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Thermodynamics of self-gravitating systems with softened potentials
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The microcanonical statistical mechanics of a set of self-gravitating particles is analyzed in a mean-field
approach. In order to deal with an upper bounded entropy functional, a softened gravitational potential is used.
The softening is achieved by truncatingNderms an expansion of the Newtonian potential in spherical Bessel
functions. The ordeN is related to the softening at short distances. This regularization has the remarkable
property that it allows for an exact solution of the mean-field equation. It is found that hat too large the
absolute maximum of the entropy coincides to high accuracy with the solution of the Lane-Emden equation,
which determines the mean-field mass distribution for the Newtonian potential for energies largé&. than
~—0.3355M?/R. Below this energy a collapsing phase transition, with negative specific heat, takes place.
The dependence of this result on the regularizing paranieterdiscussed.

PACS numbd(s): 05.20-y, 05.70—a, 05.90:+-m, 64.90+b

I. INTRODUCTION appearance of a phase transition separating a high-energy
homogeneous phaséHP) from a low-energy collapsing
The statistical mechanics of self-gravitating systems iphase(CP) [9-11]. The phase transition takes place in an
amazing. It has been studied since long ago by Antdddv  energy interval with negative microcanonical specific heat.
Lynden-Bell and Wood2], Thirring [3], and Kiesslingd4],  From the dynamic point of view, both phases are also differ-
among other§5]. One reason for the interesting and peculiarent: the single-particle motion is superdiffusive in the CP and
behavior of these systems is that they are thermodynamicallya|jistic in the HP[12,13. The dynamics and statistics of
unstable. The usual thermodynamic limit exists only forsimple low-dimensional models with long-range attractive
those systems that are thermodynamically stbleFor a  forces has been studied ja2—15. Their conclusions sup-
system ofN, classical particles interacting via a two-body port the idea of a collapsing phase transition as in the
potential$(r), a sufficient condition for thermodynamic sta- hrring model. If angular momentum is conserved, the situ-
bility states that there must exist a positive constnsuch ation could be substantially alteré].

that for each configuratiofry, .. . ry }, the following in- As mentioned, the usual thermodynamic limit does not
equality is obeyed6]: exist for unstable systems. To have well defined thermody-
namics when the number of particldg is huge, the follow-

Z ¢(|ri—rj|)>—NpE0. (1) ing scaling must be considered: the potential energy is res-
1] caled by 1N, and then the energy and entropy scale with
o Ny . It has been proved for the canonical ensemble that this
By contrast, self-gravitating systems do not possess a propgtajing reproduces mean-field theory exactly in the limit
thermodynamic limit. Moreover, due to the \'ahort—distance,\]p_)oo [17]. This means that correlations among two or
singularity of the gravitational potential, the entropy is notmore particles vanish, and therefore the equilibrium state is
even well defined: it diverges for any value of the energycharacterized by a one-particle density only, which mini-
[1,5]. To define the thermodynamics of these systems thesizes the free energy functional. Although we are not aware
potential must be regularized at short distances. This can kg any rigorous proof, we shall assume here that the same
done in many different ways. Using particles endowed with &,|ds for the microcanonical ensemble, changing minimiza-
hard core is one possibilify,8]. In this case, the potential is {jon of the free energy by maximization of the entropy func-
repulsive and singular at short distances. Other populaggng.

choices are the so-called softened potentials, which are |fihe troubles caused by the short-distance singularity are
smooth at the origin. As shown by Thirriig], the thermo-  jgnored, it is possible to write down a mean-field entropy
dynamic instability is caused neither by the smgularlty NOffunctional for self-gravitating systems, which depends only
by the long-range nature of the potential, but is due to thg, the particle density. This functional is not upper bounded
fact that the potential is always attractivelhe essential anq, therefore, has no absolute maximum, a reflection of the
common feature of these purely attractive potentials is thgact that the entropy is not defined in the finite system. For
energies larger thalB,~ — 0.3355 M?/R there is, however, a
local maximum. Below this energy, no local maximum of the
Yin the case of hard core particles the potential is repulsive at sho@ntropy exists[1]. This fact was explained in terms of a
distances and the thermodynamic instability is actually due to thdransition from the homogeneous isothermal sphere behavior
long-range forces. to the CP atE.. The transition produces negative specific
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heat, and was called the gravo-thermal catastr¢ghevery
recently, it has been pointed out that the low-energy phase
might be described by a spherically nonsymmetric deforma-
tion of the singular solution of the isothermal Lane-Emden
equation[18].

The gravitational potential must be modified at short dis-
tances to make equilibrium statistical mechanics applicable
to self-gravitating systems. As shown by Kiessling for the o
canonical ensemblg], in the limit where the classical gravi-
tational potential is recovered, the equilibrium state ap-
proaches a particle distribution with all particles collapsing
at a single point. The behavior of the system will depend on
the scales at which the regularization is effective. There
might be regularized potentials which, in the mean-field
limit, produce the global maximum of their associated en-
tropy close to the solution of the isothermal Lane-Emden . 5 . v >
equation for energieE=E_. If this is the case, a collapsing r/R
transition should occur at some energy clos&to The CP
is expected to be very sensitive to the details of the regular- " :
ization at short distances and the HP almost insensitive to g% " units ofGM
o e e S o L. The poblems i th sngularty o e graviationa -
Emden equation will be global maxima of the entropy onlytpfnt'f'JII in stgﬂshcal_mechamcs @sappear 'f. the equm.bnum
at very high energies, and therefore the collapsing transitioﬁi's‘mbUtIon IS mq@ﬂgd qppropngtely. For.mst_ance, if the
will take place at some energy much larger tHan The approach to egw_hbnum is 'coII|S|on.Iess, via violent relax-
smaller the scale at which the regularized potential differdtion; _the equilibrium state is _descrl_be_d bY the_: Lynden-B_eII
significantly from the unregularized one, the higher the criti-St.‘at'St'CS[M]’ whose one-particle ‘?'St”b““‘”? is of Ferml-_
cal energy will be. A very similar picture was rigorously Dirac type, and produces an effective repulsion at short dis-

established by Kiessling for the canonical ensenfisle tan_(r:ﬁs[ZS]. larized potential hich hall
In this paper we introduce a convenient new softening € regularized potential we propose, which, as we sha

procedure for the regularization of the gravitational potentiald'scuss’ has several remarkable features making it very con-

and we investigate the consequences in the microcanonic prient for t_hezrmodynamlcal purposes, is based on the fol-
thermodynamics of self-gravitating systems. The rest of th owing identity:
article is organized as follows: in Sec. Il we introduce the 1 . sin(2k—1)7x]
family of potentials to be studied; in Sec. Il we derive the X gfl T (2k—1L)mx
mean-field equation and its general solution in terms of a set
of algebraic equations; Sec. IV is devoted to a discussion ofhe singularity at the origin is removed by truncating the
the results and Sec. V to summarizing the conclusions.  series to a given ordeX. Let us consider a system of,
particles confined within a sphere of radigsin 3 dimen-
sions. The maximum distance between two particlesRs 2
Hence, our potential must represent for distances &r

As mentioned in the Introduction, the short-distance sin-<<2R. Therefore, we choose the following interaction energy
gularity of the gravitational potential causes many troublesbetween two particles of mass located at andr’:
What is more, for a real system such singularity is not physi- cm N

. : : ; m

cal, since at short distances new physics must be taken into d(lr—r'|)=— 2> dl[r=r'|IR), (4)
account. Thus, the potential should be modified at short dis- R &1

tances to avoid the singularity. In simulations of cosmologi- ] ) )
cal problems a widely used potential is the so-called PlumWhere ¢i(x) =sin(wx)/(w,x) are spherical Bessel functions

FIG. 1. Newtonian and regularized potentials with=10 and
2IR.

0<x<1. 3)

Il. SOFTENED POTENTIAL

mer softened potentidll9,20); of order zero andw,=(2k—1)x/2. Figure 1 displays the
singular potential and the regularized potential witk- 10
GM? andN=20. A similar expansion has been used to introduce
d(1)=———. (2)  simple models in low dimensions that make it possible to
NI +o perform numerical simulations of systems with long-range

attractive forces with CPU time growing only as the number

Forr> o, Eq. (2) coincides with the gravitational potential. Of particles[12—14. _

Other softened potentials are those known as spline softened YWhat is remarkable about E@) is that each term obeys
[21]. The equilibrium thermodynamics of systems with thesgth® following differential equation:

softened potentials has been studiefi?d], and the dynami-

cal effects of softening were considered #8]. The form of

the potential at short distances is arbitrary to a large extent,?Equation(3) follows immediately from the sine series expansion

since we do not know how the new interactions modify it. of the constant functiorf(x)=1, in the interval (0,1).
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2

(Uk V
V2+—2 O (r/IR)=0, (5) eh=—-——. (12)
R f d3rev®
so that the potentigld) verifies
Dyop(r)=0, (6)  Substituting Egs(11) and(12) in (10), we obtain foru(r):
where 3 Jd3r’¢(|r—r’|)e”(”)

vn)==5p (13

N 2

Wy
Dn= Ve+ —|. 7
N k[[1 Rz) "

J d3r/ev(r')

If we take for ¢(r) the Newtonian potential, we know that
the entropy is not well defined. Nevertheless, it is still pos-
sible to start formally with the entropy function@), which

IIl. MEAN-FIELD ANALYSIS gives a finite result for any smooth distributigifr), but is
unbounded(see IV Q. There can still exist local maxima,

It is well known that long-range forces suppress fluctua--" " 7 ; .
tions, and thus in these cases a mean-field analysis is accllich are then solutions of E¢L3). By expanding the right-

rate or even exact. We expect that, dealing with an unstabl and_ side of this eqL_Jation in a series of spherical Bes_sel
system in the scaling regime described in the Introduction!dCtions and truncating after N terms, one would obtain

the description of the thermodynamical state in terms of e{eSUItS equivalent to the ones we get using the softened po-

one-particle density, neglecting two or more particle correlat€ntia-

tions, gives the essential physical behavia7]. We will If we now particularize Eq(13) to the softeped pot«_antial
derive in this section the form of the mean-field equation and®> We See thak(r) obeys the same differential equatit)
of the corresponding thermodynamic quantities for a syster@S the potential. Imposing rotational symmetryofi, 2], we
whose dynamics is governed by a potential of the fé4n obtain the following ordinary differential equation:

This relation will prove very useful in the mean-field analy-
sis of the next section.

N
A. Mean-field equation H

Let us consider a system of particles enclosed in a spheri-
cal region of radiuR and volumeV=4/37R3, with a total
massM distributed according to a smooth densitfr), nor-
malized such thafd®rp(r)=1, and interacting via a two-
body central potentiad(|r—r’|). If the potential is smooth,
the entropy per particle in the microcanonical ensemble ca
be written in terms of the particle density &g

+——+—> »(r)=0. (14)

The general solution of this equation is a linear combination
of {sin(wyr)/r} and{cos(wr)/r}. The cosines should be absent
from the solution since Eq.13) implies thatv is smooth.
{Only atT=0, i.e.,, =<0, is v singular) Indeed, it is shown
explicitly in Appendix A that the solution of Eq13) can be
written as

Sz—j drp(n[INnVp(r)—1]+3In(E— D), (8) N
()= 2 wi(riR), (15)
whereE is the total energy an® is the potential energy: k=1
q)[p]zlf d3rd3 p(N)p([r—r')p(r'). (99  where v, are N numerical coefficients determined by the
2 following set of equations:
The volumeV entering the first term of the right-hand side 1
(rh9) in Eq. (8) has been included to make the entropy look GM2 fo dx 3 ghy(X) ex Ek vidi(X)
dimensionally correct, and plays no significant role since it =38 . (16)

only shifts the entropy by a constant. The physical density is R

the absolute maximum of Ed8) under the constrainfp
=1. Differentiating with respect t@, we arrive at the fol-
lowing integral equation: The integral equatiofil3) has been reduced to a system\bf

. . ) ) nonlinear algebraic equations withh unknowns. It can be

InVp(r)=p—73 fd r'g(fr—r')p(r"), (100 solved by iteration, for instance with a Newton algorithm
(see Appendix B for a summary of the method used in this

whereB=1/(E—®) and is the Lagrange multiplier for the Work).
constraint/ p=1. Definingv(r) by

Jldx xzexp: ; qu')k(x)]
0

B. Thermodynamical quantities

1
p(1)= VeXmH v(n] (1) Using formula(A2) of Appendix A, it is straightforward

to verify that for a spherically symmetric mass distribution
the constraint is solved by taking exd u+v(r)], the potential energy is given by
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R 2 225
drr2g¢,(r/R)e"")
GM2 fo d(r/R)
=-— > - . @an 2t
o f drr2e®
0 175
For an equilibrium distribution of the forn(l5), Eq. (16) 151
implies 1T
N
1 R 125 |
P=—— Z. 18
982 GM? k§=:1 T (18
1 -
Hence, the total energy is
0.75 |
1 1 R
E==-—— V2. 19
B 982 GM? Ek: “ ( 0s
-10 -8 -6 -4 -2 0

From Eq.(8) we easily obtain the equilibrium entropy

fldx xzex;{ ; vk¢k(x)>
0

FIG. 2. Inverse temperatureTLiersus energy for N=10.
S=-1In

cific heat is negative in this energy interval. This is a conse-
guence of the instability of the system.

R ; VE 3 As is usually the case with these systdi@k the negative
+ —=InB. (20) specific heat region is associated with a transition to a col-
GMm? 3B 2 lapsed phase. To investigate this, let us define an order pa-

_ . . o rameterk =R, /R, whereR, is the radius of the sphere cen-
Since the entropy is stationary under variations of the masgered at the origin which contains 95% of the mds$
distribution, the inverse temperature |ST§&S/&EZIB course, the value of 95% is arbitrary:igure 3 d|Sp|ay9<
=U(E-D). versuse. At e=x the mass is distributed homogeneously,

and thenk = (0.95)"3~0.9830. When the energy is reduced,
IV. RESULTS x decreases monotonically and slowly. Notice the anomaly
o . . at e~ —0.335; we shall discuss it in Sec. IV B. The collaps-

: In order to p'rese'nt spegﬂc numencg! results, it is ConVe"mg order parametet varies abruptly in the region where the
nient to work with dimensionless quantities. We measure th%pecific heat is negative. It decays from-0.95, corre-
energy in units of the charactepsuc ener@M?/R’ where sponding to a homogeneous phasexte0.1. In t,he later
Mis the tOt"’.‘l mass an the_ radius of the coznflmng sphere. case, the mass distribution consists of a small dense core and
The dimensionless energy is thesr ER/(GM*?). Any other a homogeneous tenuous halo
guantity with dimensions of energguch as the temperature :

. The results of this section are similar to those found by
1/B8 and the potential energp) must be also understood to r o : ; :
. - o . egularizing the potential with hard core repulsi¢pAg8|, and
be expressed in units @ M?/R and, similarly, magnitudes 9 9 b pulsions]

; " . - ; ; to those derived from the Lynden-Bell statistics applied to
with dimensions of length are given in units Bf As a mat- y PP

ter of terminology, we shall apply the term Newtonian po-
tential (NP) to the unregularized potentiat; GM?/r, New-
tonian entropyNE) to its corresponding entropy, regularized 49
potential (RP) to the potential regularized by E@4), and

-

regularized entropyRE) to its associated entropy. 08 1
0.7 |

A.N =10
06 |

For values ofN not too large, computations are easy. Let

us describe the ca®é=10 in detail.(See Appendix B for a 051
summary of the numerical methods used in this woithe 04 |
solution of Eq.(16) as a function of the energyprovides all

thermodynamic functions. For each valuecofre found only 031

one solution, which should then be the absolute maximum ol ., |
Eq. (8). We shall return to this point later on, in Sec. IV C.
Figure 2 displays the inverse temperate 1/T versuse. 01
In the thermodynamics of stable systems, this function musi ‘ ‘ ‘ ‘ ‘
be monotonically decreasing, since the entropy is a conve) -10 -8 -6 -4 -2 0
function of the energy26]. In the present case, howevg,
decreases witle in the low- and high-energy regimes, butit  FIG. 3. Order parameter of collapsing phasee text, Sec.
increases foe in (—4.46~0.2) and, consequently, the spe- IV A) versus energy for N=10.
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the unregularized potenti@25]. It is remarkable that differ-  will attain the latter in theN— < limit and, obviously, must

ent regularizations lead to similar results. cease to be the global maximum of the RE and become a
local one for some value df, which will be denoted by, .
B. Newtonian potential Since the maximum of the entropy depends on the energy,

N, is a function ofe. In principle, we can computd.(e) by
solving Eq.(16) for large values oN. In practice, however,
this is very difficult and we must content ourselves with an
estimate ofN..

To get the estimate, let us first analyze how matter distri-
butions with arbitrarily high NE can be built. There is an
V2u(r)=—32pe* exg v(1)], (21) upper bou.nd for the entropy function€d) if the potential
energy(9) is bounded from below® =&, for any p(r)]:

It is interesting to compare the maximum of the RE with
the local maximum of the NE. Substituting(|r—r’|)=
—GM?/|r—r'| in Eq. (13), and using the fact that this po-
tential is a Green function of the Laplacian, we get the fol-
lowing differential equation:

which, for spherically symmetrie, is equivalent to the iso-

3
thermal Lane-Emden equati$@7,28,3;: S<1+3zIn(e=Pmin). (23
d2u(r) 2dw(r) 3 In the case of the RRP ,;,= —N. Since the entropy has an
+ = +-pere'N=0 (22)  upper bound, it is reasonable to assume that it has a global
dr2 r dr 2 maximum given by a regular functior(r) of the form(15),

) _ with coefficientsy, verifying (16). The potential energy as-
The proper solutions of Eq22), with 8 andu such that3  sociated with the NP has no lower bound and therefore
=1/(e—®) and = —Infdrr’expu(r), give local maxima of ¢ . ——o. Hence, Eq.(23) does not provide an upper
the entropy if e>-0.335 [1,2]. The high-energy phase hound for the NE. Indeed, it is straightforward to verify that
should depend only weakly on the form of the potential athe distribution
short distances. Therefore, the maximum of the RE in the

high-energy phase might be an approximation to the local 3a
maximum of the NE given by Eq22). This is indeed the , 0<r<ry
case. 4mry
To see how close the maximum of the RE is to the appro- p(r)= 3(1—a) (24
priate solution of Eq.(22), we define a distance between — ro<r<i,
functions by D =max|vy_10(r) — v (r)|}, where the sub- 4m(1-rg)

scripts indicate the solutions of E(L6) with N=10, and of
Eq. (22), respectively. Foe>—0.335, i.e., when the Lane- . N
E?nden equaption de}[/ermines a local maximum of the NE, :’.V't.h O<a<1,r?;';1s arpltra_rll_y Iarglge entropy w?er;]_vve_: take the
<10 * The absolute maximum of the RE is indeed a veryfImlt ro—0, while maintaininga In ro constant. This is true
good approximation to the local maximum of the NE. or any value ofe. We s_haII _caI_I these dISt'rIbu'[IOﬂ_S, for any
Now, we can understand the anomaly snaround e~ values ofa andr, specylal d_|str|but|on$SD s). If Nis Iarg.e
—0.335, which was mentioned in Sec. IV A and which Canenough, there are SD's with larger RE than the maximum

be appreciated in Fig. 3. At this point, which is close to theClose to the solut.|on of_the Lane—Emden equation. .
energy at which the solutions of the Lane-Emden equation As already claimed, it is very difficult to get the solutions
cease to be local maxima of the NE, the nature of the maxi9f Eq. (16) for large values oN. To overcome this problem

mum of the RE also changes, originating anomalies such a%nd obtain an es_timatg NC’ we shall study the restriction
the pick in 17 (Fig. 2 andgthe fissgure img(Fig. 3. of the RE to particle distributions of the for(24) (SD). In

The effect of the regularization is to deform the entropythls way, we have a RE that depends on only two parameters,

functional dramatically for mass distributiop$r) which are e andro. Now, the maximization of this entropy with re-

- S pect toa andr is an easy task, even for very large values
very concentrated at the origin. These distributions get %f N. Obviously, the smaller value o for which the maxi-

Eglgea? T;c;irt]tfgr ,\T iglaglvien e;ljgc;]pyz/i avf\;[zr S{ﬁ;tte r;;]negr ;h:rg Ortue;nmum of the restricted RE is larger than the RE of the corre-
' ' Y eg,ponding solution of the Lane-Emden equation will give an

maxima of the RE close to them. On the other hand, th stimate ofN.. Strictly speaking, this estimate is an upper
entropy of smooth distributions that are not concentrated i ound onN ¢ y sp 9 PP
c-

sensitive to the global form of the potential rather than to th . . . .

short distance details. Therefore, these distributions hav Bef_ore analyzing the behavior with, let us look again to

similar NE and RE, and they essentially do not feel the regu! eN=10 case, for which computations are easy. Figure 4

larization. The solutions of the Lane-Emden equation belong

to this class and, consequently, close to them there is a local

maximum of the RE which is indeed the global maximum >Notice that in the limitr,—0 with a Inry constant only an in-

for not too largeN, in particular forN=10. finitesimal amount of matter collapses, while the rest is homoge-

neously distributed. This reflects the fact that it is enough that two

particles(hard binariesbecome arbitrarily close to make the poten-

tial energy arbitrarily negative, and therefore the kinetic energy
The NP can be arbitrarily well approximated at short dis-arbitrarily large. However, since they constitute only two degrees of

tances by a RP witiN sufficiently large. Consequently, the freedom, their contribution to the purely configurational entropy

maximum of the RE close to the local maximum of the NEterm [p(InVp—1) of Eq. (8) is negligible.

C. N dependence
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changed at long distances. There are infinitely many ways to
achieve that. One interesting possibility is given by the trun-
cation of the expansion of the gravitational potential in
spherical Bessel functions to a given ordiéras in Eq.(4).

This regularization has the virtue of reducing the mean-field
integral equation to a system Nfalgebraic equations witN
unknowns. This simplifies considerably the solution of the
problem.

The result that emerges from this approach is the follow-
ing: if the regularization is mild enougN< 30, the system
undergoes a phase transition separating a high-energy homo-
geneous phase from a low-energy collapsed phase. In the
high-energy phase, the mass distribution and the thermody-
namic quantities are those of an isothermal sphere. Quanti-
tatively, they are very close to the solutions of the corre-
sponding Lane-Emden equation. The low-energy phase is
characterized by a mass distribution consisting of a dense
FIG. 4. Entropys versus energy for N=10. The solid line is  ¢ore surrounded by a tenuous halo. As is usual in these cases

the entropy of the solution of Eq16) and the dashed one corre- [3], the transition from the HP to the CP takes place in an
sponds to the maximum entropy of distributions of the fdg). energy interval with negative specific heat, an indication of
the thermodynamic instability of the system. These results
displays the maximum of the restricted RE and the RE of thére remarkably similar to those found with a different regu-
corresponding solution of E¢16), both for N=10, as a larization (hard core spherg47,8], and with those derived
function of e. The latter distribution always has larger RE from the Lynden-Bell statistics applied to the unregularized
than any SD. This, besides the fact that we did not find othePotential[25]. We can then conclude that the thermodynam-
solutions by varying the initial guess, confirms that for eachiCS IS not very sensitive to the form of the regularization.
€ only a local maximum of th&l=10 RE exists. It is, obvi- The effgct of_a mild regularlzatl_on is to deform the en-
ously, the global maximum. tropy functlona! in such a way that in t'he hlgh—energ'y phase,
To investigate the behavior witN, we computed the es- he global maximum of the entropy with the regularized po-
timate of the criticalN,, for several values of. As could ~tential is very close to the local maximum with the unregu-
have been anticipated\, grows with e. Table | shows the Ianzec_i p(_)tentlal. The analysis based on the Lane.—Emden
results. Column one displays column two the entropy of equation is therefore very accurate and the conclusions ex-

the solutions of the Lane-Emden equation, column three thiacted from it hold. If the potential is too sharp at short

maximum of the restriction of the RE to SD for the estimategdistances,N>30, we expect also a collapsing transition,
N, and column four the estimated. . It is apparent that in which however will take place at a much higher energy than

the high-energy phase£ — 0.335), we must go t&l larger the one predicted by the analysis of the stability of the solu-

than 30 to see global maxima different from the solutions of oS of the Lane-Emden equation. Below the critical energy

the Lane-Emden equation. It is worth noting that a similart1® global maximum of the RE will not be in the vicinity of

scenario was rigorously established by Kiessling for thé® solution of the Lane-Emden equation, where, neverthe-

equilibrium state of self-gravitating systems in contact with ales;,_there will be a local maximum of the RE. Besides dg-

thermal batH{4]. sgr|b|ng such _metastable states, the Lane—Eerr] equation
might be physically relevant in diluted self-gravitating sys-
tems with an interparticle distance high enough to be insen-

V. CONCLUSIONS sitive to a truncation of the expansion of the gravitational

To define the thermodynamics of gravitational systemsOOtem'al in spherical Bessel functions, E4), to 30 terms.

properly, the Newtonian potential must be regularized at Finally, let us comment on the structure of the low-energy

short distances, removing its singularity. Only then is themicrocanonical equilibrium state when the regularized po-

entropy well defined, or, in a mean-field approach, the en'_[e_ntial is very sh_arp N>30) at short_ di_stan_ces. In th_is_re-
tropy functional upper bounded. One way to introduce gime there are high-entropy mass distributions consisting of

regularization is by softening, i.e., by making the potentiala small amountinfinitesimal whenN—) of matter con-

smooth at short distances while keeping it basically un__densed and the rest homogeneously distributed. This might

indicate that at these scales the system is not well described
by a smooth density, and granularity is playing a major role.

TABLE I
Energy Entropy(LE) Entropy (SD) N¢
APPENDIX A
0.00 —1.78525 —1.78247 79
—012 —2.06341 —2.06124 56 Let us show that the solutions of E@.3) for v rotation-
~0.20 —2.26269 — 225417 44 ally symmetric are of the fornfl5) if the potential is¢(r)
~0.30 — 250812 — 250519 32 =3N_,¢(r). Introducing spherical coordinates, E({3)

can be written
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1 , T
0

3sGM2 N o
v(r)= (A1)
R k=1 1 2 ’
2 dr'r'2e()
0
|
The integral inf can be readily performed, and gives By neglecting terms of order higher than lineardn and by

settingF(v+ 6v) =0, we obtain a set of linear equations for

P 2 12 ’ 1/
fﬁdgsingsﬂwk(r +r'%-2rr’cos)) ] the correctionsdv that move each functioR; closer to zero
0 w(r?+r'2—2rr’cosf)? simultaneously:
=2¢(1) (1) (A2) Jov=-F. (B4
. ) N _ This linear equation is a standard problem in numerical lin-
Equations(Al) and (A2) imply »(r) =2 ,0¢(r), with g5 algebra and can be solved by LU decomposition. The
the coefficients determined by(16), QED. corrections are then added to the initial guess,

=+ Sv, B5
APPENDIX B Vnew= ¥ OV (B5)

and the process is iterated to convergence. It is possible to

Since the numerical solution of E¢L6) is central to this .
O . . how that the meth Iw results in convergen ro-
work, we shall outline in this appendix the method used toS 0 at the method always results in convergence pro

solve it. The problem is to find the roots of a vector functionvided the initial guess is close enough to the root. It can also
L L . . spectacularly fail to converge, indicatirithough not prov-
defined in a multidimensional space. E#j6) can be written b y 9 houg P

ing) that the putative root does not exist nearby. To avoid

as problems with the poor global convergence of the method,
Fi(ve, ... .v0)=0, (B1)  we started with many different initial guesses. We always
. : . found convergence to the same solution, except Wiheras
with i=1, ... N. We shall use matrix notation and denote .
by » the complete seti(, ....n) and byF the vector larger than 30, where we found only convergence at high

energy. We never got two different solutiowithin our

(F1, ... Fn)- S 9" > !
. . convergence criterion; see bel starting at two different
To solve systems of equations likB1), we choose the points 9 iy 9

Newton-Raphson method, which works as folldi&S]: pro- Numerically, a convergence criterion is necessary. We

\{|ded we have an initial guess which is cIo_se t_o the s_olu- stopped computations when one of these two conditions,
tion of (B1), we can expandF; in Taylor series in a neigh- N N

borhood of: . > low|<107 or D |F|<1071, (B6)
i=1 i=1

Fi(vt o) =Fi(»n)+2 J;1,+0(81), (B2 . _ _

j=1 was verified. Each time the functids, was called, several
] ) . . integrals entering into Eq16) were performed numerically,
whereJ;; = dF;/dv; is the Jacobian matrix. In matrix nota- ysing a Romberg algorithfi29]. The integrands are smooth

tion we have functions and it was possible to achieve high precision with
F(v+ 6v)=F(v)+J- v+ 0O(517). (B3) a relatively modest numerical effort.
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