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Interfacial coarsening dynamics in epitaxial growth with slope selection

Dorel Moldovan1 and Leonardo Golubovic2,*
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2Department of Physics, Harvard University, Cambridge, Massachusetts 02138
~Received 8 November 1999!

We investigate interfacial dynamics of molecular-beam epitaxy~MBE! growth in the presence of instabili-
ties inducing formation of pyramids. We introduce a kinetic scaling theory which provides an analytic under-
standing of the coarsening dynamics laws observed in numerous experiments and simulations of the MBE. We
address MBE growth on crystalline surfaces with different symmetries in order to explain experimentally
observed differences between the growth on~111! and~001! surfaces and understand the coarsening exponents
measured on these surfaces. We supplement our kinetic scaling theory by numerical simulations which docu-
ment that the edges of the pyramids, forming a network across the growing interface, are essential for quali-
tative understanding of the coarsening dynamics of molecular-beam epitaxy.

PACS number~s!: 05.70.Ln, 68.55.2a, 05.40.2a
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I. INTRODUCTION

There has been a significant research interest in the
namics of the molecular-beam epitaxy~MBE! growth lately.
The MBE technique is among the most refined methods
the growth of thin solid films and it is of great importance f
applied studies@1#. By using the MBE it is possible to grow
high-quality crystalline materials, and form structures w
very high precision in the vertical direction, such
monolayer-thin interfaces or atomically flat surfaces.

The evolution of the surface morphology during epitax
growth results from a delicate relation between the molec
flux and the relaxation of the surface profile through surfa
diffusion of adatoms. A significant factor for the adatom m
gration on the surface is their interaction with steps on
surface, in particular the existence of energy barriers n
step edges, that inhibit the movement of atoms between
ers of the growing interface. These step edge barriers,
were discovered by Ehrlich and Hudda@2# and studied by
Schwoebel@3#, @Ehrlich-Schwoebel energy barriers# give rise
to instabilities in the evolution of the surface morpholo
and lead to a surface current of adatoms towards the u
step edge@4#. This instability ultimately leads to the forma
tion of mounds and pyramids across the growing interf
@5,6#. Ehrlich-Schwoebel instability is a nonequilibrium e
fect that is present only if the adatom density on a terrac
higher than in equilibrium. The deposition process inde
raises the adatom density far above its equilibrium value
surface currents that depend on local slope of the grow
film are generated. By studying the diffusive motion of ad
toms on vicinal surfaces with step-edge barriers one finds@4#
that the surface nonequilibrium currentJNE has the same
direction as the slope and consequently tends to increas
local slope. This is the origin of the instability. However, f
sufficiently large slopes there are other processes that c
terbalance the destabilizing effect, so that the net curren
the nonequilibrium situation vanishes for certain slope

*On leave from the Physics Department, West Virginia Univ
sity, Morgantown, WV 26506.
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~slope selection!. Transient mobility effects, such as funne
ing and knockout processes@7,8# can lead to zeros o
JNE(M ) even for small values of the interface slopeM
@9,10#.

As a consequence of the existence of the slope selec
the surface breaks up into pyramidlike mounds, Fig. 1~a!.
Pyramid facets’ slopes correspond to stable zeros of the n
equilibrium surface current. Over the last few years it h
become clear that the surface evolution of films grown
MBE is indeed often characterized by the formation of py
mids or pyramidlike structures, even in the case of homoe
taxial growth. These pyramidlike structures have been
ported in many experiments, e.g., for homoepitaxy of Ga
@6,11#, Cu @5#, Ge@12#, and Fe@13,14#, all grown on singular
~001! substrates, as well as for homoepitaxy on the Rh~111!
surface@15#. What has been found in many experiments
that the lateral sizel and the heightw of these pyramids
grow in time as power laws with the same exponent. Th
the ratio w/l, corresponding to the pyramid slope, a
proaches a constant value at long times. Therefore, there
slope selection in a typical MBE growth. The correspondi
coarsening exponents were found from experiments to
pend on the symmetry of the surface. For example, for
growth on ~001! surfaces the experimental value of th
coarsening exponent is close to 1/4~in agreement with the
simulations@16,17#!, whereas for the growth on~111! sur-
faces the exponent reported was 1/3@15#.

At present, there is no real qualitative understanding
the origin of these values, or even if they are exactly 1/4 a
1/3 as they were reported from the experiments and so
simulations. Our goal here is to provideanalytic explana-
tions of these exponents. The observation that the evolv
surface morphology coarsens as more and more materi
deposited is poorly understood. Here we introduce a kin
scaling theory which provides an analytic understanding
the coarsening laws observed in experiments and simulat
of the MBE growth. Our analytic theory is inspired in part b
recent theories of phase-ordering processes such as
growth of domains in magnetic systems@18#. MBE growth
however has a number of specific features, such that no s
dard phase-ordering theory could be applied to it. T
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FIG. 1. ~a! A snapshot of the surface from ou
simulations of a continuum model for the MBE
growth. The two features that characterize t
pyramids, the heightw, and the widthl are also
shown.~b! A schematic representation of the su
face growth process.~c! A schematic representa
tion of the nonequilibrium currentJNE as function
of the local slopeM5“h. The current makes the
flat interfaces unstable to small fluctuation
around theM50 configuration and, also, it lead
to slope selection.~d! The local potentialU(M )
as a function of the local slope~schematic!. The
value of the slope for which the local potentia
has the minimum corresponds to the preferr
slope.
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growth of mounds and pyramids arises through a subtle
operation of surface diffusion relaxation@19# with the afore-
mentioned effects destabilizing interfaces and selectin
preferred slope. Our analytic theory employs the fact that
interfacial dynamics is governed by an effective free ene
@20,21#, see Secs. II and III. In the present study we focus
the MBE growth with slope selection. Analytic theory of th
MBE growth in the absence of slope selection has been
veloped before, in Ref.@21#.

We investigate here continuum models for various typ
of the surface symmetry. Thus, the growth on theisotropic
and hexagonal~111! symmetry surfaces was shown to e
hibit a scaling behavior characterized by the presence
single characteristic length scalel(t)5pyramid size that
grows in time as a power law,l(t);tnc. Our numerical
simulations suggest that the growth ofl(t) is governed by a
coarsening exponent which assumes thesamevalue for iso-
tropic and hexagonal~111! symmetry surfaces. The coarse
ing exponent obtained for both cases isnc>0.33, see Secs
IV and V. We develop here a kinetic scaling theory th
explains this scaling behavior, see Sec. VI.

Next, we elucidate the growth on thesquaresymmetry
~001! surfaces, see Secs. VII and VIII, and Appendix
Because of the experimental interest, this growth has b
subject of intensive numerical studies, such as the re
work of Siegert@22#. For the growth on~001! surfaces, the
pyramids arrange into nearly perfectly ordered square
tices. This is best documented by looking at networks
pyramids’ edges~lines along which pyramid facets mee!
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which form here a nearly perfect square lattice, see Sec.
and Figs. 15–19 in Appendix C. Perfect periodic order of
edge lattice is disrupted by occasional presence of def
that we characterize here asdislocationsof the edge network.
These dislocations represent topological defects of~other-
wise! an almost perfect square lattice of edges. The m
important finding is that the interface coarsening proceeds
the motion of the dislocations we characterize here as
dislocation climb~see Secs. VII and VIII!. The dislocations
of edge lattices are thus crucial for the interfacial coarsen
of the square symmetry~001! surfaces. The presence of di
locations causes a multiscaling behavior of the interfac
coarsening, i.e., the existence of several long length sc
that grow in time with different exponents. One of them
the lateral pyramid sizel(t) that grows asl(t);tnc, with
nc>0.25. Other length scales are related to the presenc
dislocations. They grow much faster thanl(t). Thus, the
distance between dislocations in the same row of the e
latticej(t) grows aj(t);tnj. From our simulations we find
nj>0.5. In this work, we develop a kinetic scaling theo
that explains the coarsening exponents for the MBE gro
on the square symmetry~001! surfaces, see Sec. VIII.

The layout of this paper is as follows: In Secs. II and
we discuss continuum models for the MBE growth. In S
IV we investigate the growth on isotropic surfaces. T
growth on hexagonal symmetry~111! surfaces is studied in
Sec. V. Kinetic scaling theory of the MBE growth on isotr
pic and hexagonal surfaces is developed in Sec. VI. T
growth on square symmetry~001! surfaces is studied in Sec
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VII. Kinetic scaling theory of the MBE growth on~001!
surfaces is developed in Sec. VIII. Section IX discusses v
ous aspects of pyramid facets and edges. We summarize
findings in Sec. X. Our numerical modeling scheme is
tailed in the Appendix A. Appendix B deals with the calc
lation of edge line tensions and edge currents. Finally, in
Appendix C we give a longer time sequence of snapshot
the edge network for the growth on square symmetry s
faces.

II. CONTINUUM MODELS FOR THE MBE GROWTH

Under conditions typical for MBE growth, the heigh
h(x,t) that describe the position of the interface measu
over a base plane, obey a conservation law@x5(x1 ,x2) is a
two-dimensional base plane vector, Fig. 1~b!#. In the absence
of desorbtion, vacancies or overhangs, all relaxation p
cesses on the surface conserve the deposited volume o
growing film. Thus, in the frame comoving with the inte
face, the height evolution equation is of the form:

]h~x,t !

]t
52“•J1h~x,t !52

]J1

]x1
2

]J2

]x2
1h~x,t !, ~1!

whereJ is the surface current andh(x,t) is the white noise
describing the fluctuations of the deposition flux. The av
age deposition flux has been eliminated from Eq.~1! by the
use of the comoving frame of reference. Noise is irrelev
in related coarsening processes such as spinodal decom
tion or Ostwald ripening@18#. In the same spirit the focus o
this work is on dynamics described by the Eq.~1! with
h(x,t)50.

The surface currentJ entering Eq.~1! can be written as a
sum of two terms:

J5JSD1JNE~“h!. ~2!

The first term in Eq.~2! is the surface diffusion current and
present also in an equilibrium situation where it describ
surface diffusion driven by surface tension@19#. The surface
diffusion current has the well-known form,

JSD5k“~¹2h!, ~3!

wherek is the surface diffusion constant@19#. The second
term in Eq. ~2! is the nonequilibrium diffusion curren
~Schwoebel term! that depends on the local slope¹h. The
form of the nonequilibrium currentJNE(¹h) must incorpo-
rate the above-mentioned Schwoebel instability. Also,
must lead to the slope selection. For small slopes, this
rent is positive@4#, making the initially flat interfaces un
stable. However, the current may vanish and change sig
some value of the slope, see Fig. 1~c!. That value will be the
preferred slope.

III. FREE ENERGY FORMULATION
OF THE MBE GROWTH MODEL

The continuum model of the MBE growth described
the previous section, can be put in an equivalent form wh
is essentially that of a type-A dynamics for a suitable define
effective free energy@20,21#,
i-
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]h

]t
52“•J⇔ ]h~x,t !

]t
52

dFeff

dh~x,t !
. ~4!

Here the effective free energyFeff depends on the interfacia
height functionh(x1 ,x2) and contains two parts:

Feff5FSD1FNE. ~5!

The first term in Eq.~5! is the surface diffusion term, and
is similar to the bending energy of flexible membranes:

FSD5
k

2 E d2x~¹2h!2. ~6!

After taking the functional derivative ofFSD one recovers, in
Eq. ~4!, the Mullins term:JSD5k“(¹2h) that we have in
Eq. ~3!. The second term in Eq.~5! contains a local potentia
U(M ) that depends on the slope vectorM5¹h of the inter-
face @see Fig. 1~d!#, and for the continuum model has th
form

FNE5E d2xU~“h!5E d2xU~M !. ~7!

Equations~7!, ~6!, and~4! reduce to Eqs.~1! and~2!, where
the nonequilibrium current is the gradient of the potent
U(M ),

JNE52
]U~M !

]M
. ~78!

JNE vanishes at the minima ofU(M ). The preferred value of
the slope thus corresponds to the minimum of this local
tential @see Fig. 1~d!#. Therefore, the slope vectorM5¹h is
an order parameter of the effective free energyFeff which
favors the development of growing facets with the prefer
slope. Within the effective free-energy approach, Eq.~4!, the
development of growing pyramids, whose facet have the p
ferred slope, can be thus viewed as a phase-ordering pro
similar to those in magnetic systems. The pyramid facet s
is like a magnetic domain size that grows as a power of tim
If the local potentialU depends just on the magnitude of th
slopeuM u, that isU(M )5U(uM u), by symmetry the curren
will vanish on a circle in the order-parameter spa
(M1 ,M2), see Fig. 2~a!. Such an isotropic model is not re
alistic for the growth on real, crystalline surfaces. For re
istic surfaces with hexagonal or square symmetry, the lo
potential will depend both on the magnitudeuM u and the
polar angleu of M . Thus,U(M ) may have only adiscrete
set of minima.

For example, for the hexagonal symmetry, the local p
tential has the symmetry property

U~M !5U~ uM u,u!5US uM u,u1
2p

6 D , ~8!

and can be thus Fourier expanded as

U~M !5U0~ uM u!1U1~ uM u!cos~6u!

1U2~ uM u!cos~12u!1¯ . ~9!

By Eq. ~8!, U(M ) must have~at least! six minima that cor-
respond to six preferred orientations of the facets that m
appear in the growth process@see Fig. 2~b!#.
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FIG. 2. ~a! If the local potentialU(M ) depends only on the
magnitude of the local slope vectorM , the minimal value ofU(M )
occurs on a circle in the order-parameter space (M1 ,M2). ~b! Six
minima of the local potentialU(M ) for the hexagonal symmetry
surfaces occur at the vertices of a hexagon in the order-param
space (M1 ,M2). U(M ) depends both on the magnitude and t
polar angle of the local slope vectorM ,U(M )5U(uM u,u). The
nonequilibrium currentJNE vanishes at six preferred~selected! val-
ues of the slope vector withu5p/61(n21)2p/6 (n51,2,...,6), as
well at six~unstable! maxima ofU(M ) ~not indicated in figure! that
are atu5(n21)2p/6 (n51,2,...,6).~c! Four minima of the local
potentialU(M ) for the square symmetry surfaces occur at the v
tices of a square in the order-parameter space (M1 ,M2). U(M )
depends both on the magnitude and the polar angle of the l
slope vectorM ,U(M )5U(uM u,u). The nonequilibrium currentJNE

vanishes at four indicated preferred~selected! values of the slope
vector, with

u5
p

4
1~n21!

2p

4

(n51,2,3,4), as well as at four~unstable! maxima ofU(M ) ~not
indicated in the figure! that are atu5(n21)2p/4 (n51,2,3,4).
Likewise, for the surfaces that have square symmetry,
local potential has the symmetry property

U~M !5U~ uM u,u!5US uM u,u1
2p

4 D , ~10!

and can be thus Fourier expanded as

U~M !5U0~ uM u!1U1~ uM u!cos~4u!

1U2~ uM u!cos~8u!1¯ . ~11!

By Eq. ~10!, U(M ) must have~at least! four minima that
correspond to four preferred orientations of the facets t
may appear in the growth process on this type of surface@see
Fig. 2~c!#.

A more detailed discussion of various aspects of lo
potentials is given in Sec. IX.

IV. SIMULATIONS OF THE GROWTH
ON THE ISOTROPIC SURFACES

Here, we present the results obtained by solving the p
tial differential equation that describes the growth proc
@see Eq.~1!# for the case of isotropic surfaces~as described
in Secs. II and III!. For them, the local potentialU(M ) de-
pends only on the magnitude of the slope vectorM . Thus,
the set of preferred slopes is a circle in the order param
space, see Fig. 2~a!. The equation of motion is solved on
discrete grid with about 1 000 000 mesh points. The mod
ing scheme is detailed in Appendix A~see, also Sec. IX!.

What we see from our simulation results in Fig. 3 is th
the morphology of the growing interface is characterized
the development of pyramidlike structures. These are
duced by the presence of the slope selection in the mo
The pyramidal structures are made of nearly flatfacetsthat
meet at sharpedges~see Fig. 3!. The edges carry most of th
effective free energy Feff , Eq. ~5!. Edges are best visualize
by plotting the density of the effective free energy over t
surface, as in Fig. 3~b!. There, white areas correspond to t
facets, and carry little effective free energy whereas d
areas are edges and carry most of the effective free ene
We can see that the edges form in fact a random mesh~net-
work! over the surface. The characteristic size of mesh c
~pyramid facets! grows in time via a coarsening process, as
is evident from Fig. 3~b!. Facets slope vectors as well a
edges arerandomlyoriented. This is consistent with the iso
tropic nature of the model that we are simulating here.
deed here the effective free energy is minimized by fac
whose slope has a fixed magnitude,u¹hu5M0 , whereas the
orientation of the facet slope vectorM5“h, can be arbitrary
@energy minimum set is a circle in the order parameter spa
see Fig. 2~a!#. Thus, the facets that form the pyramidlik
mounds have no preferred orientation.

From Fig. 3, it is obvious that the size of the unit cell
the edge meshl(t) grows with time.l(t) is comparable to
the pyramid lateral size. Another quantity that grows w
time is the widthw(t) of the growing interface.w(t) mea-
sures the typical pyramid height. We quantifyw(t) as the
average@w(t)#25^@h(x,t)#2&. Here and in the following
^...& stands for the spatial average over the base plane
order to quantitatively characterize the surface morpholo

ter
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FIG. 3. ~a! The contour plots that depict the time evolution of the isotropic surface. The existence of nearly flat facets bounded b
is evident.~b! Snapshots of the edge network on a small portion (1003100) of the growing surface for the isotropic case. We can see
there is no preferred direction for the orientation of the edges. The structural length scale of the edge networkl(t), comparable to the face
size or lateral pyramid size, grows in time.
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we calculated, apart from the widthw(t), the height-height
correlation function

Khh~r ,t !5^h~x1r ,t !h~x,t !&. ~12!

Khh(r ,t) versusr has an oscillatory character reflecting t
presence of mounds. We usedKhh(r ,t) to find the character-
istic lateral length,l(t) of the structure~pyramids lateral
size!, as the first zero crossing of the correlation functio
Khh„l(t),t…50. The interface width and the lateral size
the pyramids from our simulations grow in time as pow
laws

w~ t !;tb, ~13!

l~ t !;tnc, ~14!

with the coarsening exponents

b'nc50.3360.01, ~15!
,

r

as documented in Fig. 4. The fact that the coarsening ex
nents came out to be equal, is simply consequence of
slope selection in the model that we simulate here~the ratio
w/l represents the average slope of the facets that
proaches the preferred value at long times!. In Sec. VI we
will give a kinetic scaling theory that explains the coarsen
exponents obtained from the above simulations of the gro
on the isotropic surfaces.

V. SIMULATION OF THE MBE GROWTH
ON HEXAGONAL SYMMETRY „111… SURFACES

Here, we present the results obtained by solving the p
tial differential equation that characterizes the MBE grow
process@see Eq.~1!# for the case of the growth on surface
with hexagonal symmetry~as described in Secs. II and III!.
The local potentialU(M ) was chosen such that it has s
minima corresponding to six preferred facet orientations
this type of surfaces@see Fig. 2~b!#. The equation is solved
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on a discrete grid with about 1 000 000 mesh points~see
Appendix A for details of the modeling scheme!.

Again, the morphology of the growing interfaces is cha
acterized by the development of pyramidlike structures m
of nearly flat facets that meet at sharp edges~see Fig. 5!. The
size of pyramids grows as power law of time by a coarsen
process.

In contrast to the isotropic case studied in the previo
section, here the edges must form a network reflecting
presence of the six preferred orientations of pyramid fac
discussed in Sec. III@see Fig. 2~b!#. With the six preferred
orientations for the facets in Fig. 2~b!, there are (6

2)515 pairs
of facets. For each pair of facets, there is a distinct edge
@see Sec. IX and Appendix B#. Thus, here there are 15 type
of edges selected by the anisotropy. A careful look at
edge pattern in Fig. 5~b! shows that the edges indeed po
along the selected directions.

Let us look at the behavior of the interface associated w
the coarsening of network of edges. We have calculated v

FIG. 4. ~a! The width of the interfacew(t) versus time for the
growth on the isotropic surfaces.w(t) measures the typical pyrami
height. The log-log plot gives the scalingw(t);t1/3 at long times.
~b! Time evolution of the first zero of the height-height correlati
function Khh(r ,t) calledl(t), for the growth on the isotropic sur
face.l(t) represents the characteristic lateral size of the pyram
The log-log plot gives the scalingl(t);t1/3 at long times.l(t),
extracted from the first zero crossing of the height-height corr
tion function, is just a measure of the pyramid base size. We n
that such a popular qualitative measure of the pyramid size
break down under some circumstances~see, e.g., Fig. 10 below!.
-
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e
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ous correlation functions in order to characterize the surf
morphology that we obtain from numerical simulations~see
Fig. 6!. One is the slope-slope correlation functio
KMM(r ,t), defined as

KMM~r ,t !5^nxy~r1x,t !•nxy~x,t !&, ~16!

wherenxy(x,t) are thexy ~in-plane! components of the uni
normal vectorsn(x,t) at the pointx on the growing surface
The other one is the height-height correlation function d
fined in the Eq.~12!. Both Khh(r ,t) andKMM(r ,t) versusr
have an oscillatory character@see Figs. 6~a! and 6~b!# reflect-
ing the presence of pyramidal mounds. The similarity w
phase-ordering phenomena, discussed in Sec. III, with
slopeM5“h;nxy being an order parameter here, sugge
that the slope-slope correlation functions should depend o
on a single length scale, the sizel(t) of the pyramids. In-
deed, it appears that this is the case if we look at the colla
of KMM(r ,t) correlation functions obtained at different time
@see Fig. 6~a!#. On the other side, the data in Fig. 6~b! sug-
gest a similar collapse for the height-height correlation fu
tions.

From our simulations on the hexagonal symmetry s
faces, we find that the interface widthw(t), and pyramid
size l(t), grow asw(t);l(t);tnc with nc'

1
3 , see Figs.

6~c! and 6~d!. This coarsening exponent is thesameas that
found before for the isotropic case in Sec. IV.

Numerical values of the coarsening exponents obtai
above from our simulations on the hexagonal symmetry s
faces,b'nc'

1
3 , agree well with the experimental results

Tsui and co-workers@15#, for the growth on the Rh~111!
surface which has the hexagonal anisotropy. We note
this is the first continuum model simulation in which the 1
power law has been obtained for the surfaces withhexagonal
anisotropy. Siegert@22# recently obtained a similar 1/3
power law for the growth on surfaces withtriangular anisot-
ropy @such a model artificially breaks the inversion symm
try of the growth on~111! surfaces#.

In the next section, we develop a kinetic scaling theo
that explains the values of the coarsening exponents tha
obtained both for isotropic and hexagonal symmetry s
faces. It is inspired by recent Bray’s scaling theory of coa
ening processes such as spinodal decomposition@18#.

VI. SCALING THEORY OF THE MBE GROWTH
ON ISOTROPIC AND HEXAGONAL

SYMMETRY SURFACES

Here we provide analytic explanation of the 1/3 coars
ing exponent obtained for the MBE growth on isotropic a
hexagonal symmetry surfaces. For that purpose, we relate
dynamics of the coarsening process to the rate of extinc
of the effective free-energy-rich regions. Here these ener
rich regions are the edges of the pyramids.

Consider the network of edges, depicted in Fig. 7 in ter
of the density of the effective free energy in Eq.~5!. The
effective free energy that comes per unit cell of this ed
network, with the cell size'l(t), is localized in the few
edges that bound that cell. The effective free energy of
edge with a typical lengthl, is proportional to the length o
the edge
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FIG. 5. ~a! The contour plots that depict th
time evolution of the hexagonal symmetry su
faces. Note the presence of facets bounded
edges.~b! The edge network on a small portion o
the growing surface for the hexagonal symme
surfaces. A careful look at the edges shows th
their orientations are mastered by the sixfold a
isotropy, as discussed in the text.
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Fedge5sl, ~17!

wheres is the edge line tension@see Sec. IX and Appendix
B#. As there is of the order of one edge per area;l2 ~see
Fig. 7!, the effective free energy per unit area is

Fu.a.5
Feff

AB
'

Fedge

l2 5
s

l
, ~18!

whereAB denotes the base area of the film. Next, we use
energy relaxation equation stating that the decay of effec
free energy per unit area is proportional to the spatial aver
of the squared interface velocity. Indeed, the equation of m
tion ~4! implies that

dFeff

dt
52E

x
S ]h

]t D
2

d2x. ~19!

Using Eq.~19! one can write

d

dt

Feff

AB
52

E S ]h

]t D
2

d2x

AB
, ~20!

i.e.,

d

dt
Fu.a.52 K S ]h

]t D
2L . ~21!

Using here Eq.~18! and estimating the typical velocity of th
interface as

K S ]h

]t D
2L 'S dw

dt D
2

,

we get
n
e

ge
o-

d

dt S s

l D52S dw

dt D
2

.

If here we use the fact thatw/l5M05preferred slope, we
further get

d

dt S sM0

w D52S dw

dt D
2

. ~22!

Equation~22! can be easily integrated yielding

w5M0l5const3~M0s!1/3t1/3. ~23!

Therefore, we get the coarsening relations

w;l;t1/3 ~24!

with the coarsening exponentsb5nc5 1
3 , which are consis-

tent with our simulation results.
We proceed by stressing the analogies and differen

between the MBE growth and phase-ordering proces
such as the domain growth in magnetic systems@18#. In the
MBE growth with slope selection, the interface slope vec
M5“h develops a nonzero value and thus plays a role o
order parameter. Growing facets observed in the M
growth are highly similar to growing domains in the phas
ordering process of Ising-type magnetic systems. Analog
domain wall between two magnetic domains is the edge
occurs at the intersection of two nearly flat facets with d
ferent slope vectors, sayM1 andM2 . The edge appears as
straight line segment as evident in Figs. 3, 5, and 7. I
directed along the vectorM11M2 ~see Sec. IX and Appen
dix B!.

Our results call for a cautious comparison of the MB
growth with the phase-ordering phenomena in standard m
netic systems. For example, the scaling law in Eq.~24!, with
the coarsening exponent 1/3, turns out to be the same as
for the conserved~type B! Ising dynamics~well-known
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FIG. 6. ~a! The collapse of the slope-slop
correlation functions into a single curvey
5c(x), for hexagonal symmetry surfaces. He
y5KMM(r ,t)/KMM(r 50,t) and x5r /lMM(t),
wherelMM(t) is the first zero ofKMM(r ,t). ~b!
The collapse of the height-height correlatio
functions into a single curvey5c(x). Here y
5Khh(r ,t)/Khh(r 50,t) and x5r /l(t), where
l(t) is the first zero ofKhh(r ,t). In ~a! and~b!, r
points along the nearest-neighbor bond vector
the hexagonal grid used in the numerical integ
tion ~see Appendix A!. ~c! Time evolution of
l(t). l(t) characterizes the lateral size of th
pyramids. The log-log plot gives the scalin
l(t);t1/3 at long times.~d! The interface width
w(t) versus time. The log-log plot gives the sca
ing w(t);t1/3 at long times.
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Lifshitz-Slyozov law @18#!. However, this hardly may di-
rectly explain why we find the 1/3 exponent for anisotropic
local potentialU(M ) which is invariant with respect to rota
tions of the slope vectorM . This isotropic MBE model is
more like anX-Y model than an Ising model. In fact, th
MBE dynamical model is, for the isotropic case, rather sim
lar to the conserved~type B! dynamics of anX-Y model
which, however, has a different coarsening exponent equ
1/4 @18#. Thus, this similarity fails to provide an understan
ing of the 1/3 coarsening law we find for the isotropic MB
growth.

The physical origin of this difference between the isot
pic MBE model and theX-Ymodel is in the fact that, for the
MBE case, the vector order parameterM is a gradient of
another field, namely the interface heighth(x). With the
constraintM5“h, the free energy of anX-Y model ~two-
component Ginzburg-Landau model! reduces to the effective
free energy in Eqs.~5!–~7! for the isotropic case. AnX-Y
model has smeared domain boundaries and deloca
boundary free energy, with the average free-energy den
given byFu.a.;1/l2 rather than by the law in Eq.~18!. How-
ever, in the presence of the constraintM5“h, the situation
substantially changes. The domain boundaries then form
thin domain walls, edges that carry essentially all the eff
tive free energy of the system. Thisenergy localization,
similar to that in Ising systems, eventually yields the la
Fu.a.;1/l, as in Eq.~18!, which is crucial for obtaining the
1/3 coarsening law in Eq.~24!.
-

to

-

ed
ity

as
-

We emphasize that this energy localization, i.e., the e
tence of facets bounded by edges isby no meansconditioned
by the presence of anisotropies. In fact, the edges and
associated 1/3 coarsening power law do exist even for
isotropic MBE growth, as documented by simulations in S
IV. A long edge is simply a stable stationary solution
evolution equation~4!, for which dFeff /dh50. This equation
has edge-type solutions even for the isotropic MBE grow
models, as detailed in Sec. IX and Appendix B.

This feature is in marked contrast to ordinaryX-Y sys-
tems. There, sharp domain walls occuronly in the presence

FIG. 7. The network of edges for a smaller portion (1
3100) of the isotropic surface. The characteristic length of
edges;l(t), the pyramid size.
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FIG. 8. ~a! The contour plots that depict the time evolution of the square anisotropy surfaces, like~001!. Almost regular lattice of four
sided pyramids is clearly visible.~b! Three snapshots of the edge lattice of a small portion of the growing surface for the square anis
surfaces. We see the presence of dislocations, which are topological defects of the edge lattice. Each dislocation incorporates a ro
Dislocations move, and their motion mediates coarsening, as explained in the text.
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of anisotropies. However, the isotropic MBE model h
sharp domain walls~edges! and energy localizationeven in
the absence of spatial anisotropiessuch as the hexagona
anisotropy discussed before. The observed 1/3 coarse
power law, for the isotropic MBE model, is a direct cons
quence of this energy localization implying the lawFu.a.
;1/l rather than the lawFu.a.;1/l2 that applies to the iso
tropic X-Y model@and yields there the 1/4 corsening law f
the conserved~type B! dynamics#.

How does the presence of anisotropies modify this
coarsening power law? A crucial feature for this law, th
Fedge;l and thusFu.a.;1/l, will not be altered by the pres
ence of anisotropies. Thus, one could expect that the
coarsening power law may be preserved in the presenc
anisotropies. This is apparently the case for the hexag
anisotropy studied in Sec. V. For this case, the anisotr
orients the edges. Nonetheless, the resulting edge netw
are still essentially random, like those of the isotropic ca
cf. Figs. 3 and 5. No strong constraints on the edge dynam
are imposed in such random networks, and the coarse
ing
-
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t

/3
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ng

goes with the same power law as in the isotropic case. On
other side, as discussed in the next section,square anisot-
ropy may induce formation of more regular edge structur
‘‘edge crystals,’’ that impose special constraints on the ed
dynamics. For such situations, the basic 1/3 coarsen
power law may break down, as detailed in the following.

VII. MBE GROWTH ON SQUARE
SYMMETRY „001… SURFACES

In this and the following section, we study the MB
growth on square symmetry~001! surfaces. To check for
finite-size effects we simulated systems with three differ
sizes 5003500, 7003700 and 100031000 mesh points of
the integration grid. The local potentialU(M ) was chosen
such that it has a square symmetry, with the nonequilibri
current vanishing at four minima ofU(M ) as in Fig. 2~c!.
The modeling scheme is detailed in Appendix A~see, also
Sec. IX!.

Looking at the simulation results in Fig. 8 we see that t
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presence of square anisotropy reflects on the pyram
strongly: the pyramid facets slopes are well oriented alo
the four preferred directions in Fig. 2~c!. Moreover, if we
look across the growing interface@see Fig. 8~b! and Figs.
15–19 in Appendix C#, we see the presence of a highly o
dered network of edges. There are two types of edges
appear with the square anisotropy:
~a! Regular edges, oriented parallel to thex or y axis: At
them, only one component of the facet slope vectorM
5“h changes in sign; either (Mx ,M y)→(2Mx ,M y) or
(Mx ,M y)→(Mx ,2M y) see Fig. 9~a!.
~b! Rooftop edges, oriented parallel toy56x axis: At them,
both components of the facet slope vectorM5“h change in
sign; (Mx ,M y)→(2Mx ,2M y), see Fig. 9~b!.

Figure 8 as well as the figures given in the Appendix
give the details of the coarsening process for the square
isotropy surfaces. Particularly informative are the figu
with edge structures@Fig. 8~b! and Figs. 15–19 in Appendix

FIG. 9. ~a! Regular edges. HereM1 ,M2 ,M3 ,M4 indicate the
four preferred slope vectors. Note that at regular edges only
component ofM ~either x or y component! changes in sign.~b!
Rooftop edge. As in~a!, here M1 ,M2 ,M3 ,M4 indicate the four
preferred slope vectors. Note that at rooftop edges both compon
of M are changing in sign, i.e.,M→2M .
ds
g

at

,
n-
s

C#. From them we see that the edge network forms a
nearly regular square lattice, ‘‘edge crystal’’ with the lattic
constant5l(t). Another feature is the marked presence
dislocationsmoving through this lattice of edges, see F
8~b! and the Figs. 15–19 in Appendix C. We see that
dislocations mediate the coarsening process, i.e., the in-
crease of the edge lattice constantl(t) in time. Indeed, by
looking at the dislocation in the upper part of Fig. 8~b! we
can see that this is the case. This dislocation appare
moves to the right. This motion goes on via gradual extin
tion ~collapse! of two horizontal lines of edges terminating
the dislocation core@see Fig. 8~b!, the horizontal lines termi-
nating at the rooftop ridge in the dislocation core#. In effect,
the total length of edges in the system decreases and pyra
facets thus grow: Note the presence oflarger facets just to
the left of the dislocation core andsmallerfacets to the right
of the dislocation in the Fig. 8~b!. As the two horizontal
edges terminating at the dislocation core collapse, the th
smaller facets transform into one larger facet, and, at
same time, the dislocation moves to the right. Thus,
coarsening process is mediated by the dislocation motio

Another manifest feature in Fig. 8~b! and in Figs. 15–19
in Appendix C, is the presence of physical length scalesdif-
ferent from l(t). In Fig. 8~b!, we indicated another length
scale, called there asj(t), which represents the distance b
tween two neighboring dislocations measured along thx
direction. See, e.g., the two dislocations in the bottom par
Fig. 8~b! at t528 000. Subsequently, the left dislocatio
moves to the left whereas the right dislocation moves to
right. Thus,j(t) increases in time.

In order to characterize the surface morphology, we c
culate four types of correlation functions~see Figs. 10 and

e

nts

FIG. 10. The collapse trial of the height-height correlation fun
tions into a single curvey5c(x), for the square anisotropy~001!
surfaces. Herey5Khh(r ,t)/Khh(r 50,t), and x5r /r 0(t), where
r 0(t) is the position of the midpoint between the first minimum a
the second maximum of the correlation function. Here, the corr
tions are given for thex direction,r5(x,0). Note that, in contrast to
r 0(t), the first zero crossing of this correlation function~measured
along thex direction! both qualitatively and quantitatively fails to
represent a measure of the actual pyramid size.
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11!. The first of them is the equal time height-height cor
lation function defined by

Khh~r ,t !5^h~x1r ,y,t !•h~x,y,t !&. ~25!

As for the growth on hexagonal surfaces, this correlat
function has an oscillatory character reflecting the prese
of the periodic structure of mounds, see Fig. 10. We tried
see if the height-height correlation functions, obtained at
ferent times for the square anisotropy surfaces, collapse
a single curve, see Fig. 10. Apparently, the collapse t
fails. Closely related height-height difference correlati
functions

Khh-diff~r ,t !5^„h~x1r ,y,t !2h~x,y,t !…2& ~26!

would thus also fail to collapse. The reason for the failure
the collapse of these correlation functions is in the existe
of several large lengthscales. Indeed, as noted above, in
dition to the pyramid facet sizel(t), we have another length
scalej(t) measuring the distance between neighboring d
locations along thex direction.

FIG. 11. ~a! The trial collapse of the longitudinal slope-slop
correlation functions into a single curvey5c(x), for the square
anisotropy~001! surfaces. Herey5K long(r ,t)/K long(r 50,t) and x
5r /l(t), wherel(t) is the position of the first zero crossing of th
correlation function.~b! The transverse slope-slope correlati
function K trans(r ,t) at various times for the growth on the squa
anisotropy~001! surfaces.
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Looking at the structure of the network of edges, one c
define two other correlation functions that would capture
length scalesl(t) andj(t):

~i! The longitudinal slope-slope correlation function de
fined as

K long~r ,t !5^Mx~x,y,t !•Mx~x1r ,y,t !&, ~27!

where, Mx(x,y,t)5]h/]x5h(x11,y,t)2h(x,y,t) is the x
component of the local slope.

~ii ! The transverseslope-slope correlation functions de
fined as

K trans~r ,t !5^M y~x,y,t !•M y~x1r ,y,t !&, ~28!

where M y(x,y,t)5]h/]y5h(x,y11,t)2h(x,y,t) is the y
component of the local slope.

To understand how the correlation functions in Eqs.~27!
and ~28! behave, consider variations ofMx(x,y) and
M y(x,y) along a horizontal line (y5const) in Fig. 8~b!. By
moving along this line one is crossing both the regular ed
~whereMx changes sign andM y remains unchanged! and the
rooftop edges incorporated in the dislocation cores~where
both Mx and M y change sign!. Thus, along the liney
5const,Mx(x,y) changes sign asx is increased byDx'l
5the distance between neighboring regular edges. In eff
the correlation function ofMx in Eq. ~27! is dominated by
the length scalel. On the other side,M y(x,y) changes sign
only if x is increased byDx'j5the separation between tw
neighboring dislocations measured thex direction. Thus, the
correlation function ofM y in Eq. ~28! will be mostly sensi-
tive only to the length scalej being the average separatio
between the dislocations in the same row of the ridge latt

As can be seen from simulations@see Fig. 11~a!#, corre-
lation functions ofMx in Eq. ~27! have an oscillatory char
acter reflecting evenly spaced regular edges at the dist
'l, that can be determined from the first zero crossing
this correlation function. We used this to extractl(t) versus
time, see Fig. 12~a!. On the other side, as documented by o
simulations@see Fig. 11~b!#, the correlation function ofM y
in Eq. ~28!, decays to zero at a distance;j. This correlation
function has no oscillatory character because the dislocat
are randomly placed along thex axis, with the average dis
tance between neighboring dislocations equal toj. The
length scalej can be conveniently defined as the distance
which the transverse correlation function~28! decays to one
half of its value at the origin, i.e.,K trans@r 5j(t),t#
5 1

2 K trans(r 50,t). We used this to extractj(t) versus time,
see Fig. 12~b!. Apart froml(t) andj(t), we calculated also
the interface widthw(t), see Fig. 12~c!. From data in Fig.
12, we obtain

w~ t !;tb, ~29!

l~ t !;tnc, ~30!

j~ t !;tnj, ~31!

with the coarsening exponents

nc50.2260.01'b50.2460.01, ~32!

nj50.5060.02. ~33!



r-

fo
t i
n
f

g

nted

in

eris-
f
he

lat-

is
ns,
s-
g

to
w-

ess
is-

m-
dge
tice

r

ale

the

d

of
h

e

tio

PRE 61 6201INTERFACIAL COARSENING DYNAMICS IN . . .
As nj is bigger thannc , the distance between two neighbo
ing dislocations, along thex direction,j(t), is much larger
than the pyramid sizel(t). By Eqs. ~30! and ~31!, j
;lnj /nc, with nj /nc'2. Due to this, the calculation ofj(t)
is more sensitive to the finite-size effects@as can be seen
from Fig. 12~b!#.

In the next section we propose a kinetic scaling theory
the MBE growth on the surfaces with square anisotropy. I
based on the physical picture obtained from our simulatio
with two major ingredients:~i! As noted at the beginning o
this section, the coarsening, i.e., increase ofl(t) with time is
mediated by dislocations of the edge lattice moving alonx
~or y! direction, in a fashion called as ‘‘dislocation climb’’ in
the literature on dislocations in standard~atomic! lattices.~ii !
Moving dislocations can meet each other andannihilate.

FIG. 12. ~a! Time evolution ofl(t), the first zero of the longi-
tudinal slope-slope correlation functionK long(r ,t), for the growth
on the square anisotropy~001! surfaces.l(t) measures the averag
size of the pyramids.~b! Time evolution ofj(t), the average dis-
tance between neighboring dislocations along thex direction.j(t)
is obtained from the transverse slope-slope correlation func
K trans(r ,t), as described in the text.~c! The interface width versus
time for the growth on the square anisotropy~001! surfaces. The
log-log plot gives the scalingw(t);t1/4 at long times. All data are
given for several different system sizes~5003500, 7003700 and
100031000!.
r
s
s,

This is documented in the figures of edge networks prese
in the Appendix C, see Figs. 15–19.

VIII. KINETIC SCALING THEORY
OF THE MBE GROWTH ON THE SQUARE

ANISOTROPY „001… SURFACES

As described in the previous section and summarized
Fig. 13~a!, the coarsening on the square anisotropy~001!
surfaces is characterized by the presence of two charact
tic length scales. One of theml(t) is the lattice constant o
the edge lattice.l(t) thus measures the lateral size of t
four sided pyramids. The other length scale,j(t) is the char-
acteristic distance between two dislocations of the edge
tice along thex direction~or y direction!. These two charac-
teristic length scales grow in time as power laws@see Eqs.
~30! and~31!# with different coarsening exponentsnc andnj

that we obtained from our simulations. They suggestnc'b
' 1

4 , whereasnj'
1
2 .

Surprisingly, the usually made assumption that there
only a single length scale and that correlation functio
therefore, follow a simple scaling law was not really que
tioned until recently@22#. Though values of the coarsenin
exponents for the pyramids sizenc'b' 1

4 were reported in
previous numerical simulations@16,17# and in the experi-
ments on~001! surfaces, analytic theories that attempt
explain this exponent are so far not developed. In the follo
ing, we develop a kinetic theory for the coarsening proc
on ~001! surfaces that carefully takes into account the ex
tence of two large length scales,l(t) andj(t).

As noticed in Sec. VII, the coarsening on the square sy
metry surfaces is mediated by the dislocations of the e
lattice. In the previous section, we saw that the edge lat
coarsens during the motion~climb! of these dislocations
along thex or y direction. LetNdisl denote the total numbe
of dislocations moving along thex direction. Their density
per unit area is

ndisl5
Ndisl

AB
, ~34!

whereAB denotes the base area of the film. The length sc
j is the average distance between the dislocations in thesame
lattice row of the heightl, as schematized in Fig. 13~a!.
Thus, there is just one dislocation on a rectangle with
height5l and width5j @see Fig. 13~a!#. Sondisllj51, i.e.,

ndisl5
1

lj
. ~35!

Let L denote thetotal length of the edges which are directe
along thex direction. On anLx by Ly substrate (AB5Lx
•Ly), one hasL5Lx3number of rows5Lx(Ly /l). Thus,

L5
AB

l
. ~36!

During the motion of each dislocation, with velocityvdisl, the
lengthL decreases during the timedt, by the amount equal to
2vdisldt. The factor of 2 here is due to having two lines
edges that are along thex direction and terminate at eac

n
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FIG. 13. ~a! A schematic representation of th
moving dislocations of the edge lattice and the
motion. Note that dislocations may annihila
with opposite dislocations moving either in th
same row or neighboring rows of the edge lattic
~b! A small portion (1003100) of the lattice of
edges for the square anisotropy surfaces. The
location core size is'l.
i-
p-

ve

n-
te
dislocation core@see Fig. 13~a!#. As there areNdisl moving in
the x direction, the total change ofL is

dL52Ndisl2vdisldt. ~37!

Thus,

dL

dt
52Ndisl2vdisl . ~38!

Using Eqs.~38! and ~36!

d~AB /l!

dt
52Ndisl2vdisl , ~39!

d~1/l!

dt
52

Ndisl

AB
2vdisl . ~40!

Using herendisl5Ndisl /AB ,

2
1

l2

dl

dt
522ndislvdisl . ~41!

Using here Eq.~35! for the dislocation densityndisl we have

1

l

dl

dt
52

vdisl

j
. ~42!
The total number of the dislocations,Ndisl decreases in time
due to annihilations with other dislocations@see Figs. 15–19
in Appendix C#. Thus, one can write

1

Ndisl

dNdisl

dt
52

1

t
,

i.e.,

1

ndisl

dndisl

dt
52

1

t
, ~43!

wheret is the mean lifetime of a dislocation before it ann
hilates with another dislocation. For example, a pair of o
posite dislocations moving in the same row, with relati
velocity 2vdisl , annihilates after typical timet5j/2vdisl @see
Fig. 13~a!#. By taking into account only this annihilation
channel one would thus obtain

1

t
5

2vdisl

j
. ~44!

However, Eq.~44! takes into account just one possible cha
nel of dislocation annihilations. A dislocation may annihila
also with apposite dislocations moving in the rowsaboveand
below the row in which the dislocation is moving@see Fig.
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13~a!#. Thus, instead of just one, there areq53 channels of
dislocation annihilations. The total rate of annihilations
thusq times bigger than that in Eq.~44!, i.e.,

1

t
5q

2vdisl

j
, ~45!

with q53. Using~45! and ~43!,

1

ndisl

dndisl

dt
52q

2vdisl

j
. ~46!

With Eqs.~46! and ~35!,

2
1

j

dj

dt
2

1

l

dl

dt
52q

2vdisl

j
. ~47!

Using here Eq.~42!,

1

j

dj

dt
5~q21!

2vdisl

j
. ~48!

With Eqs.~48! and ~42!,

1

j

dj

dt

1

l

dl

dt

5
d~ ln j!

d~ ln l!
5q21. ~49!

Integrating Eq.~49! gives

j;lq21, ~50!

i.e., with q53, j;l2. To proceed, we will use the relatio

vdisl;
1

l2 , ~51!

stating that the dislocation velocity is inversely proportion
to the square of the lattice constantl of the edge lattice~as
discussed later on!. Using Eqs.~51! and ~42! we obtain

1

l

dl

dt
5

2vdisl

j
;

1

jl2 . ~52!

By combining Eqs.~50! and ~52!,

1

l

dl

dt
;

1

lq11 . ~53!

Integrating Eq.~53! yields

l~ t !;t1/~q11!. ~54!

Using Eqs.~54! and ~50! we get another scaling relation

j~ t !;t ~q21!/~q11!. ~55!

Equations~54! and ~55! state thatl(t);tnc and j(t);tnj,
with

nc5
1

q11
, ~56!

nj5
q21

q11
. ~57!
l

Recalling here that there are three channels of disloca
annihilations, q53, we get the following values for the
coarsening exponents:

nc5
1

4
and nj5

1

2
. ~58!

These analytically derived values of the coarsening ex
nents are in agreement with the results obtained from
numerical simulations of the MBE growth on square anis
ropy surfaces. We note that the average distance betw
dislocations~in any direction!,

d5
1

Andisl

, ~59!

is different from the length scalej, which measures the av
erage distance between neighboring dislocations in the s
row of the edge lattice@i.e., along thex axis#. Indeed, using
Eqs.~59! and ~35!,

d5Aj•l. ~60!

Thus,d;tnd, with

nd5
nj1nl

2
. ~61!

With Eq. ~58!,

nd5
3

8
50.375. ~62!

We noted before@see Eq.~51!# that the dislocation veloc-
ity vdisl is inversely proportional to the square of the latti
constantl of the edge lattice. To see this, consider the d
location in Fig. 13~b!. One hasvdisl5l/t1(l), wheret1(l)
is the time needed for a dislocation to move distance5l.
During this move, the two edges just above and below
dislocation core, merge and are extinct. After this extinctio
the dislocation in Fig. 13~b! moves the distance5l to the
right. The time t1(l) it takes for this process to occur i
related tol via l;(t1)1/3, as one can infer by considerin
this edge extinction event along the reasoning that lead u
Eq. ~24!. Thust1;l3, andvdisl5l/t1;1/l2, as anticipated
before in Eq.~51!.

IX. FACETS, EDGES, EDGE TENSIONS,
AND EDGE CURRENTS

Formation of nearly flat facets, bounded by straight edg
is the major feature of the epitaxial growth with slope sele
tion. This feature is directly related to the effective fre
energy approach to MBE growth@21#, see Sec. III. Indeed
the interface evolution is governed by the effective free
ergy in Eqs.~5! to ~7!, that is,

Feff5E d2xFU~“h!1
k

2
~¹2h!2G , ~63!

via the type-A dynamics,

]h~x,t !

]t
52

dFeff

]h~x,t !
, ~64!
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implying, in particular, energy relaxation equation~19!,

dFeff

dt
52E d2xS ]h

]t D
2

,0. ~65!

Thus,Feff generally decreases in time, and the interface g
into the ground state minimizing the effective free ener
By Eq. ~63!, Feff is minimized only by minimizing both the
local potentialU(¹h).Umin and the bending energy densi
(k/2)(¹2h)2.0. It follows that the interface ground state
flat ~with zero bending energy!, of the form h(x)5M i•x,
where the slopeM i5“h minimizes the local potentia
U(M ). That is, M i belongs to the energy minimum s
U(M i)5Umin , which is, in the presence of crystal aniso
ropy, a discrete set ofQ points @see Figs. 2~b! and 2~c! for
Q56 and 4, respectively#, whereas it degenerates into
circle in the absence of anisotropies@see Fig. 2~a!#. Forma-
tion of flat growing facets, with slopesM i , is thus naturally
favored by the effective free-energy minimization. Even
the absence of crystal anisotropy, the interface breaks
growing facets and the edge networks form@see Secs. IV and
VI #. This is further discussed here and in Appendix B.

Two facets,n andn8, with slopesMn andMn8 , meet at a
straight edge along the intersection of facets’ planeshn
5Mn•x andhn85Mn8•x. Commonly, both with and withou
anisotropy, all facets have the same slope magnitude,
uMnu5uMn8u5M0 ~see Fig. 2!. The edge formed by the fac
ets n and n8 is thus directed along the vectorMedge5(Mn
1Mn8)/2, which is, as well, the interface slope at a point
the edge. In particular, forMn52Mn8 , the edge slope van
ishes and one has a horizontal, ‘‘roof-top’’ edge. More ge
erally, if 2f is the angle betweenMn and Mn8 , the edge
slope magnitudeuMedgeu5M0 cos(f),M0. In discussing
edges, it is convenient to go to the Cartesian coordinate
tem (x1 ,x2) with the x1-axis perpendicular to the edge an
the x2-axis along the edge~see Appendix B!. In this coordi-
nate system, the facets’ slopes areMn5
@2M0 sin(f),M0 cos(f)#, Mn85@M0 sin(f),M0 cos(f)#, and
thus, hn52M0 sin(f)x11M0 cos(f)x2 and hn8
5M0 sin(f)x11M0 cos(f)x2. The edge is the stationary so
lution of the equation of motion~64! that interpolates be
tween the facetsn andn8: As discussed in Appendix B, fo
an edge, the interface profile is of the form

h~x1 ,x2!5M0 sin~f! f ~x1!1M0 cos~f!x2 . ~66!

Here f (x1)'ux1u for ux1u@ l 05the edge width, as discusse
below and in the Appendix B. The associated slope fie
M5“h, thus has the form

M ~x1 ,x2!5@M1~x1!,M2#5@M0 sin~f! f 8~x1!,M0 cos~f!#.
~67!

As f 8(x1)'1 for x1@ l 0 , and f 8(x1)'21 for x1!2 l 0 ,M
in Eq. ~67! interpolates between the slopes of the facetsn and
n8.

As noted before in Sec. VI, edges carry extra costs of
effective free energy~in reference to the flat, infinite face
ground state!, of the form

Fedge5s l edge, ~68!
s
.

to

e.,

-

s-

,

e

where l edge is the edge length~measured in the base plan
along thex2 axis! whereass is the edge line tension. s
depends on the form of the local potentialU(M ), as well as
on which pair of facets is considered, as detailed in the
lowing and in Appendix B. For the growth on isotropic su
faces, edge line tension is thus a continuous function of
angle between the facets’ slope vectors52f @see, e.g., Eq.
~72! below#. On the other side, in the presence of crys
anisotropy, there areQ energetically favored facet slope d
rections@see Figs. 2~b! and 2~c! for Q56 andQ54, respec-
tively#. For each of (2

Q) pairs of Q facets there is a distinc
edge-type. For example, for the square anisotropy case
picted in Fig. 2~c!, there areQ54 degenerate energ
minima, i.e., four types of facets, and, thus, six types
edges. Due to the discrete rotational symmetry, various e
types may have the same line tension. Generally, the
tension will depend on the angle 2f between slope vectors o
the facets forming the ridge. Thus, for the square anisotr
case depicted in Fig. 2~c!, out of the six distinct edge types
four of them are formed by facet pairs with 2f5p/2. These
four types @identified before as ‘‘regular edges,’’ see Se
VII # are related by 90-degree rotation and thus have a c
mon value of the line tension. The remaining two types
edges are roof top edges, formed by facets pairs withf
5p. These two types of roof top edges are related by
degree rotation and thus have a common value of the
tension.

In the following, we will discuss edge line tensions for
various model forms of the local potentialU(M ), both with
and without anisotropies. Before proceeding, we elucid
another property of edges, namely theedge surface current.
In contrast to infinite facets characterized by zero surf
current, Eq.~2!, edges carry a nonzero surface current ru
ning along them, see Appendix B. In the above-mention
coordinate system, withx1 perpendicular to the edge andx2
along the edge, the current component perpendicular to
edge vanishes,J150, whereas, as detailed in Appendix B,

J25J2
NE~M1~x1!,M2!52

]U~M1 ,M2!

]M2
U

M15M1~x1!

,

~69!

with M5@M1(x1),M2# as in Eq. ~67!. As M approaches
facet slopes for largex1 , the edge currentJ2 in Eq. ~69! is
nonzero only within the edge width,ux1u, l 0 . Edges thus act
as thin wires carrying surface currents. The net current fl
flowing through an edge is

I edge5E
2`

1`

dx1J25E
2`

1`

dx1J2
NE~M1~x1!,M2!. ~70!

Similar to edge line tension, edge currentI edge depends on
the edge type. In particular, for roof top edges, this curren
zero ~asM250!.

Calculation of edge line tensions and edge currents is
cussed in Appendix B. Here we quote results thus obtai
for various model forms of the local potential. For examp
for the isotropic potential of the form
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U~M !52
r

2
~M !21

u

4
@~M !2#25

u

4
@M0

22~M !2#21const,

~71!

@with M05(r /u)1/2#, used in the simulations of Sec. IV~see
Appendix A!, we find, for the edge tension,

s~f!5
2&k1/2r 3/2

3u
sin3~f!; ~72!

as before, here 2f5the angle between the slope vectors
the facets intersecting at the edge. The edge profile here
in Eq. ~66! with f (x1)5 l 0 ln@cosh(x1 /l0)#, i.e., the interface
slope is as in Eq.~67!, with f 8(x1)5tanh(x1 /l0). Here, l 0 is
the edge width given by

l 0~f!5
&k1/2

r 1/2

1

sin~f!
. ~73!

For the edge current, Eq.~70!, we find, for U(M ) in Eq.
~71!,

I edge~f!5
2&k1/2r

u1/2 sin~f!cos~f!. ~74!

Note that the edge current in Eq.~74! is uphill, i.e., it has the
same sign as the edge slopeM25M0 cos(f). This is natural,
as the interface slope at the edge5M0 cos(f) is smallerthan
the preferred slopeM0 and the destabilizing effect dominate
@see Fig. 1~c!#. Thus, by means of their uphill currents, th
edges transport the material towards the pyramids’ tops,
contributing to the growth of pyramid heights.

Next, let us consider model local potentialsU(M ) for the
growth on square anisotropy surfaces such as the~001! sur-
face. The simplest one, used in our simulations of Sec.
~see Appendix A!, has the form,

U~Mx ,M y!52
r

2
@~Mx!

21~M y!2#

1
u

4
@~Mx!

41~M y!412b~Mx!
2~M y!2#,

~75!

or, in polar coordinates@Mx5M cos(u), M y5M sin(u)#,

U~M ,u!52
r

2
M21

u~31b!

16
M41

u~12b!

16
M4 cos~4u!.

~76!

The local potential~75! generates the nonequilibrium curre
JNE5(Jx

NE,Jy
NE), with

Jx
NE52

]U

]Mx
5Mx@r 2u~Mx!

22bu~M y!2#,

~77!

Jy
NE52

]U

]M y
5M y@r 2u~M y!22bu~Mx!

2#.

Above, b is an anisotropy parameter;b.21 to insure that
the local potential~75! is bounded from below. Forb5
11, the local potential~75!, i.e., Eq.~76! depends only on
the slope magnitude and reduces to the isotropic potentia
f
as

us

II

in

Eq. ~71!, yielding the growth with the coarsening expone
nc51/3 ~see Sec. IV!. For b,1, local potential~75! has four
minima at @Mx ,M y#5@M0 cos(un),M0 sin(un)#, with M0
5@2r /u(11b)#1/2 and un545°1(n21)90°, n51, 2, 3,
and 4, as in Fig. 2~c!. For b511, the energy minimum se
degeneratesinto the circle with the radius5M05@r /u#1/2 @as
in Fig. 2~a!# and one regains the isotropic potential~71!. For
b.11, the model potential~75! is again anisotropic, how-
ever, with new locations of minima which are now a
@Mx ,M y#5@M0 cos(un),M0 sin(un)#, with M05@r /u#1/2 and
un5(n21)90°, n51, 2, 3, and 4, i.e., the minima are no
on coordinate axes. Thus, the facets that occur forb.11
are rotated by 45° with respect to the facets that occur
b,1. By tuning the anisotropy parameterb, one can go from
the square anisotropy regime occurring forb,11 to the
other square anisotropy regime occurring forb.11, by
crossing the isotropic pointb511. The four-sided pyramids
and the edge networks that form forb.11 are rotated by
45° with respect to those that form forb,11. For example,
for b,11, the regular pyramid edges are parallel to thex
50 andy50 axes~as in our simulation in Fig. 8!, whereas
for b.11, the regular pyramid edges are parallel to thex
2y50 andx1y50 axes.

Square anisotropy regimes we find forb.1 and b,1
~both characterized by the coarsening exponentnc51/4,
Secs. VII and VIII! are separated by the isotropic regime
b51, characterized by the coarsening exponentnc51/3, as
found in Sec. IV. Interestingly, such a sequence of interfa
transformations has been recently observed in more mi
scopic~kinetic Monte Carlo! simulations of Amar@23#. By
tuning a microscopic model parameter, he was able to trig
a transition from the interface state as we described abov
occur for b,1, to another state, rotated by 45°, as we d
scribed above to occur forb.1. Moreover, in the transition
region between the two states, Amar finds a regime cha
terized by the ‘‘isotropic exponent’’nc51/3 and more com-
plex patterns of edges@23#. These observations of@23# are
strikingly similar to our findings above. We remark the fac
orientations seen in@23# in the ‘‘isotropic regime’’ are cer-
tainly not random, as one would have in an isotropic pot
tial, such as Eq.~76! for b51. Moreover, the observed ‘‘iso
tropic regime’’ exists over afinite domainin the parameter
space@not just at a point, as the pointb51 in the model
~76!#. To explain these findings, we propose here a mo
generalizing Eq.~76! by inclusion of thesecond harmonic
term,

U~M ,u!5U0~M !1U1~M !cos~4u!1U2~M !cos~8u!.
~78!

The second harmonic term,U2 in Eq. ~78! is qualitatively
important in situations in which the first harmonic term,U1 ,
goes to zero@e.g., at the isotropic pointb51 in the model
~76!#. With U2 present, the true isotropic point is not acce
sible. To illustrate this, let us ignore theM dependence ofU1
and U2 @by setting, simply,U1(M )5U1(M0) and U2(M )
5U2(M0)#. It is then easy to minimize Eq.~78! over the
polar angleu. This yields an interesting phase diagram d
picted in Fig. 14 in the (U1 ,U2) plane. There we seethree
different phases of the system. Two of them we have alre
met before: Phase I, with four degenerate potential minim
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polar anglesun545°1(n21)90°, i.e., cos(4u)521, and
Phase II, with four minima at polar anglesun5(n21)90°,
i.e., cos(4u)511. These phases occur already within t
single harmonic model~76!. In addition to them, due to the
presence of the second harmonic term in our model~78!,
there is a novel phase, referred to as Phase III in Fig. 14.
characterized by the presence ofeight degenerate energ
minima, at the eight values of the polar angleu solving the
equation

cos~4u!52
U1

4U2
. ~79!

Phase III exists in the regionU2.uU1u/4, see Fig. 14. Phas
III is separated from the phases I and II by second-or
phase transitions. At these transitions, four minima of pha
I and II continuouslybifurcate into the eight minima of
phase III. ForU2.0, by changingU1 , one can go from
Phase I to phase IIonlyby passing through phase III, see Fi
14. On the other side, forU2,0, by changingU1 , one can
directly go from phase I to phase II, by crossing the fir
order phase transition at the pointU150, at which four po-
tential minima of phase I coexist with four potential minim
of phase II. Across this transition, there is an abrupt
degree rotation of facet orientations from those of phase
those of phase II. In contrast to this, forU2.0, phase III

FIG. 14. Schematic phase diagram of the model in Eq.~78!, in
the (U1 ,U2) plane. We see three different phases of the system~i!
Phase I, with four degenerate energy minima at polar angleu
545°1(n21)90°, i.e., cos(4u)521, ~ii ! phase II, with four
minima at polar anglesu5(n21)90°, i.e., cos(4u)511, and~iii !
phase III, witheight degenerate minima, at the eight values of the
polar angle solving the equation cos(4u)52U1/4U2 . Phase III ex-
ists in the regionU2.uU1u/4. It is separated from phases I and II b
a second-order phase transitions at which four minima of th
phasesbifurcate into eight minima of phase III. ForU2.0, phase
III intervenes between phases I and II, and facet orientations
continuously throughout phase III from those of the phase I to th
of the phase II. On the other side, forU2,0, by changingU1 , one
can directly go from phase I to the phase II, by crossing first-or
phase transition at the pointU150, at which there is abrupt 45
degree rotation of facet orientations from those of the phase
those of the phase II.
is

r
es

-

-
to

intervenes between phases I and II, and facet orientat
@obtained by Eq.~79!# vary continuously throughout phas
III, from those of phase I to those of phase II~as indicated in
Fig. 14!. Remarkably, phase III has eight degenerate ene
minima, i.e., eight possible types of facets in comparison
only four types that occur in phases I and II. Within pha
III, the interface may exhibit the isotropic coarsening exp
nentnc51/3, as suggested by our simulations of the syste
with large number of allowed facets types occurring in t
growth on ~111! surfaces@see Secs. V and VI#. While this
point needs to be explored in future work, it suggests t
phase III may well correspond to the interface state found
exhibit the isotropic coarsening exponentnc51/3 in Ref.
@23#. The particular location that we find in Fig. 14 for Pha
III, as an intervening phase between phase I and phas
~both withnc51/4!, directly corresponds the observations
Ref. @23#. The fact that our phases I and II are directly relat
to those seen in Ref.@23# ~they are mutually related by 45
degree rotation, etc.!, simply indicates that the phenomen
observed in that work are related to a change of sign of
first harmonic termU1 . This directly leads to our phenom
enological model in Eq.~78!, which predicts the intervening
Phase III as a natural candidate for the interface state fo
to exhibit the isotropic coarsening exponentnc51/3 in Ref.
@23#. On the other hand, an alternative interpretation for
findings of Ref.@23# is that the regime withnc51/3 corre-
sponds to the first-order transition between phases I an
that occurs forU2,0 atU150, see Fig. 14. Precisely at th
phase-transition point, the local potential~78! has eight de-
generate minima atun5(n21)45° ~n51 to 8! forming a
regular octagon in theM space. At this transition, the inter
face would look like a mixture of phases I and II, similar
findings of Ref.@23#. We stress, however, that reaching th
transition point may require a fine tuning of the system
parameters. For example, within the model~78! U1 has to be
set to zero as only then all eight minima have the sa
energy. Still, for a smallU1 , the U2 term in Eq.~78! may
dominate at short-time scales. Under this condition, dur
the early stage of evolution the interface would appear a
mixture of phases I and II.

We proceed by a discussion of edges in the simp
model with square anisotropy in Eq.~75!. As noted above,
here we expect two kinds of edges:~i! regular edges formed
by facet pairs with 2f5p/2, and~ii ! roof top edges, formed
by facets pairs with 2f5p. ~2f is the angle between
slope vectors of the two facets intersecting at the edge.! For
example, in Fig. 2~c! regular edges are formed by facets pa
(n,n8), with slopesMn and Mn8 , for (n,n8)5(1,2), ~2,
3!,~3, 4!, and ~4, 1!, whereas roof top edges are formed
the facet pairs (n,n8)5(1,3) and~2, 4!. Edge line tensionss
and edge currentsI edge are model dependent as detailed
Appendix B. Consider, for example the local potential in E
~75!, with the anisotropy parameterb,1 ~then the potential
minima are atun545°1(n21)•90°, n51, 2, 3, and 4, as in
Fig. 2~c!. We find, for the line tension of the regular edg
(2f5p/2),

s reg5
2&k1/2r 3/2

3~11b!3/2u
, b,1, ~80!

whereas their surface current is
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I reg5
2&bk1/2r

~11b!u
, b,1. ~81!

The regular edge profile here is as in Eq.~66! with M0
5@2r /u(11b)#1/2, 2f5p/2, and f (x1)
5 l regln@cosh(x1 /lreg)#, i.e., the interface slope is as in E
~67!, @M1(x1),M2#5@M0 sin(f)f8(x1),M0 cos(f)#, with
f 8(x1)5tanh(x1 /lreg). Here, l reg is the regular edge width
given by

l reg5
&~11b!1/2k1/2

r 1/2 , b,1. ~82!

Next, we proceed to discuss theroof-topedges forb,1. We
find, for their line tension,

s rt5
4&k1/2r 3/2

3~11b!u
, b,1, ~83!

whereas their surface current is zero,

I rt50. ~84!

In the coordinate system associated with the roof top e
~with the x2 axis along and thex1 axis perpendicular to the
edge!, its profile here is as in Eq.~66! with M05@2r /u(1
1b)#1/2, 2f5p, and f (x1)5 l rt ln@cosh(x1 /lrt)#, i.e., the in-
terface slope is as in Eq. ~67!, @M1(x1),M2#
5@M0 sin(f)f8(x1),M0 cos(f)#5@M0f8(x1),0#, with f 8(x1)
5tanh(x1 /lrt). Here,l rt is the roof top edge width given by

l rt5
&k1/2

r 1/2 . ~85!

Using Eqs.~80! and ~83!, the ratio of the line tensions o
rooftop and regular edges is

s rt

s reg
52A11b, b,1. ~86!

As indicated above, Eqs.~80!–~83!, and Eq.~86!, apply for
the caseb,1, when the potential minima are at polar ang
un545°1(n21)•90°, n51, 2, 3, and 4, as in Fig. 2~c!. As
discussed before, forb.1, the local potential minima are a
un5(n21)•90°, n51, 2, 3, and 4, and, in effect, four-side
pyramids and the edge networks that form forb.11 are
rotated by 45° with respect to those that form forb,11.
Formulas for the edge energies, currents, etc., for the
b.1, can be obtained from the above formulas forb,1, by
using the following mathematical property of Eq.~75!: A
45-degree base plane rotation maps the potential~75! into
itself with, however, changed parameters. By this rotati
@b,u#→@b8,u8#, where

b85
32b

11b
, ~87!

u85
11b

2
u. ~88!

By a 45-degree rotation, a potential withb.1 maps into a
potential withb8,1 @as can be seen by noting that Eq.~87!
is equivalent to (11b)(11b8)54#. Due to this, it is enough
to study the model~75!, analytically or by numerical simu
e

s

se

,

lations, just in the rangeb,1. In particular, formulas for
edge tensions, currents, and widths that apply forb.1, can
be obtained from the above corresponding formulas that
ply for b,1, by replacing @b,u# therein with @b85(3
2b)/(11b), u85(11b)u/2#. By using this, we find, for
the line tension of the regular edges,

s reg5
~11b!1/2k1/2r 3/2

3&u
, b.1. ~89!

Their surface current is

I reg5
&~32b!k1/2r

~11b!u
, b.1. ~90!

Regular edge width is given by

l reg5
2&k1/2

~11b!1/2r 1/2, b.1. ~91!

By the same replacement, we find, for the line tension
roof-top edges,

s rt5
2&k1/2r 3/2

3u
, b.1, ~92!

The roof-top edge surface current (50) and the width are
given by Eqs.~84! and ~85! for any b. Using Eqs.~89! and
~92!, the ratio of the line tensions of rooftop and regul
edges is

s rt

s reg

5
4

A11b
, b.1. ~93!

We proceed by discussing some features of the ab
results. First, note that the regular edge current is posi
~‘‘uphill’’ ! only for 0,b,3, see Eqs.~81! and~90!. On the
other side, forb,0 or b.3, the edge current is negative
downhill. As noted before@see the discussion following Eq
~74!#, as the interface slope at the edge5M0 cos(f) is
smaller than the preferred slopeM0 , it would be natural to
expect apositive edge current in a realistic MBE growt
model @the destabilizing Schwoebel-Ehrlich effect shou
then dominate, see Fig. 1~c!#. It is thus unlikely that the
model in Eqs.~75!–~77! with b,0, or b.3, is of a more
direct physical interest. For this reason, we have focused
simulations on the anisotropy parameter range 0,b,3.
Moreover, using Eq.~87!, models with 3.b.1 can be
mapped into models with 0,b,1. It is thus sufficient to
restrict our study to the range 0,b,1. With these observa
tions in mind, we carried the simulations of Sec. VII b
choosingb51/2.

For 0,b,3, regular pyramid edges have uphill curren
transporting material towards the pyramids’ tops, thus c
tributing to the growth of pyramid heights. On the other sid
for 21,b,0, or for b.3, regular pyramid ridges hav
downhill currents. Though, as noted above, such a situa
may not correspond to realistic MBE growth, it may be i
teresting in its own right. In relation to this, we comment
a recent work of Siegert@22#, who numerically investigated
the rangeb,0. He claims observing a special value ofb ~he
estimates to bebc

Siegert523/4!, such that a coarsening wit
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nc51/3 occurs atbc , whereas forb.bc one has the coars
ening withnc51/4. It was suggested in@22#, that, atbc , the
line tensions of rooftop and regular ridges are related
s reg5&s rt . By combining this relation with our result in
Eq. ~86!, we find bc527/8. This is smaller than the valu
bc

Siegert523/4, as our correct edge line tensions in Eqs.~80!
and ~83! differ from those used in Ref.@22#. Thus, the fact
that the data of Ref.@22# suggest coarsening withnc51/3
already atb523/4 needs to be understood.

Having said this, we reiterate our skepticism in referen
to physical relevance of the simple model~75! outside the
range 0,b,3. Having, in this model, a coarsening wit
nc51/3, somewhere outside the range 0,b,3, is unlikely
to have some significance in explaining seemingly sim
observations from experiments and realistic kinetic Mo
Carlo simulations on square anisotropy~001! surfaces.
Though, to our knowledge, no experiment, thus far, has s
gested such a coarsening, recent simulations of Amar@23#
offer a realistic possibility of having a regime withnc51/3
coarsening on~001! surfaces. As detailed before in this se
tion, understanding of this regime requires going beyond
simple model~75! to more general models, such as the o
we proposed in Eq.~78!.

X. SUMMARY

The growth on isotropic and hexagonal symmetry~111!
surfaces was shown to exhibit a scaling behavior charac
ized by the presence of a single characteristic length s
l(t)5pyramid size that grows in time as a power law. O
numerical simulations suggest that the growth of the cha
teristic length scale is governed by the same coarsening
ponents for both isotropic and hexagonal symmetry~111!
surfaces. The coarsening exponent obtained isnc>0.33. The
kinetic scaling theory that explains this scaling behavior w
presented in this work in Sec. VI. It employs the fact that
effective free energy of growing interfaces is localiz
within edge networks. These networks form across the in
face, both with and without spatial anisotropy present.

The growth on the square symmetry~001! surfaces is
more subtle. In this case, pyramid edges form nearly per
square lattices disordered by irregularly placed dislocatio
The interfacial coarsening is mediated by motion of the d
locations that we characterized here as the dislocation cli
The presence of the dislocations is thus crucial for the co
ening of the square symmetry~001! surfaces. In fact, in nu-
merical simulations, the coarsening essentially stops as s
as the average distance between the dislocations reache
size of the system that is simulated. The growth on
square symmetry~001! surfaces exhibits a multiscaling be
havior, as there are two characteristic length scales that g
in time with two different coarsening exponents. One
them is the pyramid lateral size;pyramid height, growing
with the coarsening exponentnc>b>0.25. The other length
scalej(t), the distance between the dislocations in the sa
row of the edge lattice, grows faster with a different exp
nentnj>0.50. Kinetic scaling theory that explains the coa
ening exponents for the square symmetry~001! surfaces was
presented in this work in Sec. VIII. The theory shows th
the dislocation climb and dislocation annihilation proces
going on across the edge network are essential for un
y
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standing of the coarsening dynamics on this type of surfa
Other possible dislocation processes, such as the disloca
pair production, or occasional formations of unstable bou
states between two dislocations moving in different dire
tions ~one vertically, the other one horizontally; see, e.
Fig. 19 in Appendix C!, insignificantly affect the coarsening
In fact, a significant dislocation production occurs only du
ing the initial ~precoarsening! stage of the growth. Subse
quently, production of new dislocations is energetically h
dered, as it would introduce new pyramid edges and caus
increase of the effective free energy. The coarsening on
square symmetry~001! surfaces is, generally, an extinctio
of pyramid edges and facets mediated by climbing dislo
tions. Rate of this extinction crucially depends on the nu
ber of dislocations present across the interface. During
late time film evolution~i.e., coarsening!, total number of
dislocations decreases in time due to their annihilations w
other dislocations~or with the film lateral boundaries!. These
effects are incorporated into our kinetic scaling theory tha
used in Sec. VIII to analytically explain coarsening exp
nents observed in experiments and previous numerical si
lations of the growth on~001! surfaces.

Finally, we note that the interface growth phenomena d
cussed in this paper are similar to the buckling dynamics
elastic manifolds~elastic rods and tethered membranes! in-
vestigated in our recent works@24,25#.
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APPENDIX A

In this Appendix, we give a detailed description of o
modeling scheme. First, we describe how we solve
type-A evolution equation~4! for the MBE growth on a hex-
agonal~i.e., equilateral triangle! grid. Such a grid is natura
for simulating the growth on hexagonal symmetry surfac
With each node of the hexagonal grid, with the locationx
5(x1 ,x2) in the base plane, we associate the interface he
h(x). Further, we associate with the height configuration$h%,
a suitable defined effective free energyFeff($h%) ~see below!,
and simply integrate the type-A dynamics equations

dh~x!

dt
52

]Feff

]h~x!

with a discretized time.
We proceed by discussing the discrete form of the t

terms of the effective free energyFeff @see Eq.~5!#. The first,
surface diffusion term~‘‘bending energy’’! is defined on the
hexagonal grid in the following way:

FSD5
k

2 (
x

H (
j 51

3

@h~x1aj !1h~x2aj !#

6
2h~x!J 2

.

~A1!
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Here,6aj , j 51,2,3, are the nearest-neighbor bond vect
of the hexagonal grid. In the continuum limit, the express
in Eq. ~A1! yields the expression~6! for the bending energy

FSD;E d2x~¹2h!21¯ , ~A2!

where the ellipses indicate the terms with higher-order
rivatives of h(x). To model the local potential term in Eq
~5!, we considerFNE in the form

FNE5(
x

H (
j 51

3

F@h~x1aj !2h~x!#J , ~A3!

where the functionF(Dh) has the propertyF(Dh)5F
(2Dh) and we are free to choose it. In the continuum lim
we have

FNE;E d2xU~¹h!1higher derivative terms,~A4!

with

U~M !5F~M•a1!1F~M•a2!1F~M•a3!

5F„uM ucos~u!…1FXuM ucosS u2
2p

6 D C
1FXuM ucosS u2

4p

6 D C. ~A5!

Resulting nonequilibrium current is of the form

JNE52
]U~M !

]M

52F8~M•a1!a12F8~M•a2!a22F8~M•a3!a3 .

~A6!

The expression for the local potential, Eq.~A5! can be reex-
pressed as the Fourier series

U~ uM u,u!5US uM u,u1
2p

6 D
5U0~ uM u!12(

n51

`

Un~ uM u!cos~6np!,

Un~ uM u!53E
2p

1p du

2p
F~ uM ucosu!cos~6nu!. ~A7!

For example, if we use for the functionF(Dh) the following
expression:

F~Dh!5a01a2~Dh!21a4~Dh!41a6~Dh!6, ~A8!

then, by Eq.~A7!,

U~ uM u,u!5U0~ uM u!12U1~ uM u!cos~6u!, ~A9!

whereas all higher-order harmonics vanish@05U2(uM u)
5U3(uM u)5...#. In Eq. ~A9!, the coefficientsU0(uM u) and
U1(uM u) are
s
n

-

t

U0~ uM u!53a01
3

2
a2uM u21

9

8
a4uM u41

15

16
a6uM u6,

~A10!

and

U1~ uM u!5
3

64
a6uM u6. ~A11!

Already from the last two equations, we can see that th
are two interesting situations to study@notice thatU1(uM u)
depends only ona6 and, moreover, vanishes fora650#:

Casea6.0: Using the

JNE52
]U~M !

]M

we get six local potential minima with vanishingJNE, that is

JNE50 at H u5
p

6
1n

2p

6
, n50,1,2,3,4,5

uM u5M0

, ~A12!

whereM0 is the value ofuM u minimizing U(uM u,u5p/6).
This corresponds to the hexagonal symmetry surfaces,
Fig. 2~b!.

Case a650: This gives JNE50 along a circle uM u
5M0 in the order-parameter space, due to the fact t
U(M ) does not depend on the polar angleu @see Eqs.~A9!
and~A11!#. This case can be thus used to model the grow
in the absenceof surface anisotropy, see Fig. 2~a!.

Equation~A8! can be conveniently rewritten as

F~Dh!5
b1

2
e21

b2

3
e31const, ~A13!

wheree is given by

e5
~Dh!22~Dh0!2

2
. ~A14!

b1 , b2 , andDh0 are numerical constants simply related
those in Eq.~A8!. In our simulations we set (Dh0)250.2 and
modified only the coefficientsb1 andb2 . By Eqs.~A8! and
~A13!, a65b2/24. According to the above discussion, th
choiceb250 thus generates a local potential which is ro
tionally invariant. We remark though that higher derivati
terms indicated in Eqs.~A2! and ~A4! break the perfect ro-
tational symmetry. Nonetheless, withb250, the rotational
invariance is exact forflat interface configurations. Thus
even for the discretized model, one has the circular c
tinuum set of degenerate energy minima in Fig. 2~a! corre-
sponding to flat interfaces with the slope vectorM5¹h hav-
ing a fixed magnitudeM0 and arbitrary direction. This
method~of choosingb250! on the hexagonal discrete grid
was one of the methods we used to simulate the growth
isotropic surfaces. The other method we used was to u
square discrete grid and an appropriate form of the lo
potential, as discussed later on@see Eq.~A25!#.

Finally, we give description of our modeling scheme f
square symmetry surfaces. Here, we solved the evolu
equation~4! for the MBE growth on a square grid. As for th
hexagonal case, with each node of this grid, with the locat
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x5(x1 ,x2) in the base plane, we associate the interfa
heighth(x). Further, we associate, with the height config
ration $h%, a suitable defined effective free energyFeff($h%)
~see below!, and simply integrate the type-A dynamics equa-
tions:

dh~x!

dt
52

]Feff

]h~x!

with a discretized time.
We proceed by describing the discrete form of the t

terms of the effective free-energyFeff @see Eq.~5!#. The first,
surface diffusion term~‘‘bending energy’’! is defined on the
square grid in the following way:

FSD5
k

2 (
x

H (
j 51

2

@h~x1aj !1h~x2aj !#

4
2h~x!J 2

.

~A15!

Here,6aj , j 51,2, are the nearest-neighbor bond vectors
the square grid. In the continuum limit, the expression in E
~A15! yields the expression~6! for the bending energy:

FSD;E d2x~¹2h!21¯ , ~A16!

where the ellipses indicate the terms with higher-order
rivatives of h(x). To model the local potential term in Eq
~5!, we considerFNE in the form

FNE5(
x

H Fnnn@h~x1a21a1!2h~x!#

1Fnnn@h~x1a22a1!2h~x!#

1(
j 51

2

Fnn@h~x1aj !2h~x!#J , ~A17!

where the functionsFnnn(Dh) ~the next-nearest-neighbo
term! and Fnn(Dh) ~the nearest-neighbor term! have the
properties Fnnn(Dh)5Fnnn(2Dh) and Fnn(Dh)5Fnn
(2Dh) and we are free to choose them. In the continu
limit we have

FNE;E d2xU~¹h!1higher derivative terms,

~A18!

with

U~M !5Fnnn~M11M2!1Fnnn~M22M1!1Fnn~M1!

1Fnn~M2!. ~A19!

We used in Eq.~A17! the following forms for the functions
Fnnn(Dh) andFnn(Dh):

Fnnn~Dh!5
c2

16
~Dh!4, ~A20!

Fnn~Dh!5
c1

2
e2, ~A21!
e
-

f
.

-

e5
~Dh!22~Dh0!2

2
, ~A22!

wherec1 , c2 , andDh0 are constants that allow us to choo
various shapes for the local potentials and, therefore, var
shapes for the nnequilibrium current, corresponding
square symmetry surfaces. In our simulations we fix
(Dh0)250.2 and we modified only the coefficientsc1 and
c2 . By Eqs.~A19!–~A22!, the local potential has the form

U~M !5
c2

16
@~M11M2!41~M12M2!4#

1
c1

8
@„M1

22~Dh0!2
…

21„M2
22~Dh0!2

…

2#.

~A23!

Equation~A23! can be conveniently rewritten as

U~M !52
r

2
~M1

21M2
2!1

u

4
~M1

41M2
412bM1

2M2
2!1const,

~A24!

or, in polar coordinates@M15M cosu, M25M sinu#, as

U~M !52
r

2
M21

u~31b!

16
M41

u~12b!

16
M4 cos~4u!,

~A25!

with

r 5
c1~Dh0!2

2
,u5

c11c2

2
,and b5

3c2

c11c2
.

Local potential in Eqs.~A24! and~A25! is discussed in more
detail in Sec. IX. Using Eq.~A25! we see that this potentia
becomes isotropic forb51 and can be thus used to nume
cally simulate the growth on isotropic surfaces. We used
to check our findings on isotropic surfaces obtained by us
the hexagonal grid, as described before in this Appendix~see
the casea65b2/2450!. Eventually, we have found tha
properties of interface morphologies~edge network! as well
as the coarsening exponentnc51/3, obtained by these two
markedly different approaches to isotropic surfaces, are
same.

APPENDIX B

Here we outline the calculation of edge line tensions a
edge currents discussed in Sec. IX. Edges are stationary
lutions of the interface equation of motion~4!,

]h~x,t !

]t
52

DFeff

dh~x,t !
, ~B1!

whereFeff is the effective free energy

Feff5E d2xFU~“h!1
k

2
~¹2h!2G

5E d2xFU~M !1
k

2
~“•M !2G ; ~B2!
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hereM5“h is the interface slope. As noted in Sec. III, E
~B1! is equivalent to

]h

]t
52“•J, ~B3!

whereJ is the surface current,

J5JNE~M !1k“~¹2h!5JNE~M !1k¹2M . ~B4!

Here,JNE(M ) is the nonequilibrium surface current, relate
to the local potentialU(M ) by

JNE~M !52
]U

]M
. ~B5!

Edges are stationary solutions of Eq.~B3!, i.e., ]h/]t50.
For them, with Eq.~B3!, “•J50, i.e.,

]J1

]x1
1

]J2

]x2
50. ~B6!

Using Eqs.~B4! and ~B5!,

J152
]U~M1 ,M2!

]M1
1k¹2M1 ,

FIG. 15. A small portion (3003300) of the network of edges
for the square anisotropy surfaces at timest516 000 and t
518 000.
J252
]U~M1 ,M2!

]M2
1k¹2M2 ; ~B7!

hereMi5]h(x1 ,x2)/]xi , i 51,2. To obtain the edge profile
we seek a solution of Eq.~B6! of the form

h~x1 ,x2!5C~x1!1a•x2 , ~B8!

wherea is a constant andC(x1) is a function ofx1 only, yet
to be determined. Withh(x1 ,x2) as in Eq.~B8!, the interface
slope,M5“h has the form

M15C8~x1!, M25a, ~B9!

i.e., M1 is a function ofx1 only, whereasM2 is just a con-
stant. Using Eqs.~B9! and ~B7!,

J152
]U~M1 ,M2!

]M1
UM15M1~x1!

M25a

1k
d2M1

dx1
2 , ~B10!

J25J2
NE~M1~x1!,a!52

]U~M1 ,M2!

]M2
UM15M1~x1!

M25a

.

~B11!

Note that the aboveJ1 andJ2 are functions ofx1 only. Thus,
Eq. ~B6! reduces to

FIG. 16. The same as in Fig. 15, here at timest520 000 andt
522 000.



fo
fa
e

a
l

be-

ial

y

dge

6212 PRE 61DOREL MOLDOVAN AND LEONARDO GOLUBOVIC
dJ1

dx1
50. ~B12!

Thus,J1 must be a constant. This constant must be zero
edge solutions. Indeed, for a single long edge, the sur
current must vanish for largex1 simply because the edg
profile interpolates between two facets atx156` ~recall
that the facet surface current is zero!. Thus,J150, and, with
Eq. ~B10!,

052
]U~M1 ,a!

]M1
1k

d2M1

dx1
2 . ~B13!

Equation~B13! is analogous to the equation of motion of
particle with positionM1(x1) in a one-dimensional potentia
2U(M1 ,a); x1 here is the ‘‘time’’ in this analogy. Using
Eq. ~B13!, one has the ‘‘conservation of energy’’ equation

05
d

dx1
Fk2 S dM1

dx1
D 2

2U„M1~x1!,a…G . ~B14!

By integrating Eq.~B14!,

k

2 S dM1

dx1
D 2

2U~M1~x1!,a!52Umin . ~B15!

FIG. 17. The same as in Fig. 15, here at timest524 000 andt
526 000.
r
ce

Here, Umin signifies the absolute minimum ofU(M1 ,M2).
This choice of integration constant is appropriate here
cause, for largeux1u, the slope approaches a facet slope@re-
call that facet slopes minimize the local potent
U(M1 ,M2)#. Equation~B15! will give us an edge profile in
the coordinate system in which thex1 axis is perpendicular
to the edge and thex2 axis is along the edge, as alread
described in Sec. IX. As in Sec. IX, let 2f be the angle
between the facetn and n8 that intersect at the edge.uMnu
5uMn8u5M0 , whereasMn5@2M0 sin(f),1M0 cos(f)# and
Mn85@1M0 sin(f),1M0 cos(f)#.

The edge slope vector in Eq.~B9! asymptotically
approaches those of the facets, i.e., forx1→2`,
M5@M1(x1),a#→Mn5@2M0 sin(f),M0 cos(f)#, whereas,
for x1→1`, M5@M1(x1),a#→Mn8
5@M0 sin(f),M0 cos(f)#. In both of these limits,U(M )
→U(Mn)5U(Mn8)5Umin . At the very edge,M150, and
M5@0,a#5@0,M0 cos(f)#. Thus,a5M0 cos(f) is the inter-
face slope at surface points on the edge. The overall e
profile can be obtained by integrating Eq.~B15!, i.e.,

Ak

2

dM1

dx1
5AU~M1~x1!,a!2Umin, ~B16!

by writing

FIG. 18. The same as in Fig. 15, here at timest528 000 andt
531 000.
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dx15Ak

2

dM1

AU~M1 ,a!2Umin

, ~B17!

and integrating both sides of this equation. Equation~B17!
with a5M0 cos(f), was used to obtain the edge profil
quoted in Sec. IX.

The edge effective free energy@in reference to the infinite
facet ground state# is, by Eq.~B2!,

Fedge5E E dx1dx2FU~M1 ,M2!2Umin

1
k

2 S ]M1

]x1
1

]M2

]x2
D 2G

5E E dx1dx2FU~M1~x1!,a!

2Umin1
k

2 S dM1~x1!

dx1
D 2G

5 l edge•s, ~B18!

FIG. 19. The same as in Fig. 15, here at timest565 000 andt
5128 000. The arrow points to an unstable bound state betw
two dislocations moving in different directions, one vertically, t
other one horizontally.
wherel edgeis the edge length~along thex2 direction!, ands
is the edge line tension,

s5E
2`

1`

dx1FU~M1~x1!,a!2Umin1
k

2 S dM1~x1!

dx1
D 2G .
~B19!

Using Eq.~B15!, we see that the edge line tensions in Eq.
~B19! can be written also as

s52 E
2`

1`

dx1@U~M1~x1!,a!2Umin#, ~B20!

or, as

s5k E
2`

1`

dx1S dM1

dx1
D 2

. ~B21!

By using Eq.~B17! one can turn the integration overx1 in
Eq. ~B20! into an integration overM1 . This yields

s52EAk

2

dM1

AU~M1 ,a!2Umin

•@U~M1 ,a!2Umin#.

~B22!

Here, as noted before,a5M0 cos(f), whereasM1 changes
between2M0 sin(f) ~for x1→2`! and 1M0 sin(f) ~for
x1→1`!. Thus,

s5A2k E
2M0 sin~f!

1M0 sin~f!

dM1

3AU„M1 ,M25M0 cos~f!…2Umin. ~B23!

Equation ~B23! has been used to calculate the results
edge tensions quoted in Sec. IX.

By Eq. ~B11!, we see that the edge carries a nonze
surface current which flows along the edge,

J2~x1!5J2
NE
„M1~x1!,M25M0 cos~f!…. ~B24!

This current vanishes for largex1 where the edge slope ap
proaches a facet slope. Edges thus act as thin wires trans
ing the surface current. The net current flux transported
the edge is

I edge5E
2`

1`

dx1J2
NE
„M1~x1!,M25M0 cos~f!….

~B25!

Again, with Eq.~B17! one can turn the integration overx1 in
Eq. ~B25! into integration overM1 . Thus,

I edge5Ak

2
E

2M0 sin~f!

1M0 sin~f!

3
dM1

AU~M1 ,M25M0 cos~f!…2Umin

3J2
NE
„M1 ,M25M0 cos~f!…,

or, asJ252]U(M1 ,M2)/]M2 ,

en
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I edge52Ak

2
E

2M0 sin~f!

1M0 sin~f! F dM1

AU~M1 ,M2!2Umin

3
]

]M2

U~M1 ,M2!G
M25M0 cos~f!

.

This expression is identical to

I edge52A2k E
2M0 sin~f!

1M0 sin~f!

dM1

3S ]

]M2
AU~M1 ,M2!2UminD

M25M0 cos~f!

.

~B26!

Equation~B26! has been used to calculate the results for
edge surface currents quoted in Sec. IX.

APPENDIX C

Here, in Figs. 15–19, we give a time sequence~10
frames! of the evolution of the network of edges for th
square symmetry~001! surfaces~on a 3003300 portion of
-

hy
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er
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e

the 100031000 system!. The two types of edges describe
in Sec. VII, regular edges@oriented parallel to thex and y
axis# and rooftop edges@oriented parallel toy56x axis# are
clearly visible here. Also, it is obvious that the edges fo
nearly regular lattices@edge crystals# occasionally disordered
by dislocation defects. Note that each dislocation incor
rates a rooftop edge at its core. In fact, most of the roof
ridges are incorporated into dislocation cores.

The sequence in Figs. 15–19 gives insight into t
mechanism and the dynamics of the coarsening proces
the square symmetry~001! surfaces. The processes of disl
cation motion and dislocation annihilations that we invok
in Sec. VIII, where we proposed the kinetic scaling theory
the MBE growth, are documented in these ten snapsh
Figures 15–19 show, in a quick look, that indeed there i
coarsening going on. The sequence is a good visualiza
tool to see how the coarsening proceeds. For example
looking at the first time frame, att516 000, and the last one
at t5126 000, we notice that lattice constant of the nea
periodic network of edges has visibly increased, whereas
density of the dislocations has decreased substantially.

In some of these figures, we see also occasional for
tions of unstable bound states between two dislocations m
ing in different directions, one vertically, the other one ho
zontally. See, for example, Fig. 19, att5128 000.
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