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Learning strategies for the maximally stable diluted binary perceptron
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I show analytically that an optimally chosen continuous preculdarthe hypercube is highly correlated to
the maximally stable diluted binary perceptron which solves the same storage prdtdéaws the construc-
tion of a diluted binary perceptro® by a simple rule. Performing simulations for perceptrons of dize
=100 | demonstrate thdd is highly stable and can be improved in an efficient manner by partial enumeration
thereby incorporating information from the precursor components. The precursor highlights the vector com-
ponents on which partial enumeration improves the stability of the vector most efficiently. Moreover, it
discriminates for each vector componert least one of the three possible valizs={—1,0,1} as being
extremely unlikely.

PACS numbdss): 05.20-y, 87.18.Sn

[. INTRODUCTION with a high probability the correct sign for the corresponding
binary component. However, precursor weights of small ab-
Learning algorithms are needed to train neural networksolute value give unreliable predictions. A principal diffi-
for the tasks they have to perform_ In many cases, |earninQU|ty is that in contrast to the continuous precursor, the MSB
can be formulated as an optimization problgli?] in which ~ ¢an not differentiate between weak and strong components
the minimum of a cost function defines the optimal synaptic?ut must match to any precursor component a st(bitary)
weights. Several efficient minimization algorithms exist for Weight. _ _ _
networks with continuous weights and cost functions with a_ " this paper, I will consider the learning problem for the
single minimum. In contrast, for networks with discrete ma.X|tr1naIIy hstable d'll(”ted t;]lna;y percleptro('MSDB) 'r?
weights, the same cost functions, defined on the discrete séﬁ'js (\)A]ietlr?e tSa(E)aer: ;‘2 tg gtrL ijet;er?;r\;gr%e:ﬁc% gfr cldn-l';inious
ﬂfﬂﬁﬁ?’zzigﬁgrengtﬁrggsrﬂllogcgl ?;r;;ne?ﬂ;‘ﬂ\f\'h.:%l S;[)a:n;/jardprecursors for the prediction of MSDB weights. On first

K thod to find the alobal mini X i fsight one can expect that the correlation to its respective
nown method to find the giobal minimum 1S énumera Ionooptimal continuous precursor is much stronger for the

all possible weight vectors. But even for the simplest nety spp than for the MSB. In particular, the addition of the
work, the binary perceptron, enumeration can be done in 3grq \weight offers a natural match to weak precursor com-
reasonable time only for a system with about 40 input unitgyonents. Simultaneously, exact determination of the most
[5,6]. For larger systems, the amount of computer time bestaple vector is a much harder problem for the MSDB than
comes inordinate and a different approach is required.  for the MSB. The search space of combinatorially possible
A number of learning schemes have been proposed for thgectors is 3' rather than 2 with the consequence that full
maximally stable binary perceptrdMSB). The MSB is rep-  enumeration of all components becomes even more time
resented by a binary vect& with N components. It stores a consuming. It has been carried out so far only for perceptron
set of input-output mappings&”— o}, v=1,....aN, ina sizesN<16[10]. The increased complexity of the problem
robust mannero”A"=«k where k becomes maximal and underlines the value of a continuous precursor. Finally it
A"=B¢&'/\N denotes the so-called local fields. Among theshould be noted, that the addition of the zero weight which
numerical methods that try to locate the global minimum ofmerely eliminates some of the connections, brings about a
an appropriate cost function, the most successful so far argubstantial increase in storage capatity].
the genetic algorithm of Kaer and simulated annealing of ~ The present paper consists of two parts. The first is ana-
Horner[3]. Their performance is quite good for perceptronslytic theory. | calculate the conditional probabilip{D|J). It
with up to 65 weights but rapidly deteriorates when the num-s the key quantity for judging the predictive power of any
ber of weights exceeds 100. An alternative and very attracprecursorJ with respect to the coupling vectd of the
tive approach tries to draw some advantage from the fact tha¥lSDB. | will consider the pattern entries to be statistically
efficient algorithms exist for the learning problem of the con-independent random numbers. Hengg€D|J) reduces to
tinuous perceptroi7—9]. By continuous optimization one p(D|J) which compares corresponding vector componénts
selects a unique perceptron vectbrthat solves the same andJ. p(D|J) allows me to set up rules for the construction
storage problem as the MSB and is highly correlated to itof a diluted binary vector of high stability. It also provides
The continuous precursar is used to predict an important suggestions for different partial enumeration schemes. From
fraction of binary components whereas all uncertain compothe set of saddle point equations that determine the order
nents ofB must be enumerated. The approach tries to genparameters one obtains the cosine of the angle betweaed
erate the optimal binary vector or a good approximation forD. | use this order parameter to evaluate different precursors
it while simultaneously reducing the set of enumerated comd with respect to their similarity in direction tb and show
ponents. that a nearly optimal precursor can be obtained by convex
As a general finding, strong precursor weights prediciminimization in the hypercubgd]. In a second purely nu-
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merical part of the paper, | test the quality of different learn-
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The pattern average in E(lL) can be performed using the

ing strategies for the MSDB by simulations for perceptronsreplica trick 2~ *=lim, .,Z""! provided the local fields

of sizeN=100. The quality measure for the different learn-

NY, A" serve as independent integration variables. The natu-

ing strategies is the average stability of the generated dilutedhl order parameters are
binary vectors or, equivalently, the obtained storage capac-

ity. In the final Section | summarize my results.

IIl. THEORY: CORRELATIONS BETWEEN A
CONTINUOUS PRECURSOR AND THE MAXIMALLY
STABLE DILUTED BINARY PERCEPTRON

DD JagP D3J°
Qab=—y " Yab=— "+ Tab= (6)
wherea,b=1, ... n are replica indices an® andJ from

Eq. (1) are denoted byp! andJ*, respectively. Introducing
abs Uabap @S independent integration variables and using

. . . . Q
| consider the combined system of a diluted binary perthe Fourier representation of tifunction gives rise to their

ceptronD=(D,,D,,...,Dy) and a continuous perceptron
J=(J1,J5,...,dy) which are both trained by their indi-

vidual learning rules to store the same set of pattern
{&,0"}, v=1,...,aN. The components of the pattern vec-
tors & are random Gaussian numbers with zero mean an
unit variance. Without loss of generality one can sét=

+1. Following the general approach of Wong, Rau, and

Sherrington[12] | consider the joint probability distribution

ul
) o

1

aN
p(D.3)= lim {{Z| du()I] h(A")
v=1

aN

x2 11 0"~ )60, 58(31-9)

Note, that all pairs of corresponding vector components

(Dy,d), I=1,... N, have the same joint probability distri-
bution Eq.(1). The averagé(- - -)) is taken over the pattern
set{&"} and Z is the partition function

aN aN
Z=f de ]l b2 T 0A=0) @

in the joint weight space. | introduce the local field$ A"
of JandD

_JfV _DgV
N VN
Given any random but fixed pattern set, Ed) specifies

exactly two perceptron® andJ by learning rulesD is the
diluted binary vector

14

A )

D 1,0,1 (4)

p—
of maximal stability«9®,
AV= 9P,

©)

The restriction(4) is enforced in Eq(1) by the summation

3p. For the continuous perceptron | consider learning rules

which have the measug(J| £, ... ,&N)=II,h(\") and re-
sult in a single solution. The constraint dnis reflected in
Eq. (1) by the integration measuiku(J). The remainder of

S

conjugate variable®,y,,qap .l ap. The order parameters can

be written in compact form as elements of tihg n matrices
Q,q,r andQ,q,r (see Appendix A for detai)s This yields

d
p(D,J)= lim

n—0
k— max

% J’ 1 anbanb drabd?ab

Easb
1 . ..
><eXp( N{E(qcﬁ QQ)—rmr+alnG,(q,Q,r)

1

[z

anb daab
2m/N

I

Na<b

27N ab 2m/N

+InG,(q,Q,1) | |p(D,J|9,Q,r). @)

Equation(7) integrates over all order parameters. The factor
exp(N[---]) gives the order parameter density. In the limit
N—c it becomes sharply peaked and is dominated by the
saddle point values of the order paramet&s.andG, are
given by Eqs(Al),(A2). The density

p(D"]|avéyF)
1 n
==X dw(J? Sor 83—
GZ(quyr) falzll o l)Dz? D;.D ( 1 )
1 T 47 X AR > A >
Xex;{—i J1QJ1+D1QD1)+Jer1), 8

is the densityp(D,J) provided one inserts the correct saddle
point values forg,Q,r. The notationd;=(J}, ... J7) and

D,=(D},... ,D') subsumes alh replicas of the first com-
ponent of] andD. | assume a replica symmetric saddle point
Qo a=b do a=b
Qab~|Q a#b, Jab™ q a#b, Fap~T. 9

Note, thatQy=<1 due to the dilution oD. | will consider
constraints onJ that imposeqy<1 and focus on learning

rules, which yield a unique solutiong—qq. For Q,p,

this section introduces the order parameters and summarizes,, ., holds the analog to Eq9). All saddle point equa-

the central results of the replica calculation. Full specifications that determine the order parameters are given

tions of the precursod as well as the result for the condi-
tional probability for a nearly optimal precursor are given
below in two subsections.

Appendix A.
Before | proceed some words on the characterization
the MSDB are in order. Iwanslet al. [10] and Krauth and

of
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Meézard[13] showed that the correct solution can be either

obtained by a one step replica symmetry broken ansatz or, 14 ¢
alternatively, by the replica symmetric saddle point equa-
tions supplemented with the additional constraint of a van- 12 F
ishing replica symmetric entropy. The zero entropy condition
determines the maximum stabilitx®®(«). Solving the 10 L
saddle point equations for the MSDB reveals a peculiarity:
For all valuesa>0 one findsQ<Q,. This indicates that 08 &
many different weight vectors satisfy the conditidbg even Ky 7
at maximum stability. Since it is impossible to distinguish
the individual weight vectors, all theoretical results relate to 06 ¢
the averagdD) over this ensemble of maximally stable di-
luted binary vectors. 04
Remarkably, the saddle point equatidqid2) and (A13)
contain the quantities o2t
r r 0.0 ‘ \ . .
(10 00 04 08 12 16 20

y=—, = — . . .
Vaa  © \aq o
“ . ) FIG. 1. Maximal stabilityx as a function of the pattern load

and|y|,/y|<1. y can be interpreted geometrically: Correct- or four perceptrons with different constraints. From left to right,
ing the overlapr for the reduced lengths ¢D) andJ yields  \sB: binary weights §,= ), MSDB: binary weights and dilution
the cosine of the angle between both vectors. The order pqx, = «/\/Q,), MSC: continuous weights in the hypercube,(
rameteraf is crucial for the distribution function Eq@8): = k/\/qg), MSN: continuous weights on the hypersphekg £ «).
Within replica symmetry, the integrand of E@) factorizes  « was normalized by the reduced perceptron length.
into two contributions. They depend solely on the saddle
point values of the order parameterslaindD, respectively. Due to this normalization, a difference iq, characterizes a
However, both contributions are coupled by difference in direction and one can conclude that the MSC
and the MSDB are much closer related than the MSDB and
the MSN.

Figure 2 showsy, the cosine of the angle betweérand

In this subsection, | will quantify the impact of the con- (D), for different continuous precursotdsas a function of
straint and of the learning rule on the quality of the precur-the pattern loadr (bold curve$. The value ofy is obtained

sor. To the MSDB only a limited set of directions are avail- from the saddle point equatio&12),(A13). y— 1 indicates
able. As Bouteret al. [9] pointed out, it is advantageous to

A. A nearly optimal continuous precursor

incorporate this information in the constraint drwhile si- 1.00
multaneously the convexity of the defined vector space shall
be preserved. The latter is important to ensure that the con- 0.98 |
sidered learning rules yield a unique solution. | consider the
usual spherical constraidf= N, which is isotropic, in con- 0.96 -
trast to a hypercube constraint '
-1=<J;=<1 (11 0.94 1
which favors binary directions. Figure 1 characterizes four T o092t
perceptrons which obey the condition of maximal stability
under different constraints: the MSB with pure binary 0.90 |
weights (thin curve, the MSDB with binary weights and
dilution (bold curvg, the MSC with continuous weights in 0.88 o
the hypercubédot-dashed curyethe MSN with continuous
weights on the hyperspheftdashed curye The comparison 086 |
between MSB and MSDB is given to demonstrate briefly the
impact of the dilution. Figure 1 shows the stability 0.84 . ‘ ‘ . ‘
=min,(V&/\N) as a function of the pattern loagl where 00 02 04 06 08 10 12
the coupling vector of the respective perceptron is repre- o

\?viltﬁdthzystzfaggn;gggiit\)’/ egféaghggiiigzrzcﬂgr tﬁgro FIG. 2. Similarity in directiony=cos(D),J) as a function of

. b the pattern loadr. Different precursors compared to the MSDB
continuous pfrceptrons MSN and MS@g = ?‘_’17 for the (bold lineg and to the MSB(thin lines. Different constraint foid:
MSDB and a;=0.83 for the MSB. The stabilityc is nor-  hypercubeC) versus hyperspheréy. Different learning rule fod:
malized by the respective reduced length of the couplingearning with potential Eq(12) (solid lineg versus maximum sta-
vector, for example for the MSDB one has=«"/\/Q,. bility condition (dashed lines
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that the precursor becomes optimal and the directiond of ~ TABLE I. Theory: Percentage of binary components in the
and (D) coincide. The presented precursargdiffer with nearly optimal hypercube precursbrand the maximally stable di-
respect to the applied constrair® £ cubic, S= spheric) and luted binary perceptro® for different pattern loads and infinite
the learning rule. The learning rule was either to maximize?€'ceptron sizé\.

the stability(MSC and MSN or to minimize a cost function

E(J)=Z2,V(\") defined by the convex potential ) D
) 0 100% 100%
U= KTy i N>k 0.20 81.7% 88.1%
VAA)=1,, otherwise. (12 0.30 74.5% 84.6%
0.50 62.4% 78.7%
The potential(12) is constructed in analogy to R¢B]. 0.80 48.0% 71.3%
As expected, Fig. 2 demonstrates a strong dependence of 1.16 34.0% 63.4%

the quality of the precursor on the applied constraint. The
hypercube restricted MSC is superior to the hypersphere re-

stricted MSN. The explanation is simple. In the hypercubeof componentp(D) andp(J) of the MSDB and the nearly
vector J may differ in length and a loss in quality of the optimal hypercube precursoR is a diluted binary vector,
direction ofJ can be compensated by a gain in lengtll @fy  hence

shifting it slightly towards the nearest cube edge. Thus, the

hypercube favors those orientations that constitute the binary B Qo
subspace. A somewhat smaller but nevertheless still consid- P(D)=(1-Qoa(D)+ 7[5“3 +1)+8(D-1)].
erable improvement is brought about by the usage of learn- (13

ing rule Eqg.(12) (solid lineg in comparison to maximal sta-

bility learning (dashed lines The MSC realizes a higher . ] _
stability than the MSDB and is located in the Gardner voI-In the “mlt.aﬂo one findsQo=1 and the MSD.B ll))i:comes
a purely binary vector. At the storage capacafﬂ =1.17

ume|[14] of continuous, hypercube restricted vectdraith one hasQ,=0.63 and about 37% of the MSDB weights are

stability k= x9° were «%° denotes the theoretical stability of diluted. 7 has are dependent fraction of binary components
the MSDB. The sole information available about the position ' ) Pen y P
due to the cubic constraing]

of the MSDB is that it lies for all pattern loads at the

boundary of this Gardner volume. Given this information,

the optimal precursor to the MSDB would be the center of g I7125?

mass of the Gardner volunjé6]. The potential Eq(12) is p(Jd)= N O(1-[I)H+H

characterized by a strong repulsion away from the boundary Sv2m

of the Gardner volume with stability= <% and pushes the

minimizing vector of the cost functio&(J)=2,V(\") to-

ward its center of masiL5]. Within the class of precursors WhereH(u) = [ dzexp(—Z/2)/\2m. The order parametes

obtainable by minimization of a cost function of the type starts ate=0 with s= and drops te=0 ata=2. Conse-

E(J)=X,V(\") the simple potential Eq(12) provides a quently, the distribution o components changes gradually

guasioptimal solution and gives, as Fig. 2 shows, a nearljrom all being binary to Gaussian. At the storage capacity of

optimal precursor to the MSDB. the MSDB«a,=1.17 | finds~1.04 and about 33.4% of com-
So far | discussed only the bold curves in Fig. 2. Theyponents of] take on the value- 1. A short summary is given

compare different precursoisto the MSDB. To relate my by Table I. It lists the percentage of binary componentdfor

results to previous work8,9], thin curves show the perfor- andJ at different pattern loada.

mance of the four precursors on the MSB. Note that learning For hypercube precursors, calculationpgD,J) yields an

rule Eq.(12) operates in this case with the stabilie} of the  expression which factorizes out the separate terms of the

MSB as an input parameter. Bold and thin curves end at thdistribution p(J) of the hypercube weights Ed14). This

storage capacity of the MSDB and the MSB, respectivelymakes it simple to read off the conditional probabilities

According to Fig. 2, hypercube precursors approximate thg(D|J):

MSDB better than the MSB in a wide range af values.

However, the difference in quality becomes rather small for - 3

the nearly optimal precursor. Figure 2 shows that for the p(D|J)= Du f(U‘/l—S/ZJF:V—,D) for —1<J<1,

nearly optimal hypercube precursgris almost independent — S

1
s

)[6(J—l)+ s(J+1)],
(14)

of a. (15
B. The conditional probability p(D|J) % f(u,D) 1/s— &u\]
for hypercube precursors p(D|J)= J Du H(Ls) for J=x1
— 0 ~ 2
In the previous subsection | have shown that a continuous 1-y (16

precursor in the hypercube which minimizes a cost function
E(J)=2=,V(\") with the convex potential Eq12) on aver-
age almost coincides in direction with the coupling vector ofwith Du=exp(—u?2)d u/\27 and f(u,D) as a shorthand
the MSDB. It is very instructive to compare the distribution notation for
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1.0 ' T The error in sign prediction of bina® components is small
but not negligible. The overall probability for precursor com-
ponents that are different from 1 increases with increasing
pattern loadw. Their distribution function evolves into a pro-
nounced Gaussian shape. This behaviop@f) is reflected

in p(D|J). Errors in sign prediction for binar® components
are unlikely fora>0.6. The distinction between weélo be
diluted) and strong(to be binary components improves.

P(DIJ)

Ill. SIMULATION: NUMERICAL TEST OF DIFFERENT
LEARNING RULES

Several interesting features can be noted from Fig. 3 that
are useful for setting up a learning strategy for the MSDB.
When |J| exceeds a particular valuk(a), the most prob-
able value foD is sgn{) while for smaller values o3, the
most probable value is zero. This result suggests the follow-
ing very simple learning rule:

p(DIJ)
D;=0 if |J;|<J.,
(18

Di=sgr(J)) if [Ji[>J.

The crossing pointl; of the curvesD=0 andD=1 lies

FIG. 3. The conditional probabilitp(D|J) compares the nearly C'Qse t0J=0.5 for all values c_)fa.lhave ca_lrried out _Sim“‘
optimal hypercube precursar to the coupling vectoD of the lations for perceptrons of siz&l=100 using the simple

MSDB by the value of corresponding components. Shown ard€arning rule Eq(18) on the nearly optimal hypercube pre-
p(D=1|J) (solid line and circlg, p(D=0|J) (dashed line and dia- Cursor and approximating, by 0.5 for all values ofx. Re-
mond, andp(D = —1|J) (dot-dashed lingat four different pattern ~ Sults for the stabilityx(a) of the generated diluted binary
loadsa. vectors are shown in Fig. 4 as a function of the pattern load

a (squares The solid curve displays the analytical results
1. . _ for the averaged MSDB of infinite size. All simulation data
exp{— E(Q°+ Q)D2+uD\/6} represent averages over at least 100 samples and the error
(17)  bars are smaller than the diameter of the small circles in Fig.
4. The learned input patterns were drawn at random from a
Gaussian distribution with zero mean and unit variance.
To improve on the simple learning rule E(.8), | per-
These conditional probabilities are a direct measure for gaugormed enumerations on a subsetNf components of the
ing the ability of the precursor components to predict theclipped vectoD while keeping its remaining—N,) com-
weights of the MSDB correctly. Figure 3 show$D|J) for ~ ponents fixed. To lower the numerical effort, partial enu-
the nearly optimal hypercube precursor as a functioffof ~ meration was done using a branch and bound algorithm. De-
different values ofa. The symmetryp(D|J)=p(—D|—-J) tails on the bound conditions can be found in Appendix B.
allows me to restrict the displayed rangeJato the positive  Theory predicts a high reliability of binary precursor compo-
interval [0,1]. To a particular valuel>0 corresponds the nents. Consequently, | accepted them always as ‘“correct”
value D=—1 with probability p(—1|J) (dot dashey the predictions and excluded the corresponding components in
value D=0 with probability p(0|J) (dashed and the value the clipped vector from partial enumeration. The lower
D=1 with probabilityp(1]|J) (solid). A binaryJ=1 corre- bound for the number of fixed componems- N, is hence
sponds either t® =1 (circle) or to a diluted componerd given by the actual numbeM,, of binary precursor compo-
=0 (diamond. The probabilityp(—1|1) is very close to nents. An estimate can be read of Table | which ItIN
zero and therefore not shown in the figures. for differenta and the limitN— . For each particular enu-
Figure 3 shows that binary precursor components areneration scheme, | will keep the numbég of enumerated
highly reliable. They give a correct prediction in about 94% components constant over the whole rangexovalues as
of all cases. The prediction certainty of binary precursorong as | find enough precursor componedjtsvith |J;|<1.
components varies only slightly in the displayed rangerof Partial enumeration will be performed on &l} vector com-
values whereas the percentage of binary components in ponentsi where|J;| is closest to a particular valu¥. The
depends strongly on alph@see Table ). For very small number of non-binary precursor components decreases with
values ofa, precursor components of magnitudg <1 are  decreasinga but neverthelesdN, shall be kept constant.
rare and almost equally distributed. Consequently, as Fig. &onsequently, the values of precursor componghitsvhich
shows, it is hard to decide which of them must be diluted.correspond to enumerated vector componéntswill vary

f(u,D)= .
cosr(ux/a)

142 ex;{— %(QO+Q)
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FIG. 4. Effect of different learning rules on the stabiliky of
diluted binary perceptrons of sidé= 100 for different pattern loads
«. The stability x of the clipped vectoD®? is represented by
squares. All other symbols refer to situations whBfé" got im-
proved by partial enumeratiof@ D;={0,sgn{;)} for 16 compo-
nents corresponding tJ;|~0 (large diamony or to |J;|~0.5
(large circlg, (b) D;={—1,0,1} for 10 components corresponding
to |J;|~0 (small diamong}, or to |J;| ~0.5 (small circle. The size
of the respective enumeration space was almost equal.

for small « over a broader range of values than for larger

This should be advantageous given the shape(BJ).
Partial enumeration considers for each vacant vector co

ponentD; all three possibilitie®;={-1,0,1}. However, ac-
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TABLE II. Simulation: Storage capacity, of different diluted
binary perceptrons of siz&l=100. The clipped vector got im-
proved by partial enumeratidd; ={0,sgn(;)} on a subset of vec-
tor components wherg;| ~0.5.

Percentage of Storage capacity Symbol
partial enumeration ag
0% 0.76 Square (Fig. 4
16% 1.02 Large circle (Figs. 4,5
30% 1.09 Triangle  (Fig. 5

to Ax(0.2)~0.097 while fora=1.16 it takes on the value

A k(1.16)~0.141. The stability loss which would be induced
by enumeration on the same subset of components with two
valuesD;={0,sgn(;)} only would shift the small diamond
down by A «(0.2)~0.006 or byA«(1.16)~0.034, respec-
tively. | conclude that the influence of errors in sign predic-
tion in the vicinity |J;|~0 is small in proportion to wrong
decisions regarding the dilution of a vector component.
However, it is not negligible. In contrast, for the subset of
ten components that correspond to precursor components
with |J;|~0.5 (small circle errors in sign prediction have
negligible influence on the resulting stability. The difference
in stability Ax(«) to the clipped vector ranges between
A k(0.2)~0.103 andA x(1.16)~0.204. Neglecting errors in
sign and enumerating the same subset of ten components
would shift the small circle down by «(0.2)~0.001 or
Ak(1.16)~0.002, respectively.

Alternatively, preserving the size of the enumeration
space while taking into account only two valuds;
={0,sgng;)} allows to consider roughly 16 components in-
stead of just 10 since8~2%%8 The result is indicated in
Fig. 4 by large symbolgédiamond and circle The subset of
16 enumerated vector componeilts did correspond either

nfo precursor valuegJ;|~0 (large diamonyl or to precursor

values|J;|~0.5 (large circlg. Note, that for a vector size

cording to Fig. 3, two of these three possibilities are almosfi=100 and pattern loads=0.5 | find two completely dis-

equally likely. The third possibility, an error in sign predic-

tion, is expected to be rare.

junct subsets of about 16 components willj~0.5 or|J;]|
~0, respectively. By performing partial enumerations on the

The small symbols in Fig. 4 show the average stability ofrespective subsets &, | improve the clipped vector in com-
an improved variant of the clipped vector. The clipped vectompletely different subspaces and can monitor the efficiency of
is improved with respect to its stability by partial enumera-partial enumeration on the magnitude Jpf
tion on a subset of ten components thereby considering the The two types of diamonds and circles were obtained by

valuesD;={—1,0,1}. The subset of vector componerids

the same numerical enumeration effort. The simulation

selected for enumeration did correspond either to precursarearly shows that partial enumeration is highly effective and

values|J;|~0 (small diamongl or to precursor valuegl;|

superior to any other strategy in the vicinity of the crossing

~0.5 (small circle. In a next step | neglected errors in sign point |J/~0.5 of the theoretical curvep(0[J) and

prediction and considered only the two most likely valuesp[sgn@)|J] while simultaneously considering only the two
D;={0,sgn@;)} while performing partial enumerations. Enu- most likely valuesD;={0,sgng;)}.

meration on the same subsets as above implies a consider- The size of the enumerated subspace was chosen to keep
able reduction of the size of the enumeration space sincethe enumeration effort on a moderate level while it simulta-
am left with 2!° possibilities instead of . Naturally, the  neously allowed to obtain an informative picture on the effi-
resulting stabilities would be lower and the reduction in staciency of the different strategies. Table Il shows for the most
bility gives an indication of the practical relevance of the successful enumeration strategy the influence of the enu-
influence of errors in sign prediction. Partial enumeration ormeration effort on the storage capacity of the obtained vec-
the subset of 10 components correspondinglfie-0 (small  tors. Partial enumeratioR; ={0,sgn{;)} was performed for
diamonds yields the following results: The average gain in 16 and 30% of the clipped vector on vector components
stability to the clipped vectofsquares amounts fore=0.2  being related tdJ;|~0.5. This is visualized in Fig. 5.
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1.0

APPENDIX A: SADDLE POINT EQUATIONS

The central result of the replica calculation is Ef). The
distribution of the order parameters is regulated by the terms

0.0

- Qr):Jdeifd&dX
1A= ] 2mn) 2y

_0_5>...|...|...|...|...
02 04 06 08 10 12

Xexp( XX -+X K - 5 (Rak+ XQX) —5rX
FIG. 5. Stabilityx as a function of the pattern load (percep-

tron sizeN=100). The clipped vector got improved by partial enu- n

merationD; ={0,sgn(;)} on a subset of vector components that are X H h(N)O(A2— k), (A1)
related to precursor valu¢d| ~0.5. Percentage of enumerated vec- a=1

tor components: 16%circle), 30% (triangle. The circles are iden-

tical to Fig. 4. A A n 1 ... - ..
Gz(q,Q,r):f al:[l dM(Ji)E; ex _5(31q31+D1QD1)
IV. SUMMARY !
| showed analytically as well as by simulations that the +3.iB ) (A2)
coupling vectorD of the MSDB is highly correlated to a veL

continuous precursar which is obtained by convex minimi- .
zation with hypercube constraint. The predictive powed of Vector notations run over the replica index, for example
can be appreciated from the conditional probabitifp|J).  and A contain the replicas of the local field of an arbitrary
It suggests a very simple learning rule for a diluted binarypattern. | write the order parameters Ef) as elements of

perceptron of high stability: All components dfthat have  the matriceQ,q,r, their conjugate variables define the ma-
magnitude greater than 0.5 are clipped whereas all Weak?ﬁces@ 9, andr

components ofl get diluted. The nearly optimal hypercube
precursor] has a considerable fraction of binary components Oy -Q.
which give a correct prediction foD with a probability of
about 94%. Precursor components of magnitidgle<1 give
a highly reliable prediction of the sign whereas the decision _Qab Oun
to dilute the correspondinD@ component is less obvious. To

test the efficiency of different learning rules with respect to

,ﬁ)

the resulting stabilities | performed simulations for percep- . fu . ~ Gab
trons of sizeN=100. The simple clipped vector q=i - , (A3)
) _aab ann
D;=0 if |J;|<0.5,
(19 r=i(rap).
Assuming replica symmetry, the order parameter density

D,=sgnJ;) otherwise, takes on the form

was found to be highly stable realizing on average a storage PN+ - -1)=exp(N[nsy(Q,Q) +ns(q,q) + O(n?)]).
capacity a.~0.76. Using a branch and bound algorithm, | (A4)
improved the clipped vector by partial enumeration on its A . .
least reliable components while keeping its remaining comSan(Q,Q) denotes the entropyﬂof the diluted binary percep-
ponents fixed. The best results were obtained by partial endton D [see Eq.(A5)] ands.(q,q) is either the entropyfor
meration with Di:{ovsgn(]i)} on a subset of components maximum Stablllty |earning0r the free enerngor Iearning
Corresponding to precursor Compondm$ close to 0.5. Fol- by minimization of a cost fUnCtidmf the continuous precur—
lowing this strategy and enumerating 30% of the vector resorJ. In the limit n—0, the leading order term in the expo-
sults in a storage capacity af.~ 1.09. The obtained stability nent(A4)A is independent f)f the correlation order parameters
x(a) gives a close approximation to its theoretical upperr,, andr,,. Hence,r,,,rap can not be determined after
limit over the whole range ofr<1.17. taking the limitn— 0. Rather, they are given by the saddle
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point equations before the limit—0 and follow from the
general form of Eq(7), Ref.[12]. In the replica symmetric
ansatz, the saddle point equations fandr reduce to Egs.

(A12), (A13). They depend on the correct saddle point val-

D. MALZAHN

PRE 61

(A8),(A9) must be modifiedi is to be replaced by, and
the u integration is restricted ta,— u+/qy=0.

For perceptrons on the hypersphetg< 1) the descrip-
tion is much simplef2,17]. For learning by minimization of

ues for the order parameters of the two individual percepa cost function it suffices to know the value of saddle point

trons.

1. Saddle point equation for D

The order parameter®,,Q and Q,,Q must extremize
the entropysyp

QoQo N Q_Q

Sdb= 2

%l
Q)

+ 00
Duj alnlH

+1In . (A5)

2 coshu @)exp( (Q02

The value for the maximal stability® is determined simul-
taneously by the zero entropy conditisf,=0 [10,13.

2. Saddle point equation for J

The considered learning rules result in a unique solution,

hence | focus on the limig—qy. A hypercube restricted
vectorJ that minimizes a cost functiok(J)=2 V(\") is
described by a set of four saddle point equatifis

1

y=1—2H(§), (AB)

1 2 .2
qo=Ss%y+2H g) - \/;se 12" (A7)
y=—\/—_ _wDu (No—uvdo) u, (A8)
yzszzaf Du (Ag—Uv/qo)2. (A9)

The order parametegsands are defined by

.- Va

y=(dota)(qo—0q), s==—~=. (A10)

Jo+4

For (qo—q)—0, qo and q tend to infinity whiley and s
remain finite. Comparing Eq$A6) and (14) reveals that 1

—y represents the fraction of binary precursor components.

regulates the shape of the distribution functjp{@). Equa-
tions (A8), (A9) depend on the choice of the potenfig]\)
via the function\, defined as

(A —uv/gp)?
2X

=Arg min| V(\) + (A11)
A

The new variable * 8(qy—q) is finite in the limitg—qq
which is driven by the inverse temperatyge-«.

For the vector that maximizes the stability under hy-
percube constraint, Eq§A6),(A7) remain valid while Egs.

variablex. For maximum stability learning is to be deter-
mined.

3. Coupling between J and D

In the limit g—q,, r becomes infinite whilero=r(qp
—q) remains finite. Using the saddle point values for the
order parameters of the individual perceptrons, the order pa-

rameters r (or, respectivelyy,y) are determined by

FO “ A’)’U‘i‘sl)

r=(Qu—Q)——2s| Du| (yu+s HH| ——
Sy f (\/1—%2

1 (}u+s‘1)2)

V27 21—y
ZSiHI’(U\/E)
X ; (A12)
exp((Qo+Q)/2)+2 coszU\/E)
()\o uvgo)
fo=a J J M a2
y p( b—w\Q)? )H ( ‘“’—wa)
12" a0 R
(A13)

D,(u,w) denotes a two-dimensional Gaussian with zero
mean and variance. Equation(A12) is valid for a hyper-
cube constraint. For a spherical constragyg=1), it is to be
replaced by the simple identity,=r(Qo,— Q) ~*. Equation
(A13) is valid for any vectod that minimizes a cost function
E(J)=2,V(\") where\, is defined by Eq(All). For a
vectorJ that maximizes the stability., Eq. (A13) must be
modified: A\ is to be replaced by, and theu integration is
restricted tox,— u\/qy=0

APPENDIX B: PARTIAL ENUMERATION WITH A
BRANCH AND BOUND ALGORITHM

In this appendix | give some details on the enumeration
algorithm. For a particular storage probledg’}, v
=1,...,aN, one has to determine the precurdpthe corre-
sponding clipped vectdd®P as well as the index field k]
which points to precursor componemdts# =1 ranking them
by their absolute distance to a vald®

19°=13i k-3 = 13°= [Jiuq1]- (BY)
The positions of thé\y, binary components of are listed in
arbitrary order byi[1], ... ,i[N,]. Partial enumeration starts
on a diluted binary vectoD whereN¢=N, components
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Dify = ;:[“kpl; k=1,... N; (B2)  with a decreasing upper bound for increasing node number
m=<N,. A branch can be cut off at nosewhen the value of

are given by the clipped vector and kept fixed. For the rethe upper bound mj\*(m) drops below a reference value
maining subset o, components all % or 2Ne combinato- kP k°P' gets initialized by the stability of the clipped vector
rial possibilities must be evaluated with respect to the mini-D®P and updated whenever a more stablgector is found.
mal stability of the resultind® vector. The search space of  If partial enumeration is ignoring the possibility of an
3Ne or 2Ne possibilities can be listed in a treelike structure. error in sign Dig=10,89nQijiy)} for k=N¢+1,... N, the
From a node of the ordeme (ON.—1) separate three or potential sign ofD;; is known. This allows me to improve
two new branches. They copk=1,...,(N;+m) vector the upper bound Eq¥B3),(B4). In order to maximize the
components D but differ with respect to the localfield A”(0) of a particular patterg”, it is best to dilute
(N¢+m+1)-th ~ component D={-10L or D Dy whenever sgny) #sgn)
={0,59n0in, +m+1))}, respectively.

N¢
The choiceD;jq=sgn(&y) for all free componentk AY(0)= : clip zv
" . = — Dirg &
=N;+1,... N maximizes the local field ©) \/Nmym gl REID
1 (M N N
v _ lip ¢v v v v
A (0)_J_N kgl Dﬁ'ﬁ]gi[kﬁkz%ﬂ l&wl| (B3 +k7§+1 |§i[k]|®(§[k13i[k])). (B6)
—Nf
of a patterng”. Any other choice results in a correction Any other choice results in the correction
14 14 2 v v 14 14 l vV vV
A'(m)=A (m—l)—\/—N | &gl O (= &g D) AP(m)=A (m—l)—\/—N | €1al (O (&g Jing) Sopirn)
k=N;+m (B4) +®(_§ﬁk]3i[k])5sgn{3(i[k])},D(i[k])),
with ®(0):=0.5 and m=1. The maximum value«x k=N;+m. (B7)

=max,[ min, D£"]/\N which is obtainable by the class of

vectors D which coincide up to themth node is hence The second sum in EqéB3), (B6) is an overestimation giv-

bounded ing an easy, robust but moderate bound condition. However,
it is balanced by the first sum which is exact and known from
k<minA”(m) (B5)  the beginning since the major part of vector components is

v kept fixedN{>Ne.
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