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We investigate interfacial dynamics of molecular-beam epitddBE) growth in the presence of instabili-
ties inducing formation of pyramids. We introduce a kinetic scaling theory which provides an analytic under-
standing of the coarsening dynamics laws observed in numerous experiments and simulations of the MBE. We
address MBE growth on crystalline surfaces with different symmetries in order to explain experimentally
observed differences between the growth(bhl) and(001) surfaces and understand the coarsening exponents
measured on these surfaces. We supplement our kinetic scaling theory by numerical simulations which docu-
ment that the edges of the pyramids, forming a network across the growing interface, are essential for quali-
tative understanding of the coarsening dynamics of molecular-beam epitaxy.

PACS numbses): 05.70.Ln, 68.55-a, 05.40-a

I. INTRODUCTION (slope selection Transient mobility effects, such as funnel-
ing and knockout processd¥,8] can lead to zeros of
There has been a significant research interest in the dylyz(M) even for small values of the interface slopé
namics of the molecular-beam epitafiyBE) growth lately.  [9,10].
The MBE technique is among the most refined methods for As a consequence of the existence of the slope selection,
the growth of thin solid films and it is of great importance for the surface breaks up into pyramidlike mounds, Fi@).1
applied studie$l]. By using the MBE it is possible to grow Pyramid facets’ slopes correspond to stable zeros of the non-
high-quality crystalline materials, and form structures withequilibrium surface current. Over the last few years it has
very high precision in the vertical direction, such asbecome clear that the surface evolution of films grown by
monolayer-thin interfaces or atomically flat surfaces. MBE is indeed often characterized by the formation of pyra-
The evolution of the surface morphology during epitaxialmids or pyramidlike structures, even in the case of homoepi-
growth results from a delicate relation between the moleculataxial growth. These pyramidlike structures have been re-
flux and the relaxation of the surface profile through surfaceported in many experiments, e.g., for homoepitaxy of GaAs
diffusion of adatoms. A significant factor for the adatom mi-[6,11], Cu[5], Ge[12], and F€13,14], all grown on singular
gration on the surface is their interaction with steps on th&€001) substrates, as well as for homoepitaxy on th¢1Rmh)
surface, in particular the existence of energy barriers neasurface[15]. What has been found in many experiments is
step edges, that inhibit the movement of atoms between laythat the lateral size. and the heightv of these pyramids
ers of the growing interface. These step edge barriers, thafrow in time as power laws with the same exponent. Thus,
were discovered by Ehrlich and Hud@a] and studied by the ratio w/\, corresponding to the pyramid slope, ap-
Schwoebe[3], [Ehrlich-Schwoebel energy barri¢igive rise  proaches a constant value at long times. Therefore, there is a
to instabilities in the evolution of the surface morphology slope selection in a typical MBE growth. The corresponding
and lead to a surface current of adatoms towards the uppebarsening exponents were found from experiments to de-
step edgd4]. This instability ultimately leads to the forma- pend on the symmetry of the surface. For example, for the
tion of mounds and pyramids across the growing interfacgrowth on (001) surfaces the experimental value of the
[5,6]. Ehrlich-Schwoebel instability is a nonequilibrium ef- coarsening exponent is close to X4 agreement with the
fect that is present only if the adatom density on a terrace isimulations[16,17]), whereas for the growth ofl11) sur-
higher than in equilibrium. The deposition process indeedaces the exponent reported was [113].
raises the adatom density far above its equilibrium value and At present, there is no real qualitative understanding of
surface currents that depend on local slope of the growinghe origin of these values, or even if they are exactly 1/4 and
film are generated. By studying the diffusive motion of ada-1/3 as they were reported from the experiments and some
toms on vicinal surfaces with step-edge barriers one fidfls simulations. Our goal here is to providgmalytic explana-
that the surface nonequilibrium curredfe has the same tions of these exponents. The observation that the evolving
direction as the slope and consequently tends to increase tkarface morphology coarsens as more and more material is
local slope. This is the origin of the instability. However, for deposited is poorly understood. Here we introduce a kinetic
sufficiently large slopes there are other processes that cousealing theory which provides an analytic understanding of
terbalance the destabilizing effect, so that the net current ithe coarsening laws observed in experiments and simulations
the nonequilibrium situation vanishes for certain slopes of the MBE growth. Our analytic theory is inspired in part by
recent theories of phase-ordering processes such as the
growth of domains in magnetic systerffs8]. MBE growth
*On leave from the Physics Department, West Virginia Univer-however has a number of specific features, such that no stan-
sity, Morgantown, WV 26506. dard phase-ordering theory could be applied to it. The
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FIG. 1. (a) A snapshot of the surface from our
simulations of a continuum model for the MBE
growth. The two features that characterize the
pyramids, the heightv, and the width\ are also
shown.(b) A schematic representation of the sur-
© e face growth procesgc) A schematic representa-

tion of the nonequilibrium currerlg as function
B of the local slopeM = Vh. The current makes the
preferred slope = M, flat interfaces unstable to small fluctuations
around theM =0 configuration and, also, it leads
to slope selection(d) The local potentiald (M)
as a function of the local slopischematic The

N ” value of the slope for which the local potential
Vh has the minimum corresponds to the preferred
slope.
@) U(M)
M=Vh

growth of mounds and pyramids arises through a subtle cowhich form here a nearly perfect square lattice, see Sec. VII
operation of surface diffusion relaxatioh9] with the afore- and Figs. 15—-19 in Appendix C. Perfect periodic order of the
mentioned effects destabilizing interfaces and selecting adge lattice is disrupted by occasional presence of defects
preferred slope. Our analytic theory employs the fact that théhat we characterize here dislocationsof the edge network.
interfacial dynamics is governed by an effective free energyrhese dislocations represent topological defectgotifier-
[20,21], see Secs. Il and Ill. In the present study we focus orwise) an almost perfect square lattice of edges. The most
the MBE growth with slope selection. Analytic theory of the important finding is that the interface coarsening proceeds by
MBE growth in the absence of slope selection has been deghe motion of the dislocations we characterize here as the
veloped before, in Ref21]. dislocation climb(see Secs. VIl and VI)JI The dislocations
We investigate here continuum models for various typef edge lattices are thus crucial for the interfacial coarsening
of the surface symmetry. Thus, the growth on ibetropic  of the square symmetr{001) surfaces. The presence of dis-
and hexagonal(111) symmetry surfaces was shown to ex- locations causes a multiscaling behavior of the interfacial
hibit a scaling behavior characterized by the presence of aoarsening, i.e., the existence of several long length scales
single characteristic length scalg(t) =pyramid size that that grow in time with different exponents. One of them is
grows in time as a power lawh(t)~t"c. Our numerical the lateral pyramid siza(t) that grows as\(t)~t"c, with
simulations suggest that the growth)aft) is governed by a n,=0.25. Other length scales are related to the presence of
coarsening exponent which assumesghmevalue for iso-  dislocations. They grow much faster thart). Thus, the
tropic and hexagondll1l) symmetry surfaces. The coarsen- distance between dislocations in the same row of the edge
ing exponent obtained for both casemis=0.33, see Secs. lattice &(t) grows a&(t) ~t"¢. From our simulations we find
IV and V. We develop here a kinetic scaling theory thatn,=0.5. In this work, we develop a kinetic scaling theory
explains this scaling behavior, see Sec. VI. that explains the coarsening exponents for the MBE growth
Next, we elucidate the growth on tlegjuaresymmetry  on the square symmet¥01) surfaces, see Sec. VIII.
(001 surfaces, see Secs. VII and VIII, and Appendix C. The layout of this paper is as follows: In Secs. Il and Il
Because of the experimental interest, this growth has beeme discuss continuum models for the MBE growth. In Sec.
subject of intensive numerical studies, such as the recenV we investigate the growth on isotropic surfaces. The
work of Siegert{22]. For the growth on001) surfaces, the growth on hexagonal symmetf{t11) surfaces is studied in
pyramids arrange into nearly perfectly ordered square latSec. V. Kinetic scaling theory of the MBE growth on isotro-
tices. This is best documented by looking at networks ofpic and hexagonal surfaces is developed in Sec. VI. The
pyramids’ edges(lines along which pyramid facets mget growth on square symmetf901) surfaces is studied in Sec.
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VII. Kinetic scaling theory of the MBE growth o001 Jh ah(x,t) OF ft

surfaces is developed in Sec. VIII. Section IX discusses vari- =" VJe =- . (4)
. ; at at Ssh(x,t)

ous aspects of pyramid facets and edges. We summarize our

findings in Sec. X. Our numerical modeling scheme is deHere the effective free enerdy.; depends on the interfacial

tailed in the Appendix A. Appendix B deals with the calcu- he|ght functionh(xllxz) and contains two parts:
lation of edge line tensions and edge currents. Finally, in the

Appendix C we give a longer time sequence of snapshots of Fet=Fspt Fne- 6)
:ggeidge network for the growth on square symmetry SUThe first term in Eq(5) is the surface diffusion term, and it

is similar to the bending energy of flexible membranes:

K
[I. CONTINUUM MODELS FOR THE MBE GROWTH FSDZEJ’ dzx(vzh)z_ (6)

Under conditions typical for MBE growth, the heights
h(x,t) that describe the position of the interface measuredifter taking the functional derivative d¥gp one recovers, in
over a base plane, obey a conservation [aw (x;,x;) isa  Eq. (4), the Mullins term:Jsp=«V(V?h) that we have in
two-dimensional base plane vector, Figo)l. In the absence Eq.(3). The second term in E@5) contains a local potential
of desorbtion, vacancies or overhangs, all relaxation prou(M) that depends on the slope vecMr=Vh of the inter-
cesses on the surface conserve the deposited volume of thgce [see Fig. 1d)], and for the continuum model has the
growing film. Thus, in the frame comoving with the inter- form
face, the height evolution equation is of the form:

ah(x,t) L X FNE:f dZXU(Vh):J d?xU(M). (7)

=-V.J+ t)= My 2 + t 1
ot - ' 77()(, )_ axl &Xz 77()(! )! ( )

Equations(7), (6), and(4) reduce to Eqgs(l) and(2), where

whereJ is the surface current angi(x,t) is the white noise S?Mr;onequmbrlum current is the gradient of the potential

describing the fluctuations of the deposition flux. The aver-
age deposition flux has been eliminated from Eg.by the JU(M)

use of the comoving frame of reference. Noise is irrelevant INe=——y (7)

in related coarsening processes such as spinodal decomposi-

tion or Ostwald ripening18]. In the same spirit the focus of J,c vanishes at the minima &f(M). The preferred value of
this work is on dynamics described by the E4) with  the slope thus corresponds to the minimum of this local po-

7(x,t)=0. _ _ tential [see Fig. 1d)]. Therefore, the slope vectdt =Vh is
The surface current entering Eq(1) can be written as a an order parameter of the effective free enefgy which
sum of two terms: favors the development of growing facets with the preferred

slope. Within the effective free-energy approach, @, the
development of growing pyramids, whose facet have the pre-
ferred slope, can be thus viewed as a phase-ordering process
similar to those in magnetic systems. The pyramid facet size
3s like a magnetic domain size that grows as a power of time.
If the local potentialJ depends just on the magnitude of the
slope|M|, that isU(M)=U(|M|), by symmetry the current
Jep= KV (V2h), 3) will vanish on a circle in th_e orde_r-parame.ter space
(M1,M5), see Fig. 2a). Such an isotropic model is not re-

where « is the surface diffusion constaft9]. The second alistic for the growth on real, crystalline surfaces. For real-
term in Eq. (2) is the nonequilibrium diffusion current istic surfaces with hexagonal or square symmetry, the local

(Schwoebel terinthat depends on the local slofeh. The ~ Potential will depend both on the magnitudd| and the
form of the nonequilibrium currendy(Vh) must incorpo-  Polar angled of M. Thus,U(M) may have only aliscrete
rate the above-mentioned Schwoebel instability. Also, itS€t of minima.

must lead to the slope selection. For small slopes, this cur- FOF €xample, for the hexagonal symmetry, the local po-
rent is positive[4], making the initially flat interfaces un- tential has the symmetry property

stable. However, the current may vanish and change sign at 2

some value of the slope, see Figc)l That value will be the UM)=U(|M],0)= U( IM[, 6+ ?) : (8)
preferred slope.

J=Jgpt+Ine(VH). 2

The first term in Eq(2) is the surface diffusion current and is
present also in an equilibrium situation where it describe
surface diffusion driven by surface tensid®]. The surface
diffusion current has the well-known form,

and can be thus Fourier expanded as
lll. FREE ENERGY FORMULATION U(M)=Uo(|M])+U(IM[)cog606)
OF THE MBE GROWTH MODEL

+U,(|M|)cog120)+--- . 9
The continuum model of the MBE growth described in 2(IM)cod120) ©

the previous section, can be put in an equivalent form whictBy Eq. (8), U(M) must have(at least six minima that cor-
is essentially that of a typA-dynamics for a suitable defined respond to six preferred orientations of the facets that may
effective free energy20,21], appear in the growth procepsee Fig. 2o)].
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(a) Likewise, for the surfaces that have square symmetry, the
local potential has the symmetry property

27
U(M)=U(|M|,6’)=U(|M|,0+T), (10

and can be thus Fourier expanded as
U(M)=Uq(|M|)+U1(|M[)cog46)
+U,(|M|)cog86)+---. (1D

By Eq. (10), U(M) must have(at leas} four minima that
J =0 correspond to four preferred orientations of the facets that
M, / may appear in the growth process on this type of surffaee
(b) # ..... Jp =0 Fig. 2(0)].
= P / A more detailed discussion of various aspects of local
U o potentials is given in Sec. IX.

> IV. SIMULATIONS OF THE GROWTH
ON THE ISOTROPIC SURFACES

/-,l b Here, we present the results obtained by solving the par-
\ 2 _a tial differential equation that describes the growth process
NE [see Eq.1)] for the case of isotropic surfacéas described
-0 in Secs. Il and Il). For them, the local potentidd(M) de-
pends only on the magnitude of the slope vedtbr Thus,
the set of preferred slopes is a circle in the order parameter
space, see Fig.(8). The equation of motion is solved on a
©) Ju=0 Jyu: =0 discrete grid with about 1 000000 mesh points. The model-
~ / ing scheme is detailed in Appendix &ee, also Sec. X
| SN R Q What we see from our simulation results in Fig. 3 is that
i i the morphology of the growing interface is characterized by
M, the development of pyramidlike structures. These are in-
> duced by the presence of the slope selection in the model.
The pyramidal structures are made of nearly féatetsthat
i meet at sharpdgessee Fig. 3. The edges carry most of the
- — ——— é effective free energy &, Eq. (5). Edges are best visualized
R / \ ~ by plotting the density of the effective free energy over the
Sy =0 Jup =0 surface, as in Fig.(®). There, white areas correspond to the
facets, and carry little effective free energy whereas dark
FIG. 2. (a) If the local potentialU(M) depends only on the areas are edges and carry most of the effective free energy.
magnitude of the local slope vectbt, the minimal value ofJ (M) We can see that the edges form in fact a random nfrest
occurs on a circle in the order-parameter spadg M,). (b) Six  \york) over the surface. The characteristic size of mesh cells
minima of the local potentiaU(M) for the hexagonal symmetry (pyramid facetsgrows in time via a coarsening process, as it
surfaces occur at the vertices of a hexagon in the prder-parametf\sr evident from Fig. ®). Facets slope vectors as well as
space M;1,M,). U(M) depends both on the magnitude and the ¢ yqa5 argandomlyoriented. This is consistent with the iso-
polar af‘.g'e_ of the local SIOp.e vectdd ’_U(M)ZUOM"G)' The tropic nature of the model that we are simulating here. In-
nonequilibrium currendye vanishes at six preferredelected val- deed here the effective free energy is minimized by facets
ues of the slope vector with= 7/6+ (n—1)27/6 (n=1,2,...,6), as wh | h fixed magnitueh| =M, wher th
well at six (unstablg¢ maxima ofU (M) (not indicated in figurgthat 10S€ SIope has a fixe agnitu 0 ereas the
are atd=(n—1)2x/6 (n=1,2,...,6).(c) Four minima of the local O“ematlon. O.f the faceF SIOp.e Ve(.:wr: Vh, can be arbitrary
[energy minimum set is a circle in the order parameter space,

potentialU(M) for the square symmetry surfaces occur at the ver ) ok
tices of a square in the order-parameter spadg,\,). U(M)  S€€ Fig. 2a)]. Thus, the facets that form the pyramidlike

depends both on the magnitude and the polar angle of the locdnounds have no preferred orientation.

slope vectoM,U(M)=U(|M|, ). The nonequilibrium currentye From Fig. 3, it is obvious that the size of the unit cell of
vanishes at four indicated preferréselectedl values of the slope the edge mesh(t) grows with time.\(t) is comparable to
vector, with the pyramid lateral size. Another quantity that grows with
o o time is the widthw(t) of the growing interfacew(t) mea-
0:Z+(n_1)7 sures the typical pyramid height. We quantifi(t) as the

average[w(t)]2=([h(x,t)]?). Here and in the following
(n=1,2,3,4), as well as at fouunstabl¢ maxima ofU(M) (not (... stands for the spatial average over the base plane. In
indicated in the figurgthat are at9=(n—1)27/4 (n=1,2,3,4). order to quantitatively characterize the surface morphology,
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(a) (b)

350-

t=11000

t=52000

t=84000

FIG. 3. (a) The contour plots that depict the time evolution of the isotropic surface. The existence of nearly flat facets bounded by edges
is evident.(b) Snapshots of the edge network on a small portion €000) of the growing surface for the isotropic case. We can see that
there is no preferred direction for the orientation of the edges. The structural length scale of the edge x@hvadmparable to the facet
size or lateral pyramid size, grows in time.

we calculated, apart from the width(t), the height-height as documented in Fig. 4. The fact that the coarsening expo-

correlation function nents came out to be equal, is simply consequence of the
slope selection in the model that we simulate higne ratio
Khnn(r ) =(h(x+r,0)h(x,t)). (12 wi\ represents the average slope of the facets that ap-

proaches the preferred value at long timmedn Sec. VI we
Knn(r,t) versusr has an oscillatory character reflecting the wjj| give a kinetic scaling theory that explains the coarsening
presence of mounds. We uskg(r,t) to find the character- exponents obtained from the above simulations of the growth
istic lateral length,\(t) of the structure(pyramids lateral gn the isotropic surfaces.
size), as the first zero crossing of the correlation function,
Kinn(\(1),t)=0. The interface width and the lateral size of

the pyramids from our simulations grow in time as power V. SIMULATION OF THE MBE GROWTH
laws ON HEXAGONAL SYMMETRY (111) SURFACES
w(t)~t5, (13 Here, we present the results obtained by solving the par-
tial differential equation that characterizes the MBE growth
A(t)~t"e, (14) procesgsee Eq.1)] for the case of the growth on surfaces
with hexagonal symmetryas described in Secs. Il and)lll
with the coarsening exponents The local potentialU(M) was chosen such that it has six

minima corresponding to six preferred facet orientations for
B~n.=0.33+0.01, (15  this type of surfacegsee Fig. Bb)]. The equation is solved
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(@ ous correlation functions in order to characterize the surface
morphology that we obtain from numerical simulatidisse
w(t) Fig. 6). One is the slope-slope correlation function

Kuwm(r,t), defined as

Kum(r,t)=(n, (r+x,t)-n,(x,t)), (16)

wheren,(x,t) are thexy (in-plang components of the unit
normal vectori(x,t) at the pointx on the growing surface.
The other one is the height-height correlation function de-
fined in the Eq(12). Both K,,(r,t) andKy\(r,t) versusr
have an oscillatory charactesee Figs. @) and &b)] reflect-

04 . : , ing the presence of pyramidal mounds. The similarity with
102 10° 10t 10° phase-ordering phenomena, discussed in Sec. lll, with the
t slopeM =Vh~n,, being an order parameter here, suggests
® that the slope-slope correlation functions should depend only
Ap(®) on a single length scale, the sixét) of the pyramids. In-

deed, it appears that this is the case if we look at the collapse
of Kym(r,t) correlation functions obtained at different times
[see Fig. 6a)]. On the other side, the data in Figbp sug-
gest a similar collapse for the height-height correlation func-
tions.
From our simulations on the hexagonal symmetry sur-
faces, we find that the interface width(t), and pyramid
o size A (t), grow asw(t)~\(t)~t" with n.~%, see Figs.
6(c) and d). This coarsening exponent is tkameas that
found before for the isotropic case in Sec. IV.
1 : : - Numerical values of the coarsening exponents obtained
102 10° 1ot 10° above from our simulations on the hexagonal symmetry sur-
t faces,B~n.~3, agree well with the experimental results of

FIG. 4. (a) The width of the interfacev(t) versus time for the ~ TsUi and co-worker$15], for the growth on the RK111)
growth on the isotropic surfaces(t) measures the typical pyramid surface which has the hexagonal anisotropy. We note that
height. The log-log plot gives the scalimg(t)~t*° at long times.  this is the first continuum model simulation in which the 1/3

(b) Time evolution of the first zero of the height-height correlation power law has been obtained for the surfaces Witkagonal
function K,(r,t) called\(t), for the growth on the isotropic sur- anisotropy. Sieger{22] recently obtained a similar 1/3
face.\(t) represents the characteristic lateral size of the pyramidspower law for the growth on surfaces wittiangular anisot-
The log-log plot gives the scaling(t)~t"* at long times.(t), ropy [such a model artificially breaks the inversion symme-
extracted from the first zero crossing of the height-height correlatry of the growth on(111) surfaces
tion function, is just a measure of the pyramid base size. We note |n the next section, we develop a kinetic scaling theory
that such a popular qualitative measure of the pyramid size mayhat explains the values of the coarsening exponents that we
break down under some circumstancese, e.g., Fig. 10 below obtained both for isotropic and hexagonal symmetry sur-
faces. It is inspired by recent Bray’s scaling theory of coars-
on a discrete grid with about 1000000 mesh poi#se ening processes such as spinodal decompodifi8h
Appendix A for details of the modeling schejne
Again, the morphology of the growing interfaces is char-
acterized by the development of pyramidlike structures made
of nearly flat facets that meet at sharp edge® Fig. . The
size of pyramids grows as power law of time by a coarsening
process. Here we provide analytic explanation of the 1/3 coarsen-
In contrast to the isotropic case studied in the previousng exponent obtained for the MBE growth on isotropic and
section, here the edges must form a network reflecting theexagonal symmetry surfaces. For that purpose, we relate the
presence of the six preferred orientations of pyramid facetslynamics of the coarsening process to the rate of extinction
discussed in Sec. lllsee Fig. 2)]. With the six preferred of the effective free-energy-rich regions. Here these energy-
orientations for the facets in Fig(l®, there areZ) =15 pairs  rich regions are the edges of the pyramids.
of facets. For each pair of facets, there is a distinct edge type Consider the network of edges, depicted in Fig. 7 in terms
[see Sec. IX and Appendix]BThus, here there are 15 types of the density of the effective free energy in E&). The
of edges selected by the anisotropy. A careful look at theeffective free energy that comes per unit cell of this edge
edge pattern in Fig.(®) shows that the edges indeed point network, with the cell size=\(t), is localized in the few
along the selected directions. edges that bound that cell. The effective free energy of an
Let us look at the behavior of the interface associated wittedge with a typical length, is proportional to the length of
the coarsening of network of edges. We have calculated varthe edge

10 A

VI. SCALING THEORY OF THE MBE GROWTH
ON ISOTROPIC AND HEXAGONAL
SYMMETRY SURFACES
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(®)

t=7400

FIG. 5. (a) The contour plots that depict the
time evolution of the hexagonal symmetry sur-
faces. Note the presence of facets bounded by
edges(b) The edge network on a small portion of

o ' . ‘ ( ) ,‘. , b the growing surface for the hexagonal symmetry
A O
¥

surfaces. A careful look at the edges shows that

<& A LS e their orientations are mastered by the sixfold an-
. e w. ) .* - > isotropy, as discussed in the text.
§ '\:f\ ?—
.' o J Vi
=51000 e
k.m
e \
Fedge: O\, (17) d

dt

o| dw)?
_ _ , . N ldt)
whereo is the edge line tensiofsee Sec. IX and Appendix
B]. As there is of the order of one edge per aren” (see If here we use the fact that/\ = M = preferred slope, we

Fig. 7), the effective free energy per unit area is further get
2
F et Fedge o d (UMO (d_W
Fua™a, "% % (18 dt| w dt) - 22

whereAg denotes the base area of the film. Next, we use afrduation(22) can be easily integrated yielding

energy relaxation equation stating that the decay of effective w=M_\ =constx (Myo) 33, (23
free energy per unit area is proportional to the spatial average _ _
of the squared interface velocity. Indeed, the equation of moTherefore, we get the coarsening relations

tion (4) implies that W\ ~113 (24)
— e _f ( ) d2x. (199  with the coarsening exponengs=n.= 3, which are consis-
dt at tent with our simulation results.
We proceed by stressing the analogies and differences
Using Eq.(19) one can write between the MBE growth and phase-ordering processes,
Jh! 2 such as the domain growth in magnetic syst¢tr@. In the
J (_) d2x MBE growth with slope selection, the interface slope vector
d Fef _ dt 20 M=V h develops a nonzero value and thus plays a role of an
dt Ag Ag ' 20 order parameter. Growing facets observed in the MBE

growth are highly similar to growing domains in the phase-
ie. ordering process of Ising-type magnetic systems. Analog to a
domain wall between two magnetic domains is the edge that
EF _ < (@) > 1) occurs at the intersection of two nearly flat facets with dif-
dt “# at ’ ferent slope vectors, sayl; andM,. The edge appears as a
straight line segment as evident in Figs. 3, 5, and 7. It is
Using here Eq(18) and estimating the typical velocity of the directed along the vectdvl;+M, (see Sec. IX and Appen-

interface as dix B).
) 5 Our results call for a cautious comparison of the MBE
(@) %(d_w) growth with the phase-ordering phenomena in standard mag-
at dt)’ netic systems. For example, the scaling law in &4), with

the coarsening exponent 1/3, turns out to be the same as that
we get for the conserveditype B) Ising dynamics(well-known
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(@ (b)
1.2
1.2
—— t=3600
—— 7400
—— t=7400 —— 14500
—— 14500 0.8 —— 18200
08 —o— 18200 —— 28700
—— 28700 —— 39500
—— 39500 —— 51000
—e— 51000

FIG. 6. (@) The collapse of the slope-slope
correlation functions into a single curve
=y(x), for hexagonal symmetry surfaces. Here
y=KMM(I’,t)/KMM(I’=O,t) and X=I’/)\MM(t),
where ym(t) is the first zero oKy (r,t). (b)
The collapse of the height-height correlation
functions into a single curvg= (x). Herey
-0.4 3 o 2 4 6 =Khr_1(r,t)/K_hh(r=0,t) and x=r/\(t), where

N\ (1) is the first zero oK,(r,t). In (a) and(b), r
points along the nearest-neighbor bond vector of
© @ the hexagonal grid used in the numerical integra-
¢ tion (see Appendix A (c) Time evolution of
) W) N(t). A\(t) characterizes the lateral size of the

/ pyramids. The log-log plot gives the scaling

Kum (r.t) / Kum (r=0.t)
2
Knn (1,8) / Knn (F=0,)
o
i

/ N(t)~t* at long times.(d) The interface width
10 R e w(t) versus time. The log-log plot gives the scal-
. ~0% 1 L R ing w(t)~t? at long times.

102 163 164 165 102 10 104 10°

Lifshitz-Slyozov law [18]). However, this hardly may di- We emphasize that this energy localization, i.e., the exis-
rectly explain why we find the 1/3 exponent for otropic  tence of facets bounded by edgedysno meansonditioned
local potentialu (M) which is invariant with respect to rota- by the presence of anisotropies. In fact, the edges and the
tions of the slope vectoM. This isotropic MBE model is associated 1/3 coarsening power law do exist even for the
more like anX-Y model than an Ising model. In fact, the isotropic MBE growth, as documented by simulations in Sec.
MBE dynamical model is, for the isotropic case, rather simi-IV- A long edge is simply a stable stationary solution of
lar to the conservedtype B) dynamics of anX-Y model evolution equatior(4)., for which 5Feﬁ/5h=0. This equation
which, however, has a different coarsening exponent equal &S €dge-type solutions even for the isotropic MBE growth
1/4[18]. Thus, this similarity fails to provide an understand- M0dels, as detailed in Sec. IX and Appendix B.
ing of the 1/3 coarsening law we find for the isotropic MBE This feature is in marked contrast to _ordmaXyY Sys-
growth. tems. There, sharp domain walls ocanly in the presence
The physical origin of this difference between the isotro-
pic MBE model and th&X-Y model is in the fact that, for the
MBE case, the vector order parameldris a gradient of
another field, namely the interface heightx). With the
constraintM =Vh, the free energy of aX-Y model (two-
component Ginzburg-Landau mogetduces to the effective
free energy in Eqs(5)—(7) for the isotropic case. AIX-Y
model has smeared domain boundaries and delocalized
boundary free energy, with the average free-energy density
given byF, .~ 1/\? rather than by the law in E¢18). How-
ever, in the presence of the constrdiht= Vh, the situation
substantially changes. The domain boundaries then form as
thin domain walls, edges that carry essentially all the effec-
tive free energy of the system. Thienergy localization
similar to that in Ising systems, eventually yields the law FIG. 7. The network of edges for a smaller portion (100
Fua~1/\, as in Eq.(18), which is crucial for obtaining the x100) of the isotropic surface. The characteristic length of the
1/3 coarsening law in Eq24). edges~\(t), the pyramid size.
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FIG. 8. (a) The contour plots that depict the time evolution of the square anisotropy surface@diBe Aimost regular lattice of four
sided pyramids is clearly visibléb) Three snapshots of the edge lattice of a small portion of the growing surface for the square anisotropy
surfaces. We see the presence of dislocations, which are topological defects of the edge lattice. Each dislocation incorporates a rooftop edge.
Dislocations move, and their motion mediates coarsening, as explained in the text.

of anisotropies. However, the isotropic MBE model hasgoes with the same power law as in the isotropic case. On the
sharp domain wall¢edge$ and energy localizatioeven in  other side, as discussed in the next sect&myare anisot-
the absence of spatial anisotropissich as the hexagonal ropy may induce formation of more regular edge structures,
anisotropy discussed before. The observed 1/3 coarseningdge crystals,” that impose special constraints on the edge
power law, for the isotropic MBE model, is a direct conse-dynamics. For such situations, the basic 1/3 coarsening
qguence of this energy localization implying the law,,  power law may break down, as detailed in the following.
~1/\ rather than the lawF, .~ 1/\? that applies to the iso-
tropic X-Y model[and yields t_here the 1/4 corsening law for VIl. MBE GROWTH ON SQUARE
the conservedtype B) dynamics. _ . _ . SYMMETRY (001) SURFACES

How does the presence of anisotropies modify this 1/3
coarsening power law? A crucial feature for this law, that In this and the following section, we study the MBE
Fedgs~ N and thusF, ,~ 1/\, will not be altered by the pres- growth on square symmetr§001) surfaces. To check for
ence of anisotropies. Thus, one could expect that the 1/8nite-size effects we simulated systems with three different
coarsening power law may be preserved in the presence sfzes 50 500, 700< 700 and 1008 1000 mesh points of
anisotropies. This is apparently the case for the hexagondhe integration grid. The local potentibl(M) was chosen
anisotropy studied in Sec. V. For this case, the anisotropguch that it has a square symmetry, with the nonequilibrium
orients the edges. Nonetheless, the resulting edge networksirrent vanishing at four minima df(M) as in Fig. Zc).
are still essentially random, like those of the isotropic caseThe modeling scheme is detailed in Appendix(gee, also
cf. Figs. 3 and 5. No strong constraints on the edge dynamicSec. 1X).
are imposed in such random networks, and the coarsening Looking at the simulation results in Fig. 8 we see that the
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(@ 1.00
Regular edge Regular edge \ ‘;‘060%00
(only My changes) (only My changes) ‘ 20000
| —o— 26000
—o— 28000
o 0.76 1 X —— 31000
o —— 65000
o —=— 126000
1
=
*
- 0.50 |
!‘:
,,,,,,,,,, 0.25 |
0.00 .
0 1 2 3 4 5
r/r,
(®)
Rooftop edge Repilmedis FIG. 10. The collapse trial of the height-height correlation func-
(both My and M, change) (only M, chafges) tions into a single curvg = ¢(x), for the square anisotrop¥01)

surfaces. Herey=K(r,t)/K,(r=0t), and x=r/ry(t), where
ro(t) is the position of the midpoint between the first minimum and
the second maximum of the correlation function. Here, the correla-
tions are given for the direction,r = (x,0). Note that, in contrast to
ro(t), the first zero crossing of this correlation functioneasured
along thex direction both qualitatively and quantitatively fails to
represent a measure of the actual pyramid size.

........... 2 C]. From them we see that the edge network forms as a
\ nearly regular square lattice, “edge crystal” with the lattice
i constant \ (t). Another feature is the marked presence of
/ ‘ ‘ dislocationsmoving through this lattice of edges, see Fig.
8(b) and the Figs. 15-19 in Appendix C. We see that the
dislocations mediate the coarsening process., the in-
crease of the edge lattice constarft) in time. Indeed, by
FIG. 9. () Regular edges. Herbl;,M,,M3,M, indicate the 00king at the dislocation in the upper part of FighBwe
four preferred slope vectors. Note that at regular edges only onéan see that this is the case. This dislocation apparently
component ofV (either x or y component changes in sign(b) moves to the right. This motion goes on via gradual extinc-
Rooftop edge. As ina), hereM;,M,,M3,M, indicate the four tion (collapse of two horizontal lines of edges terminating at
preferred slope vectors. Note that at rooftop edges both componentke dislocation corgsee Fig. &), the horizontal lines termi-
of M are changing in sign, i.eM ——M. nating at the rooftop ridge in the dislocation chrim effect,
thetotal length of edges in the system decreases and pyramid
presence of square anisotropy reflects on the pyramidfacets thus grow: Note the presencelarfger facets just to
strongly: the pyramid facets slopes are well oriented alonghe left of the dislocation core armiallerfacets to the right
the four preferred directions in Fig.(@. Moreover, if we of the dislocation in the Fig. (8). As the two horizontal
look across the growing interfadsee Fig. &) and Figs. edges terminating at the dislocation core collapse, the three
15-19 in Appendix @ we see the presence of a highly or- smaller facets transform into one larger facet, and, at the
dered network of edges. There are two types of edges thaame time, the dislocation moves to the right. Thus, the
appear with the square anisotropy: coarsening process is mediated by the dislocation motion.
(@) Regular edges, oriented parallel to tkeor y axis: At Another manifest feature in Fig(l® and in Figs. 15-19
them, only one component of the facet slope vectdr in Appendix C, is the presence of physical length scdiés
=Vh changes in sign; eitherM,,M,)—(—M,,M,) or  ferentfrom \(t). In Fig. 8b), we indicated another length
(My,My)—(M,,—M,) see Fig. a). scale, called there agt), which represents the distance be-
(b) Rooftop edges, oriented parallelye- =x axis: At them, tween two neighboring dislocations measured along xhe
both components of the facet slope vedibe= Vh change in  direction. See, e.g., the two dislocations in the bottom part of
sign; My ,My)—(—M,,—M,), see Fig. ). Fig. 8b) at t=28000. Subsequently, the left dislocation
Figure 8 as well as the figures given in the Appendix C,moves to the left whereas the right dislocation moves to the
give the details of the coarsening process for the square amight. Thus,£(t) increases in time.
isotropy surfaces. Particularly informative are the figures In order to characterize the surface morphology, we cal-
with edge structuregFig. 8b) and Figs. 15—-19 in Appendix culate four types of correlation functiorisee Figs. 10 and
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(a

~

Looking at the structure of the network of edges, one can

1.00 1 define two other correlation functions that would capture the

—— t=16000

S 075 ] —— 18000 length scalea (t) and &(t):
° DSRS0 (i) The longitudinal slope-slope correlation function de-
0.50 | T 26000 fined as

—— 65000

0.25 4 —— 126000

Kiong(T»1) = (M, (X,y,t) - My (x+1,y,1)), (27)

(r.t)/ Klong(r

0001 where, M, (X,y,t)=dh/dx=h(x+1y,t) —h(x,y,t) is the x
2 .0.25 | component of the local slope.
< (ii) The transverseslope-slope correlation functions de-
0-80 fined as
ere 4 8 12 s 16 Kand D) =(My(X,y,t) - My(x+r1,y,1)), (28
r
(b where My(x,y,t)=dh/dy=h(x,y+1t)—h(x,y,t) is they
0.10 4 o reon component of the local slope.
— 1300 To understand how the correlation functions in EQY)
0.08 e RS and (28) behave, consider variations dfl,(x,y) and
25000 M,(x,y) along a horizontal liney=const) in Fig. §b). By
= 126000 moving along this line one is crossing both the regular edges
£ 008 (whereM, changes sign anll, remains unchangg@nd the
§ rooftop edges incorporated in the dislocation cotebere
X" 9.04 | both M, and M, change sigh Thus, along the liney
=const,M,(x,y) changes sign as is increased byAx~A\
6.02 =the distance between neighboring regular edges. In effect,
' the correlation function oM, in Eq. (27) is dominated by
= the length scala.. On the other sideM,(x,y) changes sign
0.00 only if x is increased by\x~ ¢=the separation between two

0 20 40 60 80 neighboring dislocations measured thdirection. Thus, the

correlation function oM, in Eq. (28) will be mostly sensi-

FIG. 11. (8 The trial collapse of the longitudinal slope-siope Ve only to the length scal¢ being the average separation
correlation functions into a single curye=¥(x), for the square between the dislocations in the same row of the ridge lattice.
anisotropy(001) surfaces. Here/= Kiong(r,t)/Kiong(r =0it) andx As can be seen from simulatiofsee Fig. 1(a)], corre-
=r/\(t), where\(t) is the position of the first zero crossing of the lation functions ofM, in Eq. (27) have an oscillatory char-
correlation function.(b) The transverse slope-slope correlation acter reflecting evenly spaced regular edges at the distance
function K,,{r,t) at various times for the growth on the square ~\, that can be determined from the first zero crossing of
anisotropy(001) surfaces. this correlation function. We used this to extragt) versus

time, see Fig. 1@&). On the other side, as documented by our
11). The first of them is the equal time height-height corre-simulations[see Fig. 11b)], the correlation function oM,

lation function defined by in Eq. (28), decays to zero at a distane€. This correlation
function has no oscillatory character because the dislocations
Knn(F,0)=(h(X+T,y,0)-h(x,y,1)). (25) are randomly placed along theaxis, with the average dis-

tance between neighboring dislocations equalétoThe

length scalet can be conveniently defined as the distance at

AS fqr the growth on hexagonal surfaces,_this correlatiothiCh the transverse correlation functi@®8) decays to one
function has an oscillatory character reflecting the Presench it of its value at the origin, i.e.Kyand = £(1) ]
of the periodic structure of mounds, see Fig. 10. We tried to_1 (r=01). We used this to éxt.ra.(é‘t({r)anversus ti;ne

; ; ; ; ; ; ie 2 Dvrans! T Yt/ )
see if the height-height correlatlon functions, obtained at d.'f'see Fig. 180). Apart from(t) and&(t), we calculated also
ferent times for the square anisotropy surfaces, collapse mt&e interface widthw(t), see Fig. 12¢). From data in Fig

a single curve, see Fig. 10. Apparently, the collapse tria 2 we obtain

fails. Closely related height-height difference correlation

functions w(t)~t~, (29
Knheairt(1, 1) = ((h(x+r,y,t) —h(x,y,1))?) (26) A(t)~t"e, (30)

—+n
would thus also fail to collapse. The reason for the failure of §O~1% 31

the collapse of these correlation functions is in the existencgith the coarsening exponents

of several large lengthscales. Indeed, as noted above, in ad-

dition to the pyramid facet size(t), we have another length n.=0.22+0.01~ 8=0.24+0.01, (32
scaleé(t) measuring the distance between neighboring dis-

locations along thex direction. ng=0.50+0.02. (33
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This is documented in the figures of edge networks presented
in the Appendix C, see Figs. 15-19.

VIII. KINETIC SCALING THEORY
OF THE MBE GROWTH ON THE SQUARE
ANISOTROPY (001) SURFACES

As described in the previous section and summarized in
Fig. 13a), the coarsening on the square anisotrdp9l)
surfaces is characterized by the presence of two characteris-
tic length scales. One of thein(t) is the lattice constant of
the edge latticeh(t) thus measures the lateral size of the
four sided pyramids. The other length scal&) is the char-
acteristic distance between two dislocations of the edge lat-
tice along thex direction (or y direction. These two charac-
teristic length scales grow in time as power lalgse Egs.
(30) and(31)] with different coarsening exponerts andn,
that we obtained from our simulations. They suggest 8
~7, wherean~3.

Surprisingly, the usually made assumption that there is
only a single length scale and that correlation functions,
therefore, follow a simple scaling law was not really ques-
tioned until recently{22]. Though values of the coarsening
exponents for the pyramids simg~ 8~ were reported in
previous numerical simulationgl6,17] and in the experi-
ments on(001) surfaces, analytic theories that attempt to
explain this exponent are so far not developed. In the follow-
ing, we develop a kinetic theory for the coarsening process
on (001) surfaces that carefully takes into account the exis-
tence of two large length scales(t) and &(t).

As noticed in Sec. VII, the coarsening on the square sym-
metry surfaces is mediated by the dislocations of the edge
lattice. In the previous section, we saw that the edge lattice
coarsens during the motioftlimb) of these dislocations

FIG. 12. (a) Time evolution of\(t), the first zero of the longi- annlg thex.or y dlre(;tlon. LetN s d?”Ot_e the totgl ”“m'_oer
tudinal slope-slope correlation functid€ion(r.t), for the growth of dislocations moving along the direction. Their density
on the square anisotrog@01) surfaces\ (t) measures the average PEr unitareais
size of the pyramids(b) Time evolution ofé(t), the average dis-
tance between neighboring dislocations alongxitrection. &(t)
is obtained from the transverse slope-slope correlation function
KyandT,t), as described in the textc) The interface width versus
time for the growth on the square anisotrof®01) surfaces. The whereAg denotes the base area of the film. The length scale
log-log plot gives the scaling/(t)~tY* at long times. All data are ¢ s the average distance between the dislocations isahee
given for several different system siz€800x 500, 700<700 and  |attice row of the height\, as schematized in Fig. (3.
1000x1000. Thus, there is just one dislocation on a rectangle with the

height=\ and width= £ [see Fig. 18)]. Songgré=1, i.e.,

Ngis|
NgisI= A_: , (34)

As n; is bigger tham, the distance between two neighbor-
ing dislocations, along thg direction, £(t), is much larger
than the pyramid sizex(t). By Egs. (30) and (31), ¢
~\"e/e with ng/n.~2. Due to this, the calculation @f(t)
iS more sensitive to the finite-size effe({'ms can be seen Let L denote theotal Iength of the Edges which are directed
from Fig. 12b)]. along thex direction. On anL, by L, substrate Ag=L,

In the next section we propose a kinetic scaling theory for Ly), one had =L, Xnumber of rows-L,(L,/\). Thus,
the MBE growth on the surfaces with square anisotropy. It is
based on the physical picture obtained from our simulations, L= E_
with two major ingredients(i) As noted at the beginning of A
this section, the coarsening, i.e., increasa @) with time is
mediated by dislocations of the edge lattice moving aleng During the motion of each dislocation, with velocity, the
(ory) direction, in a fashion called as “dislocation climb” in lengthL decreases during the tindg by the amount equal to
the literature on dislocations in standdedomiq lattices.(ii)  2vgggdt. The factor of 2 here is due to having two lines of
Moving dislocations can meet each other asmthihilate edges that are along thedirection and terminate at each

1

ndisI:)\_g- (395

(36)
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dislocation corgsee Fig. 18)]. As there aréNgg moving in
the x direction, the total change af is

dL= — Ngjsi2v gigdt. (37
Thus,
dL
rri Naisi20 dgis - (39
Using Eqgs.(38) and (36)
d(Ag/\)
. Naisi2V disl » (39
d(IN) Ny
a A_:zvdisl- (40)
Using hereng;si= Ngisi/Ag,,
1 da
Nar 2NgiglV gisi - (41)

Using here Eq(35) for the dislocation densitpgg we have

1 dN _ U disl

FIG. 13. (a) A schematic representation of the
moving dislocations of the edge lattice and their
motion. Note that dislocations may annihilate
with opposite dislocations moving either in the
same row or neighboring rows of the edge lattice.
(b) A small portion (10 100) of the lattice of
edges for the square anisotropy surfaces. The dis-
location core size is=\.

Y»X»‘pl - P{p'

The total number of the dislocationd;, decreases in time
due to annihilations with other dislocatiofsee Figs. 15-19
in Appendix . Thus, one can write

1 dNgg 1
Ndisl dt B 7',
ie.,
1 dndis| 1
Nga dt 7 “3

where 7 is the mean lifetime of a dislocation before it anni-
hilates with another dislocation. For example, a pair of op-
posite dislocations moving in the same row, with relative
velocity 2v 451, @annihilates after typical time= £/2v 45 [S€€E
Fig. 13@)]. By taking into account only this annihilation
channel one would thus obtain

1 2vgy
T &

However, Eq(44) takes into account just one possible chan-
nel of dislocation annihilations. A dislocation may annihilate
also with apposite dislocations moving in the roaimveand
belowthe row in which the dislocation is movingee Fig.

(44)
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13(a)]. Thus, instead of just one, there are 3 channels of Recalling here that there are three channels of dislocation
dislocation annihilations. The total rate of annihilations isannihilations,q=3, we get the following values for the

thusqg times bigger than that in Eq44), i.e., coarsening exponents:
1 21) disl _ 1 _ 1
~=4 £ (45 Ne=7 and N:=7- (58
with q=3. Using(45) and (43), These analytically derived values of the coarsening expo-
nents are in agreement with the results obtained from the
1 d”di3|: _ 2Udisl' (46) numerical simulations of the MBE growth on square anisot-
Ngis) dt 3 ropy surfaces. We note that the average distance between
) dislocations(in any direction,
With Egs.(46) and(35),
1
1 df 1 d\ 2Udis| d= (59)
TEaradt 9T “0 Vg
Using here Eq(42), is different from the length scalg which measures the av-
erage distance between neighboring dislocations in the same
l E:(q—l 20 gig| (48) row of the edge latticéi.e., along thex axis|. Indeed, using
& dt & Egs.(59) and(35),
With Egs.(48) and (42), d=Vé-N. (60)
1d¢ Thus,d~t"d, with
£dt  d(Ing) natn
[ S A R [
Tdn_ dinn 9 (49 Ng=—5—" 61)
N dt
With Eq. (58),
Integrating Eq(49) gives 3
gw)\q—l, (50) nd:§:0375 (62)
i.e., withq=3, £&~\?. To proceed, we will use the relation e noted beforgsee Eq(51)] that the dislocation veloc-
1 ity vgig IS inversely proportional to the square of the lattice
Vdisi™ 32 (51)  constantx of the edge lattice. To see this, consider the dis-

location in Fig. 18b). One haw gig=A/t1(\), wheret;(\)
|is the time needed for a dislocation to move distanke
During this move, the two edges just above and below the
dislocation core, merge and are extinct. After this extinction,
the dislocation in Fig. 1®) moves the distance\ to the

1d\ 2vgg 1 right. The timet,(\) it takes for this process to occur is

Ndt £ ez (52 related tox via A~ (t;)™3, as one can infer by considering

this edge extinction event along the reasoning that lead us to
By combining Eqs(50) and(52), Eq. (24). Thust;~\3, andv4g=MN/t;~1/\2, as anticipated
1 dx 1 before in Eq.(51).
(53

=~ T
Adt A IX. FACETS, EDGES, EDGE TENSIONS,
AND EDGE CURRENTS

stating that the dislocation velocity is inversely proportiona
to the square of the lattice constanbf the edge latticéas
discussed later gnUsing Egs.(51) and(42) we obtain

Integrating Eq.(53) yields
(1) ~tHa+D), (54) _ Forma’_[ion of nearly flat fac_ets,_ bounded by straight edges,
is the major feature of the epitaxial growth with slope selec-
Using Eqgs.(54) and (50) we get another scaling relation tion. This feature is directly related to the effective free-
energy approach to MBE growfl21], see Sec. lll. Indeed,
£(t)~tla-biard) (55 the interface evolution is governed by the effective free en-

in Egs.(5) to (7), that is,
Equations(54) and (55) state thath (t) ~t"e and &(t) ~t", ergy in Egs.(5) to (7), that is

with Feﬁ=f d2x U(Vh)+g(V2h)2 , 63)
1
Ne=—-r, 56
¢ q+l 8 via the typeA dynamics,
q—1 h(x,t)  OFex
Ne=q+1 7 it oh(xb)’ (64
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implying, in particular, energy relaxation equatitip), wherel 44 is the edge lengtiimeasured in the base plane,
5 along thex, axis) whereaso is the edge line tensiono
dFeii _ _J o2 dh -0 65 depends on the form of the local potenti®{M), as well as
dt X ot ' on which pair of facets is considered, as detailed in the fol-

lowing and in Appendix B. For the growth on isotropic sur-

Thus,F ¢ generally decreases in time, and the interface goefaces, edge line tension is thus a continuous function of the
into the ground state minimizing the effective free energy.angle between the facets’ slope vectolsp [see, e.g., Eq.
By Eq. (63), Fo is minimized only by minimizing both the (72) below]. On the other side, in the presence of crystal
local potentiall (Vh)>U i, and the bending energy density anisotropy, there ar@ energetically favored facet slope di-
(x/2)(V2h)2>0. It follows that the interface ground state is rections[see Figs. &) and Zc) for Q=6 andQ=4, respec-
flat (with zero bending energy of the form h(x)=M;-x, tively]. For each of ?) pairs of Q facets there is a distinct
where the slopeM;=Vh minimizes the local potential €edge-type. For example, for the square anisotropy case de-
U(M). That is, M; belongs to the energy minimum set picted in Fig. 2c), there areQ=4 degenerate energy
U(M;)=U i, Which is, in the presence of crystal anisot- minima, i.e., four types of facets, and, thus, six types of
ropy, a discrete set df points[see Figs. ) and 2c) for ~ €dges. Due to the discrete rotational symmetry, various edge
Q=6 and 4, respecti\/e]y whereas it degenerates into a types may have the same line tension. Generally, the line
circle in the absence of anisotropiesee Fig. 2a)]. Forma-  tension will depend on the angleédetween slope vectors of
tion of flat growing facets, with sloped;, is thus naturally ~the facets forming the ridge. Thus, for the square anisotropy
favored by the effective free-energy minimization. Even incase depicted in Fig.(@), out of the six distinct edge types,
the absence of crystal anisotropy, the interface breaks intfpur of them are formed by facet pairs witkp2= 7/2. These
growing facets and the edge networks fdisee Secs. IV and four types[identified before as “regular edges,” see Sec.
VI]. This is further discussed here and in Appendix B. VIl ] are related by 90-degree rotation and thus have a com-

Two facetsn andn’, with slopesM, andM,,,, meetata Mmon value of the line tension. The remaining two types of
straight edge along the intersection of facets’ plahgs €dges are roof top edges, formed by facets pairs with 2
=M,-x andh,, =M, -x. Commonly, both with and without = 7. These two types of roof top edges are related by 90-
anisotropy, all facets have the same slope magnitude, i.edegree rotation and thus have a common value of the line
IM|=|M,/|=M, (see Fig. 2 The edge formed by the fac- tension. _ o _ _
etsn andn’ is thus directed along the vectM g4y (M, I_n the following, we will discuss edge line tensmnfpr
+M,)/2, which is, as well, the interface slope at a point onvarious model forms of the local potentid(M), both with
the edge. In particular, favl,= — M, , the edge slope van- and without anisotropies. Before proceeding, we elucidate
ishes and one has a horizontal, “roof-top” edge. More gen-a2nother property of edges, namely #wge surface current
erally, if 2¢ is the angle betweeM, and M,,, the edge In contrast to infinite facets characterized by zero surface
slope magnitude|M ¢qqd =M cos@)<M,. In discussing current, Eq.(2), edges carry a nonzero surface current run-
edges, it is convenient to go to the Cartesian coordinate sy$ing along them, see Appendix B. In the above-mentioned
tem (x;,X,) with the x,-axis perpendicular to the edge and coordinate system, witk, perpendicular to the edge amgl
the x,-axis along the edgésee Appendix B In this coordi- along the edge, the current component perpendicular to the

nate  system, the facets’ slopes areM,= edge vanishesl,; =0, whereas, as detailed in Appendix B,
[ —Mosin(¢),Mocos@)], My =[Mgsin(¢),Mocos(@)], and

thus, h,= — Mg sin(¢)x; + Mg cos()x, and hp NE dU(M1,M5)

=M, sin(¢)x,+ Mg cosh)x,. The edge is the stationary so- 3= 32 (M1(X1), M) = =———— :
lution of the equation of motiori64) that interpolates be- 2 M1=M(xy)
tween the facets andn’: As discussed in Appendix B, for (69)

an edge, the interface profile is of the form

h(Xy . Xs) = Mo SIn() F(x1) + Mo COS )X, (66) with M=[M;(x;),M,] as in Eq.(67). As M approaches

facet slopes for large;, the edge curreni, in Eq. (69) is
nonzero only within the edge width,|<I,. Edges thus act

Here f(x,) N.|X1| for |x1|>l(_)=the edge width, as discussed 4q thin wires carrying surface currents. The net current flux
below and in the Appendix B. The associated slope f'eldflowing through an edge is

M =Vh, thus has the form

MO = M0 M =M SN AT D) Mo cos A1), oo | @03~ | a2 M0 M), (70

As f'(xq)=1 for x;>1q, andf’(xq)=~—1 for x,<—1y,M

in Eq. (67) interpolates between the slopes of the faceisd ~ Similar to edge line tension, edge currégjqe depends on

n'. the edge type. In particular, for roof top edges, this current is

As noted before in Sec. VI, edges carry extra costs of th&ero(asM,=0).
effective free energyin reference to the flat, infinite facet ~ Calculation of edge line tensions and edge currents is dis-
ground statg of the form cussed in Appendix B. Here we quote results thus obtained
for various model forms of the local potential. For example,
Fedge= 0l edger (68  for the isotropic potential of the form



PRE 61 INTERFACIAL COARSENING DYNAMICS IN . .. 6205

r u u Eq. (71), yielding the growth with the coarsening exponent
UM)=— E(M)2+ Z[(M)2]2=Z[Mg—(|\/|)2]2+ const, n.= 1/3 (see Sec. IY. Forb<1, local potential75) has four
(72) minima  at [M,,M]=[Mgcos@,),Mqsin(6,)], with M,
=[2r/u(1+b)]¥? and ,=45°+(n—1)90°, n=1, 2, 3,
[with My=(r/u)¥?], used in the simulations of Sec. lgee  and 4, as in Fig. @). For b=+ 1, the energy minimum set

Appendix A), we find, for the edge tension, degeneratesto the circle with the radius My=[r/u]*?[as
L2302 in Fig. 2(a)] and one regai_ns thg isotro_pic ppten'(ié_l). For
= Sinke): 72 b>+1, the model potential75) is again anisotropic, how-
() sin’(¢); (72 . . e ;
3u ever, with new locations of minima which are now at

M, ,M,]=[M,cos@,),Moysin(@,)], with Mo=[r/u]*? and
as before, here @=the angle between the slope vectors of[e X nz]l)s[)0°o n:(ln)z g arﬁdn)i ie theo mgnimll are now

the facets intersecting at the edge. The edge profile here is %%_coordinate axes. Thus. the facets that occurbfor: 1

in Eq. (66) with f(x;)=loIn[coshty/lo)], i.e., the interface ;e rotated by 45° with respect to the facets that occur for
slope is as in Eq(67), with f'(x,) =tanhé /lo). Here,lois 1 By tuning the anisotropy parameterone can go from
the edge width given by the square anisotropy regime occurring fo +1 to the

V22 q other square anisotropy regime occurring for +1, by
lo(#) =~z Snd)’ (73 crossing the isotropic poitit= + 1. The four-sided pyramids

and the edge networks that form for>+1 are rotated by
For the edge current, Eq470), we find, forU(M) in Eq.  45° with respect to those that form fbr< + 1. For example,
(70), for b<+1, the regular pyramid edges are parallel to xhe
=0 andy=0 axes(as in our simulation in Fig. )3 whereas
(74) for b>+1, the regular pyramid edges are parallel to xhe
—y=0 andx+y=0 axes.
_ ) o Square anisotropy regimes we find for-1 and b<1
Note th_at the edge current in Eq4) is uphill, e, it hasthe (hoth characterized by the coarsening exponegt 1/4,
same sign as the edge slofe =M, cos(®). This is natural, gecs. VIl and VII) are separated by the isotropic regime at
as the interface slope at the edgl, cos(®) is smallerthan  p=1 characterized by the coarsening exponent 1/3, as
the preferred slopbl, and the destabilizing effect dominates foynd in Sec. IV. Interestingly, such a sequence of interface
[see Fig. 1c)]. Thus, by means of their uphill currents, the transformations has been recently observed in more micro-
edges transport the material towards the pyramids’ tops, thuscopic (kinetic Monte Carlo simulations of Amaf23]. By
contributing to the growth of pyramid heights. tuning a microscopic model parameter, he was able to trigger
Next, let us consider model local potential¢M) for the 5 transition from the interface state as we described above to
growth on square anisotropy surfaces such ag@0@) sur-  occur forb<1, to another state, rotated by 45°, as we de-
face. The simplest one, used in our simulations of Sec. Vlkcribed above to occur fdr>1. Moreover, in the transition

1/
I edgé b)= TZ_Sin( ¢)coq ¢).

(see Appendix A has the form, region between the two states, Amar finds a regime charac-
r terized by the “isotropic exponenth,=1/3 and more com-
UMy, My)=— E[(MX)2+(My)Z] plex patterns of edge®3]. These observations ¢23] are

strikingly similar to our findings above. We remark the facet
u orientations seen if23] in the “isotropic regime” are cer-
+ Z[(Mx)4+(My)4+ 2b(M,)3(M,)?], tainly not random, as one would have in an isotropic poten-
tial, such as Eq(76) for b= 1. Moreover, the observed “iso-
(75  tropic regime” exists over dinite domainin the parameter
space[not just at a point, as the poiit=1 in the model

or, in polar coordinatefV,=M cos(), My=M sin(6)], (76)]. To explain these findings, we propose here a model
r u(3+b) u(1—b) generalizing Eq(76) by inclusion of thesecond harmonic
UM, ) =—=M?+ M4+ M4 cog46). term,
2 16 16
(76)

U(M,8)=Uo(M)+U,(M)cog 46)+U,(M)cog86).

The local potentia(75) generates the nonequilibrium current (78)

INE=(IFF,305), with _ _ _ o
The second harmonic tern, in Eq. (78) is qualitatively

important in situations in which the first harmonic terdy,,

goes to zerde.g., at the isotropic poirth=1 in the model
77 (76)]. With U, present, the true isotropic point is not acces-
ME= T MIr—u(My)2—bu(M,)?] sible. To iIIustraFe this., let us ignore tihvd dependence dfl;

y M, y y x) and U, [by setting, simply,U;(M)=U;(Mgy) and U,(M)

=U,»(My)]. It is then easy to minimize E(q78) over the

Above, b is an anisotropy parametds;>—1 to insure that polar angled. This yields an interesting phase diagram de-
the local potential(75) is bounded from below. Fob= picted in Fig. 14 in the y;,U,) plane. There we sethree
+1, the local potentia(75), i.e., Eq.(76) depends only on different phases of the system. Two of them we have already
the slope magnitude and reduces to the isotropic potential imet before: Phase I, with four degenerate potential minima at

7]V
NE_ _ 2 2
Jy __&MX_MX[r_U(MX) —bu(My)<],
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U, intervenes between phases | and Il, and facet orientations
[obtained by Eq(79)] vary continuously throughout phase
I, from those of phase | to those of phasddk indicated in
Fig. 14. Remarkably, phase Ill has eight degenerate energy
minima, i.e., eight possible types of facets in comparison to
only four types that occur in phases | and Il. Within phase
phase|TIT 1, the interface may exhibit the isotropic coarsening expo-
nentn.=1/3, as suggested by our simulations of the systems
with large number of allowed facets types occurring in the
U growth on(111) surfacegsee Secs. V and VI While this
! point needs to be explored in future work, it suggests that
>< phase Il may well correspond to the interface state found to

exhibit the isotropic coarsening exponemi=1/3 in Ref.
[23]. The particular location that we find in Fig. 14 for Phase
Ill, as an intervening phase between phase | and phase I
phase II phase I (both withn.= 1/4), directly corresponds the observations of
Ref.[23]. The fact that our phases | and Il are directly related
to those seen in Ref23] (they are mutually related by 45-
the (U;,U,) plane. We see three different phases of the systam: degree rotation, ett. simply indicates that the phenomena
Phase I, with four degenerate energy minima at polar angles Observed in that work are related to a change of sign of the
=45°+(n—1)90°, i.e., cos(@=—1, (i) phase I, with four first harmonic termlJ,. This directly leads to our phenom-
minima at polar angleg=(n—1)90°, i.e., cos(@)=+1, and(iii) enological model in Eq(78), which predicts the intervening
phase IlI, witheight degenerate minimat the eight values of the Phase Il as a natural candidate for the interface state found
polar angle solving the equation cogf#—U,/4U,. Phase Ill ex- to exhibit the isotropic coarsening exponent=1/3 in Ref.
ists in the regiorJ ,>|U,|/4. It is separated from phases | and Il by [23]. On the other hand, an alternative interpretation for the
a second-order phase transitions at which four minima of theséindings of Ref.[23] is that the regime witm.=1/3 corre-
phasesbifurcateinto eight minima of phase Ill. FoU,>0, phase  sponds to the first-order transition between phases | and I
Il intervenes between phases | and Il, and facet orientations varyhat occurs fol,<0 atU,=0, see Fig. 14. Precisely at the
continuously throughout phase |1l from those of the phase | to thosghase-transition point, the local potentid@B) has eight de-
of the phase Il. On the other side, fd,<0, by changindJ,, one  generate minima a#,,=(n—1)45° (n=1 to § forming a
can directly go from phase_l to the phasg 11, by cro_ssing first-orderregmar octagon in th& space. At this transition, the inter-
phase transition at the poiltd; =0, at which there is abrupt 45- 5ce would look like a mixture of phases | and |1, similar to
degree rotation of facet orientations from those of the phase | t‘?indings of Ref[23]. We stress, however, that reaching this
those of the phase II. transition point may require a fine tuning of the system’s
parameters. For example, within the mo@&) U, has to be
polar angles¢,=45°+(n—1)90°, ie. cos(d=-1, and set to zero as only then all eight minima have the same
Phase IlI, with four minima at polar angl#s=(n—1)90°,  energy. Still, for a small,, the U, term in Eq.(78) may
i.e., cos(#)=+1. These phases occur already within thedominate at short-time scales. Under this condition, during
single harmonic mode(76). In addition to them, due to the the early stage of evolution the interface would appear as a
presence of the second harmonic term in our md@e), mixture of phases | and Il.
there is a novel phase, referred to as Phase Il in Fig. 14. Itis We proceed by a discussion of edges in the simplest
characterized by the presence eifjht degenerate energy model with square anisotropy in E(5). As noted above,
minima at the eight values of the polar anglesolving the  here we expect two kinds of edgés: regular edges formed
equation by facet pairs with 2= 7r/2, and(ii) roof top edges, formed
by facets pairs with d==. (2¢ is the angle between
slope vectors of the two facets intersecting at the edgeor
example, in Fig. &) regular edges are formed by facets pairs
(n,n"), with slopesM, and M., for (n,n")=(1,2), (2,
Phase IIl exists in the regiod,>|U4|/4, see Fig. 14. Phase 3),(3, 4, and(4, 1), whereas roof top edges are formed by
Il is separated from the phases | and Il by second-ordethe facet pairsif,n’)=(1,3) and(2, 4). Edge line tensions
phase transitions. At these transitions, four minima of phase&nd edge currentk,qqe are model dependent as detailed in
| and Il continuouslybifurcate into the eight minima of Appendix B. Consider, for example the local potential in Eq.
phase lll. ForU,>0, by changingU,, one can go from (75, with the anisotropy parametér<1 (then the potential
Phase | to phase tnly by passing through phase lI, see Fig. minima are a#,=45°+(n—1)-90°,n=1, 2, 3, and 4, as in
14. On the other side, fdd,<0, by changingJ,, one can Fig. 2c). We find, for the line tension of the regular edges
directly go from phase | to phase Il, by crossing the first-(2¢=7/2),
order phase transition at the poidt =0, at which four po-

FIG. 14. Schematic phase diagram of the model in (£8), in

U
cog46)=— 4_U12 (79

1/2,.3/2
tential minima of phase | coexist with four potential minima P V2K b<1 (80)
of phase Il. Across this transition, there is an abrupt 45- g 3(1+b)¥ '

degree rotation of facet orientations from those of phase | to
those of phase Il. In contrast to this, fok,>0, phase Il  whereas their surface current is
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2v2b kY% lations, just in the rang®&<1. In particular, formulas for
Ireg:—(l+b)u , b<1. (81)  edge tensions, currents, and widths that applybforl, can
be obtained from the above corresponding formulas that ap-

The regular edge profile here is as in H§6) with M,  ply for b<1, by replacing[b,u] therein with [b"=(3

=[2r/u(1+b)]*? 2¢p=l2, and f(Xq) —b)/(1+b), u'=(1+b)u/2]. By using this, we find, for
=1 egIn[coshky /ey, i.e., the interface slope is as in Eq. the line tension of the regular edges,
(67), [M1(x1),Mz]=[Mgsin(@)f'(x),Mocos@)], with (14 )12, L2 302
f'(xy) =tanhk, /le). Here, |4 is the regular edge width Oreg=—————, b>1. (89
given by 3v2u
‘/2(1+ b)1/2K1/2 Thei £ ti
o= s . b<l. 82) eir surface current is
_V2(3-b)k'r b1 -
Next, we proceed to discuss theof-top edges fob<1. We 9 (1+bju = (%0
find, for their line tension,
A3 11232 Regular edge width is given by
K
o= , b<1, (83 2V L2
3(1+b)u l’egzﬁ_’_(lan)lzrl , b>1. 91

whereas their surface current is zero,
| —0 84) By the same replacement, we find, for the line tension of
rt_ .

roof-top edges,

In the coordinate system associated with the roof top edge 22 112312
(with the x, axis along and the; axis perpendicular to the T3y
edge, its profile here is as in Eq66) with My=[2r/u(1

+b)]"% 2¢=m, andf(xy)=IqIn[coshk/l)], i.e., the in-  The roof-top edge surface currentQ) and the width are
terface S|099 is as in Eq. (67), [Ml(xl);MZJ given by Egs.(84) and (85) for any b. Using Egs.(89) and
=[Mgsin(@)t'(x),Mqcosih)]=[Mof'(x).0], with f'(x;)  (92), the ratio of the line tensions of rooftop and regular
=tanhfy/l). Here,l is the roof top edge width given by  edges is

o) K1/2

= o 4
="z (85) L b>1. (93)

Oreg \/l+b’

b>1, (92

Using EQs.(80) and (83), the ratio of the line tensions of

rooftop and regular edges is We proceed by discussing some features of the above
results. First, note that the regular edge current is positive
It =2/1+Db, b<1. (86) (“uphill"’ ) only for 0<b<3, see Eqgs(81) and(gQ). On thg
Oreg other side, forb<O or b>3, the edge current is negative,

downhill. As noted beforgsee the discussion following Eq.
(74)], as the interface slope at the edgd,cos(@) is
smallerthan the preferred slopié,, it would be natural to
expect apositive edge current in a realistic MBE growth
model [the destabilizing Schwoebel-Ehrlich effect should
then dominate, see Fig(d@]. It is thus unlikely that the
model in Eqgs.(75—(77) with b<<0, or b>3, is of a more
direct physical interest. For this reason, we have focused our
Wmulations on the anisotropy parameter range be<3.
Moreover, using Eq.87), models with 3>b>1 can be
mapped into models with Qb<1. It is thus sufficient to
restrict our study to the range<tb<1. With these observa-
tions in mind, we carried the simulations of Sec. VII by
choosingb=1/2.

As indicated above, Eq$80)—(83), and Eq.(86), apply for
the caséb <1, when the potential minima are at polar angles
0,=45°+(n—1)-90°,n=1, 2, 3, and 4, as in Fig.([@). As
discussed before, fdr>1, the local potential minima are at
0,=(n—1)-90°,n=1, 2, 3, and 4, and, in effect, four-sided
pyramids and the edge networks that form fbor +1 are
rotated by 45° with respect to those that form for + 1.
Formulas for the edge energies, currents, etc., for the ca
b>1, can be obtained from the above formulastier1, by
using the following mathematical property of E5): A
45-degree base plane rotation maps the potefit@l into
itself with, however, changed parameters. By this rotation
[b,u]—[b",u’'], where

. 3-b For 0<b<3, regular pyramid edges have uphill currents
b’= 1+b’ (87 transporting material towards the pyramids’ tops, thus con-
tributing to the growth of pyramid heights. On the other side,
. 1+b for —1<b<0, or for b>3, regular pyramid ridges have
u=—-u (88 downhill currents. Though, as noted above, such a situation

may not correspond to realistic MBE growth, it may be in-
By a 45-degree rotation, a potential with>1 maps into a teresting in its own right. In relation to this, we comment on
potential withb’ <1 [as can be seen by noting that Eg§7) a recent work of Siegeft22], who numerically investigated
is equivalent to (¥ b)(1+b’)=4]. Due to this, it is enough the rangeb<0. He claims observing a special valuetofhe
to study the mode(75), analytically or by numerical simu- estimates to b&Z°%®"= —3/4), such that a coarsening with
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n.=1/3 occurs ab., whereas folb>b, one has the coars- standing of the coarsening dynamics on this type of surfaces.
ening withn,=1/4. It was suggested i22], that, atb., the  Other possible dislocation processes, such as the dislocation-
line tensions of rooftop and regular ridges are related byair production, or occasional formations of unstable bound
Oreg=V20y¢. By combining this relation with our result in states between two dislocations moving in different direc-
Eg. (86), we find b= —7/8. This is smaller than the value tions (one vertically, the other one horizontally; see, e.g.,
bfiege”: —3/4, as our correct edge line tensions in E&&) Fig. 19 in Appendix @, insignificantly affect the coarsening.
and (83) differ from those used in Ref22]. Thus, the fact In fact, a significant dislocation production occurs only dur-
that the data of Refl22] suggest coarsening with,=1/3  ing the initial (precoarseningstage of the growth. Subse-
already ath= —3/4 needs to be understood. quently, production of new dislocations is energetically hin-
Having said this, we reiterate our skepticism in referencedered, as it would introduce new pyramid edges and cause an
to physical relevance of the simple mod&b) outside the increase of the effective free energy. The coarsening on the
range 0<b<3. Having, in this model, a coarsening with square symmetry001) surfaces is, generally, an extinction
n.= 1/3, somewhere outside the range <3, is unlikely ~ of pyramid edges and facets mediated by climbing disloca-
to have some Signiﬁcance in exp|aining Seeming|y Sim"artions. Rate of this extinction CrUCia"y depends on the num-
observations from experiments and realistic kinetic Monteder of dislocations present across the interface. During the
Carlo simulations on square anisotrof901) surfaces. late time film evolution(i.e., coarsening total number of
Though, to our knowledge, no experiment, thus far, has sugdislocations decreases in time due to their annihilations with
gested such a coarsening, recent simulations of Ar23f other dislocationsgor with the film lateral boundari¢sThese
offer a realistic possibility of having a regime with,= 1/3 effects are incorporated into our kinetic scaling theory that is
coarsening orf001) surfaces. As detailed before in this sec- used in Sec. VIII to analytically explain coarsening expo-
tion, understanding of this regime requires going beyond th&ents observed in experiments and previous numerical simu-

simple model(75) to more general models, such as the ondations of the growth o001 surfaces. _
we proposed in Eq(79). Finally, we note that the interface growth phenomena dis-

cussed in this paper are similar to the buckling dynamics of
elastic manifoldgelastic rods and tethered membranies

X. SUMMARY vestigated in our recent workg84,25.
The growth on isotropic and hexagonal symme(ti 1)
surfaces was shown to exhibit a scaling behavior character- ACKNOWLEDGMENTS

ized by the presence of a single characteristic length scale )
A\ (t)=pyramid size that grows in time as a power law. Our We thank Mylan Laboratories and the NSF WV EPSCoR

numerical simulations suggest that the growth of the charad®regram for support. Numerical simulations were performed
teristic length scale is governed by the same coarsening e the CM-5 parallel computer of the West Virginia Univer-

ponents for both isotropic and hexagonal symmetrgl)  S'Y-

surfaces. The coarsening exponent obtainet#s0.33. The

kinetic scaling theory that explains this scaling behavior was APPENDIX A

presented in this work in Sec. VI. It employs the fact that the ) ) ] . o

effective free energy of growing interfaces is localized In this Appendix, we give a detailed description of our

within edge networks. These networks form across the interodeling scheme. First, we describe how we solve the

face, both with and without spatial anisotropy present.  tyPe-A evolution equatiori4) for the MBE growth on a hex-
The growth on the square symmet(@01) surfaces is adonal(i.e., equilateral trianglegrid. Such a grid is natural

more subtle. In this case, pyramid edges form nearly perfed®r simulating the growth on hexagonal symmetry surfaces.

square lattices disordered by irregularly placed dislocations/Vith each node of the hexagonal grid, with the location

The interfacial coarsening is mediated by motion of the dis= (X1.X2) in the base plane, we associate the interface height

locations that we characterized here as the dislocation climi!(X). Further, we associate with the height configurafiain

The presence of the dislocations is thus crucial for the coars suitable defined effective free enerfgy;({h}) (see below,

ening of the square symmetf901) surfaces. In fact, in nu- and simply integrate the typ&-dynamics equations

merical simulations, the coarsening essentially stops as soon

as the average distance between the dislocations reaches the dh(x) __ IF ff

size of the system that is simulated. The growth on the dt ah(x)

square symmetry001) surfaces exhibits a multiscaling be-

havior, as there are two characteristic length scales that growith a discretized time.

in time with two different coarsening exponents. One of \ve proceed by discussing the discrete form of the two

them is the pyramid lateral sizepyramid height, growing terms of the effective free enerd; [see Eq(5)]. The first,

with the coarsening exponent=3=0.25. The other length syrface diffusion terni“bending energy”) is defined on the

scaleé(t), the distance between the dislocations in the sam@exagonal grid in the following way:

row of the edge lattice, grows faster with a different expo-

nentn=0.50. Kinetic scaling theory that explains the coars- 3

ening exponents for the square symmét91) surfaces was 2 [h(x+a))+h(x—a)]

presented in this work in Sec. VIII. The theory shows that FSDZEE =1

the dislocation climb and dislocation annihilation processes 2% 6

going on across the edge network are essential for under- (A1)

2
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Here, *a;, j=1,2,3, are the nearest-neighbor bond vectors 3 ,. 9 . 15 6
of the hexagonal grid. In the continuum limit, the expression  Uo(|M[) =380+ 5 a5|M|*+ §a4|M| + 1—6ae|M| ,

in Eq. (A1) yields the expressio(6) for the bending energy: (A10)
FSD~f d?x(V2h)2+---, (A2) and
3
_ 6
where the ellipses indicate the terms with higher-order de- Uy(IMD)= 64a6|M| ) (A1)

rivatives ofh(x). To model the local potential term in Eq.

(5), we considefF g in the form Already from the last two equations, we can see that there
5 are two interesting situations to stufiyotice thatU,(|M|)
B depends only omg and, moreover, vanishes fag=0]:
FNE_E []21 PLh(x+2)=h(x)]f, (A3) Caseag>0: Using the
: JU(M)
where the function®(Ah) has the propertyb(Ah)=® JNE=——M
(—Ah) and we are free to choose it. In the continuum limit J
we have we get six local potential minima with vanishidgg, that is
FNE~f d?xU(Vh)+ higher derivative terms,(A4) 0:Z+n2_” n=0,1,2,3,4,5
JNEZO at 6 6 ’ (Alz)
with IM|=M,
UM)=®(M-a;)+P(M-a,)+D(M-ag) where M| is the value offM| minimizing U(|M|, = /6).
This corresponds to the hexagonal symmetry surfaces, see
=<I>(|M|c039))+<l>(|M|co 6—2—77 ) Fig. 2(b). o .
6 Case ag=0: This givesJye=0 along a circle|M|
=M, in the order-parameter space, due to the fact that
+¢(|M |cos( o— 4_77)) (A5) U(M) does not depend on the polar anglgsee Eqs(A9)
6 and(Al11)]. This case can be thus used to model the growth

in the absenceof surface anisotropy, see Figa2

Resulting nonequilibrium current is of the form Equation(A8) can be conveniently rewritten as
~ dU(M) by , by
INe= — M d(Ah)= ?e + Ee + const, (A13)
=—®'(M-a))gg—P'(M-a)a,—P'(M-a3)as. wheree is given by
(A6) Ah)%2—(Ahg)?
o= AN~ (Aho)" 2( o (A14)

The expression for the local potential, EA5) can be reex-

pressed as the Fourier series b,, b,, andAhy are numerical constants simply related to

those in Eq(A8). In our simulations we set\h,)2=0.2 and
modified only the coefficientb; andb,. By Eqgs.(A8) and
(A13), ag=h,/24. According to the above discussion, the
choiceb,=0 thus generates a local potential which is rota-
=Uo(IMD)+2> Uy(IM|)cog6n), tionally invariant. We remark though that higher derivative
n=1 terms indicated in Eq4A2) and (A4) break the perfect ro-
rdo tational symmetry. Nonetheless, witl,=0, the rotational
Un(||\/||):3f 2—<I>(|M|cosa)cos(6n6). (A7) invariance is exact foflat interface configurations. Thus,
—m e even for the discretized model, one has the circular con-
tinuum set of degenerate energy minima in Fi¢p) Zorre-
For example, if we use for the functioh(Ah) the following  sponding to flat interfaces with the slope vedr= Vh hav-
expression. ing a fixed magnitudeM, and arbitrary direction. This
_ 2 4 6 method(of choosingb,=0) on the hexagonal discrete grid,
P(Ah)=a0tay(Ah)™+a,(Ah)™+ag(AN)% - (A8) was one of the methods we used to simulate the growth on
then, by Eq.(A7), isotropic surfaces. _The other method we used was to use a
square discrete grid and an appropriate form of the local
U(IM|,0)=Uq(|IM)+2U(|M])cog66), (A9)  potential, as discussed later {see Eq(A25)].

Finally, we give description of our modeling scheme for
whereas all higher-order harmonics vanigb=U,(|M|) square symmetry surfaces. Here, we solved the evolution
=U;(|M|)=...]. In Eg. (A9), the coefficientdJo(|M|) and  equation(4) for the MBE growth on a square grid. As for the
U.(|M]) are hexagonal case, with each node of this grid, with the location

27
0mL.o)=u Mo+ 27

[
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x=(X;,X,) in the base plane, we associate the interface (Ah)2—(Ahg)?
heighth(x). Further, we associate, with the height configu- =
ration {h}, a suitable defined effective free enerByx({h})
(see below, and simply integrate the typ&dynamics equa- wherec,, c,, andAh, are constants that allow us to choose
tions: various shapes for the local potentials and, therefore, various
dh(x) IF shapes for the nnequilibrium current, corresponding to
eff . . .
=— square symmetry surfaces. In our simulations we fixed
dt dh(x) (Ahg)?=0.2 and we modified only the coefficients and
C,. By Eqgs.(A19)—(A22), the local potential has the form

(A22)

with a discretized time.

We proceed by describing the discrete form of the two Cy A A
terms of the effective free-enerdi, [see Eq(5)]. The first, UM)= E[( M;+My)"+(M1—My)"]
surface diffusion ternf“bending energy’) is defined on the
square grid in the following way: c
, , + 5 [(M3=(8ho)22+ (M5~ (8ho)?)?].
h(x+a)+h(x—a
. J,:l[ (x+aj)+h(x—a)] (A23)
Fso=5 2 ~h() _ _ _
2% 4 Equation(A23) can be conveniently rewritten as

(A15)

r u
Here, =&, j=1,2, are the nearest-neighbor bond vectors ofJ(M) =~ E(M?F M3)+ Z(Mi1Jr M3-+2bMiM3)+ const,
the square grid. In the continuum limit, the expression in Eq. (A24)
(A15) yields the expressiofb) for the bending energy:
or, in polar coordinatefM ;=M cos#, M,=M sin4d], as

~ 2 2m24 ...
Fsp fd x(Veh)e+---, (A16) r u(3+b) u(1—b)
U(M):—EM2+ 16 M4+ 16 M%cog46),
where the ellipses indicate the terms with higher-order de- (A25)
rivatives of h(x). To model the local potential term in Eq.
(5), we considerFyg in the form with
_ci(Ahg)®  citc, 3¢
FNE:ZX {q)nm[h()('f'az'f‘al)_h(x)] r= 2 ,U— 2 1and b_ C]_+Cz.
+ P h(X+a,—a;) —h(x)] Local potential in Eqs(A24) and(A25) is discussed in more
5 detail in Sec. IX. Using Eq(A25) we see that this potential
becomes isotropic fado=1 and can be thus used to numeri-
+ +a)—
12’1 CudhOct ) =h0o] (AL7) cally simulate the growth on isotropic surfaces. We used this

to check our findings on isotropic surfaces obtained by using
where the functions®,,(Ah) (the next-nearest-neighbor the hexagonal grid, as described before in this Appe(sie
term) and @, (Ah) (the nearest-neighbor tejnhave the the caseag=hb,/24=0). Eventually, we have found that
properties ®,,{(Ah)=®,,,(—Ah) and ®,(Ah)=d,, properties of interface morphologiésdge networkas well
(—Ah) and we are free to choose them. In the continuumas the coarsening exponemt=1/3, obtained by these two

limit we have markedly different approaches to isotropic surfaces, are the
same.
FNE~f d?xU(Vh)+ higher derivative terms,
(A18) APPENDIX B
_ Here we outline the calculation of edge line tensions and
with edge currents discussed in Sec. IX. Edges are stationary so-
UM)=® (M1 +My)+ P, (M= M)+ P, (M) lutions of the interface equation of motig4),
+®n(Ma). (A19) dh(x,t)  AFeq (B1)
at Sh(x,t)’
We used in Eq(A17) the following forms for the functions
®(Ah) and®,(Ah): whereF; is the effective free energy
C2 4 2 K o2m2
P Ah) = 75(AN)%, (A20) Fer= | d®U(Vh)+=(V?h)

‘Dnn(Ah):%ez- (A21) =f d?x U(M)+%(V.M)2}; (B2)
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FIG. 15. A small portion (308 300) of the network of edges FIG. 16. The same as in Fig. 15, here at ties20 000 and

for the square anisotropy surfaces at times16000 andt =22000.
=18000.

3= - M) o, B7
hereM =Vh is the interface slope. As noted in Sec. Ill, Eq. 2= M, K 2 (B7)

(B1) is equivalent to
hereM;=dh(xy,X,)/dx;, i=1,2. To obtain the edge profile,
-Vv.J, (83)  We seek a solution of EqB6) of the form

h(Xy,X2) =W(X1)+a-Xp, (B8)

oh
-

whereJ is the surface current,
wherea is a constant an®¥ (x;) is a function ofx; only, yet
J=Ine(M)+kV(V?h)=J\e(M)+kV?M. (B4 {0 be determined. With(x,,x,) as in Eq.(B8), the interface
i o slope,M =Vh has the form
Here,Jye(M) is the nonequilibrium surface current, related
to the local potential (M) by M1=%¥'(Xy), Mjy=gq, (B9)

i.e., M, is a function ofx; only, whereadV, is just a con-

JuU
Ine(M) == B9 gtant, Using Eqs(B9) and (B7),

M’

2
Edges are stationary solutions of E®3), i.e., sh/dt=0. J Z_&U(Ml'MZ) +Kd M, (B10)
For them, with Eq(B3), V-J=0, i.e., ! IM 4 mlf""l(xl) dxd -’
27(1
dJ; 9
a_1+ 0_2: . (B6) \E dU(M1,M,)
X1 9% 2= J2 1 (Ma(X0), @) = =0 w1, =m0
M,o,=a
Using Eqgs.(B4) and(B5), (B11)
Ji=— UMy, Ma) +kV2M,, Note that the abové; andJ, are functions ok, only. Thus,

My Eq. (B6) reduces to
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FIG. 17. The same as in Fig. 15, here at tihe24 000 and FIG. 18. The same as in Fig. 15, here at timhe<8 000 and
=26 000. =31 000.
%_0 (B12) Here, Ui, signifies the absolute minimum &f (Mq,M>).

This choice of integration constant is appropriate here be-
cause, for largéx,|, the slope approaches a facet slppe

Thus,J; must be a constant. This constant must be zero fofall that facet slopes minimize the local potential
edge solutions. Indeed, for a single long edge, the surface (M1.M5)]. Equation(B15) will give us an edge profile in
current must vanish for large; simply because the edge the coordinate system in which the axis is perpendicular
profile interpolates between two facetsat=+ (recall t0 the edge and th&, axis is along the edge, as already
that the facet surface current is zprhus,J; =0, and, with ~ described in Sec. IX. As in Sec. IX, let¢2be the angle

dx,

Eg. (B10), between the facet andn’ that intersect at the edggM ,|
=|M,|=Mg, whereasl ,.=[ — M sin(¢),+M,cos()] and
AU(My,@)  d?M, M, =[ + Mg sin(¢),+ Mg cos@)].
=TT m, T ad (B13) The edge slope vector in Eq(B9) asymptotically

approaches those of the facets, i.e., fag— —x,
M=[M(X1),a]—=M,=[—Mgsin(¢),Mycos@)], whereas,
Xp— +, M=[My(x1),a] =My
=[Mgsin(¢),Mgcos@)]. In both of these limits,U(M)
—UM)=UMp)=Up,. At the very edgeM,=0, and
M=[0,a]=[0,Mqcos()]. Thus,a=Mg,cos(p) is the inter-

Equation(B13) is analogous to the equation of motion of a
particle with positionM ;(x;) in a one-dimensional potential
—U(My,a); x4 here is the “time” in this analogy. Using
Eq. (B13), one has the “conservation of energy” equation

d [x(dM,\2 face slope at surface points on the edge. The overall edge
=—1/|=|=5—| “UM(X1),a)|. (B14)  profile can be obtained by integrating E&15), i.e.,
dxq |2\ dxg
. . K dMl
By integrating Eq.(B14), > o = JU(M1(X1), @) — Ui, (B16)
1
K(dMl)Z U(Ms(xy),@)=—U (B15
a o - X 1 = i . e
2| dx, 1, mn by writing



PRE 61 INTERFACIAL COARSENING DYNAMICS IN . .. 6213

t=65000 wherel gq4eiS the edge lengtkalong thex, direction, ando
T 1 is the edge line tension,
-
4 tee Kk (dMy(xy)|?
.t 0'=j Xm U(M (Xl) a) Umln 2 T .
: T - 1
ny i‘r L (B19)
1
- & Using Eq.(B15), we see that the edge line tensiarin Eq.
B (B19) can be written also as
+ o
: =2 [ da[UM ()@~ U, (820
- S
“L or, as
JY - "HL] + o dMl
0'=Kf dxy dX (B21)
t=128000 B
J i!l‘u By using Eqg.(B17) one can turn the integration ovej in
Eqg. (B20) into an integration oveM,. This yields

’ o= ZJ’ \/7 [TU(Myq, @) —=Upyinl.
U(Ml,a) U

min

(B22)
Jr Here, as noted before;= M cos(®), whereasM; changes
4 between—Mgsin(¢) (for x;— —«) and +Mgsin(¢) (for
. S 4~ X1—>+00). ThUS,
|
- +M S|n(¢)
't o=+2k f ° My
Mg sin(¢)

FIG. 19. The same as in Fig. 15, here at times5 000 and XVUM 1 ,Mpy=Mqocod ) —Uppn.  (B23

=128000. The arrow points to an unstable bound state betwee
two dislocations moving in different directions, one vertically, the
other one horizontally.

Equation (B23) has been used to calculate the results for
edge tensions quoted in Sec. IX.

By Eg. (B11), we see that the edge carries a nonzero
surface current which flows along the edge,

dx1=\ﬁ M , (B17) Jo(x1)=33E(M(x1),Mo=Mqcog $)).  (B24)
2 JU(My, @)= Uy,

This current vanishes for largg where the edge slope ap-
proaches a facet slope. Edges thus act as thin wires transport-
and integrating both sides of this equation. EquatiBt7) ing the surface current. The net current flux transported by
with @=M_cos(p), was used to obtain the edge profilesthe edge is
quoted in Sec. IX. .
The edge effective free energiy reference to the infinite | edge= f dx,INE(M1(X1),M =M cog ¢)).
facet ground stales, by Eq.(B2), —

(B25)
_ Again, with Eq.(B17) one can turn the integration ovey in
Fedge_f f dxgdxp) U(M1,M2) = Upin Eq. (B25) into integration oveM ;. Thus,
K (9M1 0"M2 2 \/> +Mg sin(¢)
2\ g%, 9%, | eage™ J Mg sin( )
=J f dx1dX%z| U(M1(X1), @) % dM,

VU(M1,M,=Mgcos ¢))—Upin

Kk (dMy(xy)|?
—) X 335(M1,Mo=Mcog ¢)),

~Ymnt E( dx,

=ledge O (B18)  or, asd,=—dU(M,M,)/IM,,
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dM,
VUM {,M5) = Upin

\ﬁf+Mosin(¢)
| egae= — —
edge 2 J—Mqsin(¢)

]
X—U(M,M
oM, (M1,Mp)

M,=M cog ¢)

This expression is identical to

ledge= — \/Z f

~Mgsin(¢)

+Mg sin(¢)
dM,

X

Jd
W\/U(MlyMz)_Umin .
2 M,=M cos ¢)

(B26)
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the 1000< 1000 system The two types of edges described
in Sec. VII, regular edgeporiented parallel to the andy
axis] and rooftop edgeforiented parallel toy= *+ x axis| are
clearly visible here. Also, it is obvious that the edges form
nearly regular latticeedge crystalsoccasionally disordered
by dislocation defects. Note that each dislocation incorpo-
rates a rooftop edge at its core. In fact, most of the rooftop
ridges are incorporated into dislocation cores.

The sequence in Figs. 15-19 gives insight into the
mechanism and the dynamics of the coarsening process on
the square symmetr§001) surfaces. The processes of dislo-
cation motion and dislocation annihilations that we invoked
in Sec. VIII, where we proposed the kinetic scaling theory of
the MBE growth, are documented in these ten snapshots.
Figures 15—-19 show, in a quick look, that indeed there is a
coarsening going on. The sequence is a good visualization
tool to see how the coarsening proceeds. For example, by

Equation(B26) has been used to calculate the results for thdooking at the first time frame, at=16 000, and the last one,

edge surface currents quoted in Sec. IX.

APPENDIX C

Here, in Figs. 15-19, we give a time sequend®

at t=126 000, we notice that lattice constant of the nearly
periodic network of edges has visibly increased, whereas the
density of the dislocations has decreased substantially.

In some of these figures, we see also occasional forma-
tions of unstable bound states between two dislocations mov-

frameg of the evolution of the network of edges for the ing in different directions, one vertically, the other one hori-

square symmetry001) surfaces(on a 300 300 portion of

zontally. See, for example, Fig. 19, tat 128 000.
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