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Transport in two-dimensional scattering stochastic media: Simulations and models
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Classical transport of neutral particles in a purely scattering two-dimensional stochastic media is studied.
Results of numerical Monte Carlo simulations of transport in two-dimensional stationary, binary, purely scat-
tering stochastic media with Markovian mixing statistics are reported. Partial Markovian descriptions are
proposed as models for the transport process inside the stochastic media. In these models, the composition of
the media is correlated on a finite length scale. The results obtained from the models are in good agreement
with the results obtained from the two-dimensional simulations.

PACS numbgs): 05.60.Cd, 02.50.Ga, 02.70.Lg, 28.41.Qb

[. INTRODUCTION The transport equation is too complicated to be solved
aEnalytically, even when the inner structure of the medium is

transport of neutral particles and radiation in stochastic meXnown. An estimate of the averaged transmission through a

dia[1-12]. The applications of this research are many, ano(sFochas_tic media. can be. pbtained either using numerical
include neutron transport in boiling water reactopsay and simulations or using simplified models of the transport pro-
neutron flow through concrete shields, transport through mo¢®SS- _ S ,
lecular clouds and stellar atmospheres and radiative transfer Numerical results of transport simulations in stochastic
in Rayleigh-Taylor unstable inertially confined fusion pel- media were reported for one-dimensiofBD) rod geometry
lets. [2,3], for layered planar geometfyd,4], and for media with

In the current work we discuss time-independent monoencubic-shaped graing5]. The results of the simulations
ergetic transport, in a nonabsorbing stochastic media thaihowed that the transmission through stochastic multidimen-
does not contain internal particle sources. The transpoional media is generally higher then the transmission
equation for this process is writtébased on the notation of tgrough the equivalent homogenizéatomic-mixed media

neutron transport theoyy1]

A considerable amount of research dealt with classic

Two simplified descriptions are widely used for the effec-
tive modeling of the transport process. The first is the 1D
2= L= I P S approach, where particles are restricted to move along a
Q- w(r'Q)+US¢(r’Q):f o' = Q)Y(F, Q7). stegight line, a feature that simplifies the mathematical com-

(1) plexity of the problem. When the materials in the media are
both purely absorbing, or are both purely scattering, or they
R - both have the same albedo, the transmission through each
¢(r,€) is the angular flux, with and(} denoting the spatial realization can be derived analytically, and the problem is
and angular variables respectively, and o5({)’—()) are  reduced to that of averaging the nonlinear transmission func-
the total and differential macroscopic scattering cross sedion over the different realizations. Rigorous solutions for the
tions, respectively. 1D averaged transmission in stochastic media were found for

The binary stochastic media examined is composed opurely absorbind6—8] and purely scatterin§9,10] media.
grains of random size, shape, and placement, each filled withhese solutions were used to derive effective cross sections
one of two materials. It is assumed that the cross sections dér the stochastic media. However, by restricting the trans-
the constituent materials are known, but the information report to a straight path, the obstacle bypassing phenomenon is
garding the media’s inner structure is known only in a sta-discarded. The 1D approach is thus limited to such problems
tistical sense. where obstacle bypassing is not importdithis is the case,

The heterogeneity of a media affects its transport properfor example, in transport problems where the scattering is
ties. In a multidimensional scattering stochastic media, parforward peaked, or when scattering is negligible. This is also
ticles can bypass obstacléspaque material graindound  the case in a layered planar geometry.
along their path. This effect depends in general not only on In the second widely used model, the transport process in
the properties of the materials of the media, but also on its given realization is taken to be a Markovian process, whose
topology, which defines the possible particle paths. The efevolution depends only on its present state, and not on its
fect of the heterogeneity thus differs between the varioupast state$5,7,11]. Although transport in a heterogeneous
realizations of a stochastic medium. The study of transport imedium is generally not a Markovian process, since the dis-
stochastic media deals with the average effect of heterogen&nces to material interfaces generally depend on the past
ity over all possible realizations of the media, and with itstrajectory, it has been suggested that the use of the Markov-
fluctuations. ian assumption can produce a useful and simple model of
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particle transport in stochastic media. The Markovian as-
sumption implies that the compositions of different segments
along the particle’s path are not correlated. This overempha-
sizes the obstacle bypassing effect, since obstacles “disap-
pear” from the path at each collision. Thus the Markovian
description is also limited to problems where obstacle by-
passing is not important.

In the current article we present results of Monte Carlo
transport simulations in purely scattering, two-dimensional,
stochastic media with Markovian mixing statistics. Obstacle
bypassing is an important feature in this problem, since there
is a considerable amount of backscattering, and the transport
range of the particles is not limited by an absorption mecha-
nism.

A phenomenological model is proposed for the adequate
modeling of obstacle bypassing in a 2D stochastic medium.
The transport process in this model is partially Markovian, as ) o ) )
the particle’s trajectories are assumed to be partially corre- /G- 1. A typical random realization of a 2D binary stochastic
lated. A somewhat similar description for the transport prc)_med|a with Mgrkowan mixing statistics and a typlcal Monte Carlo
cess, containing partial path correlation, has been proposé’dﬂth of a particle that passed through the medium.

Egrrlrl]eer(gil:]_?ﬁeagselzﬁ[{(ge()r;[tglggélt# gnn:cz)rutrrar;srgglrlt 'antrig?,?; The stochastic 2D realizations were constructed according
) P Y tto a procedure described by SwitZgi4]: We sampledn

model are found to be in good agreement with the results o . ; .
- ) . nes with random distances from the center of the realization
the 2D simulations. The model results are also consisten . . . . L .

. . . and with random directions. These lines divide the realiza-
with exact analytical results and approximate models ob-

tained in the continuum limit for the effective properties of tion into convex polygonal cells. The string length distribu-
o . Ve prop -~ . tion of these cells is Markovian and isotropic, with an aver-
random media, including heat and electrical conductivity,

magnetic permeability, and elasticit$6—21]. The model is age string Ie_ngtmc, that is 'T“’erse'y pr_oportlonal to the
. . number of lines. The material occupying each cell was
thus an extension of the continuum results to problems where . s
. . sampled randomly according to the volume fractipnSince
the geometrical length scale is comparable to the mean freg. ) . !
adjacent cells can be filled with the same material, the aver-

path. . , . r’;\ged string length in a grain of materiais,
In Sec. Il of this paper, the 2D media and the numerica
simulations are described. In Sec. Ill, the partially Markov- Ae
ian model is formulated and tested. Ni=Ac+Pilct P At pPihet = —p" ®)
i
Il. SIMULATIONS OF TRANSPORT A typical random realization constructed in this way is

IN 2D STOCHASTIC MEDIA shown in Fig. 1.

The current work deals with 2D stochastic media com- The problem investigated in this paper is the longitudinal

posed of grains of random size, shape, and placement, eagﬁnsmlsglon t_hrough the _medlum, and Its consequent char-
filed with one of two materials. Both materials are purely acterization with an effective cross section. A Monte Carlo

scattering, with cross sections denoted dgyand ;. The ggsﬁ(:gé?;ﬁp&grcfed;ig?; rli;;ardvt:ri%irs]esr?cgihzg?[iimrg:ee;am ran-
averaged volume fractions of these materials @yend p, g y

(=1-py), respectively. Due to the statistical nature of theWhose depth and width were approximately 100A source

stochastic media, the filling fractions deviate from the aver-Of particles, emerging parallel to tReaxis, was set at the left

aged fraction in a finite realization. boundary of the media. Reflecting boundary conditions were

The mixing of the two materials is usually described us_applied at the transverse boundaries of the rectangle realiza-
ing probability distribution functions for the material seg- tions. The calculation of each particle’s path was done using
. ) ) . Monte Carlo techniques, meaning that the distances between

ment lengths—(l,€,X)—which define the probability that

A . . . X scattering interactions and the outcome directions were ran-
a segment of materialat space poink and in the direction domly sampled for each segment of the path. The particle

Q will be of lengthl. In the current work we examine ho- history ended when the particle exited through the left or
mogeneous, isotropic Markovian mixing statistics, for whichright faces of the medium. A typical particle path passing
fi(l,ﬁ,i) is through a stochastic realization is also shown in Fig. 1.

The designated Monte Carlo code was used to calculate
Ts 2p(L)—the average transmission through an ensemble of
random realizations—by counting the relative number of
particles reaching depth from the left face of the media.

\; being the average string length in mateiiaMarkovian  The averaged transmissidig (L) was then compared with
mixing statistics have the special property that the distance tthe transmission through a 2D homogenized media,
the right(left) interface from any point inside the segment is Ty ,p(o,L), and an effective 2D scattering cross section for
independent of its distance from the Iéfight) interface. the stochastic media was derived accordingly:

fi(l,ﬁ,i)=fi(l)=%e‘mi, 2)
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_l 1
et 20(L) = w (4)
0.95
Equation(4) implies that the transmission through a homo- ool
geneous medium with a scattering cross-sectionghp(L) é :
is equal to the average transmission through the random re- ¥m0.35 -
alizations of the stochastic medium. 2
Two sample problems are studied. In both problems the §0~8
stochastic medium has equal material volume fractigns ( o>
=p,=0.5) and the cross sections arg=20/11cm* and 0.7%
o,=2/11cm! for the opaque and transparent material, re- o7t
spectively. In problem AX:=1cm, while in problem B '
Ac=30cm. (The units are actually arbitrary, since the prob- 0.65 0"
lem is scale invariant as long as the dimensionless param- ‘ :2

etersho and L/\ are fixed) The averagedhomogenizey 10
cross sectior=pyoy+ p1o; is equal to 1.0 for both prob-
lems. These problems were chosen since they correspond to

10° 10
Media Depth [cm]
(a)

different values of the important dimensionless parameter 1 NS S S S R
Aco. The dependence of the results on other dimensionless . .. Problem:B
parameters, such as the contrag! o, and the volume frac- 0.9r - H i

tions (pg,p1), will be discussed later. ;
Figure 2 shows the normalized effective 2D cross sections 08
oetop(L)/ o for the sample problems, as a function of the
depth. Each problem’s results are based on the calculation of
more than 2.5 million particle histories inside a total of
50 000 2D realizations of the media. Effective cross sections
obtained from models discussed in Sec. Ill are also plotted.
In thin media, oo0(L) approachesr. However, in thick 05
media, the effective cross section is substantially lovgr
more than 20% and 40% for the two sample problems, re-

07t

/<o>

effective
S
(2]

0af - T

spectively, implying higher transmission. gl i = Markovian, |
Section Il deals with models from which the results of 107? 107 10° 10’ 10°

Fig. 2 can be reproduced. It will be shown that the ability to Media Depth [cm]

bypass obstacles is the cause of the increase in the transmis- (b)

sion through thick media. FIG. 2. The effective cross-section of the 2D stochastic medium,

oeft2n(L), Vs the medium depttwith 20 error bar$, along with the
. “PARTIAL MARKOVIAN" MODELS results obtained from Monte Carlo simulations of partial Markovian

. . : : .. transport processes with different values of the menMdryAmong
As mentioned earlier, the two most widely used simplifi the partial Markovian results plotted are the results of the 1D ap-

cations of the transport process in stochastic media are the :
1D and Markovian Eppr(loaches. A significant difference be-'oro"’lch and the results of the Markovian model.
tween the two is that, in the 1D description, prescattering and
post-scattering distributions of the material segments lengthgoted hereafter as the “memory.’In a no-memory interac-
along the particle path are fully correlated, while in the Mar-tion, occurring with a probability of + M, all path informa-
kovian process there is no correlation between them. tion was lost, including the boundaries of the segment in
By examining the path of a particle in a 2D scatteringwhich the interaction took place, and a new random realiza-
random mediuntFig. 1), it can be seen that as the particle’s tion was created around the particle. Such a process is illus-
direction is changed by a scattering interaction; the materidrated in Fig. 3, where scattering interactions colored in black
segment lengths along the new direction are only partiallydescribe no-memory interactions. This process in an interpo-
different from those along the previous one. lation between the 1D approaciME&1) and a Markovian
We are thus led to propose an approximation for the acprocess restricted along a lin&1(=0).
tual 2D process, based on a “partial Markovian” process. In  Figure 2 presents effective cross sections of a partial Mar-
such a process, prescattering and post-scattering segmevian scattering stochastic media, with different “partial
length distributions are only partially correlated. There arememories”M (0, 0.25, 0.5, 0.75, and 1),0as obtained for
many possible correlation forms. In the present work we exthe sample problems. For problem B the lide=0.997 was
amined a process in which, at each collision, either the comadded. The effective cross section increases with the memory
position of the media remains the saifftetal path correla- (with the path correlation The asymptoticthick-media ef-
tion), or it changes randoml{zero path correlation fective cross sections of a partial Markovian process is lower
The model was investigated using 1D Monte Carlo simu-than the averaged cross section, but higher than the Markov-
lations, where the probability of the media’s compositionian one.
remaining the same after a scattering interaction Mdasle- We note that a different Monte Carlo algorithm, with par-
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FIG. 3. A schematic description of a partial Markovian transport 306
process in a 2D stochastic media. The transport begins in a 1D %

random realization. At each scattering interaction, either the particle p 05k
continues to move in the same realizatidti®e interactions drawn ’
in white), or all path memory is lost and the particle is transported EpPo o Py Te Pl
into a different random realizatigithe interactions drawn in blagk 0.4, sl 101 s
The relative probabilities for these two possibilities are governed by Media Depth [cm]

the memoryM associated with the process.

_ . o FIG. 4. Effective cross sections of equalpartial Markovian
tial path memory, was independently proposed as an efficiergrocesses. The different lines correspond to problems with the av-
technique for approximating transport in stochastic mediarage grain sizes=1, 3, 5, 7.5, 10, 15, 20, 30, 50, and 75 and with

[16]. This algorithm retained memory of the distance be-the partial memoried =0, 8/9, 24/25. . .,0.9996, and 0.999822,
tween a particle’s location and the boundaries of the surrespectively.

rounding material grain. Results obtained from this algo-

rithm are similar to the ones shown in Fig. 2. A better method for obtaining .« andM is based on the
Next, we derive a method for the prediction of the valuefact, that the physical parameter governing the effect of the

of M adequate for a specific 2D stochastic medium. Theypstacle bypassing phenomena is the dimensionless ratio be-

distance over which the path composition is correldtiéle  tyeen the correlation length and the average grain length

correlation length’j in the partial Markovian description de- :Lcor/r: 1/(faeﬁM). If c>1. the results of the

pends orM.t W*;I?”_'V' =O(,j I 'St s&m&lywﬁ dli;ancelbetwteen partial-Markovian process are similar to the results of the 1D
consequent corisions, denoted Ty eni 1s close to rocess. Ift<1, as is the case favl =0, 0.25, 0.5, and 0.75

unity, the correlation length can be estimated using simpl fn Fig. 2b), the Markovian result is approached.

diffusion (random walk.a.nalyss: the path memory 1S lost Partial Markovian problems having equalbut different
afterNe=1/(1— M) collisions on the average. The distance— . . .
from the origin of this walk at which the loss of memory N andM), have the same asymptotic effective cross-section.

occurs is approximately This statement was tested nurlerically in Fig. 4. We consid-
ered a set of problems in which takes values between 1.0
LeodM)=AN.=A/1—M. (5) and 75, andM takes the corresponding values that result in

c=1lloer (M=0 for A=1, M=0.999 822 forA =75, etc).
Since Eq.(5) also reproduces thil =0 limit, we use it as a The effective cross sections of these partial Markovian prob-
model for the correlation length for a\l. lems are plotted in Fig. 4. All lines have approximately the
In a real 2D stochastic realization, the physical lengthsame asymptotic effective cross section, in agreement with
scale over which the composition changes és. However, our statement. This asymptotic value can be derived analyti-
for very small grains, the path composition changes everyally, from the Markovian problems! =0 and\=1 corre-
collision (Lcor=A). We thus propose the following simple sponding to the uppermost line in Fig. 4. Further analytical

formula as a model for the correlation length: argumentation for the statement is given in the Appendix.
We can thus obtain the asymptotic effective cross section
LeorA+Ac. (6)  for a partial markovian process, using a renormalization step

toward a Markovian description, keepiodand the effective
By equating the correlation lengths in EqS) and (6), and  cross sectionfixed:
by associating\ with the inverse of the effective cross sec-

tion, A=1/o ., for the partial memory of a 2D media, we Oei(Ne,M) = Ueﬁ()\cm 0) ®)
obtain ’ "
1 Using the asymptotic Markovian effective cross secfibd)
M=1l-—+————. 7
(1+0ehc)? @ .
Te(M=0)=0— = 9)

Sinceo s is not known, the appropriate partial memadyin
Eq. (7) is also unknown. Both can be derived iteratively by
simulating several partial Markovian processes, each with awhere 6=pgo,+p09+1/MA¢c, and v?=pp.(oo—o7)?,
improved approximation fow.; and M (starting with the the following formula for the asymptotic effective cross-
initial guesso;=0). section of a partial Markovian description is obtained:
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l)2

oe(M)=0— .
eﬁ( ) p001+p10'0+1/)\c\ 1-M

After inserting Eq(7) into Eq.(10), a quadratic equation for
the effective cross-section is obtained, whose only physica
solution (o¢>0) is

(10

[<o>
ve

oeri=3[(0—5)+(0—5)*+4(Go—v?)]. (1D

effecti

This solution, in turn, can be inserted into EJ) for the ©
estimation ofM. A somewhat similar spatial renormalization
with a consequent change in correlation parameters was re
cently introduced in a study of diffusion processes in a fluc-
tuating 1D lattice[15].

We now discuss some limits of the partial Markovian
model. In the limith c— 0, the model approaches the Mar-
kovian description, which should be valid in this limit. Im-
portant observations can also be made in the continuum limi
No—o, for a stochastic media whose dejhtis much larger
then the grain sizes. Equatidfl) in this limit reproduces
the symmetric-effective-medium-approximatiopl6—1§,
first proposed by Bruggemdn6], which is known to be in

good agreement with experimental data. Our formula in this@
limit also satisfies the ‘“phase-interchange” theorgf®] o
(which is an exact resylt from which follows that when g
pPo=p1, the effective cross section igs=+ogoq. Finally, b%

we note that if the extreme valués= 1/0,1/0; were used,
the well-known Hashin-Shtrikmaf0,21] upper and lower
bounds for diffusion in stochasti¢but homogeneous at
large media are obtainedn the 2D settingg We note that
these bounds are analogs to a widely used composite-spher
assemblage modelalso known as the Maxwell-Garnett
mode) [17,20. Thus, the current model is consistent with
the known diffusion models, exact results, and bounds.
Figure 5 presents the asymptotic effective cross section
for a variety of problems. Plotted are the results of the 2D
simulations, of the 1D and Markovian descriptions, and of
the partial Markovian model. The parameters varied betweel

the different problems are the average string lendgily. A

5(a)], the cross-sections ratidFig. 5b)], and the volume Xq} : ,

fraction filled with the relatively transparent mater[#lig. £ OB i
5(c)]. These parameters span the possible stochastic medi % 0-5-"-@--29--'-~- o

The asymptotic results corresponding to the sample problem © Lo

are enclosed in rectang|es_ For all the prob'ems examinec 0.4_—AMa,I.'KQ.VJ.an ...........................................................

the 2D effective cross section is lower than the 1D prediction

TRANSPORT IN TWO-DIMENSIONAL SCATTERING . ..
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for the asympto“c effect“/e CrOSS Secuoa( and h|gher 03_---|1D .................... T
than its Markovian counterpariot-v?/5). The use of the 02 ; ; i :
partial Markovian models reduces the discrepancy with the 0 02 °~i4:, 06 08 1
2D results to several percent. ( r)nateriaH

C

IV. CONCLUSIONS

FIG. 5. Asymptotic effective cross sections as obtained from the

2D simulationgenclosed in a circleand as obtained from the mod-
Transport in 2D, purely scattering stochastic media wasils, for a variety of stochastic media. Each subfigure shows results
discussed. Numerical Monte Carlo transport simulations ircorresponding to different values of a dimensionless parami@er:
2D purely scattering stochastic media were reported and usebe grain thicknesa ¢, (b) the contrasiory/o;, and(c) the vol-
to quantify the multidimensional effect of obstacle bypassingume fractionp; .

for multiple problems.

A partial Markovian description of transport in stochastic partial Markovian descriptions were found to be in good

media was proposed for the modeling of the transport proagreement with the 2D simulation results, and were also
cess, reflecting the partial correlation between the paths bdeund to reproduce known models, bounds, and exact results
fore and after a 2D scattering interaction. The results of thérom the diffusion limit.



6188 O. HARAN, D. SHVARTS, AND R. THIEBERGER PRE 61

1 T2 P1=T(72) +[R(72)R(71)]T(72) +[R(72)R(71)]*T(72)

e ()
1-R(7)R(7y)"

N
(
A2

(A1)

i

Taking into account the fact that a particle that was reflected

from the right segmentz}) still has a chance of reaching the

right interface. This chance depends on the probability of

7, 7, bein_g reflected by _the left segment, . Analog_ously, if the_
particle starts moving to the left, the probability of reaching
FIG. 6. A transition between two random realizations as a resulthe right interface of the medium is
of a no-memory interaction. A particle located at an internal point
of a random realization, from which the optical distances to the P2=R(71)T(72) +[R(71)R(72) IR(71) T(72)

E«-

N
\
A2

medium’s left and right faces arg and7,, respectively, passed to R(7)T(7y)

a different random realization due to a no-memdkjarkovian +[R(7)R(7)PR(7)T(1p) ++++= v

scattering interaction. In the new realization, the optical distances to 1-R(72)R(71)

the medium’s left and right faces are different; (and 7). (A2)
APPENDIX Assuming isotropic scattering, the average probability of

_ ) ) _ reaching the right interface isPyq=(P,+P5)/2=(1
In this appendix we present argumentation for the claim, ;- y/(2+ 7, + 7,). Accordingly, if the particle passes to a
that scaling the grain sizes in a partial Markovian transporyey realization(with 75 and 7,), the probability changes
process, while keeping (the correlation length in terms of 4 Prew=(1+75)/(2+ 73+ 7). Thus the transition

the average grain sizéixed, does not affect the asymptotic changed the probability of reaching the right interface by the
effective cross-section. We first consider the problem ofy.tor

transport along a 1D realizatidthe c= casg. The effec-
tive cross section of the medium is simply a weighted aver- Prew 1t73 2+7+7
age of the cross sections of the different segmeants; P ortr. 1+7m (A3)
. old 3 4 1

=(op2li+ o 2l)/L (I refers to segments of material I9,to
segments of material 1, arldis the medium length This  This factor is scale invariant under the condition
effective cross section is scale invariant, since multiplyingr;,r,,73,7,>1. We can thus conclude that transitions be-
li, Ij, andL by a factor does not change the effective crossween random realizations, occurring far from the medium
section. faces, affect the transmission through the mddiad hence

We next consider the effect of a single no-memory scatthe effective cross-section that asymptotically satiséigg
tering interaction: A particle lost its memory at some point in~2/T) by a scale invariant factor.
the interior of the media, whose optical depths from the left When scaling the grain sizes in a partial Markovian trans-
and right interfaces of the media are denotedrhyand 7, port process, the effective cross section remains fixed if the
respectively. In the new realization, the optical depths frormumber of transitions between random realizations and their
the boundaries are denoted byand 7, respectively. Such relative locations are fixed too. Keepiitg— the correlation

a transition is illustrated in Fig. 6. length in terms of the grain sizes—fixed secures that on the
The probability that, without the transition, the particle average, these conditions are satisfied.
will reach the right interface of the mediufgiven that its We note that the condition, , 7,, 73,741 is not satisfied

direction after the scattering interaction is not specjfieah by all interior points, even wheh—c. This is due to the

be calculated as follows. The transmissid(ir) through a fact that the particle source is located on the left face of the
purely scattering media of depth and the reflectiorR(7) medium, and not inside the medium. As it turns out, how-
from this media, satisfyT(7)=1—R(7)=2/(2+ 7). Sup- ever, for those particles that have crossed the medium, the
pose that the particle starts moving to the right after thedeviation from scale independence—in E43)—cancels be-
scattering interaction. The probability that it will reach the tween transitions occurring close to both interfaces of the
right interface is media.

[1] G. I. Bell and S. Glasstoné\uclear Reactor TheoryiLitton [6] C. D. Levermore, G. C. Pomraning, D. L. Sanzo, and J. Wong,

Educational Publishing, Inc., New York, 1970 J. Math. Phys27, 2526(1986.

[2] B. Su and G. C. Pomraning, J. Quant. Spectrosc. Radiat.[7] D. Vanderhaegen, J. Quant. Spectrosc. Radiat. Tra86s657
Transf.50, 211 (1993. (1986.

[3] M. L. Adams, E. W. Larsen, and G. C. Pomraning, J. Quant. [8] D. Vanderhaegen, J. Quant. Spectrosc. Radiat. Tr88s833
Spectrosc. Radiat. Transf2, 253(1989. (1988.

[4] O. Zuchuat, R. Sanchez, I. Zmijarevic, and F. Malvagi, J. [9] D. Vanderhaegen and C. Deutsch, J. Stat. Pl%. 331
Quant. Spectrosc. Radiat. TranSf, 689 (1994). (1989.

[5] P. Boisse, Astron. Astrophy228 483(1990. [10] G. C. Pomraning, J. Quant. Spectrosc. Radiat. Traf:f479



PRE 61 TRANSPORT IN TWO-DIMENSIONAL SCATTERING . .. 6189

(1988. 2779(1995.
[11] C. D. Levermore, J. Wong, and G. C. Pomraning, J. Math.[16] D. A. G. Bruggeman, Ann. PhysLeipzig) 24, 636 (1935.
Phys.29, 995(1988. [17] D. J. Bergman, Phys. Reg3, 377 (1978.
[12] G. C. Pomraning, J. Quant. Spectrosc. Radiat. Tra#€f221  [18] J.-P. Bouchaud and A. Georges, Phys. ReJ5, 127 (1990.
(1991). [19] K. Shulgasser, Int. Commun. Heat Mass Trank®, 639
[13] G. Zimmerman and Marvin L. Adams, Trans. Am. Nucl. Soc. (1992.
64, 286 (1991. [20] Z. Hashin and S. Shtrikman, J. Appl. Ph@a8, 3125(1962.
[14] P. Switzer, Am. Stat36, 1859(1965. [21] D. J. Bergman, Phys. Rev. B4, 1531(1976.

[15] C. D. Levermore, W. Nadler, and D. L. Stein, Phys. Re®1E



