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Thermodynamic properties of a solid exhibiting the energy spectrum given by the logistic map

E. M. F. Curado* and M. A. Rego-Monteiro†

Centro Brasileiro de Pesquisas Fı´sicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil
~Received 8 October 1999!

We show that the infinite-dimensional representation of the recently introduced logistic algebra can be
interpreted as a nontrivial generalization of the Heisenberg or oscillator algebra. This allows us to construct a
quantum Hamiltonian having the energy spectrum given by the logistic map. We analyze the Hamiltonian of
a solid whose collective modes of vibration are described by this generalized oscillator and compute the
thermodynamic properties of the model in the two-cycle andr 53.6785 chaotic region of the logistic map.

PACS number~s!: 05.30.2d, 63.20.2e, 02.10.Gd
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I. INTRODUCTION

In past years, complex systems have attracted a lo
attention. In particular, there has been an intrinsic theoret
interest in constructing a Hamiltonian system having an
ergy spectrum that is quasiperiodic, self-similar, and/or c
otic @1#. Enhancing the interest in describing such a Ham
tonian system is the fact that some models on quasicrys
have a quasiperiodic or fractal energy spectrum@2–8#. On
the other hand, one paradigmatic example of a map that
hibits some of these features is the logistic map. As is w
known, this map describes at the Feigenbaum point an
ample of a fractal system, and appearing after this poin
chaotic region with chaotic bands and self-similar patte
@9#.

Recently, a three-generator algebra, called logistic alge
@10# was developed, where the eigenvalue of one generat
given by the logistic map. We show that the infinit
dimensional representation of this algebra can be interpr
as a nontrivial generalization of the Heisenberg or oscilla
algebra, and call the associated oscillators logistic oscillat

We use these logistic oscillators to construct a quan
Hamiltonian, which is a generalization of the quantum h
monic oscillator, which has the energy spectrum descri
by the logistic map. We apply these ideas to construc
Hamiltonian describing quasiparticle vibrations of a so
with N atoms where each quasiparticle oscillates as a log
oscillator.

In Sec. II, we discuss the logistic algebra and its interp
tation as generalized Heisenberg algebra; in Sec. III we c
struct a model for a solid where the collective modes
motion are described as logistic oscillators and compute
thermodynamic functions of the model in the two-cycle a
r 53.6785 chaotic region of the logistic mapxn115rxn(1
2xn). Section IV is devoted to our conclusions.

II. ALGEBRAIC ORIGIN OF THE MODEL

The model we are going to discuss in Secs. III and IV h
its origin in an algebraic structure called logistic algeb
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@10#. In this section we present the logistic algebra and sh
that this algebra can be interpreted as a nontrivial exten
of Heisenberg algebra.

Let us consider the algebra generated byJ0 , J6 , de-
scribed by the relations@10#

JiJ15J1Ji 11 , i 50,1,2, . . . , ~1!

J2Ji5Ji 11J2 , ~2!

J1J22J2J152a~J02J1!, ~3!

whereJ25J1
† , Ji

†5Ji , anda is a real constant. Moreover

Ji 115rJi~12Ji !, i 50,1,2, . . . , ~4!

with 0<r<4.
The Hermitian operatorJ0 can be diagonalized. Conside

the stateu0& with the lowest1 eigenvalue ofJ0

J0u0&5a0u0&. ~5!

Note that, for each value ofa0 we have a different vacuum
and that for simplicity all of them will be denoted byu0&. We
choose 0<a0<1 because, with this condition, all future i
erations will remain in this interval and the connection w
the chaotic concepts is straightforward. Also, the allow
values ofa0 depend onr anda. Since, by hypothesis,a0 is
the lowestJ0 eigenvalue, we must have

J2u0&50. ~6!

Following the usual steps for constructing~now from
lower to higher eigenvalues! su~2! algebra representation
@11#, using the algebraic relations exhibited in Eqs.~1!–~3!,
and taking into account Eqs.~5! and ~6!, we obtain

J0um&5amum&, ~7!

J1um&5Nmum11&, ~8!

1Due to the use of the logistic map, depending on the valuesr
anda0 considered,u0& can be the state with the highest weight. W
emphasize in this paper the case whereu0& is a lowest weight vec-
tor, since it is the situation considered in the following sections
6255 ©2000 The American Physical Society
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J2um11&5Nmum&, ~9!

where2

Nm5Aa~a02am11!, ~10!

and

am115ram~12am!. ~11!

Note that the statesum&,m>1 are defined by the applicatio
of J1 on um21&. Moreover, from Eqs.~7!–~9! we easily
obtain a general expression forum&,

um&5
1

)
i 50

m21

Ni

~J1!mu0&. ~12!

Of course, since the eigenvalues ofJ0 are given by the
logistic map@Eq. ~11!#, their values asm increases can hav
an irregular behavior depending on the values ofr and a0,
and the dimension of the representation. Note that, un
su(2) algebra where the states obtained by the applicatio
J1 always have higherJ0 eigenvalues, for the logistic alge
bra this depends on what values ofr anda0 we consider and
the level of iterations~the numberm of um&) we are. For
instance, forr 53 andam50.5 we haveam1150.75 , i.e.,
J1 rises theJ0 eigenvalue ofum&. On the other hand, forr
51.5 andam50.5 we haveam1150.375, and in this case
J1 lowers theJ0 eigenvalue ofum&. Moreover, due to the
nonregular behavior of the logistic map, it may happen
J1 that even having started as lowering theJ0 eigenvalue of
um& it raises theJ0 eigenvalue ofJ1um& for a given levelm
of the iteration of the logistic map. For instance, forr
52.75 and am50.9 we have am1150.247 and am12
50.5122.

Let us now consider the operator

C5J1J21aJ05J2J11aJ1 . ~13!

Using the algebraic relations@Eqs.~1!–~3!# it is easy to see
that

@C,J0#5@C,J6#50, ~14!

i.e., C is the Casimir operator of the algebra. In fact, w
arrive easily at

Cum&5c0um&, ~15!

with c05aa0 independent ofm .
With respect to matrix representations of the logistic

gebra there are finite-dimensional matrix representations
responding to then-cycle solutions of the logistic map an
infinite-dimensional ones relative to then cycle and to the
chaotic regime of the logistic map. Here we present so
examples:

(i) Two-dimensional representations:

2Note that if we putm521 in Eq.~9! we obtain consistently Eq
~6!.
e
of

r

-
r-

e

J05S a0 0

0 a1D , J15S 0 0

N0 0D , J25J1
† . ~16!

The allowed values ofr anda0 are determined by the equa
tion N1

250, such thatN0
2Þ0 . There are two nontrivial so

lutions,

a0
65

r 116Ar 222r 23

2r
. ~17!

The solutiona0
1 gives a0

1.a1
1 , implying a.0 , while

a0
2,a1

2 givesa,0. For both casesr>3. We will use this
solution in the next section.

(ii) Three-dimensional representations:

J05S a0 0 0

0 a1 0

0 0 a2

D , J15S 0 0 0

N0 0 0

0 N1 0
D , J25J1

† .

~18!

The allowed values ofr anda0 are computed fromN250,
N0 , andN150.

(iii) Infinite-dimensional representations:

J05S a0 0 0 0 . . .

0 a1 0 0 . . .

0 0 a2 0 . . .

0 0 0 a3 . . .

A A A A �

D ,

J15S 0 0 0 0 . . .

N0 0 0 0 . . .

0 N1 0 0 . . .

0 0 N2 0 . . .

A A A A �

D , J25J1
† . ~19!

The allowed values ofr anda0 can be computed for instanc
for a,0 from Nm

2 5uau(am112a0) by imposing am.a0

for all values ofm>1. In Fig. 1 we show a half-leaf region

FIG. 1. Region of allowed values fora0 and r.
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with the allowed values ofr and a0 satisfying the above
requirements. These solutions will be used in the follow
section.

Let us now show an interesting connection of this alge
with the Heisenberg algebra. The Heisenberg algebra is
erated by the elementsA andA† satisfying the relations

AA†2A†A51, ~20!

NA†2A†N5A†, ~21!

with N5A†A is the number operator. Note that Eqs.~1! and
~2!, for i 50, can be seen as defining equations forJ1. The
Heisenberg algebra comes naturally if we put in Eqs.~1!–~3!
J2[A, J1[A†, J0[N, J15J011, anda521. It can be
easily verified that we do not have in this case fini
dimensional representations and the Casimir operator is i
tically null.

In summary, Heisenberg algebra is the special case o
defining relations given by Eqs.~1!–~3!, where instead of
taking the relation given by Eq.~4! we consider the simple
one J15J011. In other words, the logistic algebra can
interpreted as an extension of the Heisenberg algebra, w
instead of the simple iterationJi 115Ji11 we take the lo-
gistic map forJi 11, as in Eq.~4!. Clearly, it is also possible
to consider here other maps; this study is under progres

Of course, since the Heisenberg algebra is a master a
bra in physics, it is a natural step to investigate the poss
consequences of the logistic generalization, explained
fore, in physical problems. In the following sections we a
ply this generalized Heisenberg algebra to a collective m
of motion of N atoms.

III. MODEL AND THERMODYNAMIC PROPERTIES

Let us consider the Hamiltonian of a quantum system
quasiparticles described byN-independent, localized, ‘‘oscil
lators’’ of the form

H5 (
q51

N

eqJ0
q
, ~22!

where$J0
q% is a collection ofN independent oscillators, eac

of them described by the algebra~1!–~3!, andeq is a param-
eter associated to the energy of theqth oscillator. We are
then considering independent collective excitations with
nontrivial spectrum specified by the eigenvalues ofJ0

q . For
the solutionJ25A, J15A†, J05N, Ji 115Ji11, anda5
21 of the algebra~1!–~3!, the Hamiltonian~22! describes
the well-known system ofN- independent, localized, har
monic oscillators. On the other hand, by considering the
gistic generalization, Eq.~22! becomes the Hamiltonian of
system of quasiparticles described byN-independent, local-
ized, logistic oscillators. We interpretJ2

q ,J1
q , andJ0

q as an-
nihilation, creation, and generalized number operator,
spectively, of theqth oscillator. Note that the energy of th
qth oscillation mode in a stateum& is given by the product of
eq times the eigenvalue of$J0

q% applied on that state. Th
eigenvalueam

q indicates that theqth oscillation mode is in
the stateum&. We are adopting this model due to its simpli
g
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ity, but these logistic oscillators could also be used in m
complicated models as for example in disordered system

The partition function of the model~22!

Z5Tr exp~2bH !, ~23!

with b5(kBT)21 andkB the Boltzmann constant, factorize
into a product of single-particle partition functions,

Z5)
q

Zq , ~24!

Zq5 (
m50

`

exp~2beqam
q !, ~25!

where the trace was performed using the basis describe
Eqs. ~5!–~14! and am115ram(12am). We take the sim-
plest case wherea0 and r are independent ofq.

We suppose that the dispersion relation of the quasipa
cle ~equivalent to the Debye approximation! is given by

eq5e~q!5gq, ~26!

and we enclose the system in a large three-dimensional
umeV. Replacing, in the usual way~since we are consider
ing phonons with a spectrum different from the harmon
oscillator one!, the sum over particles by an integral over aq
space,

(
q

→ V

~2p!3E d3q, ~27!

we obtain, for the logarithm of the partition function, aft
integrating over the angular variables,

ln Z5
V

2p2E0

qM
dq q2 lnS (

m50

`

exp~2bgqam!D , ~28!

where this integral is evaluated over a finiteq range corre-
sponding to a finite number of oscillators, andqM is the
larger possible numberq. The mean energy of the solid, afte
defining a new variableh5bgq,E0[gqM , T05E0 /kB and
A[VqM

3 /2p2, becomes

E52
] ln Z

]b
5AE0S T

T0
D 4E

0

T0 /T

dh h3

(
m50

`

amexp~2ham!

(
m50

`

exp~2ham!

.

~29!

Let us study the integrand of Eq.~29!. The sum is per-
formed over the integerm that corresponds to the level o
iteration of the logistic map, sinceam is given by this map.
In what follows we shall consider two cases: an example
the two-cycle and another one corresponding to the cha
region of the logistic map.
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At a given approximation, in the two-cycle region of th
logistic map (3,r ,3.449 489 . . . ), theiteration runs over
transient states before reaching the asymptotic two lev
which are infinitely degenerated. Clearly, when the deg
eracyg of the two levels goes to infinity the contribution o
the transient states disappears and only the contributio
the states related to the asymptotic levels remains. The m
sure is concentrated on the two asymptotic levels. The ef
tive expression for the energy in the infiniteg limit is given
by

E5AE0S T

T0
D 4

3E
0

T0 /T

dh h3
a2exp~2ha2!1a1exp~2ha1!

exp~2ha2!1exp~2ha1!
.

~30!

For the specific heat at constant volume we have

CV5S ]E

]TD
V

5AkBS T

T0
D 3F4E

0

T0 /T

dh h3f ~h!

2S T0

T D 4

f ~T0 /T!G , ~31!

where

FIG. 2. Two-cycle energy versus temperature. Continuous l
r 53.1; broken line,r 53.35.

FIG. 3. Specific heat for a two cycle. Continuous line,r 53.1;
broken line,r 53.35.
ls,
-

of
a-
c-

f ~h!5
a2exp~2ha2!1a1exp~2ha1!

exp~2ha2!1exp~2ha1!
. ~32!

In Fig. 2 we displaye[E/AE0 times t[T/T0; in Fig. 3 we
show C[CV /C0 times t with C0[AkB . These are typical
graphics for two-level systems since after the transient st
what remains is the two-cycle situation. For higher-cycle
gions of the logistic map we shall have the typical behav
of a system with a finite number of levels.

If we calculate the entropy from Eq.~28! we see that it
diverges, since the degeneracy factorg goes to infinity. The
renormalized entropySR[@S/k2(A/3)lng#/A can be calcu-
lated and expressed as

SR5S T

T0
D 3F E

0

T0 /T

dh h2 ln @exp~2ha1!1exp~2ha2!#

1E
0

T0 /T

dh h3f ~h!G . ~33!

More interesting is the behavior of the system we are a
lyzing for the chaotic region. In this case we have as bef
transient states, with the difference that instead of havin
finite number of asymptotic levels we have a continuum
levels similar to the classical continuum levels in a classi

e,
FIG. 4. Energy versus temperature for a chaotic spectrum

FIG. 5. Specific heat versus temperature for the chaotic sp
trum.
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system. Thus, after dropping the transient states, as the
sure is concentrated on the chaotic region, the system is
ter described by a density function that represents the n
ber of hits of the logistic map in the interval@0,1#. In this
case the mean energy is given by

E5AE0S T

T0
D 4E

0

T0 /T

dh h3F~h!, ~34!

with

F~h!5

E
0

1

dj j H~j!exp~2hj!

E
0

1

dj H~j!exp~2hj!

, ~35!

whereH(j) is the density function. The specific heat at co
stant volume becomes

FIG. 6. Histogram of the logistic map forr 53.6785 and the
function we used~full line! to calculate the thermodynamic func
tions.
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CV5S ]E

]TD
V

5C0S T

T0
D 3F4E

0

T0 /T

dh h3F~h!

2S T0

T D 4

FS T0

T D G . ~36!

In Figs. 4 and 5 we showE/AE0 andCV /C0 timesT/T0 in
the chaotic region forr 53.6785.

Figures 4 and 5 exhibit the typical low-temperature b
havior of a classical system as we had already anticipa
since we have a continuum energy level in the chaotic ba
As the spectrum is limited from above, the behavior of t
specific heat, at high temperatures, for any value ofr, is
proportional to 1/T2, as expected from systems that prese
the Schottky anomaly.

We also show in Fig. 6 the normalized histogram and
density function

FIG. 7. Entropy versus temperature for a chaotic spectrum
H~j!5H @~p/2!A~j20.266!~0.7262j!#21 if 0.266<j<0.726,

@~p/2!A~j20.728!~0.9222j!#21 if 0.728<j<0.922,

0 otherwise,

~37!
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we used in order to compute the mean energy, the spe
heat, and the entropy.

After dropping the transient states, the entropy for
chaotic regionSchaos[S/S0, whereS05C05AkB , can be
expressed as

Schaos5S T

T0
D 3F E

0

T0 /T

dh h2 lnS E
0

1

dj H~j!exp~2hj! D
1E

0

T0 /T

dh h3F~h!G . ~38!

The entropy of the chaotic band, shown in Fig. 7, presen
curious behavior. In fact, its low-temperature behavior
typical of a classical system, with a negative divergence
T→0 . On the other hand, its high-temperature behavio
fic

e

a
s
s

is

typical of a system with a limited spectrum, found mainly
quantum systems. The origin of this hybrid behavior is t
fact that the neighbor levels in the chaotic band have
minimum distance among them, since they are dense in
the chaotic band. This is somewhat equivalent to taking
\→0 limit, thus reobtaining classical low-temperature b
haviors. Note that in this case this limit is not imposed, bu
is intrinsic to the system since the commutation relations
always different from zero.

IV. CONCLUSION

We construct, based on an algebra developed in@10#, a
Hamiltonian of a quasiparticle that presents an energy sp
trum whose energy levels are generated by the logistic m
Depending on the parameterr of the logistic map, the energy



ic
he
ye
an
tie
n
ix
av

o
ri
r

ni

el
p

il-
the
s
an

e
ex/
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levels can be finite~corresponding to cycles of the logist
map! or chaotic~corresponding to the chaotic bands of t
map!. We study the thermodynamic properties of a Deb
like solid constituted by these elementary quasiparticles
we exhibit the behavior of some thermodynamical quanti
like internal energy, specific heat, and entropy. These fu
tions, associated with the chaotic spectrum, present a m
aspect, with both classical and quantumlike typical beh
iors. This is a consequence of the fact that the spectrum
the chaotic region is continuous, similar to the spectra
classical systems, with no separation between neighbo
levels. On the other hand, the thermodynamic quantities
lated to the cycles are analogous to systems with a fi
number of energy levels.

It is interesting to note that the algebraic formalism dev
oped in Sec. II works consistently for a large class of ma
ar

nd

,

-
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ed
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ng
e-
te

-
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Ji 115 f (Ji). Of course, changing Eqs.~4! and~11! implies a
different representation theory of the algebra~1!–~3! and a
different physical Hamiltonian.

A classification of the analytical functionsf under a sta-
bility theory would lead us to determine the different Ham
tonians associated with the different kinds of attractors of
map f. A systematic study of different nontrivial relation
Ji 115 f (Ji) and their consequences on the Hamiltoni
spectra is under study.
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