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A generalizing formulation of dynamical real-space renormalization that is appropriate for arbitrary spin
systems is suggested. The alternative version replaces single-spin flipping Glauber dynamics with single-spin
transition dynamics. As an application, in this paper we mainly investigate the critical slowing down of the
Gaussian spin model on three fractal lattices, including nonbranching, branching, and multibranching Koch
curves. The dynamical critical exponenis calculated for these lattices using an exact decimation renormal-
ization transformation in the assumption of the magneticlike perturbation, and a universalzreduit is
found.
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I. INTRODUCTION and perfected by Kanddll8], is our focus in this paper.
First, we establish a formulation of DRSRG applying to ar-
The dynamics of spin systems approaching their secondbitrary spin systems. Then, we investigate the critical slow-
order phase transition points have been an important subjestg down of the continuous spin model on different fractal
of many studies in the last few decades. One of the interestattices. In the generalizing formulation of DRSRG, we re-
ing phenomena is the critical slowing down characterized byplace the single-spin flipping Glauber dynami[i8$ with the
a divergent relaxation time. A reasonable explanation is single-spin transition dynamidgl], and use the same nota-
seemingly that the long range fluctuation leads to long timeion of Ref.[18] to express the critical dynamical exponent
evolution of the order parameter. According to the dynamical During the last many years, scientific journals have pub-
scaling hypothesi$l], the divergent relaxation time and  lished many papers concerning critical dynamics of discrete
the divergent correlation length can be related by~ 7, spin systems, but a systematic study of the critical dynamics
wherezis the dynamical critical exponent and is believed toin continuous spin systems is lacking indeed. This is the
depend only on large universal features of the model Hamilpurpose of our latest papdi,5] and this work is an attempt
tonian and the assumed dynamic prodeds at filling this gap. This is just our main motivation. We real-
Obtaining the exact solution based on a master equatiolize the fact that, though the Gaussian model is certainly an
except for a few casg8-5], is not an easy job. One has to jgealization, it is interesting and simple enough to obtain
evaluate it by means of approximate methods, such as thgsme fundamental knowledge of dynamical process in coop-
Monte Carlo simulation, the high-temperature series expangrative systems. So this is an ideal dynamical model that
sion, etc. However, the success of renormalization-groupherests us greatly. We also realize that, as an extension of
(RG) methods[6,7] in obtaining the critical exponents and lj'%he Ising model, the Gaussian model shows many differences
; . - . . om the Ising model in the properties of static phase transi-
to use RG |Qeas n cr|t|c_al Qynam|cs. One of.the typlcalltion, and yet its knowledge of the dynamical behavior is
examples[2] is a generalization of the-expansion tech- . : . o .
; : . N . ._unclear. Within the framework of single-spin transition criti-
nique in which the dynamics is described by a Langevin

equation. This method enables the calculation of the time(-:a‘I dynamics in our previous papie], we have obtained the

dependent correlation functions, but it is only useful near thélynamical critical exponent of the Gaussian modet,1/»
upper critical dimension. Anothd8] is a generalization of = 2. at the critical poinK.=b/2d based on rigorous calcu-
the real-space RG techniques, the starting point is a mast&tions. This means that the dynamical exponent is highly
equation instead of Hamiltonian. This method is preferamémwersal on translational symmetric lattices. However, what
in discrete spin systems, and could be used to directly calcus the dynamical exponent on dilational symmetric lattice
late the dynamical critical exponent. In addition, it is simple Systems? All of these subjects motivate us to finish this
and transparent, and very accurate for certain systems so thark.
it has been used quite extensively in the last y¢@rsl5|. This paper is organized as follows. Section Il is a detailed
For other examples, see Ref&6,17]. description of the dynamical real-space renormalization
The dynamical real-space renormalization-groupgroup (DRSRQ technique in which the dynamics is de-
(DRSRG technique, proposed by Achiam and Kosterl#2  scribed by a Markov process with the single-spin transition

instead of the single-spin flipping. In Sec. Ill, the critical

dynamics of the Gaussian model on three fractal lattices is
*Electronic address: zhujy@public.nc.jx.cn studied. We take the exact decimation transformation and
"Mailing address. calculate the dynamical critical exponenin the assumption
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of the magneticlike perturbation. Section IV is our summary

and discussion.

II. DESCRIPTION OF THE METHOD

In the single-spin transition critical dynamidg], the
master equation can be written as

d - -
aP({a},t)=—Ei 2 (1=p)Wi(ai— ) P({ahb),
7 2.1)
wherep; is the transition operation defined by
WOjy « . ,ON vt)

pif((fl,a'z, e

=f(0'1,0'2, PR ,(}i, e ,(TN,t),
and W (o;— o) is the single-spin transition probability that
satisfies the following restraint conditions:

(a) ergodicity,

(b) positivity,
W(og;—0))=0, YV oj,0; (2.2b
(c) normalization,
Z Wj(o'jg’a'j):]., vV oy, (2.20
j
(d) detailed balance,
W](O'J—>8'J) _ Peq(O'l, P ,(}J y e ,O'N)
W](a'J—>O'J) Peq(a'ly ---,(TJ', ---ra-N)'
Y oj,0], (2.20
in which

1
Peq({o'}) = ZeXF{_ BH({a})],

Z=% exd — BH({o})],

where P is the equilibrium Boltzmann distribution func-
tion, Z the partition function and{({o}) the system Hamil-
tonian. A well-chosen form of the transition probability is

Wi(tri—u}i):éex;{—lgﬂi((}i (% 0,-)
o #{n 3 o)
> ex%_ﬁH(&i,z Uj) .

o ()

(2.3
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In order to study the critical slowing down, we can limit
ourselves to the relaxation of an infinitely small perturbation
from equilibrium. Following Achiam’s ide&12], two selec-
tions can be considered, they are the magneticlike perturba-
tion

Po}0=|1+2 hq (Do |Ped{oh (24
or the energylike perturbation
P({o},t)= 1+<i2j> hg (Daio)|Peg{o}), (2.5

whereq; distinguishes between points that have differ@nt
(the order of ramification (i,j) denotes a sum over nearest-
neighbor pairs, and1qi and hﬁi are the reduced external

fields.
Based on these two consideratid@s4) or (2.5), the mas-
ter equation(2.1) takes the following forms:

d
i 2 Mg (DaiPeq{o})

=2 2 hg (0= a)Wi(ai—0))Peg{a}), (26

T

or

d
dt & NV oioPed{o})

_OED > he (V) (07— ) oWi(0i— 07)Peg({0}),

(2.7)

respectively. We can express further EGs6) and (2.7) as
the unitized matrix formulation

d
ah(t) “A(0)Peyk,{a})=—h(1) - Q(K,0)Peyk,{a}),
(2.9

where,h(t) is a row matrix,A(c) and(k,o) are column
matrices.

The critical dynamical behavior of the system described
by Eg.(2.8), can be studied using the dynamical real-space
renormalization-grougDRSRQ technique. The DRSRG is
composed of two stages. The first stage is the rescaling of the
space by

X—X"=LX, (2.9
which is performed using a RG transformati@uch as deci-
mation or site-block transformatignwherelL is the length-
rescaling factor. For example, in the case of the decimation
transformation, the spins are divided into two groypsg
and{u} under the control of a decimation operaitiu, o),
then a trace over thfr} is performed. The process of deci-
mation for a spin functiorf({c}) can be demonstrated as
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mwwm=§Twﬁmw%ﬂ«m» (2.10 /A\;

It is certain that we need to rescale the interaction parametel
k=J/kgT, and the spinu, i.e.,

k=k'=R(Ok, p—p'=&kp, (21D 5/\2
so as to keep on an invariant form of the probability distri- A /\
bution, P (k" ,{x'}), where(k) is the spin-rescaling fac- \V4
tor.
With the decimation transformatiq2.10), Eq.(2.8) takes
the form

d

ah(t)-RA(k)~A’(M’,k’)Péq(k’,{M’})

, (b)

= —h(t)-Ra(K)- Q' (' K )PL(K {u'}), (@)
(2.12 FIG. 1. Three stages in the construction of fractals. The genera-

tor of the fractal appears in the first line. The second and the third
where A’ (u',k’) and Q' (u',k") retain the original form. lines correspond to the second and thirds stages of iteration. Differ-

Taking the monomark ent fractals are placed in different columrig) A nonbranching
Koch curve(NBKC) with D¢;=1In4/In 3 andR=2. (b) A branching
h'(t,k")=h(t)-Rx(k), Koch curve(BKC) with Ds=In5/In 3, Ryin=2 andRya,=3.
which can be regarded as a RG transformation of the dy- In(M o)
namic parametehn(t), Eq. (2.12 can be rewritten as =T (2.1
n
d , : : .
ah’(t,k’)-A’(M’,k’)Peq(k’,{M’}) Second, for some inhomogeneous lattices with different

coordination numberR, (k) and Rg(k) are mxXm square
=—h'(t,k") - [Ry Kk)-Ro(K)]- Q' (u' K )PL(K fu'}). matrices in which the ordem of the matrices depends on the
d number of the parametdalai. In this case we have to look for

(213 the invariant form at the limit of the order—o of the RG
The second stage of the DRSRG is the rescaling of timéransformation. Because our starting point is very close to
by the fixed pointk; of the static RG transformation, the eigen-
values of the transformation matricBs (k—k.) andRq(k
t—t'=L"*4, (2.19  —k.) control the scaling properties &s> [10,18. Hence,

(2.17 again determines the dynamic exponent, should

which should result in that Eq2.12) is restored to the in- merely be replaced by, /o [18], i.e
max min 1 ey

variant form of the master equati¢g.9):

INON max! @mi
d Tr 1! o LD ’ ’ Z= —( n;ra;Xmeln)’ (2.18
@h (t" k") - A (n" K )Peg(k" {n'})
where \ ,ax IS the largest eigenvalue of the matii, (k),
= —h’(t’,k’)-Q’(M’,k’)Péq(k’,{M’}). and o,y is the smallest eigenvalue &q(k).

(2.19
IIl. KINETIC GAUSSIAN MODEL ON THREE DIFFERENT

We might encounter two different cases in carrying out FRACTAL GEOMETRIES
Eqg. (2.15. It can be realized via the following analyses.

First, for some homogeneous lattices with the same coor-
dination numberd;=q, hqi=h), RA(K) andRg (k) are only
1X 1 matrices. When the system approaches its critical point The fractals[19] that we are going to study are con-
ke, A=R,(K.)=const, w=Rgq(k.)=const, then from Eq. Structed by an iterative procedure in which each segment of
(2.13 we can see that the invariant form of the master equaln€ object is replaced by a generator. Figure 1 shows two

tion (2.8 can be restored by preforming the time rescaling different configurations of the Koch curv¢49] including
the nonbranching and branching Koch curve. In the iteration,

B each stage of the iteration is described by a length-rescaling
ot =L"= (216  factorL, and the number of the segments in the lattigé,
increases td\ by a relationN/N’ =LPf, which defines the
and from here we can further obtain the dynamical criticalfractal dimensionalityD; . Obviously, these examples in Fig.
exponentz 1 have differenD;, but their topological dimensionality ¢

A. The Koch curve, the modified Gaussian model,
and the master equation
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FIG. 3. Decimation RG proceduré) NBKC; (b) BKC.

This modified Gaussian model appeared in R21], which
studied the static critical behavior of inhomogeneous fractal
lattices.

FIG. 2. The second construction stage of the NBKC and the In this case the spin transition probability can be ex-
BKC. (a) NBKC, all of the generations are the sanib) BKC, pressed as
there are two kinds of typical generatdsich asath and gth).

is equal to 1 which means that they are quasilinear fractals. - 1 -

Added to this, another parameter that is used to characterize Wi(oi—ai)= aieXF{ kUi% Oi+w

the topological properties of the fractal B the order of

ramification. The maximum and minimum values Rfof a

fractal obey the inequalityRma2Rmin—2 [20]. where the normalized factd®; can be determined as
The examples of th® ;=1 fractals shown in Fig. 1 have

finite R. The nonbranching Koch curd®&BKC), which has

, (3.9

D¢=In4/In 3 andR;;,=Rya=2 shown in Fig. 1), is a ho-
mogeneous and wiggling chain, while the branching Koch Qi=, ex;{ Koy, Oitw
curve (BKC), which hasD¢=In5/In3 and R,,;,=2 and 7, w
Rmax=3 shown in Fig. 1), is an inhomogeneous one.
We assume that the Gaussian spin system with a reduced _ ~ AL
Hamiltonian _J exr{kai% Ti+w|f(0i)doy
k2 2
_3H=k%> oiaj, (3.) =exp{— E(% 0i+w) }

located on these fractals, whege=1/k,T, k=J/k,T, and
. summgtlorE(_l 1) is taken over nearest neighbors. Un- :fmd another useful combination formula can also be obtained
like the Ising spin system, the spin of the Gaussian mode

can take any real value between-¢,+), and the

Gaussian-type distribution finding a given spin betwegn

ando;+do; 2 (o= 0)Wi(ai—a)

Ti

by
f(ai)dai~ex;{ —;a'iz) do; (3.2 % N N .
:f7 (oi=0o))Wi(gi— o) f(oj)do;
is assumed to prevent all spins from tending to infinity,
whereq; is the coordination number of the sitexandbqi isa Kk
distribution constant independent of temperature. Consider- 9T % Oitw- 3.9
ing the inhomogeneity of the branching Koch curve, we have i
assumed that the Gaussian-type distribution constants de-

pend on coordination numbers and satisfy a certain relatlonSO, for magneticlike perturbation, the master equation suit-

b /b =q / 33 able for a modified Gaussian model on homogeneous and
o /0q; = 0i 1 - (33 inhomogeneous fractal lattices can be written as
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d 1 b
— 2 hq (D) oiPeq(k,{a}) Pe(ki{o}) =5 ex kE Tgioi—5 2 o?
dt i L Z <|,J> 2 i
k 1
:_Z hg, (1) O'i_b_§ Titw|Pedkiia}). :ZH exp k(ojo;+ o505+ 0305+ 0505)
g @
(36) 1 a a a a
) 5(0'1)2"'(0'2)2"‘(03)2"‘(0'4)2
B. Nonbranching Koch curve 1
. . + —((rg‘)2 . (3.9
First let us focus on the homogeneous nonbranching Koch 2

curve (NBKC) in which the Gaussian spins are placed on all .
of the sites. Because, (t)=h(t), b, =b, the master equa- In Egs. (3.7 anq (3.8),_the coefficient 1/2 comes from the
. I i fact that two neighboring generators share the same sites 1
tion (3.6) takes the following form and 5
1 The space-rescaling procedufsee Fig. 8)] is per-
(dt) h(t)Z ( oftoy+ogtaog+ 205) Peg(ki{a}) formed through the decimation renormalization transforma-
tion

_ _h(t)( - %“)2 (%Ugwgwgwg T(w,0)= (s~ o) S(us—0), (39
: in which the spinssy’, og and the interactiork in the ath
generator are replaced by rescaling spiff', «3 and the
interactionk’, respectively, while the other spins;, o,
and oy are integrated from- to +. Under this process,
wherea denotes generator of NBKC, which is shown in Fig. the form of the distribution functiorP, is invariant. The
2(a), the sum=,, goes over all generators, afdy(k,{o}) is  details of the RG calculation are employed in Appendix A.
the equilibrium distribution function that can be written as Here, we give a renormalized master equation

1
+§0§) Peg(ki{o}), (3.7

d| 1 b(b+2k) A N T 1b4k2 N
gt %Wh(t)g 1"t 5" PedKin' == 275 K 57— 212 t)E 2M1 S 12" [Peg(K {n'}),
(3.10
where
b*— 4k2b2+ 2k*| V2
pw'=Eku= Tz | M (3.1
, k3b
e 342
Obviously, if the summation fow is arranged in the next stage of iteration, E810 can be rewritten as
d\ 1 b(b+2k) 1 , . e 1, A
<_)%Wh t)E <2M1'8+M2B+M3’6+M4ﬁ+ Zﬂsﬁ)Peq(k An'})
1 b?-4k? 1 1
=—%mh(t)§ (5M1B+M£B+M§B+M£B+ Eﬂéﬁ) Peg(K {u'}). (3.13
|
Furthermore, if we let t  b*—4k2b2+ 2k4
t’ZTZ—StILizt (L=3)
1 b(b+2k) 1 b4k 1 w (b+2k)b 15
CE b2k T E proae | 2K ‘

b (3.14 and the dynamic parameter transformation

then by time rescaling h(t)—h'(t")=Ah(t), (3.1
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the invariant form of the master equati@®8) can be restored

dt’ B

2k’
b

1 1
=—h’(t’)(1— )% (§M1B+Méﬁ+ﬂéﬁ+ﬂiﬁ+ EMéﬁ)Péq(k’,{M’})-

Let the system be in its critical poid,=b/2, which is
determined by the recursion relationslig12), then we can
obtain the dynamical critical exponenby use of Eqs(3.15
as

1 (b+2k)b® 2|n4 -
z=|—F—Ih——- =2—=2Ds.
4 2h2 4
INL " p*—4k?b?+ 2k A In3
(3.189
However, because
1 1 [dK
> ine Mk
v n ke=bi2L=3
1 (—4k3b3(—b2+2k2)) In16
= — n = —_—
4 __ 2IW2 4\ 2
InL "\ (b*—4k?b2+2k*) k=bi2L=3 In3
—2'”4—2D 3.1
=2,.3=2Ds, (3.19
then
1
z=—=2D;=2.5237. (3.20

1
h(t)'A(U)Peq(k,{tf})=[hs(t)<§0i“+ oty

a a
3917 (.92

3717 b,

1
h(t)- Q(k,0)Pey(k{o})= [ hs

+hg

d 1 1
(—h’(t’))E (§M1B+Méﬁ+uéﬂ+ﬂ«éﬁ+ Eﬂ«éﬁ)Péq(k’,{M’})

(3.17

+h;

k
o4 b—s(a'é"-i- o5+0%)

C. Branching Koch curve

Now, we turn to focus on the branching Koch curve
(BKC), which is one of the inhomogeneous fractals. In this
case, since the coordination number depends on the place of
site, we must assume that the Gaussian-type distribution con-
stants depend on coordination numbers and satisfy a certain
relation (3.3), otherwise, the problem cannot be solved by
applying the decimation RG method direcf®1].

In the following we deal with the magneticlike perturba-
tion master equation that suits the modified Gaussian model
on inhomogeneous fractal latticé3.6). We should notice
that, for the branching Koch curveBKC) there are two
kinds of typical generatorfsuch asath and gth in Fig.
20)]: (1) d1=02,=04=3, 93=05=2; (2) 4:=02=0s=0s
=3, (q3=2. For case(l) or case (2), the decimation
renormalization-group procedure is shown in Figb)3in
which some spins such as, o3, ando, are integrated, the
remainders are rescaled a$ andu,, and, at the same time,
the interactionk is replaced byk’. Under this process, the
form of the distribution function is invariant, and the RG
transformation ofwth generator is equivalent {Bth. It can
be realized via the calculation in Appendix B 1.

Our purpose is the renormalization of the master equation.
In fact, we only need discuss a typical generator. Without
loss of generality, we take theth generator, for instance.
The left and right sides of E43.6) can be written, respec-
tively, as

1
+hy(t)| o5+ EO’?) Peg(kiia}), (3.21
oy~ (o1t o3+ 0y) | +hy 05— —(o3+03)
bs b,
1 [s3 o
+h, Eos—b—20'4 Peg(ki{a}), (3.22

where, the coefficient 1/@r 1/2) in the termso] (or o2) comes from the fact that thréer two) neighboring generators share

the same site {or 5).

Multiplying Egs. (3.21) and (3.22 by the transformation operator
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T(w,o)=I1 8(u§—of)s(pus—od), (3.23

and integrating ovefo}, one can obtairisee Appendix B2

1 lIa
1 3 M1
R{h(t)'A(U)Peq(k,{ff})}:E(hé(t)hé(t))(1 ,a>Péq({k’,ﬂ’})=h’(t,k’)~A’(M’,k’)Péq(k’,{M’}). (3.29
2 M2
lM!a__’M!a
1o Ry PTh bt}
R{h(t)-Q(k,o)Peq(k,{rf})}=J—E(hs(t)hz(t))m LK Peq{k" n'})
2 M2 _b_2M1
=h'(t,k )[Ry~ (k) -Ra(K) Q' (1" K )Pk {u'}), (3.2
in which
(h3(Dh3(1) = (ha(Dha(D))(Ry),
bsb,+ 2kb,— 2k? 2kb,
R bsb,—kb,—2k?  bsb,—kb,— 2k2 (4 2) o e 51 326
k= = with eigenvalues 5,1, .
Ak 3K2 by(bs—k) 32 J
bgbz_kbz_zkz b3b2_kb2_2k2 Kk
9b3— 28k%b3— 8k3b,+ 8k* 0
(9b3—16k?b,—8k%)b, 0 3 3
(Ro)kok. = = with eigenvalues-, —,
ek . 9b%— 2823 — 8k%h, + 8k 0 2 ? 8'8
(9b3—16k?b,— 8k%)b, o
(3.27
|
v_vherekczbZ/2=b3/3 is deter_mined by the fixed-point equa- | 4y d 4b,k3(k+b,) 40
tion k* =k’ =k (see Appendix B 9K = ak| ava 3 > a =3
In this case we have to look for the invariant form of the k=K 8k =8k, — 2805k "+ 95/,
master equation
1 1 | dk’ In40/3 (3.30
d » inL M\ dk/,_. " 3 '
GiN(®-A(0)Pegk{o}) =~ h(1)- (k,0)Pei(k ) v K=k,
(328 then

at the limit of the ordem—« of the RG transformation.

Because our starting point is very close to the fixed pkjnt z=—=2.3578. (3.30
of the static RG transformation, the eigenvalues of the trans-

formation matricesR,(k—k.) and Ro(k—Kk.) control the

scaling properties of the largest relaxation time. Hence, ac-

cording to the foregoing discussion, the dynamical critical D. Multibranching Koch curve

exponent is obtained Based on the branching Koch curve, we now construct

another generalized one, the multibranching Koch curve

IN(N max/ @min) 1N 40/3 (MBKC), and investigate its critical dynamical behavior of
B InL " In3

=2.3578. (3.29 the kinetic modified Gaussian model on this lattice. The con-

structional process is shown in Fig. 4. Obviously, it also is an

inhomogeneous example of tHe;=1 fractals that have
Because of Di=In2m+3)/In 3, Ryin=2 andRpp=m+2, m=1, ... .
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The effect of the order of ramificatiorR, on the critical =q,=q,=1/(m+2), q;=2, (i=5,... m+4) (Bth gen-

slowing down could be seen by this example. erato). In fact, the decimation renormalizing procedures of
Similarly, there are two kinds of typical generators in thethese two cases result in the same consequeremeFig. 5.
multibranching Koch curve{l) q;=qs;=0q4=1/(m+2), q; It can be realized via the calculation of Appendix C 1.
=2,(i=5,... m+4), q,=2 (ath generator (2) q;=03 Our purpose is the renormalization of the master equation
|
d k
ail 2 Na (007 |Peg(k{oh) = =2 hq(0| 01— 5= X isw| Ped(ki{a), (3.32
G
or
d
iV A(0)Peg(k,iop) = —h(t) - (k,0) Py ki {a}). (3.33

In fact, we only need discuss a typical generator. Without loss of generality, we takélga®e instance. The left and right
sides of Eq(3.32 can be written, respectively, as

m+4 1
— o +o§+af 25 o+ Eag”Peq(k,{a}) (3.34

m+ 2 +he

h(t)- A(o)Peg(k{o})= { A2

and

m+4

k
o7t ;5 o' toy

bm+2

a

o3

+hm+2{0'§_b_ +hm+2{og_

m+2

h(t)- Q(k,0)Pey(k{o}) = [ N2

m+4

+ > hy
<5

m+4

x| 0%+ 25 o+ o +h,

] Peq(k:{o'})-
(3.3

o'i“—b—z(og-i-af{) Eag—b—za'f{

By virtue of (C13—(C17), the results of the decimation RG transformation®84) and(3.35 are, respectively,

1
1(h (t,k")hy(t,k")) 2"
I r/n+ t, ! /t, !
\/E 2 2 E o
2#2
=h"(t,k") A" (u' K)Peqg(K" {u'}), (3.36

R{h(t) - A(o)Peg(k.{o})}= Peq(k{n'})

where
(hmi2h)=(hmiz  h)(Ry),
bobis a— bok—2mKe+kb,(m+2) 2b,k
(Db s 5 —bok—2mI@) bobpys o— bok—2mi

(m+2)mk2 bobis 5 — bok
bobin s 2 — bok—2mi2 bobis 2 —bok—2mK2

(Ry)=

and

1 kK"

1 (Ry) | M2 By,
R{h(t)Q(k,U)Peq(k,{U})}I\/—E(hr'.,1+1(t,k')h£(t,k'))(RA) k/ Péq(k,v{ﬂl})

1
B
bz/“Ll 2/"L2

=h’(t,k)[RY'(K)-Ra(K)]- @' (' K" )Pei(k’ {n'}), (3.3

where
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2k \ 1

Pmi2 & (311 a12)
_(mE2k + (Ro) ’
b,

1 —

Ro-r =| (R
(Ro)k=k,=| (Ra) 2 2y

— 2B oMK — by obok?— 2b2, , ,mIE+byb2 , ,—bok2(M+2)by, o+ k*(Mm+2)m
(Db 2= bok—2mIC) b o(K+ by )

a; =

2k3(mk+b,)
bt 2(K+ by 2)(2MK+bk—bobyy )

=

_ (m+2)k3(mk+b,)
ba(K+ by 2)(2MKe+bok—bobpy o) |

as;

2b,mIC+b2k?+ 2b,b,, ;MK —b3bZ,, »+ 2bm . sbok?— 2k*m
ba(k+ b 2)(2MK+bok—babp. o)

A=

m+2 0
2(m+3) m+2 m+2

S with elgenvaluesz(m+3) ' 2(m+3)’
2(m+3)

(3.39

(Ro)k—k,=

m+3 2
with eigenvalues &+ 3,1, (3.39

(RA)kﬁkC:(

Iim(m+2) m+1

wherek, is determined by the fixed-point equati@i =k’ ation time are under the control of the largest eigenvalue

=k [see(C12)] as A max=2m-+3 of the matrixR,(k—k;) and the smallest ei-
genvaluewy,,=(mMm+2)/2(m+3) of Ro(k—k.). Hence, the
b, bpio invariant form of the master equation can be obtained
<" T mt2” (3.40 through preforming the time rescaling
From Egs.(3.36) and(3.37) we can see that, in order to
look for the invariant form of the master equation t—t' =L t=—7—, (3.42
N max! @min
d . "
ah(t)-A(O’) Peg(k {o})=—h(t)- Q(k,0)Pey(k,{o}), and from here, the dynamical critical exponertan be got
(3.47 IO ome) _ 1 2(2m+3)(m+3)
we need to do the renormalization endlessly up to the limit of = InL " In3 n m+2
the ordern—« of the RG transformation. But, because the (3.43

system is very close to the fixed poik{ of the static RG
transformation, the scaling properties of the largest relaxBecause of

4b,k3(b,+ mk)

8k*m—8b,mk’—4(m+2)bImk’— 4k*b3(m+2) —4k?b3+(m+2)%b3 ],
—P2

(dk’) d
dk/,_, ~ dk

_ (m+3)(2m+3)
=2 m+2
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dk’ ol®
In W oa(ﬁ) . .
1 kek, 1 2(m+3)(2m+3) ¢ decimation RG
—=—————=—7In , (3.44 A . .
v InL In3 m+2 o ® go® te — o ® wi®
o
then - ) .
FIG. 5. Decimation RG procedure of the multibranching Koch
curve (MBKC).
1 1 2(m+3)(2m+3)
z=—=—=In . (3.4H . )
v In3 m+2 In fact, in our previous paper we have found that for a

translational symmetric lattice with the Gaussian spin model,
the critical dynamical exponemt= 1/v, v=1/2 at the critical
IV. CONCLUSIONS pointK.=b/2d based on rigorous calculati¢p4]. Yet, in this
paper the result=1/v has been proved once again by the

Based on the dynamical rgal-space renormalization PrOgialational symmetric lattice systems. We guess #al/v,
posed by Achiam and Kosterlitz, we have suggested a 9€1%uld be a universal conclusion for a kinetic Gaussian

eralizing formulation that suits arbitrary spin systems. The .
new version replaces the single-spin flipping Glauber dy_model. Of course, we must realize that the result of what we
namics with the single-spin transition dynamics. As an ap_have obtained in this paper is carried out in the assumption

plication, we focused on the kinetic Gaussian model ( _(if ttl}e magne:\[fu?_lll(ke perturbatll_on_. Hovlvever, th? Iperturbatlon
=—oo, ..., continuous spin modgl and studied three itself (magneticlike or energylikeis only a special assump-

different fractal geometries with quasilinear lattices, includ-Uon- For a general perturbation the master equation is not
ing the nonbranching, branching, and multibranching Kocralways invariant under the RG transformation because the
curve. We calculated the dynamical critical exponerior ~ Perturbations probably have components along all the rel-
these lattices using an exact decimation renormalizatio§vant operators. By this token, whether thel/v will be a
transformation in the assumption of the magneticlike perturuniversal conclusion for a kinetic Gaussian model waits for
bation, and found that it can be written universally ms further investigation.
=1/v, wherev is the static length-correlation exponent.

In the first example, the nonbranching Koch curee,
=1/v=2Ds, D;=In4/In3 is the fractal dimensionality of ACKNOWLEDGMENTS
the NBKC. Being a quasilinear chain, the geometrical effect

of the wiggliness of the nonbranching Koch curve is that the_ T NiS work was supported by the National Basic Research
. ~ . . . . Project “Nonlinear Science,” the National Natural Science
correlation length of the one-dimensional linear chain

should be replaced by the real correlation lendth Foundation of China under Grant No. 19775008, and Jiangxi

~1D P y ) . ) gth ¢ _ Province Natural Science Foundation of China under Grant
= {771 [12]. However, for a one-dimensional linear chain No. 9912001. J.Y.Z. thanks Dr. Z. Gao for his valuable dis-
with Gaussian spin for each lattice, we have known that thgssions.
critical dynamical exponert=2 [4]. So 7~ 2= ({Pf)?=¢?
meansz=zD;=2D;. This result coincided with our calcu- 5
lation by DRSRG technique.

In the branching Koch curve, the resat1/v is also

valid, but that 1/=1/InLIn(dk'/dK),— =In40/3/In3 is not

simply related to the fractal dimensionaliby; .

In the multibranching Koch curve, the resat&1/v is
obtained once again. We can see fram1/In 3I2(m+3)
X(2m+3)]/(m+2) that, whenm=0, z=2, the lattice is a
one-dimensional chain armlis equal to the rigorous result;
whenm=1, z=In40/3/In 3, corresponding to the branching
Koch curve; wherm—o, z—o (see Fig. 6. All of these
mean that the critical slowing down of the Gaussian spin on 34
the Koch curve is heavily dependent on the order of ramifi- -
cationR.

Z=1/v

v 0 10 20 30 40 50

m

FIG. 4. The construction procedure of the multibranching Koch  FIG. 6. Critical dynamical exponent of the kinetic Gaussian
curve (MBKC) with D¢=In(2m+3)/In 3. model on the multibranching Koch curve.
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—o0

APPENDIX A: RG CALCULATION OF NBKC o

. . . = dosdosdogexp k(usos+ o505+ os0y
To perform the decimation transformation, we have only f S p{ (uioz+ 0305+ 030
to multiply both sides of the master equatit®7) by the

i b
transformation operator +olul)— 5[(05)2”03)2“02)2]]

Tw,a>=1;[ S = o) o(ub— k) (A1) [ (2m)? Kk
= b(b2—2k2)exp{ b(b2—2k2) Mo

and integrate ovefo}, i.e.,

1 k¥(b2—k?)

+§m[(ﬂf)2+(ﬂg)2]],

at h(t); R 501+0'2+0'3+0'4+ 595 Peg(k.{a})

W(,_a=f dojdosdoyof exp{ K(puios+o505+a50y
! — o

2k 1
:_h(t)<1_F)E R[(§0§+ag+og+ag b
“ +0’§M§)_5[(03)2"‘(05)2"‘(02)2]},

1 W(r:CLY = Mfwl W(rg: MgW’
+ za'g Ped(Kila}) [, (A2)
k (23 k2 a a
where Woe=p| #it m(ﬂﬁﬂz) W,
-a _ 0 ﬁ k2 N N
R{O-I Peq(ka{a})} Jimda-ldo-Z et do—N].;.[ 5(Ml Wo_g: m(ﬂl‘l‘ﬂz)w,
B B @ k a k2 a a
—01)d(p3—05)0{Peq(k,{a}) Wa= bl mzt m(ﬂpﬂ%) W.
W The remanent integratioR{P.q(k,{c})} is an important
B o one. We hope to keep on an invariant form of the transfor-
= RiPeg(ki{oh)] W’ (A3) mational distribution functiorP,

1= b
R{Peq(k,{o})}= zf_mdaldaz .. .dO'Nl;[ S(ub— o) 5(,u2—o§)exp{ k(izj> gi0j= 5 zl o?

1 ® bj1l
= Zl;[ f_wdogdagdaf exp[ k(,u,lﬁag-f- O'gog-i- O"gO'g"‘ ofug)— E[E(Mf)2+(0g)2+(O'g)z'f'(a'g)z

1 1 (2m)3 k* b b*—4k?b2+ 2k*[ 1
+§(“§)2“:ZH N 72 &P g M 5 o | 5 (uh)?
B b(b2—2k? | b(b?*—2k?) b?(b?—2k?)

Obviously, one must rescale the spin§, u5 and interactiork so as to keep the equilibrium distribution function to be
invariant

b*— 4k2b2+ 2k*| 2
p'=&Ku= W M, (A4)
k3b
k'=———Kk (A5)

© b*-4k?b2+ 2k
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27)3 1
RIPoq(k{o})}= —H \/b(éz”) kz)exp[k’ 1%“—[ (1} )+§(M§B)2]

Peq({k'1'}). (A6)

then

1 b
:—exp[k > ul MEB_EE { (u1P)+ 5 (M'ﬁ)
Z' B

Equation (A5) is reputed to be the recursion relation that enables one to determine the fixed point of the static RG
transformatiork,. Upon that, we have

R{o{Peq{oh)}t=uiPeq(k’ {n'}), (A7)
RiogPeg{oh) = usPeq(k" {n'}), (A8)
2
RiozPeqkidohi= Mi’+m(ﬂf+ﬂz Pk {n'}), (A9)
2
R{ngeq(k,{(f})}:m(#f+M3)Péq(k',{M'}), (A10)
k2
R{g4Peq(k{oh}= | k2t m(ﬂ‘fﬂt ) |Peg(k {un'}). (A11)
Substituting Eqs(A7)—(Al1l) into (A2), one can obtain
d| 1 b(b+2k) zlmllap,k, o 2— hZ l’D‘P’k’ ,
a @ b2—2k2 t) ~ EIL'Ll +§lu’2 eq( 1{Iu’ })_ g(k) b2 (t) 21“'1 +§1U“2 eq( :{/‘L })
(A12)
Obviously, if the summation fow is arranged in the next stage of iteration, E412) can be written as
d\ 1 b(b+2k) T T T Ty PR
(m)@m t)% (E'Ml e st gt S s’ [ Peg(K i)
1 b*-ak? 4|<2 1

It is just Eq.(3.13.

APPENDIX B: RG CALCULATION OF BKC
1. The RG transformation of the ath generator is equivalent to the Bth generator

We can show that the RG transformation of #ath generator is equivalent to theth, but the precondition is that the
Gaussian-type distribution constants depend on the coordination number and satisfy the(@&Rtitircan be realized via the
following calculations.

The effective Hamiltonian of th@th generator is
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1 1 2
H'gff(a',k)=k(o-f(rg+a'§o'§+a'ga'f+aga +0'40' )—— (0 )2+(0'g)2+(0'f)2+ §(a’€)2 —?(05)2

1
C kgT
(B1)

where, the coefficient 1/3 in the terms‘lb2 and (gg)Z comes from the fact that three neighboring generators share the same
sites 1 and 5. We take the decimation renormalization transformation operator as

TA(p,0)=8(uf— b)) S(pus—of), (B2)

then, by integrating spins,, o3, ando, from — to +, one obtains

1 B L HP
R} ex T kT HE (oK) f doidoy .. .dosTP(u,o)ex S HE¢i(o,K)

:CeXp{koﬂlﬁLz—_f[ (u)?+ 3 (Mzﬁ) H (B3)
where
o \/ (2m)?
b,b3(1—k/by—2k?/b,bg)’
B kK3(k+by)
% (b,bs—kb,—2k?)(k+bsg)’
3k*— 2k3b3— 4k?b,by— 2b2k?+ b,b3
" ba(bybs—kb,—2K?)(k+by)
if we take
3k*—2k3bz— 4k?b,b;— 2b3k?+ b,b3
p'=\Eu= \/ s “u, (B4)
bs(byb;—kby,—2k?) (k+bs)
k k3(k+b,)b
,_ ko _ ( 2)bs i . (B5)
& 3k*—2bsk3—4k?b,bs— 2k?b3+b,b3
then
L os ' p_ D3 B2 1B)2
RIexp — (M E( 0,0 || = Cexp K i = <u1>+ (u 2|1 (B6)
The same as above, the effective Hamiltonian of #tle generator is
1 o a a _a a _a a _a a __a b3 1 a2 a2 2 2
_kB_THeff(O-,k):k(0-10-2+0-203+02(T4+0-30-4+0-40-5)_7 5(0'1) +(03) +(0') o3)°+ 5 (U )4l
(B7)

where, the coefficient 1/@r 1/2) in the terms ¢5)? [or (o2)?] comes from the fact that thréer two) neighboring generators
share the same site(br 5). By integrating spinsr,, o3, ando, from —o to +, one obtains
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1 * 1
R{ exr{— kB—THgff(a',k) }= fﬁxda'ldaz . .d0'5T"(,u,,a')eX[{— kB—THgff(a',k)

a, b3 1 ay2 b2 1 a\2
=Cex ko,ll«l,uz_?flg(ﬂl) _7§2§(M2) ) (B8)

Where 1 (23 ! ra ra b3 1
R _kB_THeff(o'vk) =Cexp k'u "~ 5 3
k3(k+by) b, 1
Ko= : X(u1")2%— =z (us™?.  (B11
%" (b,bs—kby— 2k?)(k+ bs) ()= 5 5k } (B1D
3K4/ b4 In fact, (B4)—(B5) coincides with(B9)—(B10). Solving the
£=1-3k¥pi- ——2 fixed-point equatiork* =k’ =k, the critical pointk, is ob-
*1-k¥b? tained
- 3k*/b,b3 ) _by_bs
(1—k/b3)(1—k/bs—2k?/b,bs) © 2 3
Now, as the decimation renormalization transformation
2 41 h2R2 ’
E=1— 2K°7babs 2K/b3bs operator is taken as

1-Kk2/b2  (1—k/bg—2k¥bybs)(1—ki/bs)

T(w,0)= S(ué— o) S us— a,
Based on the relatio(8.3), i.e., (,0) 1;[ (ui=o1)d(uz=0s)

b,/b;=2/3, from (B6) and(B11) we can see
we can see 1 , ., D '2
R{Peqk{oh)}=—exp k' 2 uinj—— 2 u
Z {,j) i
A 8k*— 8kb,— 2803k?+ 9b3 Br k') (812
= = = . = y M .
L2 p,(3b2— 2kb,— 4k2)(2k+ 3b,) e
This means that the distribution function is invariant under
So, if only RG transformation.
2. RG transformation of the master equation
= = \/ 8k — 8Kk°h, — 2803k?+9b3 u BesidesR{Pq(k,{o})}, one can also calculate
b,(3b3—2kb,— 4k?)(2k+3b,)
(B9)
R{afpeq(k,{a}>}={2} {T(p,0) 0 Peqk{o})}
Ko 4b,k3(k+b,) W, o
k’ = 0= ’ BlO D’ ! ! 7i
¢ 8k*—8k%,—2803k?+ 9b3 (810 =Ped k" Dy (B13)

one can get where
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= b b
W= j dojdosdoy exp{ K(uios+o505+to505+0505+oqu5)— 3[(0";)24—(0'2)2]— f(ag)z

k3(by+k)

k?(bobs—k?)

a a

- \/ (2m)3 . (
- b3(b2b3—kb2—2k2)cx (b,bs— kb, —2k?)(bs+k)

1 1
X E(Mf)ZJF E(MZ‘)Z}

|

©

W o= dojdosdogof exp{ K(uios+o505+o50y
I

+oso4toqus)— ?[(0'2)24-(0'4)2]— 7(0'3)2].

(B15
Upon that, we have
1
R{Ufpeq({kia})}:E/’Liapéq({k,’ﬂ/}): (B16)
1
R{ngeq({klo'})}: \/_Eﬂéa éq({k’!lu’,})v (B17)

1 k(bgby—K?) )%+ k2(k+by) us®
NE (K+bs)(bybs—kb,— 2k?)

R{ngeq({k a})}=

X Pk u'}), (B19)
k2
R{o3Peq({k,o})}= \/Em
X (1" + pa ) Pe({K' '},
(B19)

k?(k+by) 1 *+k(bzby—k?) us”
JE (K+bs)(b,bs—kb,—2k?)
XPeq({K" 1'}). (B20)

R{ogPeq{k.a})}=

1 w m+4
R[ex;{—ﬁHgff(aa,k)H: H dooTo(p® o-“)ex;{
B

—wi=1

= p{koﬂlﬂz

where

FI2 T b by Kby~ 2K2) (bst k)

(B14)

By virtue of these integral results, Eq8.24) and(3.25
can be obtained.

APPENDIX C: RG CALCULATION OF MBKC

1. The RG transformation of the ath generator
is equivalent to the Bth generator

For MBKC, we can also show that the RG transformation
of the ath generator is equivalent to thgth, but the precon-
dition is about the same as BKC, that the Gaussian-type dis-
tribution constants depend on the coordination number and
satisfy the relatior{3.3). It can be realized via the following
calculations.

The effective Hamiltonian of thetth generator is

1 a
Heff(a-aak) = k

a o a o a o
_kB_T 0103FT030,+040,

m+4
+ 2 (o4 +o5)of|—
i=5

bm 2

2

1
X m(01)2+(03)2 (03)?
m+4

1
2 (024 5(0)?

i=5

b,

. . (€D

where, the coefficient 14+ 2) (or 1/2) in the terms ¢7)?
[or (05)?] comes from the fact than{+ 2) (or 2) neighbor-
ing generators share the same sitéot 2). We take the
decimation renormalization transformation operator as

T(,0%) = 8( s — %) S us— o), (C2)
then, by integrating spingg, o4, anda; (i=5,... m+4)
from —oo to +o, one obtains
l a a
BTHeff(G' K)
bnio 1
— b))’ 2§2w2> , (c3)

(27)%b,

277_ m/Z\/
o3
b (b 2+ K)(

bob o —bok—2mid)’
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K3(b,+ mK)
(D 2+ K) (b o —bok—2mie)

kO:

m(m+ 2)k*—2bp,, ,mk—2bZ,, ,mk—b,k?(m+2)b,, ,— k?boby, o+ b3 ,b,
bt 2(Bms 21+ K) (bobms 2 — bok—2mic)

&=

— 2k?b,bp 4 o+ 2k*m—2b,b .M+ bZ,, ,b3— 2b,mke— k?b3

£2=
b2 (b 2+K) (Db, — bk —2mic)

Based on the relatio(B.3), i.e.,

b m+2
b =7 (C4)
we can see
R —8k*m+8b,mIK+4(m+ 2)bamk2+ 4k?b3(m+2) + 4k?b3— (m+2) b 5
IR b,[ (M+2)b,+ 2K][ — b3(m+2) + 2b,k+ 4mI] ’
4k3(b,+mk)
ko= 2 : (Co)
[(m+2)b,+ 2k](b5(m+2) — 2bk— 4mk?)
if taking
! ! ko
M :\/EIL'LY k :gv (C7)
then
1 a _ ’ /a ra__ bm+2 1 2 b
R[ex;{—l%—THe”(a,k) ]—Cexp{k Mo 5 m+2( “e—— ( . (C8
The same as above for caG®, the effective Hamiltonian of th@th generator is
1 med b 1 1
oo =K ofof+ ofols 3, (of+of)of| - 55 g (oD (0h) (o) s (oh)?
b m+4
2
2, (af)?), (C9)

where the coefficients I+ 2) in the terms ¢%)? and (05)? come from the fact than+ 2 neighboring generators share the
same sites 1 and 5. By integrating sping, o4, ando; (i=5,... m+4) from — to + and using the relatiofiC4), the
same result can be obtained,

m+4
R[ex;{—ﬁ’l-[e”(a k)H H dofTA(u, Uﬁ)exr{_ﬁHeff(a k)}

—wi=1

/8, 1p_ Pm2 1
=Cex F’[k milus — =5 e i g (k) ” (€10
Therefore, from(C8) and(C10), we have
1 ’ ro bqi 12 ’ ' !
R{Peq(k{oh}= —exi k (2» m— o 2 w2 [=Poyk {n'}), (C1D

where the recursion relation is
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B 4k?(b,+mKk)b, .
8k*m—8b,mk—4(m?+3m+3)b2k?+ (m+2)%b;

!

(C12

ExpressionC11) means that the distribution function is invariant under RG transformation.

2. RG transformation of the master equation

BesidesR{P¢q(k,{a})}, one can also calculate

R{oj’Peq(k,{a})}={Z‘} {T(1,0) o Peg(k {0}

- | doaa, . o] o~ 02) 845 - 751 07Pf ki)

W«

[
J

=Py D

where

m+4

. m+4
W= f dagdaf{( 1T daf‘) exp| k
—© i=5

pios+ogos+oqus+ 25 (o5+o3)of
=

b+ 1

S (GO CARRES

m+4
2, (o?)ZH
i=5

27\ ™2 (27)°b, k3(by+mk) Y
b, ex )
2 (b 2+ K) (Db o —bok—2mie) (b 2+ K) (bobmy o —bok—2mie)

k?(b2bm o~ M)
(B 2+ K) (Db 2 —bok—2mi)

1
+3 [(Mi”)2+(M§‘)2]],

m+4

piogtoso +ogus+ 25 (o t+o5)of
=

. m+4
Wffj“:f dagdaﬁ‘( 11 da'i“) aff exp{k
— i=s5

)

m+4

o0 o] b
=J dagdaff[ H (j da{”ex;{k(af+a§)0’i&—§(ai")2

i#j=5

LD (09)?]

m+4
—%{ 2, (o)

J

x )exp{ Kl u$os+ oog+ ofus]— —22[(a8)2+ (o))

* a _a a ay b2 a\2
_oodO'j o expgk(og+o3)0;j —?(O'j)

k2
= W,
bob. o — bok—2miR

j=5, ... m+4,
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m+4

H doi’
1=5

-0
|

_ (MIC+bok?) uf + (Db o~ MK ks
(K+ b 2) (2D o=~ bok—2mi)
H doi’
i=5

-0
|

_ [(MIC+Dbk) s+ (Db, o, — MK ik
(K+ by 2) (Db o — bok—2mIc)

75y

©
j— a a
WO.ZY_ _wd03d0-4(
m+4
b,

= > (of)?

_2 i=5

’

m+4

Waé’: dagdag(

m+4

> (o

=5

b, N
_7{ "2

and then

R{U%Peq(kv{o'})}:

El
Ve

1
R{o3 eq(k!{a'})}z \/_E/Uv
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ogtogogtojust+ |:25 (ogt+o3)of|—

piost+osostoust 2 (o4+03)o
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m+4
bm+2

2

[(03)%+(09)?]

m+4
m+2

[(03)%+(09)?]

1Pk {u'}), (C13

2 Peg(K' {n'}), (C14
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By virtue of these integral results, Eq8.36) and(3.37) can be obtained.
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