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Dynamical decimation renormalization-group technique: Kinetic Gaussian model
on nonbranching, branching, and multibranching Koch curves
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A generalizing formulation of dynamical real-space renormalization that is appropriate for arbitrary spin
systems is suggested. The alternative version replaces single-spin flipping Glauber dynamics with single-spin
transition dynamics. As an application, in this paper we mainly investigate the critical slowing down of the
Gaussian spin model on three fractal lattices, including nonbranching, branching, and multibranching Koch
curves. The dynamical critical exponentz is calculated for these lattices using an exact decimation renormal-
ization transformation in the assumption of the magneticlike perturbation, and a universal resultz51/n is
found.

PACS number~s!: 64.60.Ht, 64.60.Ak, 05.50.1q, 75.10.Hk
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I. INTRODUCTION

The dynamics of spin systems approaching their seco
order phase transition points have been an important sub
of many studies in the last few decades. One of the inter
ing phenomena is the critical slowing down characterized
a divergent relaxation timet. A reasonable explanation i
seemingly that the long range fluctuation leads to long ti
evolution of the order parameter. According to the dynami
scaling hypothesis@1#, the divergent relaxation timet and
the divergent correlation lengthz can be related byt;zz,
wherez is the dynamical critical exponent and is believed
depend only on large universal features of the model Ham
tonian and the assumed dynamic process@2#.

Obtaining the exact solution based on a master equa
except for a few cases@3–5#, is not an easy job. One has
evaluate it by means of approximate methods, such as
Monte Carlo simulation, the high-temperature series exp
sion, etc. However, the success of renormalization-gr
~RG! methods@6,7# in obtaining the critical exponents an
universality classes of static problems led to several attem
to use RG ideas in critical dynamics. One of the typic
examples@2# is a generalization of the«-expansion tech-
nique in which the dynamics is described by a Lange
equation. This method enables the calculation of the tim
dependent correlation functions, but it is only useful near
upper critical dimension. Another@8# is a generalization of
the real-space RG techniques, the starting point is a ma
equation instead of Hamiltonian. This method is prefera
in discrete spin systems, and could be used to directly ca
late the dynamical critical exponent. In addition, it is simp
and transparent, and very accurate for certain systems so
it has been used quite extensively in the last years@9–15#.
For other examples, see Refs.@16,17#.

The dynamical real-space renormalization-gro
~DRSRG! technique, proposed by Achiam and Kosterlitz@8#

*Electronic address: zhujy@public.nc.jx.cn
†Mailing address.
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and perfected by Kandel@18#, is our focus in this paper
First, we establish a formulation of DRSRG applying to a
bitrary spin systems. Then, we investigate the critical slo
ing down of the continuous spin model on different frac
lattices. In the generalizing formulation of DRSRG, we r
place the single-spin flipping Glauber dynamics@3# with the
single-spin transition dynamics@4#, and use the same nota
tion of Ref.@18# to express the critical dynamical exponentz.

During the last many years, scientific journals have pu
lished many papers concerning critical dynamics of discr
spin systems, but a systematic study of the critical dynam
in continuous spin systems is lacking indeed. This is
purpose of our latest papers@4,5# and this work is an attemp
at filling this gap. This is just our main motivation. We rea
ize the fact that, though the Gaussian model is certainly
idealization, it is interesting and simple enough to obta
some fundamental knowledge of dynamical process in co
erative systems. So this is an ideal dynamical model t
interests us greatly. We also realize that, as an extensio
the Ising model, the Gaussian model shows many differen
from the Ising model in the properties of static phase tran
tion, and yet its knowledge of the dynamical behavior
unclear. Within the framework of single-spin transition cri
cal dynamics in our previous paper@4#, we have obtained the
dynamical critical exponent of the Gaussian model,z51/n
52, at the critical pointKc5b/2d based on rigorous calcu
lations. This means that the dynamical exponent is hig
universal on translational symmetric lattices. However, w
is the dynamical exponent on dilational symmetric latti
systems? All of these subjects motivate us to finish t
work.

This paper is organized as follows. Section II is a detai
description of the dynamical real-space renormalizat
group ~DRSRG! technique in which the dynamics is de
scribed by a Markov process with the single-spin transit
instead of the single-spin flipping. In Sec. III, the critic
dynamics of the Gaussian model on three fractal lattice
studied. We take the exact decimation transformation
calculate the dynamical critical exponentz in the assumption
6219 ©2000 The American Physical Society
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6220 PRE 61JIAN-YANG ZHU AND Z. R. YANG
of the magneticlike perturbation. Section IV is our summa
and discussion.

II. DESCRIPTION OF THE METHOD

In the single-spin transition critical dynamics@4#, the
master equation can be written as

d

dt
P~$s%,t !52(

i
(
ŝ

~12 p̂i !Wi~s i→ŝ i !P~$s%,t !,

~2.1!

wherepi is the transition operation defined by

pi f ~s1 ,s2 , . . . ,s i , . . . ,sN ,t !

5 f ~s1 ,s2 , . . . ,ŝ i , . . . ,sN ,t !,

andWi(s i→ŝ i) is the single-spin transition probability tha
satisfies the following restraint conditions:

~a! ergodicity,

Wj~s j→ŝ j !Þ0, ; s j ,ŝ j ; ~2.2a!

~b! positivity,

Wj~s j→ŝ j !>0, ; s j ,ŝ j ; ~2.2b!

~c! normalization,

(
ŝ j

Wj~s j→ŝ j !51, ; s j ; ~2.2c!

~d! detailed balance,

Wj~s j→ŝ j !

Wj~ ŝ j→s j !
5

Peq~s1 , . . . ,ŝ j , . . . ,sN!

Peq~s1 , . . . ,s j , . . . ,sN!
,

; s j ,ŝ j , ~2.2d!

in which

Peq~$s%!5
1

Z
exp@2bH~$s%!#,

Z5(
$s%

exp@2bH~$s%!#,

where Peq is the equilibrium Boltzmann distribution func
tion, Z the partition function andH($s%) the system Hamil-
tonian. A well-chosen form of the transition probability is

Wi~s i→ŝ i !5
1

Qi
expF2bHi S ŝ i ,(

^ i , j &
s j D G

5

expF2bHi S ŝ i ,(
^ i , j &

s j D G
(
ŝ i

expF2bHi S ŝ i ,(
^ i , j &

s j D G . ~2.3!
y In order to study the critical slowing down, we can lim
ourselves to the relaxation of an infinitely small perturbati
from equilibrium. Following Achiam’s idea@12#, two selec-
tions can be considered, they are the magneticlike pertu
tion

P~$s%,t !5F11(
i

hqi
~ t !s i GPeq~$s%! ~2.4!

or the energylike perturbation

P~$s%,t !5F11(
^ i , j &

hqi

E ~ t !s is j GPeq~$s%!, ~2.5!

whereqi distinguishes between points that have differenR
~the order of ramification!, ^ i , j & denotes a sum over neares
neighbor pairs, andhqi

and hqi

E are the reduced externa

fields.
Based on these two considerations~2.4! or ~2.5!, the mas-

ter equation~2.1! takes the following forms:

d

dt (
i

hqi
~ t !s i Peq~$s%!

52(
i

(
ŝ i

hqi
~ t !~s i2ŝ i !Wi~s i→ŝ i !Peq~$s%!, ~2.6!

or

d

dt (
^ i , j &

hqi

E ~ t !s is j Peq~$s%!

52(
^ i , j &

(
ŝ

hqi

E ~ t !~s i2ŝ i !s jWi~s i→ŝ i !Peq~$s%!,

~2.7!

respectively. We can express further Eqs.~2.6! and ~2.7! as
the unitized matrix formulation

d

dt
h~ t !•L~s!Peq~k,$s%!52h~ t !•V~k,s!Peq~k,$s%!,

~2.8!

where,h(t) is a row matrix,L(s) andV(k,s) are column
matrices.

The critical dynamical behavior of the system describ
by Eq. ~2.8!, can be studied using the dynamical real-spa
renormalization-group~DRSRG! technique. The DRSRG is
composed of two stages. The first stage is the rescaling o
space by

x→x85Lx, ~2.9!

which is performed using a RG transformation~such as deci-
mation or site-block transformation!, whereL is the length-
rescaling factor. For example, in the case of the decima
transformation, the spins are divided into two groups$s%
and$m% under the control of a decimation operatorT(m,s),
then a trace over the$s% is performed. The process of dec
mation for a spin functionf ($s%) can be demonstrated as
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R@ f ~$s%!#5(
$s%

T~m,s! f ~$s%!5 f ~$m%!. ~2.10!

It is certain that we need to rescale the interaction param
k5J/kbT, and the spinm, i.e.,

k→k85R~k!k, m→m85j~k!m, ~2.11!

so as to keep on an invariant form of the probability dis
bution, Peq8 (k8,$m8%), wherej(k) is the spin-rescaling fac
tor.

With the decimation transformation~2.10!, Eq.~2.8! takes
the form

d

dt
h~ t !•RL„k…•L8~m8,k8!Peq8 ~k8,$m8%!

52h~ t !•RV„k…•V8~m8,k8!Peq8 ~k8,$m8%!,

~2.12!

whereL8(m8,k8) and V8(m8,k8) retain the original form.
Taking the monomark

h8~ t,k8!5h~ t !"RL„k…,

which can be regarded as a RG transformation of the
namic parameterh(t), Eq. ~2.12! can be rewritten as

d

dt
h8~ t,k8!•L8~m8,k8!Peq8 ~k8,$m8%!

52h8~ t,k8!•@RL
À1
„k…•RV„k…#•V8~m8,k8!Peq8 ~k8,$m8%!.

~2.13!

The second stage of the DRSRG is the rescaling of t
by

t→t85L2zt, ~2.14!

which should result in that Eq.~2.12! is restored to the in-
variant form of the master equation~2.8!:

d

dt8
h8~ t8,k8!•L8~m8,k8!Peq8 ~k8,$m8%!

52h8~ t8,k8!•V8~m8,k8!Peq8 ~k8,$m8%!.

~2.15!

We might encounter two different cases in carrying o
Eq. ~2.15!. It can be realized via the following analyses.

First, for some homogeneous lattices with the same co
dination number (qi5q, hqi

5h), RL(k) andRV(k) are only

131 matrices. When the system approaches its critical p
kc , l[RL(kc)5const, v[RV(kc)5const, then from Eq.
~2.13! we can see that the invariant form of the master eq
tion ~2.8! can be restored by preforming the time rescalin

t→t85L2zt5
t

l/v
, ~2.16!

and from here we can further obtain the dynamical criti
exponentz
er

-

y-

e

t

r-

nt

-

l

z5
ln~l/v!

ln L
. ~2.17!

Second, for some inhomogeneous lattices with differ
coordination number,RL(k) and RV(k) are m3m square
matrices in which the orderm of the matrices depends on th
number of the parameterhqi

. In this case we have to look fo

the invariant form at the limit of the ordern→` of the RG
transformation. Because our starting point is very close
the fixed pointkc of the static RG transformation, the eige
values of the transformation matricesRL(k→kc) andRV(k
→kc) control the scaling properties ast→` @10,18#. Hence,
~2.17! again determines the dynamic exponent, shouldl/v
merely be replaced bylmax/vmin @18#, i.e.,

z5
ln~lmax/vmin!

ln L
, ~2.18!

where lmax is the largest eigenvalue of the matrixRL(k),
andvmin is the smallest eigenvalue ofRV(k).

III. KINETIC GAUSSIAN MODEL ON THREE DIFFERENT
FRACTAL GEOMETRIES

A. The Koch curve, the modified Gaussian model,
and the master equation

The fractals@19# that we are going to study are con
structed by an iterative procedure in which each segmen
the object is replaced by a generator. Figure 1 shows
different configurations of the Koch curves@19# including
the nonbranching and branching Koch curve. In the iterati
each stage of the iteration is described by a length-resca
factor L, and the number of the segments in the lattice,N8,
increases toN by a relationN/N85LD f , which defines the
fractal dimensionalityD f . Obviously, these examples in Fig
1 have differentD f , but their topological dimensionalityDT

FIG. 1. Three stages in the construction of fractals. The gen
tor of the fractal appears in the first line. The second and the t
lines correspond to the second and thirds stages of iteration. Di
ent fractals are placed in different columns.~a! A nonbranching
Koch curve~NBKC! with D f5 ln 4/ln 3 andR52. ~b! A branching
Koch curve~BKC! with D f5 ln 5/ln 3, Rmin52 andRmax53.
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is equal to 1 which means that they are quasilinear fract
Added to this, another parameter that is used to characte
the topological properties of the fractal isR, the order of
ramification. The maximum and minimum values ofR of a
fractal obey the inequality,Rmax>2Rmin22 @20#.

The examples of theDT51 fractals shown in Fig. 1 have
finite R. The nonbranching Koch curve~NBKC!, which has
D f5 ln 4/ln 3 andRmin5Rmax52 shown in Fig. 1~a!, is a ho-
mogeneous and wiggling chain, while the branching Ko
curve ~BKC!, which has D f5 ln 5/ln 3 and Rmin52 and
Rmax53 shown in Fig. 1~b!, is an inhomogeneous one.

We assume that the Gaussian spin system with a red
Hamiltonian

2bH5k(
^ i , j &

s is j , ~3.1!

located on these fractals, whereb51/kbT, k5J/kbT, and
the summation(^ i , j & is taken over nearest neighbors. U
like the Ising spin system, the spin of the Gaussian mo
can take any real value between (2`,1`), and the
Gaussian-type distribution finding a given spin betweens i
ands i1ds i

f ~s i !ds i;expS 2
bqi

2
s i

2D ds i ~3.2!

is assumed to prevent all spins from tending to infini
whereqi is the coordination number of the sitei, andbqi

is a
distribution constant independent of temperature. Consi
ing the inhomogeneity of the branching Koch curve, we ha
assumed that the Gaussian-type distribution constants
pend on coordination numbers and satisfy a certain relat

bqi
/bqj

5qi /qj . ~3.3!

FIG. 2. The second construction stage of the NBKC and
BKC. ~a! NBKC, all of the generations are the same;~b! BKC,
there are two kinds of typical generators~such asath andbth).
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This modified Gaussian model appeared in Ref.@21#, which
studied the static critical behavior of inhomogeneous frac
lattices.

In this case the spin transition probability can be e
pressed as

Wi~s i→ŝ i !5
1

Qi
expFkŝ i(

w
s i 1wG , ~3.4!

where the normalized factorQi can be determined as

Qi5(
ŝ i

expFkŝ i(
w

s i 1wG
5E expFkŝ i(

w
s i 1wG f ~ ŝ i !dŝ i

5expF2
k2

2bqi

S (
w

s i 1wD 2G ,

and another useful combination formula can also be obtai

(
ŝ i

~s i2ŝ i !Wi~s i→ŝ i !

5E
2`

`

~s i2ŝ i !Wi~s i→ŝ i ! f ~ ŝ i !dŝ i

5s i2
k

bqi

(
w

s i 1w . ~3.5!

So, for magneticlike perturbation, the master equation s
able for a modified Gaussian model on homogeneous
inhomogeneous fractal lattices can be written as

e

FIG. 3. Decimation RG procedure:~a! NBKC; ~b! BKC.
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d

dt (
i

hqi
~ t !s i Peq~k,$s%!

52(
i

hqi
~ t !S s i2

k

bqi

(
w

s i 1wD Peq~k,$s%!.

~3.6!

B. Nonbranching Koch curve

First let us focus on the homogeneous nonbranching K
curve~NBKC! in which the Gaussian spins are placed on
of the sites. Becausehqj

(t)5h(t), bqj
5b, the master equa

tion ~3.6! takes the following form

S d

dtDh~ t !(
a

S 1

2
s1

a1s2
a1s3

a1s4
a1

1

2
s5

aD Peq~k,$s%!

52h~ t !S 12
2k

b D(
a

S 1

2
s1

a1s2
a1s3

a1s4
a

1
1

2
s5

aD Peq~k,$s%!, ~3.7!

wherea denotes generator of NBKC, which is shown in F
2~a!, the sum(a goes over all generators, andPeq(k,$s%) is
the equilibrium distribution function that can be written a
h
ll

Peq~k,$s%!5
1

Z
expFk(

^ i , j &
s is j2

b

2 (
i

s i
2G

5
1

Z)
a

expH k~s1
as2

a1s2
as3

a1s3
as4

a1s4
as5

a!

2
b

2 F1

2
~s1

a!21~s2
a!21~s3

a!21~s4
a!2

1
1

2
~s5

a!2G J . ~3.8!

In Eqs. ~3.7! and ~3.8!, the coefficient 1/2 comes from th
fact that two neighboring generators share the same sit
and 5.

The space-rescaling procedure@see Fig. 3~a!# is per-
formed through the decimation renormalization transform
tion

Ta~m,s!5d~m1
a2s1

a!d~m2
a2s5

a!, ~3.9!

in which the spinss1
a , s5

a and the interactionk in the ath
generator are replaced by rescaling spinm18

a , m2
a and the

interactionk8, respectively, while the other spinss2
a , s3

a ,
ands4

a are integrated from2` to 1`. Under this process
the form of the distribution functionPeq is invariant. The
details of the RG calculation are employed in Appendix
Here, we give a renormalized master equation
S d

dtD 1

j~k!

b~b12k!

b222k2
h~ t !(

a
S 1

2
m18

a1
1

2
m28

aD Peq8 ~k8,$m8%!52
1

j~k!

b224k2

b222k2
h~ t !(

a
S 1

2
m18

a1
1

2
m28

aD Peq8 ~k8,$m8%!,

~3.10!

where

m85j~k!m5S b424k2b212k4

b2~b222k2!
D 1/2

m, ~3.11!

k85
k3b

b424k2b212k4
k. ~3.12!

Obviously, if the summation fora is arranged in the next stage of iteration, Eq.~3.10! can be rewritten as

S d

dtD 1

j~k!

b~b12k!

b222k2
h~ t !(

b
S 1

2
m18

b1m28
b1m38

b1m48
b1

1

2
m58

bD Peq8 ~k8,$m8%!

52
1

j~k!

b224k2

b222k2
h~ t !(

b
S 1

2
m18

b1m28
b1m38

b1m48
b1

1

2
m58

bD Peq8 ~k8,$m8%!. ~3.13!
Furthermore, if we let

l5
1

j~k!

b~b12k!

b222k2
, v5

1

j~k!

b224k2

b222k2

1

12
2k8

b

,

~3.14!

then by time rescaling
t85
t

l/v
5

b424k2b212k4

~b12k!b3
t5L2zt ~L53!

~3.15!

and the dynamic parameter transformation

h~ t !→h8~ t8!5lh~ t !, ~3.16!
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the invariant form of the master equation~3.8! can be restored

S d

dt8
h8~ t8!D(

b
S 1

2
m18

b1m28
b1m38

b1m48
b1

1

2
m58

bD Peq8 ~k8,$m8%!

52h8~ t8!S 12
2k8

b D(
b

S 1

2
m18

b1m28
b1m38

b1m48
b1

1

2
m58

bD Peq8 ~k8,$m8%!. ~3.17!
e
is
e of

con-
rtain
by

a-
del

,

G

ion.
out
.
-

Let the system be in its critical pointkc5b/2, which is
determined by the recursion relationship~3.12!, then we can
obtain the dynamical critical exponentz by use of Eqs.~3.15!
as

z5F 1

ln L
ln

~b12k!b3

b424k2b212k4G
kc5b/2,L53

52
ln 4

ln 3
52D f .

~3.18!

However, because

1

n
5

1

ln L
lnS dk8

dk D U
kc5b/2,L53

5
1

ln L
lnS 24k3b3~2b212k2!

~b424k2b212k4!2 D
kc5b/2,L53

5
ln 16

ln 3

52
ln 4

ln 3
52D f , ~3.19!

then

z5
1

n
52D f52.5237. ~3.20!
C. Branching Koch curve

Now, we turn to focus on the branching Koch curv
~BKC!, which is one of the inhomogeneous fractals. In th
case, since the coordination number depends on the plac
site, we must assume that the Gaussian-type distribution
stants depend on coordination numbers and satisfy a ce
relation ~3.3!, otherwise, the problem cannot be solved
applying the decimation RG method directly@21#.

In the following we deal with the magneticlike perturb
tion master equation that suits the modified Gaussian mo
on inhomogeneous fractal lattices~3.6!. We should notice
that, for the branching Koch curve~BKC! there are two
kinds of typical generators@such asath and bth in Fig.
2~b!#: ~1! q15q25q453, q35q552; ~2! q15q25q45q5

53, q352. For case~1! or case ~2!, the decimation
renormalization-group procedure is shown in Fig. 3~b!, in
which some spins such ass2 , s3, ands4 are integrated, the
remainders are rescaled asm18 andm28 , and, at the same time
the interactionk is replaced byk8. Under this process, the
form of the distribution function is invariant, and the R
transformation ofath generator is equivalent tobth. It can
be realized via the calculation in Appendix B 1.

Our purpose is the renormalization of the master equat
In fact, we only need discuss a typical generator. With
loss of generality, we take theath generator, for instance
The left and right sides of Eq.~3.6! can be written, respec
tively, as
e

h~ t !•L~s!Peq~k,$s%!5Fh3~ t !S 1

3
s1

a1s2
a1s4

aD1h2~ t !S s3
a1

1

2
s5

aD GPeq~k,$s%!, ~3.21!

h~ t !•V~k,s!Peq~k,$s%!5H h3F1

3
s1

a2
k

b3
s2

aG1h3Fs2
a2

k

b3
~s1

a1s3
a1s4

a!G1h2Fs3
a2

k

b2
~s2

a1s4
a!G

1h3Fs4
a2

k

b3
~s2

a1s3
a1s5

a!G1h2F1

2
s5

a2
k

b2
s4

aG J Peq~k,$s%!, ~3.22!

where, the coefficient 1/3~or 1/2! in the termss1
a ~or s5

a) comes from the fact that three~or two! neighboring generators shar
the same site 1~or 5!.

Multiplying Eqs. ~3.21! and ~3.22! by the transformation operator
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T~m,s!5)
a

d~m1
a2s1

a!d~m2
a2s5

a!, ~3.23!

and integrating over$s%, one can obtain~see Appendix B 2!

R$h~ t !•L~s!Peq~k,$s%!%5
1

Aj
„h38~ t !h28~ t !…S 1

3 m18
a

1
2 m28

aD Peq8 ~$k8,m8%!5h8~ t,k8!•L8~m8,k8!Peq8 ~k8,$m8%!, ~3.24!

R$h~ t !•V~k,s!Peq~k,$s%!%5
1

Aj
„h38~ t !h28~ t !…

~RV!

~RL! S 1
3 m18

a2
k8

b3
m28

a

1
2 m28

a2
k8

b2
m18

a
D Peq8 ~$k8,m8%!

5h8~ t,k8!@RL
21~k!•RV~k!#V8~m8,k8!Peq8 ~k8,$m8%!, ~3.25!

in which

„h38~ t !h28~ t !…5„h3~ t !h2~ t !…~RL!,

~RL!k→kc
5S b3b212kb222k2

b3b22kb222k2

2kb2

b3b22kb222k2

3k2

b3b22kb222k2

b2~b32k!

b3b22kb222k2

D
k→kc

5S 4 2

3
2 2D with eigenvalues 5,1, ~3.26!

~RV!k→kc
5S 9b2

4228k2b2
228k3b218k4

~9b2
3216k2b228k3!b2

0

0
9b2

4228k2b2
228k3b218k4

~9b2
3216k2b228k3!b2

D
k→kc

5S 3
8 0

0 3
8

D with eigenvalues
3

8
,
3

8
,

~3.27!
a-

he

.

n

a
ca

uct
rve
of
on-
an
wherekc5b2/25b3/3 is determined by the fixed-point equ
tion k* 5k85k ~see Appendix B 1!.

In this case we have to look for the invariant form of t
master equation

d

dt
h~ t !•L~s!Peq~k,$s%!52h~ t !•V~k,s!Peq~k,$s%!

~3.28!

at the limit of the ordern→` of the RG transformation
Because our starting point is very close to the fixed pointkc
of the static RG transformation, the eigenvalues of the tra
formation matricesRL(k→kc) and RV(k→kc) control the
scaling properties of the largest relaxation time. Hence,
cording to the foregoing discussion, the dynamical criti
exponentz is obtained

z5
ln~lmax/vmin!

ln L
5

ln 40/3

ln 3
52.3578. ~3.29!

Because of
s-

c-
l

S dk8

dk D
k5kc

5
d

dk S 4b2k3~k1b2!

8k428k3b2228b2
2k219b2

4D
k5kc

5
40

3
,

1

n
5

1

ln L
lnS dk8

dk D
k5kc

5
ln 40/3

ln 3
, ~3.30!

then

z5
1

n
52.3578. ~3.31!

D. Multibranching Koch curve

Based on the branching Koch curve, we now constr
another generalized one, the multibranching Koch cu
~MBKC!, and investigate its critical dynamical behavior
the kinetic modified Gaussian model on this lattice. The c
structional process is shown in Fig. 4. Obviously, it also is
inhomogeneous example of theDT51 fractals that have
D f5 ln(2m13)/ln 3, Rmin52 andRmax5m12, m51, . . . ,̀ .
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The effect of the order of ramification,R, on the critical
slowing down could be seen by this example.

Similarly, there are two kinds of typical generators in t
multibranching Koch curve:~1! q15q35q451/(m12), qi
52,(i 55, . . . ,m14), q252 (ath generator!; ~2! q15q3
5q45q251/(m12), qi52, (i 55, . . . ,m14) (bth gen-
erator!. In fact, the decimation renormalizing procedures
these two cases result in the same consequence~see Fig. 5!.
It can be realized via the calculation of Appendix C 1.

Our purpose is the renormalization of the master equa
t

d

dt S (i
hqi

~ t !s i D Peq~k,$s%!52(
i

hqi
~ t !S s i2

k

bqi

(
w

s i 1wD Peq~k,$s%!, ~3.32!

or

d

dt
h~ t !•L~s!Peq~k,$s%!52h~ t !•V~k,s!Peq~k,$s%!. ~3.33!

In fact, we only need discuss a typical generator. Without loss of generality, we take case~1!, for instance. The left and righ
sides of Eq.~3.32! can be written, respectively, as

h~ t !•L~s!Peq~k,$s%!5Fhm12S 1

m12
s1

a1s3
a1s4

aD1h2S (
i 55

m14

s i
a1

1

2
s2

aD GPeq~k,$s%! ~3.34!

and

h~ t !•V~k,s!Peq~k,$s%!5H hm12F 1

m12
s1

a2
k

bm12
s3

aG1hm12Fs3
a2

k

bm12
S s1

a1 (
i 55

m14

s i
a1s4

aD G1hm12Fs4
a2

k

bm12

3S s3
a1 (

i 55

m14

s i
a1s2

aD G1 (
i 55

m14

h2Fs i
a2

k

b2
~s3

a1s4
a!G1h2F1

2
s2

a2
k

b2
s4

aG J Peq~k,$s%!.

~3.35!

By virtue of ~C13!–~C17!, the results of the decimation RG transformation of~3.34! and ~3.35! are, respectively,

R$h~ t !•L~s!Peq~k,$s%!%5
1

Aj
„hm128 ~ t,k8!h28~ t,k8!…S 1

m12
m18

a

1

2
m28

a
D Peq8 ~k8,$m8%!

5h8~ t,k8!•L8~m8,k8!Peq8 ~k8,$m8%!, ~3.36!

where

„hm128 h28…5„hm12 h2…~RL!,

~RL!5S b2bm122b2k22mk21kb2~m12!

~b2bm122b2k22mk2!

2b2k

b2bm122b2k22mk2

~m12!mk2

b2bm122b2k22mk2

b2bm122b2k

b2bm122b2k22mk2

D
and

R$h~ t !•V~k,s!Peq~k,$s%!%5
1

Aj
„hm118 ~ t,k8!h28~ t,k8!…

~RV!

~RL! S 1

m12
m18

a2
k8

bm12
m28

a

2
k8

b2
m18

a1
1

2
m28

a
D Peq8 ~k8,$m8%!

5h8~ t,k8!@RL
À1
„k…•RV„k…#•V8~m8,k8!Peq8 ~k8,$m8%!, ~3.37!

where
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~RV!k5kc
5F ~R̃V!S 1 2

2k8

bm12

2
~m12!k8

b2
1

D 21G , ~R̃V!5S a11 a12

a21 a22
D ,

a115
22bm12mk32bm12b2k222bm12

2 mk21b2bm12
3 2b2k2~m12!bm121k4~m12!m

~b2bm122b2k22mk2!bm12~k1bm12!
,

a125
2k3~mk1b2!

bm12~k1bm12!~2mk21b2k2b2bm12!
,

a215
~m12!k3~mk1b2!

b2~k1bm12!~2mk21b2k2b2bm12!
,

a225
2b2mk31b2

2k212b2bm12mk22b2
2bm12

2 12bm12b2k222k4m

b2~k1bm12!~2mk21b2k2b2bm12!
,

~RV!k→kc
5S m12

2~m13!
0

0
m12

2~m13!

D with eigenvalues
m12

2~m13!
,

m12

2~m13!
, ~3.38!

~RL!k→kc
5S m13 2

1
2 m~m12! m11D with eigenvalues 2m13,1, ~3.39!
o

t o
he

ax

lue

ed
wherekc is determined by the fixed-point equationk* 5k8
5k @see~C12!# as

kc5
b2

2
5

bm12

m12
. ~3.40!

From Eqs.~3.36! and ~3.37! we can see that, in order t
look for the invariant form of the master equation

d

dt
h~ t !•L~s!Peq~k,$s%!52h~ t !•V~k,s!Peq~k,$s%!,

~3.41!

we need to do the renormalization endlessly up to the limi
the ordern→` of the RG transformation. But, because t
system is very close to the fixed pointkc of the static RG
transformation, the scaling properties of the largest rel
f

-

ation time are under the control of the largest eigenva
lmax52m13 of the matrixRL(k→kc) and the smallest ei-
genvaluevmin5(m12)/2(m13) of RV(k→kc). Hence, the
invariant form of the master equation can be obtain
through preforming the time rescaling

t→t85L2zt5
t

lmax/vmin
, ~3.42!

and from here, the dynamical critical exponentz can be got

z5
ln~lmax/vmin!

ln L
5

1

ln 3
ln

2~2m13!~m13!

m12
.

~3.43!

Because of
S dk8

dk D
k→kc

5
d

dk S 4b2k3~b21mk!

8k4m28b2mk324~m12!b2
2mk224k2b2

2~m12!24k2b2
21~m12!2b2

4D
k→b2/2

52
~m13!~2m13!

m12
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1

n
5

lnS dk8

dk D
k→kc

ln L
5

1

ln 3
ln

2~m13!~2m13!

m12
, ~3.44!

then

z5
1

n
5

1

ln 3
ln

2~m13!~2m13!

m12
. ~3.45!

IV. CONCLUSIONS

Based on the dynamical real-space renormalization p
posed by Achiam and Kosterlitz, we have suggested a g
eralizing formulation that suits arbitrary spin systems. T
new version replaces the single-spin flipping Glauber
namics with the single-spin transition dynamics. As an
plication, we focused on the kinetic Gaussian models
52`, . . . ,̀ , continuous spin model!, and studied three
different fractal geometries with quasilinear lattices, inclu
ing the nonbranching, branching, and multibranching Ko
curve. We calculated the dynamical critical exponentz for
these lattices using an exact decimation renormaliza
transformation in the assumption of the magneticlike per
bation, and found that it can be written universally asz
51/n, wheren is the static length-correlation exponent.

In the first example, the nonbranching Koch curve,z
51/n52D f , D f5 ln 4/ln 3 is the fractal dimensionality o
the NBKC. Being a quasilinear chain, the geometrical eff
of the wiggliness of the nonbranching Koch curve is that
correlation lengthz̃ of the one-dimensional linear chai
should be replaced by the real correlation lengthz, z

5 z̃1/D f @12#. However, for a one-dimensional linear cha
with Gaussian spin for each lattice, we have known that
critical dynamical exponentz̄52 @4#. So t;z̃ z̄5(zD f) z̄5zz

meansz5 z̄D f52D f . This result coincided with our calcu
lation by DRSRG technique.

In the branching Koch curve, the resultz51/n is also
valid, but that 1/n51/lnLln(dk8/dk)k5kc

5ln 40/3/ln 3 is not

simply related to the fractal dimensionalityD f .
In the multibranching Koch curve, the resultz51/n is

obtained once again. We can see fromz51/ln 3ln@2(m13)
3(2m13)#/(m12) that, whenm50, z52, the lattice is a
one-dimensional chain andz is equal to the rigorous resul
whenm51, z5 ln 40/3/ln 3, corresponding to the branchin
Koch curve; whenm→`, z→` ~see Fig. 6!. All of these
mean that the critical slowing down of the Gaussian spin
the Koch curve is heavily dependent on the order of ram
cationR.

FIG. 4. The construction procedure of the multibranching Ko
curve ~MBKC! with D f5 ln(2m13)/ln 3.
o-
n-
e
-
-

-
h

n
r-

t
e

e

n
-

In fact, in our previous paper we have found that for
translational symmetric lattice with the Gaussian spin mod
the critical dynamical exponentz51/n, n51/2 at the critical
pointKc5b/2d based on rigorous calculation@4#. Yet, in this
paper the resultz51/n has been proved once again by th
dialational symmetric lattice systems. We guess thatz51/n,
could be a universal conclusion for a kinetic Gaussi
model. Of course, we must realize that the result of what
have obtained in this paper is carried out in the assumpt
of the magneticlike perturbation. However, the perturbati
itself ~magneticlike or energylike! is only a special assump-
tion. For a general perturbation the master equation is
always invariant under the RG transformation because
perturbations probably have components along all the r
evant operators. By this token, whether thez51/n will be a
universal conclusion for a kinetic Gaussian model waits f
further investigation.
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FIG. 6. Critical dynamical exponent of the kinetic Gaussia
model on the multibranching Koch curve.
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APPENDIX A: RG CALCULATION OF NBKC

To perform the decimation transformation, we have o
to multiply both sides of the master equation~3.7! by the
transformation operator

T~m,s!5)
b

d~m1
b2s1

b!d~m2
b2s5

b! ~A1!

and integrate over$s%, i.e.,

S d

dtDh~ t !(
a

RH S 1

2
s1

a1s2
a1s3

a1s4
a1

1

2
s5

aD Peq~k,$s%!J

52h~ t !S 12
2k

b D(
a

RH S 1

2
s1

a1s2
a1s3

a1s4
a

1
1

2
s5

aD Peq~k,$s%!J , ~A2!

where

R$s i
aPeq~k,$s%!%5E

2`

`

ds1ds2 . . . dsN)
b

d~m1
b

2s1
b!d~m2

b2s5
b!s i

aPeq~k,$s%!

5R$Peq~k,$s%!%
Ws

i
a

W
, ~A3!
y
W5E

2`

`

ds2
ads3

ads4
a expH k~m1

as2
a1s2

as3
a1s3

as4
a

1s4
am2

a!2
b

2
@~s2

a!21~s3
a!21~s4

a!2#J
5A ~2p!3

b~b222k2!
expH k4

b~b222k2!
m1

am2
a

1
1

2

k2~b22k2!

b~b222k2!
@~m1

a!21~m2
a!2#J ,

Ws
i
a5E

2`

`

ds2
ads3

ads4
as i

a expH k~m1
as2

a1s2
as3

a1s3
as4

a

1s4
am2

a!2
b

2
@~s2

a!21~s3
a!21~s4

a!2#J ,

Ws
1
a5m1

aW, Ws
5
a5m2

aW,

Ws
2
a5

k

b Fm1
a1

k2

b222k2
~m1

a1m2
a!GW,

Ws
3
a5

k2

b222k2
~m1

a1m2
a!W,

Ws
4
a5

k

b Fm2
a1

k2

b222k2
~m1

a1m2
a!GW.

The remanent integrationR$Peq(k,$s%)% is an important
one. We hope to keep on an invariant form of the transf
mational distribution functionPeq8
be
R$Peq~k,$s%!%5
1

ZE2`

`

ds1ds2 . . . dsN)
b

d~m1
b2s1

b!d~m2
b2s5

b!expFk(
^ i , j &

s is j2
b

2 (
i

s i
2G

5
1

Z)
b

E
2`

`

ds2
bds3

bds4
b expH k~m1

bs2
b1s2

bs3
b1s3

bs4
b1s4

bm2
b!2

b

2 F1

2
~m1

b!21~s2
b!21~s3

b!21~s4
b!2

1
1

2
~m2

b!2G J 5
1

Z)
b
A ~2p!3

b~b222k2!
expH k4

b~b222k2!
m1

bm2
b2

b

2

b424k2b212k4

b2~b222k2!
F1

2
~m1

b!2

1
1

2
~m2

b!2G J .

Obviously, one must rescale the spinsm1
a , m2

a and interactionk so as to keep the equilibrium distribution function to
invariant

m85j~k!m5S b424k2b212k4

b2~b222k2!
D 1/2

m, ~A4!

k85
k3b

b424k2b212k4
k, ~A5!



tic RG

e

6230 PRE 61JIAN-YANG ZHU AND Z. R. YANG
then

R$Peq~k,$s%!%5
1

Z)
b
A ~2p!3

b~b222k2!
expH k8m18

bm28
b2

b

2 F1

2
~m18

b!21
1

2
~m28

b!2G J
5

1

Z8
expH k8(

b
m18

bm28
b2

b

2 (
b

F1

2
~m18

b!21
1

2
~m28

b!2G J
5Peq8 ~$k8,m8%!. ~A6!

Equation ~A5! is reputed to be the recursion relation that enables one to determine the fixed point of the sta
transformationkc . Upon that, we have

R$s1
aPeq~$s%!%5m1

aPeq8 ~k8,$m8%!, ~A7!

R$s5
aPeq~$s%!%5m2

aPeq8 ~k8,$m8%!, ~A8!

R$s2
aPeq~k,$s%!%5

k

b Fm1
a1

k2

b222k2
~m1

a1m2
a!GPeq8 ~k8,$m8%!, ~A9!

R$s3
aPeq~k,$s%!%5

k2

b222k2
~m1

a1m2
a!Peq8 ~k8,$m8%!, ~A10!

R$s4
aPeq~k,$s%!%5

k

b Fm2
a1

k2

b222k2
~m1

a1m2
a!GPeq8 ~k8,$m8%!. ~A11!

Substituting Eqs.~A7!–~A11! into ~A2!, one can obtain

S d

dtD 1

j~k!

b~b12k!

b222k2
h~ t !(

a
S 1

2
m18

a1
1

2
m28

aD Peq8 ~k8,$m8%!52
1

j~k!

b224k2

b222k2
h~ t !(

a
S 1

2
m18

a1
1

2
m28

aD Peq8 ~k8,$m8%!.

~A12!

Obviously, if the summation fora is arranged in the next stage of iteration, Eq.~A12! can be written as

S d

dtD 1

j~k!

b~b12k!

b222k2
h~ t !(

b
S 1

2
m18

b1m28
b1m38

b1m48
b1

1

2
m58

bD Peq8 ~k8,$m8%!

52
1

j~k!

b224k2

b222k2
h~ t !(

b
S 1

2
m18

b1m28
b1m38

b1m48
b1

1

2
m58

bD Peq8 ~k8,$m8%!. ~A13!

It is just Eq.~3.13!.

APPENDIX B: RG CALCULATION OF BKC

1. The RG transformation of the ath generator is equivalent to thebth generator

We can show that the RG transformation of theath generator is equivalent to thebth, but the precondition is that th
Gaussian-type distribution constants depend on the coordination number and satisfy the relation~3.3!. It can be realized via the
following calculations.

The effective Hamiltonian of thebth generator is
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2
1

kBT
H e f f

b ~s,k!5k~s1
bs2

b1s2
bs3

b1s2
bs4

b1s3
bs4

b1s4
bs5

b!2
b3

2 F1

3
~s1

b!21~s2
b!21~s4

b!21
1

3
~s5

b!2G2
b2

2
~s3

b!2

~B1!

where, the coefficient 1/3 in the terms (s1
b)2 and (s5

b)2 comes from the fact that three neighboring generators share the
sites 1 and 5. We take the decimation renormalization transformation operator as

Tb~m,s!5d~m1
b2s1

b!d~m2
b2s5

b!, ~B2!

then, by integrating spinss2 , s3, ands4 from 2` to 1`, one obtains

RH expF2
1

kBT
H e f f

b ~s,k!G J 5E
2`

`

ds1ds2 . . . ds5Tb~m,s!expF2
1

kBT
H e f f

b ~s,k!G
5C expH k0m1

bm2
b2

b3

2
jF1

3
~m1

b!21
1

3
~m2

b!2G J , ~B3!

where

C5A ~2p!3

b2b3
2~12k/b322k2/b2b3!

,

k05
k3~k1b2!

~b2b32kb222k2!~k1b3!
,

j5
3k422k3b324k2b2b322b3

2k21b2b3
3

b3~b2b32kb222k2!~k1b3!
,

if we take

m85Ajm5A3k422k3b324k2b2b322b3
2k21b2b3

3

b3~b2b32kb222k2!~k1b3!
m, ~B4!

k85
k0

j
5

k3~k1b2!b3

3k422b3k324k2b2b322k2b3
21b2b3

3
, ~B5!

then

RH expF2
1

kBT
H e f f

b ~s,k!G J 5C expH k8m18
bm28

b2
b3

2 F1

3
~m18

b!21
1

3
~m28

b!2G J . ~B6!

The same as above, the effective Hamiltonian of theath generator is

2
1

kBT
H e f f

a ~s,k!5k~s1
as2

a1s2
as3

a1s2
as4

a1s3
as4

a1s4
as5

a!2
b3

2 F1

3
~s1

a!21~s2
a!21~s4

a!2G2
b2

2 F ~s3
a!21

1

2
~s5

a!2G ,
~B7!

where, the coefficient 1/3~or 1/2! in the terms (s1
a)2 @or (s5

a)2# comes from the fact that three~or two! neighboring generators
share the same site 1~or 5!. By integrating spinss2 , s3, ands4 from 2` to 1`, one obtains
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RH expF2
1

kBT
H e f f

a ~s,k!G J 5E
2`

`

ds1ds2 . . . ds5Ta~m,s!expF2
1

kBT
H e f f

a ~s,k!G
5C expH k0m1

am2
a2

b3

2
j1

1

3
~m1

a!22
b2

2
j2

1

2
~m2

a!2J , ~B8!
on

er
where

k05
k3~k1b2!

~b2b32kb222k2!~k1b3!
,

j15123k2/b3
22

3k4/b3
4

12k2/b3
2

2
3k4/b2b3

3

~12k/b3!~12k/b322k2/b2b3!
,

j2512
2k2/b2b3

12k2/b3
2

2
2k4/b2

2b3
2

~12k/b322k2/b2b3!~12k/b3!
.

Based on the relation~3.3!, i.e.,

b2 /b352/3,

we can see

j15j25j5
8k428k3b2228b2

2k219b2
4

b2~3b2
222kb224k2!~2k13b2!

.

So, if only

m85Ajm5A 8k428k3b2228b2
2k219b2

4

b2~3b2
222kb224k2!~2k13b2!

m,

~B9!

k85
k0

j
5

4b2k3~k1b2!

8k428k3b2228b2
2k219b2

4
, ~B10!

one can get
RH 2
1

kBT
H e f f

a ~s,k!J 5C expH k8m18
am28

a2
b3

2

1

3

3~m18
a!22

b2

2

1

2
~m28

a!2J . ~B11!

In fact, ~B4!–~B5! coincides with~B9!–~B10!. Solving the
fixed-point equationk* 5k85k, the critical pointkc is ob-
tained

kc5
b2

2
5

b3

3
.

Now, as the decimation renormalization transformati
operator is taken as

T~m,s!5)
a

d~m1
a2s1

a!d~m2
a2s5

a!,

from ~B6! and ~B11! we can see

R$Peq~k,$s%!%5
1

Z8
expFk8(

^ i , j &
m i8m j82

bqi

2 (
i

m i8
2G

5Peq8 ~k8,$m8%!. ~B12!

This means that the distribution function is invariant und
RG transformation.

2. RG transformation of the master equation

BesidesR$Peq(k,$s%)%, one can also calculate

R$s i
aPeq~k,$s%!%5(

$s%
$T~m,s!s i

aPeq~k,$s%!%

5Peq8 ~k8,$m8%!
Ws

i
a

W
~B13!

where
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W5E
2`

`

ds2
ads3

ads4
a expH k~m1

as2
a1s2

as3
a1s2

as4
a1s3

as4
a1s4

am2
a!2

b3

2
@~s2

a!21~s4
a!2#2

b2

2
~s3

a!2J
5A ~2p!3

b3~b2b32kb222k2!
expH S k3~b21k!

~b2b32kb222k2!~b31k!
m1

am2
a1

k2~b2b32k2!

~b2b32kb222k2!~b31k!

3F1

2
~m1

a!21
1

2
~m2

a!2G D J , ~B14!
on

dis-
and
Ws
i
a5E

2`

`

ds2
ads3

ads4
as i

a expH k~m1
as2

a1s2
as3

a1s2
as4

a

1s3
as4

a1s4
am2

a!2
b3

2
@~s2

a!21~s4
a!2#2

b2

2
~s3

a!2J .

~B15!

Upon that, we have

R$s1
aPeq~$k,s%!%5

1

Aj
m18

aPeq8 ~$k8,m8%!, ~B16!

R$s5
aPeq~$k,s%!%5

1

Aj
m28

aPeq8 ~$k8,m8%!, ~B17!

R$s2
aPeq~$k,s%!%5

1

Aj

k~b3b22k2!m18
a1k2~k1b2!m28

a

~k1b3!~b2b32kb222k2!

3Peq8 ~$k8,m8%!, ~B18!

R$s3
aPeq~$k,s%!%5

1

Aj

k2

b2b32kb222k2

3~m18
a1m28

a!Peq8 ~$k8,m8%!,

~B19!

R$s4
aPeq~$k,s%!%5

1

Aj

k2~k1b2!m18
a1k~b3b22k2!m28

a

~k1b3!~b2b32kb222k2!

3Peq8 ~$k8,m8%!. ~B20!
By virtue of these integral results, Eqs.~3.24! and ~3.25!
can be obtained.

APPENDIX C: RG CALCULATION OF MBKC

1. The RG transformation of the ath generator
is equivalent to thebth generator

For MBKC, we can also show that the RG transformati
of theath generator is equivalent to thebth, but the precon-
dition is about the same as BKC, that the Gaussian-type
tribution constants depend on the coordination number
satisfy the relation~3.3!. It can be realized via the following
calculations.

The effective Hamiltonian of theath generator is

2
1

kBT
H e f f

a ~sa,k!5kFs1
as3

a1s3
as4

a1s4
as2

a

1 (
i 55

m14

~s4
a1s3

a!s i
aG2

bm12

2

3F 1

m12
~s1

a!21~s3
a!21~s4

a!2G
2

b2

2 F (
i 55

m14

~s i
a!21

1

2
~s2

a!2G , ~C1!

where, the coefficient 1/(m12) ~or 1/2! in the terms (s1
a)2

@or (s2
a)2# comes from the fact that (m12) ~or 2! neighbor-

ing generators share the same site 1~or 2!. We take the
decimation renormalization transformation operator as

Ta~m,sa!5d~m1
a2s1

a!d~m2
a2s2

a!, ~C2!

then, by integrating spinss3 , s4, ands i ( i 55, . . . ,m14)
from 2` to 1`, one obtains
RH expF2
1

kBT
H e f f

a ~sa,k!G J 5E
2`

`

)
i 51

m14

ds i
aTa~ma,sa!expF2

1

kBT
He f f

a ~sa,k!G
5C expH k0m1

am2
a2

bm12

2

1

m12
j1~m1

a!22
b2

2

1

2
j2~m2

a!2J , ~C3!

where

C5S 2p

b2
D m/2A ~2p!2b2

~bm121k!~b2bm122b2k22mk2!
,
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k05
k3~b21mk!

~bm121k!~b2bm122b2k22mk2!
,

j15
m~m12!k422bm12mk322bm12

2 mk22b2k2~m12!bm122k2b2bm121bm12
3 b2

bm12~bm121k!~b2bm122b2k22mk2!
,

j25
22k2b2bm1212k4m22b2bm12mk21bm12

2 b2
222b2mk32k2b2

2

b2~bm121k!~b2bm122b2k22mk2!
.

Based on the relation~3.3!, i.e.,

bm12

b2
5

m12

2
, ~C4!

we can see

j5j15j25
28k4m18b2mk314~m12!b2

2mk214k2b2
2~m12!14k2b2

22~m12!2b2
4

b2@~m12!b212k#@2b2
2~m12!12b2k14mk2#

, ~C5!

k05
4k3~b21mk!

@~m12!b212k#~b2
2~m12!22b2k24mk2!

, ~C6!

if taking

m85Ajm, k85
k0

j
, ~C7!

then

RH expF2
1

kBT
H e f f

a ~s,k!G J 5C expH k8m18
am28

a2
bm12

2

1

m12
~m18

a!22
b2

2

1

2
~m58

a!2J . ~C8!

The same as above for case~2!, the effective Hamiltonian of thebth generator is

2
1

kBT
H e f f

b ~s,k!5kFs1
bs3

b1s4
bs2

b1 (
i 55

m14

~s3
b1s3

b!s i
bG2

bm12

2 F 1

m12
~s1

b!21~s3
b!21~s4

b!21
1

m12
~s2

b!2G
2

b2

2 F (
i 55

m14

~s i
b!2G , ~C9!

where the coefficients 1/(m12) in the terms (s1
b)2 and (s2

b)2 come from the fact thatm12 neighboring generators share th
same sites 1 and 5. By integrating spinss3 , s4, ands i ( i 55, . . . ,m14) from 2` to 1` and using the relation~C4!, the
same result can be obtained,

RH expF2
1

kBT
H e f f

b ~sb,k!G J 5E
2`

`

)
i 51

m14

ds i
bTb~m,sb!expF2

1

kBT
H e f f

b ~sb,k!G
5C expH k8m18

bm28
b2

bm12

2 F 1

m12
~m18

b!21
1

m12
~m28

b!2G J . ~C10!

Therefore, from~C8! and ~C10!, we have

R$Peq~k,$s%!%5
1

Z8
expFk8(

^ i , j &
m i8m j82

bqi

2 (
i

m i8
2G5Peq8 ~k8,$m8%!, ~C11!

where the recursion relation is
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k85
4k2~b21mk!b2

8k4m28b2mk324~m213m13!b2
2k21~m12!2b2

4
k. ~C12!

Expression~C11! means that the distribution function is invariant under RG transformation.

2. RG transformation of the master equation

BesidesR$Peq(k,$s%)%, one can also calculate

R$s j
aPeq~k,$s%!%5(

$s%
$T~m,s!s j

aPeq~k,$s%!%

5E
2`

`

ds1ds2 . . . dsN)
b

d~m1
a2s1

a!d~m2
a2s2

a!s j
aPeq~k,$s%!

5Peq8 ~k8,$m8%!
Ws

j
a

W
,

where

W5E
2`

`

ds3
ads4

aS )
i 55

m14

ds i
aD expH kFm1

as3
a1s3

as4
a1s4

am2
a1 (

i 55

m14

~s4
a1s3

a!s i
aG

2
bm11

2
@~s3

a!21~s4
a!2#2

b2

2 F (
i 55

m14

~s i
a!2G J

5S 2p

b2
D m/2A ~2p!2b2

~bm121k!~b2bm122b2k22mk2!
expH k3~b21mk!

~bm121k!~b2bm122b2k22mk2!
m1

am2
a

1
1

2

k2~b2bm122mk2!

~bm121k!~b2bm122b2k22mk2!
@~m1

a!21~m2
a!2#J ,

Ws
j
a5E

2`

`

ds3
ads4

aS )
i 55

m14

ds i
aDs j

a expH kFm1
as3

a1s3
as4

a1s4
am2

a1 (
i 55

m14

~s4
a1s3

a!s i
aG2

bm12

2
@~s3

a!21~s4
a!2#

2
b2

2 F (
i 55

m14

~s i
a!2G J

5E
2`

`

ds3
ads4

aH )
iÞ j 55

m14 S E
2`

`

ds i
a expFk~s4

a1s3
a!s i

a2
b2

2
~s i

a!2G D J
3S E

2`

`

ds j
as j

a expFk~s4
a1s3

a!s j
a2

b2

2
~s j

a!2G D expH k@m1
as3

a1s3
as4

a1s4
am2

a#2
bm12

2
@~s3

a!21~s4
a!2#J

5
k2

b2bm122b2k22mk2
W, j 55, . . . ,m14,
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Ws
4
a5E

2`

`

ds3
ads4

aS )
i 55

m14

ds i
aDs4

a expH kFm1
as3

a1s3
as4

a1s4
am2

a1 (
i 55

m14

~s4
a1s3

a!s i
aG2

bm12

2
@~s3

a!21~s4
a!2#

2
b2

2 F (
i 55

m14

~s i
a!2G J

5
~mk31b2k2!m1

a1~b2bm122mk2!km2
a

~k1bm12!~b2bm122b2k22mk2!
W,

Ws
3
a5E

2`

`

ds3
ads4

aS )
i 55

m14

ds i
aDs3

a expH kFm1
as3

a1s3
as4

a1s4
am2

a1 (
i 55

m14

~s4
a1s3

a!s i
aG2

bm12

2
@~s3

a!21~s4
a!2#

2
b2

2 F (
i 55

m14

~s i
a!2G J

5
@~mk21b2k!m2

a1~b2bm122mk2!m1
a#k

~k1bm12!~b2bm122b2k22mk2!
W,

and then

R$s1
aPeq~k,$s%!%5

1

Aj
m18

aPeq8 ~k8,$m8%!, ~C13!

R$s2
aPeq~k,$s%!%5

1

Aj
m28

aPeq8 ~k8,$m8%!, ~C14!

R$s3
aPeq~k,$s%!%5

1

Aj

~mk31b2k2!m28
a1k~b2bm122mk2!m18

a

~k1bm12!~b2bm122b2k22mk2!
Peq8 ~k8,$m8%!, ~C15!

R$s4
aPeq~k,$s%!%5

1

Aj

~mk31b2k2!m18
a1~b2bm122mk2!km28

a

~k1bm12!~b2bm122b2k22mk2!
Peq8 ~k8,$m8%!, ~C16!

R$s j
aPeq~k,$s%!%5

1

Aj

k2

b2bm122b2k22mk2
~m18

a1m28
a!Peq8 ~k8,$m8%!, j 55, . . . ,m14. ~C17!

By virtue of these integral results, Eqs.~3.36! and ~3.37! can be obtained.
s.

tt.

n

tt.

s.,
@1# B. I. Halperin and P. C. Hohenberg, Phys. Rev. Lett.19, 700
~1967!.

@2# P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435
~1977!.

@3# R. J. Glauber, J. Math. Phys.4, 294 ~1963!.
@4# Jian-Yang Zhu and Z. R. Yang, Phys. Rev. E59, 1551~1999!.
@5# Jian-Yang Zhu and Z. R. Yang, Phys. Rev. E61, 210 ~2000!.
@6# K. G. Wilson, Phys. Rev. B4, 3174~1971!; 4, 3184~1971!.
@7# S. K. Ma, Modern Theory of Critical Phenomena~Benjamin,

New York, 1976!.
@8# Y. Achiam and J. M. Kosterlitz, Phys. Rev. Lett.41, 128

~1978!.
@9# Y. Achiam, J. Phys. A11, 975 ~1978!; 11, L129 ~1978!; 13,

1825 ~1980!.
@10# Y. Achiam, Physica A120, 279 ~1983!.
@11# Y. Achiam, Phys. Rev. B19, 376 ~1979!; 28, 428 ~1983!; 31,

4732 ~1985!; 33, 7762~1986!.
@12# Y. Achiam, Phys. Rev. B32, 1796~1985!.
@13# D. Kutasov, A. Aharony, E. Domany, and W. Kinzel, Phy

Rev. Lett.56, 2229~1986!.
@14# P. O. Weir and J. M. Kosterlitz, Phys. Rev. B33, 391 ~1986!.
@15# E. J. Lage, J. Phys. C19, 5715 ~1986!; 19, L91 ~1986!;

Physica~Utrecht! 140A, 629 ~1987!.
@16# G. F. Mazenko, M. J. Nolan, and O. T. Valls, Phys. Rev. Le

41, 500 ~1978!.
@17# W. Kinzel, Z. Phys. B: Condens. Matter29, 361 ~1978!.
@18# D. Kandel, Phys. Rev. B38, 486 ~1988!.
@19# B. B. Mandelbrot,Fractals: Form, Chance, and Dimensio

~Freeman, San Francisco, 1977!; The Fractal Geometry of Na-
ture ~Freeman, San Francisco, 1982!.

@20# Y. Gefen, B. B. Mandelbrot, and A. Aharony, Phys. Rev. Le
45, 855 ~1980!.

@21# Xiang-Mu Kong and Song Li, Sci. China, Ser. A: Math., Phy
Astron. Technol. Sci.42, 325 ~1999!.


