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Thermodynamic properties of a solid exhibiting the energy spectrum given by the logistic map
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We show that the infinite-dimensional representation of the recently introduced logistic algebra can be
interpreted as a nontrivial generalization of the Heisenberg or oscillator algebra. This allows us to construct a
guantum Hamiltonian having the energy spectrum given by the logistic map. We analyze the Hamiltonian of
a solid whose collective modes of vibration are described by this generalized oscillator and compute the
thermodynamic properties of the model in the two-cycle anrd.6785 chaotic region of the logistic map.

PACS numbgs): 05.30—-d, 63.20—e, 02.10.Gd

[. INTRODUCTION [10]. In this section we present the logistic algebra and show
that this algebra can be interpreted as a nontrivial extension
In past years, complex systems have attracted a lot aff Heisenberg algebra.
attention. In particular, there has been an intrinsic theoretical Let us consider the algebra generated By J., de-
interest in constructing a Hamiltonian system having an enscribed by the relationgl0]
ergy spectrum that is quasiperiodic, self-similar, and/or cha-

otic [1]. Enhancing the interest in describing such a Hamil- Jidi=J3:Ji+1, 1=012..., (1)
tonian system is the fact that some models on quasicrystals
have a quasiperiodic or fractal energy spectfi@n8g]. On J_Ji=Jis1d-, 2
the other hand, one paradigmatic example of a map that ex-
hibits some of these features is the logistic map. As is well- JiJ-—JJd,=—a(Jo—J1), 3

known, this map describes at the Feigenbaum point an ex- - )

ample of a fractal system, and appearing after this point, ¥hereJ_=J., J;=J;, andais a real constant. Moreover,
chaotic region with chaotic bands and self-similar patterns .

o P Ja=r3(1-), i=012..., @

Recently, a three-generator algebra, called logistic algebr\iavith O<r<a
[10] was developed, where the eigenvalue of one generator IS The Hermitian operatad, can be diagonalized. Consider

given by the logistic map. W? show that the. infinite- the statd0) with the lowest eigenvalue ofl,
dimensional representation of this algebra can be interpreted

as a nontrivial generalization of the Heisenberg or oscillator J5/0) = a|0). (5)
algebra, and call the associated oscillators logistic oscillators. 0 0

We use these logistic oscillators to construct a quantun\ote that, for each value af, we have a different vacuum
Hamiltonian, which is a generalization of the quantum har-3nd that for simplicity all of them will be denoted bg). We
monic oscillator, which has the energy spectrum describednhoose B<a,<1 because, with this condition, all future it-
by the logistic map. We apply these ideas to construct &rations will remain in this interval and the connection with
Hamiltonian describing quasiparticle vibrations of a solidihe chaotic concepts is straightforward. Also, the allowed
with N atoms where each quasiparticle oscillates as a logistiGa|yes ofe, depend orr anda. Since, by hypothesisy, is

oscillator. . o o the lowestJ, eigenvalue, we must have
In Sec. I, we discuss the logistic algebra and its interpre-
tation as generalized Heisenberg algebra; in Sec. Il we con- J_|0)=0. (6)

struct a model for a solid where the collective modes of

motion are described as logistic oscillators and compute the Following the usual steps for constructifigow from
thermodynamic functions of the model in the two-cycle andlower to higher eigenvalugssu2) algebra representations
r=23.6785 chaotic region of the logistic magp.,.;=rx,(1  [11], using the algebraic relations exhibited in E¢B—(3),
—X,). Section IV is devoted to our conclusions. and taking into account Eq&5) and(6), we obtain

JolMm)=a M), 7
Il. ALGEBRAIC ORIGIN OF THE MODEL O| > m| > 0

The model we are going to discuss in Secs. Il and IV has J4[m)=Npy[m+1), (8)
its origin in an algebraic structure called logistic algebra

IDue to the use of the logistic map, depending on the values of

*Also at ICCMP and Dept. de’fica, Universidade de Brdisi,  anda, considered}0) can be the state with the highest weight. We
Braslia, Brazil. Electronic address: eme@cbpf.br emphasize in this paper the case wh@gis a lowest weight vec-
TElectronic address: regomont@cbpf.br tor, since it is the situation considered in the following sections.
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J_|m+1)=Ny|m), 9
wheré i
Np=va(ao— am+1), (10
and alpha0 04
Amr1=lam(l—apy). (11
Note that the statelsn),m=1 are defined by the application 02
of J, on |m—1). Moreover, from Eqs(7)—(9) we easily
obtain a general expression fon),
1 0 2 . 3 4
— m
jm)= ”ﬁl (3:)"|0). 12 FIG. 1. Region of allowed values far, andr.
1LN;
=0 ag O 0 0
Of course, since the eigenvalues Kf are given by the Jo=| 0 ay] J+=|N, O] 3_=3. (19
logistic map[Eq. (11)], their values asn increases can have

an irregular behavior depending on the values aihd «, )

and the dimension of the representation. Note that, unlikd "€ alzlowed values of g‘”dao are determined by the equa-
su(2) algebra where the states obtained by the application ¢°n N1=0, such thalNg#0 . There are two nontrivial so-
J. always have highed, eigenvalues, for the logistic alge- utions,

bra this depends on what valuesraind ag we consider and

the level of iterationgthe numberm of |m)) we are. For L r+1x\r?-2r-3
instance, for =3 anda,,=0.5 we havex,,,,=0.75, i.e,, @o ~ 2r )
J, rises thel, eigenvalue ofm). On the other hand, far

=15 anda,,=0.5 we haveay,;=0.375, and in this case The solutiona] gives agj >«; , implying a>0 , while
J, lowers theJ, eigenvalue ofim). Moreover, due to the 4. <4 givesa<0. For both cases=3. We will use this
nonregular behavior of the logistic map, it may happen forgg|ytion in the next section.

(17

J. that even having started as lowering theeigenvalue of (ii) Three-dimensional representatians
|m) it raises thel, eigenvalue ofl .|m) for a given levelm
of the iteration of the logistic map. For instance, for ag 0 0 O 0 O
=2.75 and ¢,=0.9 we have ¢y, 1=0.247 and oy >
=0.5122. m " " Jo= 0 a 0], J.=| Np 0 0], J_:JTF.
Let us now consider the operator 0 0 o 0 N, O
(18)
C=J,J_+aJ=J_J,+al;. (13

. _ _ . The allowed values of and «, are computed fronN,=0,
Using the algebraic relatiori&gs. (1)—(3)] it is easy to see N, andN,=0.

that (iii) Infinite-dimensional representations
[C,J0]=[C.J.1=0, (14) w 0 0 0
i.e., C is the Casimir operator of the algebra. In fact, we O a4 0 O
arrive easily at Jo=| 0 0 a '
C|m)=co|m), (15 0 0 0 aj

with co=aeag independent ofm .
With respect to matrix representations of the logistic al-

gebra there are finite-dimensional matrix representations cor- 0 0 0 0

responding to ther-cycle solutions of the logistic map and No O O O

mﬂmtg—dmgnsmnal ones rel_atlve to trecycle and to the 3=l 0 Ny 0 O , J,=J1. (19
chaotic regime of the logistic map. Here we present some

examples: 0 0 N, O

(i) Two-dimensional representations

The allowed values af anday can be computed for instance

2Note that if we pum=—1 in Eq.(9) we obtain consistently Eq. for a<0 from N2 =|a|(an.1—ao) by imposing ay,>aq
(6). for all values ofm=1. In Fig. 1 we show a half-leaf region
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with the allowed values of and « satisfying the above ity, but these logistic oscillators could also be used in more
requirements. These solutions will be used in the followingcomplicated models as for example in disordered systems.

section. The partition function of the mod&PR?2)
Let us now show an interesting connection of this algebra
with the Heisenberg algebra. The Heisenberg algebra is gen- Z=Trexp —BH), (23

erated by the elemens and A" satisfying the relations

bt with 8= (kgT) ! andkg the Boltzmann constant, factorizes
AA'-A'A=1, (200 into a product of single-particle partition functions,

NAT—ATN=AT, (21)

z=11 z,, (24)
with N=A'A is the number operator. Note that E¢#). and d
(2), for i=0, can be seen as defining equationsXorThe
Heisenberg algebra comes naturally if we put in Ed5-(3) _ B q
J_=A, J,=A", Jo=N, J;=Jy+1, anda=—1. It can be Zq_mE:O exXp(— Beqrm),
easily verified that we do not have in this case finite-

Qimensional representations and the Casimir operator is idefyhere the trace was performed using the basis described in
tically null. _ _ _ Egs. (5)—(14) and ay,1=ran(1— ay). We take the sim-
In summary, Heisenberg algebra is the special case of thﬁest case where, andr are independent dj.

defining relations given by Eqs¢l)—(3), where instead of " \ye syppose that the dispersion relation of the quasiparti-
taking the relation given by Ed4) we consider the simpler o (equivalent to the Debye approximatjais given by
one J;=Jy+ 1. In other words, the logistic algebra can be

interpreted as an extension of the Heisenberg algebra, where
instead of the simple iteratiod; , ;=J;+1 we take the lo-

gistic map ford; ., as in Eq.(4). Clearly, it is also possible and we enclose the system in a large three-dimensional vol-
to consider here other maps; this study is under progress. e the sy 9 :
umeV. Replacing, in the usual waigince we are consider-

Of course, since the Heisenberg algebra is a master alge- . . .

. S . . .9Inhg phonons with a spectrum different from the harmonic

bra in physics, it is a natural step to investigate the possible . . )

s L ; Oscillator ong, the sum over particles by an integral ovey a

consequences of the logistic generalization, explained beS- ace

fore, in physical problems. In the following sections we ap- pace,
ply this generalized Heisenberg algebra to a collective mode

of motion of N atoms. 2 N v fdsq’
q (2m)°

[

(25

€q=€(q) =10, (26)

(27)

IIl. MODEL AND THERMODYNAMIC PROPERTIES

e obtain, for the logarithm of the partition function, after

Let us consider the Hamiltonian of a quantum system o . .
integrating over the angular variables,

quasiparticles described N+independent, localized, “oscil-
lators” of the form

V o0
N InZ:—ZJquqqzln( 2 exp(—,ByQam)), (28
HeS e, 22 2me "
=1

where this integral is evaluated over a finijegange corre-
where{Jg} is a collection ofN independent oscillators, each sponding to a finite number of oscillators, ang is the
of them described by the algebfB—(3), ande, is a param- Iarge.r possible numbex The mean energy of the solid, after
eter associated to the energy of theh oscillator. We are defining a new variabley= 8yq,Eq=ydy , To=Ey/kg and
then considering independent collective excitations with aA=Vay/27?, becomes
nontrivial spectrum specified by the eigenvaluesIdf For
the solutionJ_=A, J,=A", J,=N, J;,,=J;+1, anda=
—1 of the algebra1)—(3), the Hamiltonian(22) describes

2 ameXp(— nay)
. . dinZ T m=0
the well-known system oN- independent, localized, har- E=—- ——=AE,| —

4JT0/Td .
NN

monic oscillators. On the other hand, by considering the lo- B To/ Jo D
gistic generalization, Eq22) becomes the Hamiltonian of a “~, exp(— nam)
system of quasiparticles described Kyindependent, local- (29)

ized, logistic oscillators. We interpréf ,J9 , andJJ as an-

nihilation, creation, and generalized number operator, re- |[et us study the integrand of E9). The sum is per-
spectively, of thegth oscillator. Note that the energy of the formed over the integem that corresponds to the level of
qth oscillation mode in a stafen) is given by the product of  jteration of the logistic map, since,, is given by this map.

€4 times the eigenvalue dfJ} applied on that state. The |n what follows we shall consider two cases: an example of
eigenvalueay, indicates that theth oscillation mode is in the two-cycle and another one corresponding to the chaotic
the statgm). We are adopting this model due to its simplic- region of the logistic map.
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FIG. 2. Two-cycle energy versus temperature. Continuous line, )
r=3.1: broken liney = 3.35. FIG. 4. Energy versus temperature for a chaotic spectrum.
At a given approximation, in the twc_)-cyc_le region of the a~exp—na ) +aexp—pa’)
logistic map (3<r<3.4494® . ..), theiteration runs over f(n)= - " (32
transient states before reaching the asymptotic two levels, exp(—na ) +exp—na’)

which are infinitely degenerated. Clearly, when the degen-
eracyg of the two levels goes to infinity the contribution of In Fig. 2 we displaye=E/AE, timest=T/T; in Fig. 3 we
the transient states disappears and only the contribution show C=C,,/C, timest with Co=Akg. These are typical
the states related to the asymptotic levels remains. The megraphics for two-level systems since after the transient states
sure is concentrated on the two asymptotic levels. The effeoahat remains is the two-cycle situation. For higher-cycle re-
tive expression for the energy in the infinigdimit is given  gions of the logistic map we shall have the typical behavior
by of a system with a finite number of levels.
If we calculate the entropy from E@28) we see that it
4 diverges, since the degeneracy fagjayoes to infinity. The
E=AE, T_o renormalized entroppgr=[ S/'k— (A/3)Ing]/A can be calcu-
lated and expressed as

To/T a"exp—na)+aTexp — na’)
Xf dy -7 -7

3
0 exp(— na”)+exp — nat T To/T _
P ) exp=ne) Se= T—) U dn n2In[exp(— ™) +expg — pa )]
(30) 0 0
. To/T
For the specific heat at constant volume we have + J'O dy 7]3]‘(77)}' (33
(aE) ( T )3 To/T .
Cy=|—=| =Akg| =] |4 J d f . o .
VoleT), TR T 0 7 7 f(m) More interesting is the behavior of the system we are ana-
. lyzing for the chaotic region. In this case we have as before
2 ey 31) transient states, with the difference that instead of having a
T 0 k finite number of asymptotic levels we have a continuum of
levels similar to the classical continuum levels in a classical
where
Cy
0.6 Co
0.3
041
C 0.2
0.2 01
0 02 04 . 06 0.8 1 0.5 1 Tr—;
FIG. 3. Specific heat for a two cycle. Continuous lime; 3.1; FIG. 5. Specific heat versus temperature for the chaotic spec-

broken line,r =3.35. trum.
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FIG. 6. Histogram of the logistic map far=3.6785 and the T
function we usedfull line) to calculate the thermodynamic func- T - —
tions. To

. . FIG. 7. Entropy versus temperature for a chaotic spectrum.
system. Thus, after dropping the transient states, as the mea- by P P

sure is concentrated on the chaotic region, the system is bet- JE T\3
ter described by a density function that represents the num- Cv:(—) :Co(_)
ber of hits of the logistic map in the intervgD,1]. In this it/ To
case the mean energy is given by

TO/T 3
4f0 dn »°F(n)

To|*_(To
T\ (Torm ‘(?) F(?) | (39
E=AE0<T—) j dy 7°F(7), (34)
or 7o In Figs. 4 and 5 we show/AE, andC,,/C, timesT/T in
with the chaotic region for =3.6785.
Figures 4 and 5 exhibit the typical low-temperature be-
1 havior of a classical system as we had already anticipated,
fo dé EH(E)exp(—né) since we have a continuum energy level in the chaotic band.
F(n)=— , (35)  As the spectrum is limited from above, the behavior of the
J dé H(&)exp — pé) specific heat, at high temperatures, for any valuer,ois
0 proportional to 1T?, as expected from systems that present

the Schottky anomaly.
whereH (£) is the density function. The specific heat at con- We also show in Fig. 6 the normalized histogram and the
stant volume becomes density function

[(7/2) J(§—0.26©(0.726— &1t if  0.266<¢<0.726,
H(&) =19 [(7/2) J(§—0.728(0.922— &1t if 0.728<¢<0.922, (37)
0 otherwise,

we used in order to compute the mean energy, the specifiypical of a system with a limited spectrum, found mainly in

heat, and the entropy. guantum systems. The origin of this hybrid behavior is the
After dropping the transient states, the entropy for thefact that the neighbor levels in the chaotic band have no

chaotic regionS;p,,=S/Sy, where Sy=Cy=Akg, can be minimum distance among them, since they are dense inside

expressed as the chaotic band. This is somewhat equivalent to taking the
5 h—0 limit, thus reobtaining classical low-temperature be-
T To/T 1 haviors. Note that in this case this limit is not imposed, but it
= — 2 _ : p ;
Sehaos (TO) [fo dnn In( fo deH(g)exp—7¢) is intrinsic to the system since the commutation relations are

always different from zero.

+ f " i F () . (39)
0

IV. CONCLUSION

The entropy of the chaotic band, shown in Fig. 7, presents a We construct, based on an algebra developefld, a
curious behavior. In fact, its low-temperature behavior isHamiltonian of a quasiparticle that presents an energy spec-
typical of a classical system, with a negative divergence agrum whose energy levels are generated by the logistic map.
T—0 . On the other hand, its high-temperature behavior i9epending on the parameteof the logistic map, the energy
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levels can be finité€corresponding to cycles of the logistic J;, ;= f(J;). Of course, changing Eq&) and(11) implies a
map or chaotic(corresponding to the chaotic bands of the different representation theory of the algelfta—(3) and a
map. We study the thermodynamic properties of a Debye-different physical Hamiltonian.

like solid constituted by these elementary quasiparticles and A classification of the analytical functiorfsunder a sta-
we exhibit the behavior of some thermodynamical quantitiegjlity theory would lead us to determine the different Hamil-
like internal energy, specific heat, and entropy. These funcionians associated with the different kinds of attractors of the
tions, associated with the chaotic spectrum, present a mixeghap f. A systematic study of different nontrivial relations
aspect, with both classical and quantumlike typical behav;JiH:f(Ji) and their consequences on the Hamiltonian
iors. This is a consequence of the fact that the spectrum igpectra is under study.

the chaotic region is continuous, similar to the spectra of

classical systems, with no separation between neighboring

levels. On the other hand, the thermodynamic qugntitie; re- ACKNOWLEDGMENTS
lated to the cycles are analogous to systems with a finite
number of energy levels. We acknowledge interesting remarks from C. Tsallis. We

It is interesting to note that the algebraic formalism devel-also acknowledge financial support from CNPq and Pronex/
oped in Sec. Il works consistently for a large class of mapsviCT.
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