dimensionsliverges and order parameter gy ajier than that where the hexatic phase is recorded. This

correlations decay algebraically—an example of quasi-longaas o 4 first order transition and a jump in density at the
f,a”ge‘?' orde_r(QLRO). We_ know that smgular exuta’qpns, liquid-solid coexistence pressuffer simulations in theNV T
like dislocations, can drive a QLROdisorder transition  gnsempipinstead of an intermediate hexatic phase. Often it
(where correlations decay exponentiallfhis situation has g yery difficult to distinguish the two possibilities as the
been analyzed by the KTH.NY theof9]. history of simulation studies of hard disks shows. This is
_The KTHNY theory[9] is presented usually for @ 2D ¢, ither complicated by the fact that KTHNY theory also pre-
trlang_ular S.°|'d undezero ,external stresdt is shoyvn th"’.‘t dicts that the specific heat, or equivalently, in the case of the
the. dimensionless Young's modulus of a two-dimensiona,,q sk system, the compressibility, shows a smooth bump
solid, leading to a near flat region in the pressure-density diagram.
In Fig. 2(@) we show the conventional situation where the
K = 8 H dotted line designates the often observed first order transi-
V3p 11+ pul(N+ )} tion. In Fig. Ab) we show Jaster’s results where it is seen
] that instead of a flat region in the-p curve or a Maxwell
where x and N are the Lameconstants, depends on the |oop usually associated with a first order transition one gets
fugacity of dislocation pairsy=exp(—E), whereE_ is the  instead a smooth bending over to a state with a high com-
core energy of the dislocation, and the “coarse-graining” pressibility. Finite size effects that would be present in the
length scald. This dependence is expressed in the form offirst-order case are negligible. This would indicate the pres-
the following coupled differential equationhe recursion ence of a liquid-hexatic transition. The question of solid to

i

/K llérn

In general a solid possesses two types of excitation
“smooth” phonons and ‘“singular” dislocations, respec-
tively. Long wavelength phonons inhibit long range order in
two-dimensional2D) solids so that the intensity of a Bragg un
reflection peak g~e~?"e, where the Debye-Waller factor

relationg for the renormalization oK andy: hexatic transition is still open. It is worth noting that detailed
finite size scaling of orientational order in this system

%z&_r 2K/8m EI (i) _ EI (i” [12,13 is not necessarily in contradiction to this result.
ol y 2 %87 48w/ Why do simulations of hard disk solids find it so difficult

to see a solid-hexatic transition? One of the reasons is, of
ay K course, the divergence of the correlation length as the system
i 2- 8 approaches the transition so that one requires large systems.
This is complicated by the fact that in order to obtain equili-
wherel, and |, are Bessel functions. The thermodynamic brated values of the dislocation densityy) one also needs
value is recovered by taking the limit-oo. very large simulation times because in a high density solid
We see in Fig. 1 that the trajectories in & plane can the diffusion of defects is very slojl4]. To illustrate this
be classified in two classes, namely those for whiehO as  point we have attempted to calculate the defect density of a
| —oo (ordered phageand thosey— asl—o (disordered hard disk solid in a Monte Carlo simulation. We perform
phase. These two classes of flows are separated by linesonventional Monte Carlo simulations in th&/T ensemble
called the separatrix. The transition temperaffydor p.) is  with a usual Metropolis updating scheme fde=3120 par-
given by the intersection of the separatrix with the line ofticles. We choose a single densijty=0.92; a sequence of
initial conditions K(p,T) and y=exd —E.(K)] where E. initial states are then constructed by adding extra complete
~cK/16. At the transition point the flow follows the sepa- rows of atoms(thereby increasing the density 19=0.92)
ratrix so that theenormalized Kumps from 167 to 0 at the and removing an equal number of atoms from the bulk at
transition. The ordered phase corresponds to the gotid random. In equilibrium, these extra vacancies in the bulk

K
y+ 2,n_y26K/167T|0(§> , (4)
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FIG. 3. The number of hard disks with fivefolah{, ¢, and
light solid line) and sevenfoldrf;, +, and bold solid ling coordi-
nation after 186 Monte Carlo steps per particle for ai=3120
particle system, plotted against(see text Note thaing# n; for p;
larger than 0.92.

that brute force simulations of the hard disk solid fail to
produce the true equilibrium phase.

It may also happen, on the other hand, that KTHNY
theory fails due to the following reasons. Firstly, elastic
theory itself may fail near the transition, so that amplitude or
long wavelength phonon fluctuations may destabilize the
8.2 | | solid producing a continuous transition. Though remote, this

0.86 0.87 0.88 089 0.9 091 0.92 possibility has nevertheless been discussed in the literature
p [15]. Secondly, perturbation theory iy may break down

FIG. 2. Equation of state of the hard disk liquid and sol@&. be(;ausdEC is too small(i.e., y too largg at .the transmon.
Liquid: light solid line, semiempirical form of Santcet al. [23]; Saltp [16] an'd Strandbyrg[l?]. Showed., us'lng lattice dis-
¢, data from Alderet al. [24]. Solid: bold solid line, our results; cretized \(er5|0ns of a dislocation Hamiltonian, that K_THNY
+, data of Wojciechowski and Br&a [10]; dotted line, position of ~ Perturbation theory breaks downff,<2.7 at the transition.
coexistence pressure as seen in all studies observing a first ordét our simulations of the hard disk system we chdukh
phase transition(b) Expanded view ofa) near the phase transition these possibilities as well as the possibility of a first order
region. ¢, results of Jastd8] for 128x 128 particles;+, same for transition.
256x 256 particles. Light solid line, polynomial fit to Jaster's data;  In the next section we discuss our simulations together
bold solid line, our data for the soligs in(a)]. Horizontal dotted ~ with our method for computing elastic constants and core
line: as in(a), dotted curve; semiempirical form for the equation of energies. We use these inputs to check for a first order tran-
state of the hard disk liquid of Santes al. [23]. Arrows: lower  sition and a KTHNY scenario in Sec. lll. We summarize and
arrow, position of the KTHNY transition with bare values fiir conclude this work in Sec. V.
upper arrow, same with renormaliz&g; calculated from our simu-
lations. Note that the accuracy of Jaster’'s data is smaller than the
size of the symbols fop=<0.9, while for p>0.9 there may be
systematic finite size effects and finite observation time effects pos-
sibly invalidating the data. One way to circumvent the problem of large finite size

effects and slow relaxation due to diverging correlation
should diffuse out and the lattice parameter adjust to fill inlengths is to simulate a system that is constrained to remain
the gap. After about one million Monte Carlo steps we cal-defect(dislocation free and, as it turns out, without a phase
culate the number of five coordinatedsj and seven coor- transition. Relatively small systems simulated for short times
dinated ;) atoms. Since our system cannot have free vatherefore yield thermodynamically accurate data in this limit.
cancies (due to our choice of ensembleve expect in  Surprisingly, we show that by using this data it is possible to
equilibrium ns=n-. The simulations at eacp; is repeated predict the expected equilibrium behavior of the uncon-
for ten realizations of the initial state. Our results are showrstrained system. It is worth mentioning that with an approach
in Fig. 3. We see thats# n, (except for the trivial case of similar in spirit to the one followed here, we have obtained
p;=0.92), the difference growing with; as expected and excellent results for the Kosterlitz-Thouless transition in the
the statistical errors are very large. We therefore concludéwvo-dimensional planar rotor modgL8], which has served
that even for a relatively small system of 3120 particles, theas an important model in the development of the KTHNY
equilibration of defectgvacancies in this cagds an ex- theory[9], after the proofs of the low temperature suscepti-
tremely slow process. So it should not come as a surprishility divergence in this mode[19] and the existence of

86 |

8.4

II. ELASTIC CONSTANTS AND DISLOCATION CORE
ENERGIES FROM CONSTRAINED SIMULATIONS
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The sub-blocks may be constructed by simply dividing the
—> entire box of sizd into an integral number of smaller boxes,
as done in this calculation so thatL,= an integer, or mul-
tiple sub-boxes of arbitrary size,<L can be constructed
within the simulation cell, as in Ref21]. Lastly, quantities
in the thermodynamic limit are obtained by fitting data to the
FIG. 4. Typical move which attempts to change the coordinationform,
number and therefore the local connectivity around the central par-
ticle. Such moves were rejected in our simulation.

X2t +O(x%,

2
a
Sb=5 |W(XL/§)—{\P(L/§)—C(—>
" . . vy Y L
phase transitions without local order parameters in general
[20] were given. o where the indexy=+,—,3 the function,¥(«), is defined
We simulateN=3120 hard disks in arfalmos} square 4q
box. We have also simulated two additional systemsNof
=2016 andN=4012 patrticles in order to look for residual 2 (1t —
finite size effects. Our algorithm follows closely the usual V(a)=—a fo JO dxdy Kp(ayx“+y?).
Metropolis scheme for simulating hard disks. The simulation
is always started from a perfect triangular lattice which fitsKO is a Bessel function andis the correlation length for the
into our box—the size of the box determining the density. . «orrelations.
Once a regular MC move is about to be accepted, we per- Thg glastic constants in the thermodynamic limit are ob-
form a local Delaunay triangulation involving the moved o .naq from the seB= 1/25” and po= 125" =1/25%,
+ + e —— :

disk and its nearest and next nearest neighbors. We COMPaYL . |ast two equations fqu,(; Serve as a stringent internal

:Ee cofnnectlwtly t(t)'f this DeIaL:cnt?]y tyu_a;ng:;lul?tlon with dtrlﬁt of consistency check and yields an accurate error estimate for
e reference latticéa copy of the initial stafearound the his quantity. There are two ways to obtain the fluctuations

same particle. If any old bond is broken and a new bond.. : . .
formedp(Fig. 4 we re)j/ect the move since one can show that «/2 for every SUb'b!OCk sizéy in Eq. (5). .One can either
this is equivalent to a dislocation-antidislocation pair sepa@ccumulate(e,e,) directly or construct histograms of the
rated by one lattice constant involving dislocations of thePloCk strainse, and obtair,, by fitting Gaussian profiles to
smallest Burger's vector. Note thé) only dislocation pairs ~the normalized probability distributions ef, for every block

of the smallest Burger's vector are eliminated; dislocationsiZ€Lp - Again this constitutes another excellent consistency
of higher topological charge cost higher energy and may nogheck and a measure_of the statistical uncertainties involved.
be relevant at the densities where a melting transition is usulVe accumulate data till all these uncertainties are less than a
ally observed;(ii) other fluctuations, e.g., long wavelength Percent. Residual finite size effects obtalned_ by repeating the
phonon fluctuations and fluctuations of the amplitude of theentire procedure foN=2016 and 4012 particles for a few
order parametefspontaneous production of voids in the Sys,_densmes are also seen to be within the same limit of accu-
tem) are not eliminated as long as they preserve connectivitytacy- o

The fraction of moves which are rejected because they There are several distinct advantages of our method: In
violate the constraint is stored. Next, we need a method t§eneral our method works for any system for which instan-
calculate elastic constants accurately in our simulationsl@neous configurations can be obtairiéat example, either
making sure that we extrapolate to the thermodynamic limitfrom other simulations or from real experimepnté/e obtain

Such a method has been recently developed by us and didirectly the finite size scaled results from a single simulation.

description for completeness. consistenc_y check_s that can be gsed to obtain very accurate

Since we have a dislocation free system, we can alwaydata. In spite of this our method is easy to use and the com-
associate an ideal, static, “reference” lattice poRitwith ~ Putational complexity is not more than calculating for, e.g.,
every hard disk all through the simulation and Ca|Cu|atepa|rcorrela_tlon functlons: This method ca_n_be easily adapted
ur(t)=R(t)—R. Microscopic strainse;(R) can be calcu- for calculating local strains and stressesinhomogeneous
lated now for every reference lattice poiRt. Next, we  Situations.

coarse grair(average the microscopic strains within a sub-
box of sizelL,, Ill. RESULTS AND DISCUSSION

. Ly Our results for the elastic moduli, the pressure, and the
€= Lgdf ddreij(r) fraction of move9 rejected due to the topological constraint
discussed above are given in Table | as a function of density.
In Fig. 5 we compare our results for the bulk and shear
moduli with the data of two previous simulations of Ref0]
gho :<:;> and Ref.[25]. We also compare our simulation results to
AR estimates from free volume theof#2] in the simplest, in-
L, —— ) dependent cell approximation. Within this approach the
S =(e-€), Helmholtz free energy per patrticle is given liy=log(vs),

and calculate thel(, dependentquantities,
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TABLE I. PressureP, bulk modulusB, effective shear modulug¢;, ratio of moves rejected due to the
zero dislocation density constraiptand the(unrenormalizegicoupling constank/16+ as a function of the
density p. The total number of configurations used for the averdges$s also listed. The pressufe was
obtained by integratin® below p=1.049.

p N P B Meff px 10 K/16m

0.88 16 8.117 27.69 11.63 0.36823 0.8550

0.9 16 8.777 32.47 13.87 0.20358 0.9925

0.905 16 8.957 33.67 14.46 0.17386 1.0271

0.910 16 9.145 35.38 15.22 0.14469 1.0744

0.915 16 9.342 37.09 15.99 0.11706 1.1225

0.920 16 9.545 38.48 16.88 0.09532 1.1722

0.925 16 9.759 40.67 17.88 0.07513 1.2337

0.930 16 9.982 42.72 18.90 0.05967 1.2948

0.935 16 10.217 44.69 19.91 0.04643 1.3538

0.94 2x10* 10.462 46.85 21.45 0.03432 1.4382

0.95 16 10.996 52.14 24.10 0.01855 1.5945

0.96 2x10* 11.586 59.67 27.61 0.00901 1.8067

0.97 16 12.251 67.45 31.59 0.00370 2.0379

0.98 2x10* 13.003 79.20 36.62 0.00137 2.3479

0.99 16 13.862 89.98 42.60 0.00041 2.6835

1.0 49400 14.843 104.78 50.25 0.00009 3.1206

1.02 16 17.301 148.88 69.91 0.0 4.2854

1.04 16 20.714 212.02 102.02 0.0 6.0857

1.06 16 319.07 158.69 0.0 9.1874

1.08 16 531.24 268.02 0.0 15.1567

1.1 16 1018.49 526.94 0.0 29.0094
where the available free volume;=(a— 1)2/pC and the A. Equation of state, free energy, and first order melting
close packed density,=2/y3. Other thermodynamic quan-  First of all, we should point out that our constrained simu-
tities can be obtained by successive differentiation, viz., |ations allow us to obtain elastic constants up to a density as

low as p=0.88, far below the density=0.899 where the
X transition to the liquid is expected to occi8], which im-
P:Pm, plies that amplitude and phonon fluctuations cannot destabi-

lize the solid. So an ordinary second order transition is ruled
out. However, there can always be a first order transition if

1 the free energy of the liquid becomes lower than that of the
B=P 1+m]: (6)  perfect solid.
In order to investigate this question we obtain the equa-
tion of stateP(p) and the Gibbs free energy(P) of the
B liquid and the solid.
Meft=5 To obtain the equation of state of the liquid we use the

semiempirical, accurate, analytical form by Santtsal.

~[23], which is in excellent agreement with computer simula-
where x= Jp./p and we have used the Cauchy relation,ton gata[24]. The pressure is given by
strictly valid only for a harmonic soli@21], for our estimate

of the effective shear modulys.¢;. Note that the free vol- 29.—1 1

ume elastic moduli and the pressure divef@®] as p Plp={1-27n+ > 7? , @)
e

—Pc-

We see that our bulk modulus interpolates smoothly from : . . .
the free volume values at high densities to those of & nere the packing fraction=(m/4)p and »c is the packing
at low densities. Overall, the differences between the thregact'on at close packing. The Helmholiz free energy per
sets of data are small. Our values for the shear modulugart'de’
agrees well with the free volume results at high density, but
at low densities they are smaller than all other estimates f(P)ZJndﬂ'
though close to those of RdfL0]. Once the elastic constants 0
are obtained we can analyze in detail the two competing
scenarios, viz., first order solid-liquid transition or KTHNY where the ideal gas Helmholtz free energy per partfgle
transition to the hexatic phase. =log(p)—1. The Gibbs free energy(P) is then obtained by

Plp—1

, +fid1 (8)
Y
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1000 F = 12.86
i 12.84
12.82
12.8
B 100t : 9(P)
: ] 12.78
1276 .-/
12.74
12.72 1 1 1 1 1 1 1 1 1
10 : : : : : 9.15 9.2 9.25
0.85 0.9 0.95 1 1.05 1.1 1.15 P
p
1000 FIG. 6. Gibbs free energieg(P) as a function of pressure:
dotted line; metastable liquid using a semiempirical form of Santos
et al. [23]; bold solid line, using Jaster’s resu[t8]; series of light
solid lines, Gibbs free energy of the solid where we reduced the
reference free energy from the value quoted by Bladon and Frenkel
100 £ - [25] (see text by 3.3%, 3.35%, and 3.4%.
Heff a small amount £4%) so that the coexisting pressupe
=9.2—the value found in most recent simulatigBsg].
10 L | Using the semiempirical free energy of San&sl. [23]
: E we obtain a (metastable first order transition withp,
=0.871 andps=0.912 as observed in early simulations
[2,4]. Of course, this estimate @f is only a lower bound, as
) . . | | | the theory of Ref[23] is expected to overestimate the free

085 09 095 1 .05 11 115 energy. The free energy from Jaster’s datg is lower and al-
p most completely parallel to that of the solid, suggesting a
very weak first order transition if at all. In this case we get a
FIG. 5. Elastic moduli in the thermodynamic limiie) bulk B slope difference less than 1.3%iz., p;=0.899 andps
and(b) shearuqss. O, our work (error bars are much smaller than = 0.911)—well within our numerical accurac¥ig. 6).
the symbol sizg +, Wojciechowski and Braka [10], solid line;

free volume theory22], dashed line; polynomial fit given by Bla- B. Core energyE, and the KTHNY transition

don and Frenkel25].
425 Next, we analyze our results in the light of the KTHNY

theory [9]. The unrenormalized K= 16+ at p,=0.904 (P,

=8.92) (see Fig. 2, lower arroywhich implies that a weak
jrst order transition from solid to liquid preempts a
THNY-solid-hexatic transition. However, the value Kfis

renormalized by the presence of dislocations. We can esti-

{nate the extent of this renormalization from our data.

The dislocation pair probability

the standard Legendre transformatigns f +P/p. In addi-
tion we use the data of Jasféd] in the transition region to
obtain a revised estimate of the free energy. This is done b
fitting Jaster’'s data folP(p) to a polynomial forp>0.85
which matches the results of Santisal. [23] for p<0.85.
From this equation of state we can obtain the Helmholtz an
hence the Gibbs free energy by integrating starting from the
value given by Eq(7) at p=0.85. pg=exp(—2E.)Z(K), 9)
The equation of state for the solid is obtained by integrat- . - — .
ing our bulk modulus values using the result of Bladon anowhgreZ(K) IS the _mternal partition function” of a dislo-
Frenkel [25] at p=1.049 as the reference pressurg ( cation pair and is given b}26],
=22.00). The Gibbs free energy is obtained by further inte- 277\/5 ( K ) r( K )
exp o—
87l

- (10)

gration again using the result obtained for the free energy in Z(K)= m'o
Ref.[25] at p=1.049 as a reference € 25.64).

The possible(first orde) transitions can be located by where we have set the core radiys-a, the lattice param-
equating the Gibbs free energies. The slope discontinuitgter. The core energy of a dislocation is a difficult quantity to
gives the(inverse density difference of coexisting phases. obtain from a simulation, though it has been attempted in the
We find immediately that all the free energies have verypast[25,26. In our case, an ansatz, which gives excellent
similar slopes(see Fig. 6 so that any possible first order results in the 2DXY model[18], and identifies the rejection
transition would have only a small jump in the density. Itratio p as p=pgq can be used to obtaik., see Fig. 7.
also implies that small errors in the free energy of our refer-Throughout the relevant regidg, is safely above the limit
ence state makes a large difference in the co-existence preS;>2.7[17,1€. At the transition the&E.~6 which is in good
sure. We have therefore reduced the reference free energy bgreement the results of Murray and Van Winkh] (E,
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FIG. 7. Calculated core enerdy,( <) as a function oK/167. FIG. 8. Renormalization dk/164 vs densityp for the hard disk
The straight line is a linear least square fit. Note tEat>2.7 solid. The renormalize& z/167 (bold solid ling is obtained from
throughout. the recursion relations E¢4) which were solved by the Euler dis-

cretization using a step siz# =0.001 up to a final = 100, starting
~5.6) from experiments on 2D charge stabilized colloidsfrom the initial input(light solid line). Dotted line:K=16.

and of Zahret al.[28] (E.~4) for paramagnetic colloids. . . . . .
Finally, to obtain the melting density we use the unrenor_t|on so KTHNY perturbation theory is valid though numeri-

. . a . cal values of nonuniversal quantities may depend on the or-
mahze_d K and_y—exr{ E¢(K)] as inputs to the KTHNY der of the perturbation analysis. Thirdly, solution of the
recursion relation§Egs.(4)] and solve them numerically by

: 1 . recursion relations shows that a KTHNY transition B¢
a standard Euler discretization to obtélg, see Fig. 8. The =9.39 preemptsthe first order transition aP;=9.2. Since
melting density obtained from our value fdfgr is p.

—0.916 andP— 9.39 (Fig. 2, upper arrow This means that these transitions, as well as the hexatic-liquid KTHNY tran-

o . .. __sition lies so close to each other, the effect of, as yet un-
the KTHNY transition now preceeds the first order trans't'onknown, higher order corrections to the recursion relations
and the solid transforms to the hexatic phase.

may need to be examined in the futyre8]. Due to this
caveat, our conclusion that a hexatic phase exists over some
IV. SUMMARY AND CONCLUSION region of density exceeding=0.899 still must be taken as
fpreliminary. Also, in actual simulations, crossover effects
ear the bicritical point, where two critical lines correspond-
g to the liquid-hexatic and hexatic-solid transitions meet a
irst order liquid-solid line(see for, e.g., Ref29] for a lat-
éice model where such a situation is discugsedy compli-
cate the analysis of the data, which may, in part, explain the
nfusion which persists in the literature on this subject. In
the systems with softer potentia80], the signature of a

We have simulated a dislocation-free triangular solid o
hard disks using a constrained Monte Carlo algorithm. Usin
a block analysis scheme we calculate the finite size scale
elastic constants of this solid. From the number of times th
system attempts to violate our no-dislocation constraint w
can obtain(virtual) dislocation probabilities and hence the
core energy. The absence of a phase transitions in our syst

implies that all correlation lengths remain finite and the prob .
lem of slow equilibration of defect densities is eliminated. In <THNY transition appears to be more pronoun¢&d]. In

effect we obtain highly accurate values of the unrenormaI:[he future, we would like to analyze more complicated sys-

: : . : tems, e.g., laser-induced reentrant melting of charge-
ized coupling constark and the defect fugacity which can - : .
be usedpasginputs to the KTHNY recu?siort\yrelations. Nu_stablllzed colloids[32], and the influence of other defect

merical solution of these recursion relations then yields the/iables, €.g., grain boundariggs] on elastic constants and

renormalized couplindg and hence the density and pres- melting behavior.
sure of the solid to hexatic melting transition.

We can draw a few very precise conclusions from our
results. Firstly, a solid without dislocations is stable against We are grateful for many illuminating discussions with D.
fluctuations of the amplitude of the solid order parameter andFrenkel, M. Bates, Madan Rao, W. Janke, and D. R. Nelson.
against long wavelength phonons. So any melting transitiot©ne of us(S.S) thanks the Alexander von Humboldt Foun-
mediated by phonon or amplitude fluctuation is ruled out indation for financial support. Support by the SFB 513 is grate-
our system. Secondly, the core enefgy>2.7 at the transi- fully acknowledged.
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