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Binary collision model for quantum Brownian motion
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(Received 18 November 1999

A binary collision model for phenomena of quantum dissipation is developed. Unlike the harmonic oscillator
model, widely used for over thirty years, this model assumes nonlinear coupling between system and environ-
ment, and is applicable to both bosonic and fermionic baths. The system interacts with an ideal bath through
binary collisions only. Solutions for the classical and quantum-mechanical problems in the case of free Brown-
ian motion are presented, and the quantum-classical correspondence for nonequilibrium processes is estab-
lished. It is shown that in the Brownian motion limit the two models lead to identical dynamical behavior,
provided the coupling coefficients in the harmonic oscillator Hamiltonian are temperature dependent. For cases
of bath particles of finite mass and number the two models lead to different results. Linear response theory for
the model is developed, and the results are compared with those for the harmonic oscillator model. At the end,
possible applications of the model are suggested.

PACS numbd(s): 05.40.Jc, 05.36:d

I. INTRODUCTION
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The theory of open quantum systems and quantum dissi- at X P aP

pation phenomena is, and has been for several decades, a

major area of research in physics and chemistry. Most ofteMith

researchers are interested in an open system with a small

number of degrees of freedom in contact with a “bath” of a K= P p—_ 7P )

complex nature, whose number of degrees of freedom tends M’ M’

to infinity. The open system is interacting with its environ-
ment, and its properties and evolution are strongly affecteénd describes the relaxation to equilibrium of the phase
by the interaction. The problem is to find a relatively simplespace density of the Brownian particle.
and tractable way to account for the influence of the envi- The two equations above are valid in the classical regime.
ronment on the open system and to derive an equation for thé we observe the reaction rate of some process at low tem-
reduced dynamics of the system. perature, however, quantum tunneling affects the rate, and
The simplest dissipative process, Brownian moiiBi), the classical description is inadequafd. The question is,
has received much attention from both chemists and physihow to describe BM in quantum mechanics?
cists, especially from researchers working on reaction rate Over the last thirty years there have been many attempts
theory. Physicists’ interest in this process comes in connedo solve this problem, most of them unsatisfactory for one
tion with macroscopic dissipative tunneling, while chemistsreason or another. Kostin's approach violated the superposi-
are mostly interested in studies of condensed phase reactidion principle[2]. Various authors obtained a kind of “quan-
dynamics. The classical theory of BM is well understood.tum Langevin equation’{3,4] valid for the special case of a
The process can be described by the Langevin equation harmonic oscillator. Others used a time-dependent g6k
but this approach is not consistent with the uncertainty prin-
MX+ 7X+V'(X)=F(t), (1)  ciple [7]. A canonical quantization procedure for complex
variables was proposed by DekK&l, who artificially intro-
which describes, say, a colloidal particle of madsim-  duced noise sources in the equations, which is questionable
mersed in a viscous fluidy is the damping constany, the  too. The master equation of Oppenheim and Romero-Rochin
potential acting on the particle, ar(t) the fluctuating [9] has many nice features, but leads to negative probabilities

force, a Gaussian random process with [10] and therefore is not completely satisfactory.
The most successful approach to the problem of quantum
(F(1))=0, (2 BM so far is based on the so called harmonic oscillétt®)
or Caldeira-Leggett model, which treats the Brownian par-
(F(HF(t"))y=27kTs(t—t"). (3) ticle as a point mass interacting with an infinite collection of

harmonic oscillators of various frequencigsl—15. This

Equivalently, one can use the Fokker-Plank equation, whictinethod has several precursors in the litera{@&d6]. The
in the case olV=0 reads Hamiltonian of the composite system is

H:H3+HR+H|, (6)
*Present address: Department of Chemistry, University of Pitts-

burgh, Pittsburgh, PA 15260. where
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N p2 momentum of theth bath particleaiT (a;) createqdestroy$
Hs=5y 7 V(X) (7)  a bath particle of momentum p;, a’; (a_;) creates(de-
stroy9 a bath particle of momentum p;, the{w;} are col-
is the Hamiltonian of the isolated system, lision frequencies, ané is the energy of a bath particle with
momentum= p;
Ar=> = —+m, ?“?> 8 z
R Zl 2 m, i Wj Q| ( ) €i:2p_r|n. (12)

describes the reservoir &f harmonic oscillators, and , . .
Plank’s constant is henceforth taken to be unity. The same

) N o model would describe BM in a potenti&(X) by simply
Hi= _Zl Fi(X)gi+AV(X) (9 adding this term to the Hamiltoniafi1).
= The Hamiltonian (11) describes instantaneous binary

collisions—when a bath particle of momentuip; disap-

for frequency-renormalizajtion effects induced by the firstggﬁgzrsgem(gmrg?q?;%n_umg‘E?r F())F\;venz?;_pzr;gcﬁge;:ir?gllcﬁ(laorr]r?o-

term in the expression fdd, . Usually, for simplicity, a bi-  entum 3, lost by the bath—but in these collisions the bath

linear system-reservoir coupling is imposed, that is, in Edneither gains nor loses energy. In each collision the momen-

© tum of a bath particle is simply reversed, as if the particle
Aol o had bounced off astationary Brownian particle. This is
Fi(X)=ciX. (10 therefore a Hamiltonian thapproximateghe dynamics of a

The HO model for quantum BM can be used to model quar1_heavy particle in an ideal gas of light particles; the smaller

fecinati " . the mass ration/M, the better the approximation. Neverthe-
tum_dissipation phenomena through "quantum Langevmless, Eq.(11) is a perfectly proper Hamiltonian in its own

equations for the momentum operator of the Brownian par ht. Energy is conserved, but when the Brownian particle
ticle, or by employing the functional integral approach for Iogseé energ)): the energy I(;st is stored in iiiteraction P
deriving the reduced density operator of the system. An ex- The approach is similar to that of the Bhatnagar-Gross-

haustive review of work done with this model is given by L . 4
Weiss[15], and for quantum reaction rate theory[ih. Krook (BGK). mod_el for gas kineticg17], which gl\{es. a
kinetic equation simpler than the Boltzmann equation: here

In this paper we develop a binary collision model for Iso we have a model that simplifies the dynamics of a heav
guantum BM and the phenomena of quantum dissipation, gisowel : P oy y
article in a gas of light particles but still captures the es-

model that does not assume linear system-reservoir couplin Bnce of that dvnamics. the frequent exchanae of small
is applicable to both bosonic and fermionic baths, and origi- y ’ d -hang
mounts of momentum between heavy particle and gas.

nates in a somewhat more physical picture of BM: a heaV)fi Since the bath energy never changes, we drop the last

particle moves through an ideal gas of light particles, expe;[erm in Hamiltonian(11)
riencing instantaneous uncorrelated binary collisions with . ' . .
The bath particles may be bosons, fermions, or a mixture

them. In Sec. Il we present the model. In Sec. Il we show o
that the model leads to the well known process of BM in°f Poth types. For bosons; anda; satisfy
classical mechanics, while two solutions for the quantum [a,,a]=0
problem are presented in Sec. IV. Section V develops linear v '

is the interaction term. The terfV is added to compensate

response theory for the model and establishes the correspon- [a_T aT]:O (13)
dence between this model and the HO model. In Sec. VI we t '
discuss possible applications of the model and conclude. [a,al]=5

i Gyl Yij -

Some formal derivations are given in Appendixes A and B.

For fermions, the corresponding operatowe will call them
Il. BINARY COLLISION MODEL b’s) satisfy

A Brownian particle of masM, immersed in an ideal gas (b, b =0
of bath particles, interacts with the bath through binary col- 1Rk ’

Iisions. These are not quite standarq bi_nary cqllision;; the {bT bT}:O (14)
Hamiltonian we use for the model, which is one dimensional, Tk '
is this: (b, ,bl}=5jk-
~ ﬁ)Z N h(,()i . 3 . 5 .
A=+ > —— (2Pl g e i2piXitaly ) In both cases the number operator for particles of, say, mo-
2M =1 2 mentum+ p; is
N T
+El ei(ala;+ala_)). (11) Nj=aja;. (15)
|=

We will cast the Hamiltonian in a different form, which

HereP andX are the momentum and coordinate operators otvill allow us to treat the classical and quantum equations for
the Brownian particlep,—a scalar, not an operator—is the the time derivative® analogously and to use the same for-
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malism for both bosonic and fermionic baths. We use a trick . oH N

invented by Schwingell8] (who used it for bosonic opera- P={P,H}=— X —Z 2w;p;

tors only. Let =1

X[=sin(2p; X)Ly i+cog2p; X)Ly, ]. (24)

~ 1
Li=5 (alja+afa_), . .
2 Equation(24) is simply

o _ N
Ly,izi(aiiai_ara—i): (16) P= —21 2pily,;i- (25
=
[ _:E(a_'ra__aT a) From the definition ofL,; [Eq. (16)] it is evident that Eq.
b memm (25) is nothing but an expression of conservation of momen-

R R R tum. We differentiate Eq(22) again and obtain
It is easy to prove that,;, L,;, andL,; are the compo-

R I 2 _ VR L —

nents of an angular momentum, regardless of whether the Loitoilzi=—2wipiXBi-Li=Ti(1). (26)
creation and annihilation operators describe bosons or ferm'vv .

N e formally solve the inhomogeneous Eg6) and calculate
ons [19]. The L,; component of the angular momentum it i
takes values up toN; +N_;)/2, so the total angular momen- 2i(1), getting
tum quantum numbel; is proportional to the total number . _ i
of bath particles with momentum p; . In the fermionic case L,i(t)= Lz,i,h(t)"_f cod wi(t—t")]f;(t")dt’, (27
we have 0

bibi+b".b_;=N;+N_;=const{0,1,2.  (17)  With

The caseN;+N_;=0 is trivial, as is the casBl;+N_;=2, Lz,i,h(t): — ;L ,;(0)siN(w;t) + w;b cog w;t), (28)
for then binary collisions cannot scatter a bath particle from
+p; to —p; or vice versa, the final states being already oc-where
cupied. For a fermionic bath, then, we may assuuye1/2. )
Using Eqs.(16) we can write the Hamiltoniafl1) in the b=cog2p;X(0)]Ly,;i(0)—si2p;X(0)]Li(0). (29

f
orm Substituting Eq(27) in Eq. (25), we obtain
A=-—+ Bi-Li, 18 : t -
2M 21 i 18 P(t)=f (E 4p?w;B;-L(t")cod wi(t—t")]
o\i=1

where the vectoéi is defined as

N
. 5 X X (t)dt =S, 2piL (). (30
B,={cog2p;X),sin(2p;X).0}. (19 M “

The Hamiltonian(18) models a Brownian particle interacting This equation is exact; no approximations have been made. It
with angular momenta which precess around an axis detefooks like a generalized Langevin Equati¢BLE):
mined by the instantaneous position of the particle. We next

show that this model Hamiltonian, in the appropriate limit, in - (t E ,
fact generates classical BM. P= OY(t t )M v +F(), 3D
I1l. CLASSICAL BROWNIAN MOTION with
Our goal is to derive an equation fé, the rate of mo- N

mentum change of the classical Brownian particle. We start y(t=t')=2 4pfwB;-[i(t)codwi(t—t")], (32
from the five equations of motion of the variables involved =1
in the classical Hamiltonian(18) ({,} is the Poisson

N
bracke} F(t)=—3 2p,L;n(t). (33
. =1
Lyi={Lxi H}=o;sin2piX)L;, (20)
_ But it is not: y(t—t") is a dynamical variable, as it contains
Lyi={Lyi.H}=—wicod2p;X)L,,;, (21)  the B;-L;(t")’s. In a proper GLEy(t—t') should depend
. _ only on the differenceé—t’ and should not be a dynamical
Lzi={Lzi H}=wilcog2p; X)Ly ;—sin(2p;X)Ly], variable, while the “random force’F(t) should average to
(22) zero and satisfy the fluctuation-dissipation theorem of the
P second kind,
X=DCHI= @3 (F(1))=0, 39
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(F(OF(0))=—kTy(t). (39

We now find conditions under which E(0) becomes a
proper GLE. First, we require that tf&-L;(t')’s be essen-

tially constant in time,
B,-L,~const, (36)
or
(d/dt)(B;-Lj) At
T

<1. (37)

A simple calculation shows that the above requirement is

equivalent to the conditiofl9]

pi—0. (39)
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(L2i(0))=(Ly,i(0))=(Li(0)Ly;(0))=0, Vi,j,
(46)

(Lyi(0)Ly;(0))=(LZ(0))8; ;. (47)

with

L2.(0))= Li( L ! ) 48
(Ly.i ))—% coth( Bw; i)—m : (48

which proves Eq(34) and leads us to

1 N
(F(HF(0))=~ Zl 4plwiL;

X
BoiL;

cotr(,BwiLi)—i)coiwit).

(49

This condition can be satisfied if the bath particles have van-
ishingly small massm—0. Then there must be many of On the other hand, from E¢32) we have

them:
(39

N— oo,

In that casey(t—t') is a sum of many term€q. (32)], each

involving a dot producB;-L;, the values of which are dis-
tributed according to thermal equilibrium for the bath. The

law of large numbers then implies that

Y(t—t)~(p(t—t")). (40)
With this approximation the kernel of EEB0) is no longer a
dynamical variable, it is simply a function of-t’.

Next we show that, under the same conditidR§t) is a
proper random force. We may choose the ori§i®) arbi-
trarily, so set

X(0)=0. (41)
Equations(29) and (28) then read
b=L,;(0), (42

Loin(t)=—oiL,i(0)sin(w;t) + w;Ly (0)cod w;t).
(43)

Hence,

N
<F(t>>=i§1 2pioi[{L,,(0))sin(w;it) —(L,(0))cog w;t)].
(44)

N
<7(t)>:i§1 4p?wi(B;-Li)cog wit), (50)
and it is easy to shoWl9] that in the limitp;—0

N N 1
<Bi'Li>(t)~<Bi'Li>(O)NLi(—Bw‘L. _COU’(ﬂwiLi)),
(52)

so that

N
(v(t)=2, 4pi2wi|-i(i|__COt“BwiLi))Coiwit)-
<1 iLi

Bwil;
(52
Comparing Eqgs(49) and(52) we verify that
(F(OF(0))=—KT(¥(1)). (53

The BM limit, then, isp;—0, N— [Egs.(38) and(39)]; in
this limit—and with the bath initially in thermal equilibrium

with respect to the Brownian particle—the particle executes

BM according to a proper GLE.

Equation(30) reduces to an ordinary Langevin equation,
describing Markovian BM, if the frequencidsy;} are dis-
tributed as

—|const
p?w(B-L)
0 otherwise,

if o<w¢

p(w)= (54)

We assume a thermal initial distribution of bath angular mo-
menta with respect to the initial Brownian particle position, wherew; is a high-frequency cutoff; then

p(0)=(1/2)exd —BH(0)], whereZ is the partition function
and

N
Hb<0>=j§1 oLy j(0). (45)

Then[19]

<7(t—t’)>~J:f4p2(w)w<é.E)(w)cos{w(t—t')]

wg—®©

X p(w)dw ——— —|const|5(t—t"),
(55



PRE 61

and

: |const|
P=—— P+F(). (56)

IV. QUANTUM BROWNIAN MOTION

We will use the functional integral approach to derive the
equilibrium reduced density operator of the dissipative sys
tem, and we will derive a quantum Langevin equation for th

momentum operator of the system.

A. Path integral solution for the equilibrium reduced
density matrix

We can write the Hamiltoniafil8) as

H=T+V, (57)
where

. Pp?

TI m, (58)

N
V=2, @ilcod2pX)Ly;+sin2p X)Lyl (59
The reduced density matrix is

PX,X’:<X,|trbath(e_ﬁﬁ)|x>:{;} (X’,{mi}|e‘5':'|x,{mi}),
(60)

where
{miph=Imy, ..ome, ) =[my)- - myg---, (61)
and the|m,)’s are chosen to be the eigenvectors[qfk.

After a long calculation, in which the limitp—0 andN
—oo are taken, we reach the res[di9]

A NM | N2
Px,X/:<X’|trbath(e7BH)|x>:l_k[ Fa(k) fim (ﬁ)

N— oo

B M.
xf DX, ex;{—f dr—=X2(71)
0 2

+fﬁfﬁd7d7’ K(|7— T'|)[X(7)—X(T’)]2), (62
oJo

where

L piwl  f,(0)
K(jr=7 |)_Ei 2 sinf(w; 812) 1(1)

Xcos%wi<§—|7—7’|)

: (63

with
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fi(i)=2, e Poim, (64)
fz(i):E m;e” Aeim, (65)

Note that the ratid,/f; is negative.

_ For the HO mode][that is, the Hamiltoniari6) with Egs.

(7), (8), (9), and (10)] the reduced density matrix elements
px x' Obtained through the functional integral approach are
of the same form as those in E(2), but with a slightly
different kernel[15]:

2

Ci
Krol|7=7'])= —Ei 8m; w; sinh(w; 312)

Xcosl{wi(g—h—ﬂ) . (66)
Thus, we can make the correspondence
fa(i)
2 — Amipled - (67)
f1(i)

It is clear that with a suitable choice of parametarith the
¢i's being functions of temperature, due to the temperature
dependence of,(i)/f4(i)], in the BM limit the binary col-
lision model leads to the same results fory, as the HO
model. This is not surprising, since in the BM limit only the
linear terms in the expansion of the original nonlinear inter-
action Hamiltonian(18) contribute to the reduced density
matrix. In order to obtain different dynamics it is necessary
to find such an equation, derived from this binary collision
model, which is true in general, not only in the BM limit.
Applying the path integral approach outside this limit is pro-
hibitively difficult; we need a different approach.

B. The quantum Langevin equation

We will derive an equation of motion for the first deriva-
tive of the momentum operator of the Brownian particle. The
derivation will be analogous to that in Sec. lll, except that
we will work with operators instead of dynamical variables.
Starting with the Hamiltonia(18), the five equations for the
observables are

tx,i:wi Sin(2Pi>A<)|A-z,i ) (68
-ﬁy,i= — w; cog2p; X)L, (69)
L, i=afcos2p XL, —sin2p il (70

K= —. (72)

2| o

. N .
P=-> 2piL,;. (72
=
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As in the classical case, E(72) is an expression of conser- whereH, is Hamiltonian(18) and f(t) perturbs the system

vation of momentum. Taking the second denvatwel.gf
after some algebra, we obtdih9]

Ipl

Lz,i+w?£2,i———{8 Li. Pr=H(1). (73

Then after solving fof.z,i , Calculatingl:z,i , and substituting
in Eq. (72), we arrive af19]

'é’(t)ZfotZ —'p'{B LI,P}coiwl(t t’)]dt’

_Ei 2pi|iz,i,h(t)! (74
where
Loin= — oil 5 (0)sinayt) + wi{cog 2pX(0)]L(0)
—sin2p;X(0)]Ly,(0)}cog wit). (75)
Equation(74) is exact. It is of the form
Lo t1| . ) = , e
P(t)—foz y(t—t ),M dt’ +F(t), (76)

which is not quite the form of a GLE. The kerng{t—t') is
the operator

Yt-t)=2 dop?B-Lit)cogw(t-1)], (77

and

Fo=-3 2Dl n(b). (78)

As in the classical case, we can show that in the limit

—0, I§i~l: is essentially independent of time, and Eg4)
takes the forn{19]

JE —B icod wi(t—t")]Pdt’

-3 20l n(), (79

or

X t. p N
P(t)=joy(t—t’)m(t’)dt’+F(t). (80

In this equationy(t—t’) is still an operator. To have a BM
process(in the sense of a GLEwe need to approximate

off equilibrium:

[O if t<0
f(t)=

f(t)#0 otherwise. (82)

Averaging based ol%l(t) to first order inf leads to the equa-
tion [19]

>f<

+f(1),

B Cicod wy(t—t)]P(t’ )>dt’

(83

which we will write as

X . P
<F’(t)>=f0 Y= )5 (1) jdt'+(1). (84)

In order to be able to approximate the above equation to the
convenient form of a GLE, to which the fluctuation-
dissipation theorem could be applied, the following must be
true:

P i p
<y(t—t'>m<t'>>~<7<t—t'>><m<t'>>. (85)

In Appendix A we prove that, in the BM limit, this is indeed
the case. Thus, in the BM limit, E§84) takes the form of a
GLE:

OSIRETS t>>< t>>dt+f<> ®6)

Although Eq.(86) looks just like the corresponding clas-
sical GLE, the two equations differ because the classical and
quantum averages of differ. That is not the case with the
v’'s in the classical and quantum GLE’s obtained from the
HO model; in that case the two are identical.

Is F(t) a proper “random force” operator? In Appendix
B we outline the proof of the following results:

(F(1))=0, (87)
li
@~ Bojm;
s : _mi:z—-m'e £l 8
(B-L))= O
e* a)imi

mi=—1;
F(FOF(0)+(F(O)F(1)]
=— 2 2p2w22—cotl-< aded

coq w;t). (89

Note that Eq(88) shows that the quantitf,(i)/f,(i) in the

y(t—1t") with a number. That can be done by averaging the
above equation with respect to the following time-dependenkernel (63) is in fact(8;-L;). Hence,
Hamiltonian from linear response theory: ()

A =Ao— O, 61 (At=t)= E4w.p.f (90
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Taking the high temperature limig—0, or the limitAZ—0 . 1 o t . .
(% being implicit in all of our equations and using (P(t))= ZTV{5P(t)P}:ijof(t'x[PH(t—t’),XDeth’.
1 (100
limcoth(x) = — (91 . .
x—0 X wherePy is the operatoP in the Heisenberg picture.

in Eqg. (89), we obtain the quantum-mechanical analog of the Defining the response functiop(t—t") by

classical fluctuation-dissipation theorem: . t
1 <X(t))=fof(t’)x(t—t’)dt’ (101
lim S(FOF0)+(FOF(1))]=—KT(¥(D),
nB—0 and using
(92
which is evident from a comparison with EG3). (P(t))=M %(f((t)) (102

Thus, Eq.(74) is a quantum “Langevin” equation, corre-
sponding to the classical equati80). After averaging, as in together with Eq(100), we obtain[19]
the classical case, we could impose on it conditions under '
which it would converge to an ordinary Langevin equation t
describing a Markovian proce$$9], thus showing that our <5((t)>=f if (t)([Xu(t—t'),X])edt’, (103
model can describe “standard” BM in both classical and 0
quantum regimes. and from the definitior{101) we conclude that

V. LINEAR RESPONSE THEORY

x(t—t)=i{[Xp(t—t),X])eq. (104
We consider a perturbation from equilibrium driven by a o
small forcef(t) which vanishes fot<0, Specializing to the case
t<0: f(t)=0, f(t)y=ko(t), (105
t=0: f(t)#0. (93)  wherek is a constant, we have
Following Kubo[20], we start from the Hamiltonian (X(1))=Kx(1), (106)
H(t)=Ho+H"(1), (94 and using our earlier results we fifd9)]
where - t R R
52 M(X(t))= fodt’W(t—t'))M(X(t’)Hf(t) (107)
Ho==—+ > w;Bi-[; (95)
2M . 1= I or
and ) ¢ . _
) A MKK(D = | a1 )Mkt +katn, (109
H'(t)=—f(t)X. (96) 0
The density operator which can be Fourier transformed to
p(t)=Deqt 5p(1) 97 ~Mox(w)=—ioM(¥())x(0)+1. (109
satisfies Hence,
b t)y=[H(t),p(t 1
15tP( )=[H(),p(t)] Y (@)= , (110

o M[ - w?+io(y(®))]
=[Flo+F’ (1), peqt 5p(1)]

=[—f()X,peql +[Ho,5p(1)] (98)

to first order inf, with solution

which we write in the form

X(@)=X"(0)+iX"(w), (112

¢ i i where
6;)(t)=iJ f(t")e Mot X, pe letot=tdt’ . (99)
0 -1

X (0)= (112

Since(P)eq is zero, after some algebra we obti9] M[ %+ (Y())?]
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}//(w): _<7((:)> . (113)
M[0®+ o(y(®))?]
Defining
C()=(X(1)X(0))eq. (114
and using the relatiofil5]
X' (0)=3(1-e #)C. (), (115
we find
. x —iwt
C+(t):_%f de <7(w:> - “Bo
7 M[e®+ o{y(0))?] 1-e
(116)

From C,(t) we can then calculatgl5]

A d o o
Cox(t) =(P()X(0))eq=M —(X()X(0))eq, (117

© s d o o
Cxp() =(X()P(0))eq= = M —(X()X(0))eq;
(118

. 2 ..
cpp<t>=<P(t>P<0)>eq=—M2E<X<t)xw>>eq.

(119
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VI. CONCLUSIONS

We have developed a binary collision model for quantum
Brownian motion and we have compared it to the standard
harmonic oscillator model. Unlike the HO model, our model
allows nonlinear coupling between system and bath and
could be useful in modeling processes involving strong
system/bath interactions. Outside the BM limit, the binary
collision model contains possible dynamics that could not be
produced by the HO model, even in principle.

We have proved the equivalence of the two models in the
BM limit. In this limit the equilibrium reduced density ma-
trices derived from the two models can be mapped onto each
other, provided the coupling coefficients in the HO model
are temperature dependent. Thus, this model provides an al-
ternative way to calculate the properties of quantum BM.
There may be numerical advantages to using it, since each
bath mode is associated with a spin—a few-level system—
rather than with an oscillator.

An important feature of the model is its applicability to

fermionic as well as bosonic baths. Such baths are quite
common; an example is the electron gas in metals. Kondo
[15,22 developed a model for metal impurities interacting
with the electron gas; in certain limits the Kondo problem
can be treated as a bosonic bath prob[&5], in general not.
In the binary collision model a fermionic bath represents a
particular case of dissipative environment of spin-1/2 angular
momenta. The fermionic nature of the bath is unimportant in
the BM limit, but may have consequences outside that limit
[23].

Finally, the binary collision model is simple and physical.
Generalizations of it are easy to imagine and may be attrac-
tive choices for modeling other problems of quantum dissi-
ation.

These are all the correlation functions needed to describe %
stationary Gaussian process, which is the limiting case of our
model in the BM limit, where it becomes equivalent to the
linear system described by the HO model with linear damp-
ing [15,21].

It is interesting to compare the results of this model with
those of the HO model of Caldeira and Legdéi?,15 de-
scribed in Sec. I. Their Hamiltonian leads to a GLE of the
form (31) in both classical and quantum cases, with
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APPENDIX A

In this Appendix we prove that in the BM limit E485)
holds true. In order to calculate the appropriate average
c? quantities we need the diagonal matrix elements of the ther-

N
7H0(t_tl):_§1

m_w_zcos{“’i(t_t,)]’ (120 mal density operatop for the Hamiltonian(in the case of a
o linear perturbation
which compares with ouy in the BM limit, given by Eq. 22

(90). In the same limit, the equilibrium properties of a sys-

tem are described in both models by E6R) for ;A)X,x, , with
the corresponding kernel66) and(63). Thus, all differences
between the two models are in the kernilso and K at
equilibrium and in the kernelsyo and y that enter linear
response theory. We have already shown that, if we make t
coefficientsc; in Ky temperature dependeit,,o andK can
be made equal. What about the kernglg, and y? Compar-
ing Egs.(120 and (90), we see that equality of the's is

Act)= ;—M—f(t)k+2 wB(X)-L=T—fX+V.
(A1)

Since on the right-hand side of E(5) the leading order
Hepntribution to the average f is in first order inf, we need
to consider the average 9fto zeroth order irf only, so that
the whole product remains linear in To avoid potential
difficulties with the fact that for free BM the density operator
guaranteed by the same condition, E67), which guaran- corresponding to the HamiltoniaiA1) is not bounded, we
tees equality of th&’s. In the BM limit, then, the two mod- Wil work with its diagonal elements in coordinate space,
els can be mapped onto one another: they are equivalent §tus making the case of— irrelevant. Using the eigen-
equilibrium and within linear response theory. vectors ofV(X) as basis vectors, written &s(X)), we need
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(X,n(X)|e PAO|X,n(X))

= lim <X,n(X)|€7(B/N)f"e(ﬁ/N)fﬁef(B/N)f/‘ . ‘e*(B/N)fe(B/N)fﬁe7(B/N)‘A/|X,n(X)>'

N—oo ~
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(A2)

v

v~

N times

Multiplying N—1 times by unity inside the matrix element |, §If

we obtain
(X,n(X)|e~AHOIX,n(X))

= lim

N— o0

fdxlE T I
ny
N—-1

X > 'Ho (Xj+1.nj+1(Xj41)]

NN-1 ]=
% e—(,e/N)%e(ﬁ/r\J)f>”<e—(;3/N)\”/|Xj X)),
(A3)
where
e_(B/N)V|XJ‘ ,nJ(X])>= |X] ,nJ(X])>e_(B/N)V(”J) (A4)

It is important to note tha¥/(n;) does not depend oX;, as
it is the energy of interactiorelativeto the orientation of the

vectorB;. Thus,

(X1 1.0}, 1] FNTBNXg(BNV]x )

=1 /_N M e~ (NMI2B)(Xj 1= X))? g (BIN)FX;
278

x e~ BNVOI(n; ynp), (A5)
and
(X,n|e"AHO|X n)
. NM N/2
iz | 5% [ o
N-1 N-1
NM B
X 2 exp — 2 54 (Xjr1—Xj)2+ 2 =fX
ngl X% jgo ZB( j+1 j) kgo N k)
N—-1 B N—-1
><exp<—z V) | TT (npealng. (AB)
i=o N m=0

Let us consider the elements; . 1(X;.1)|n;(X;)) and ex-
pand:

(i 1(Xj DN (X)=(nj 1 1( X D[N (Xj41))
(N a(Xj4 D) [nj (Xj41)) 0X
+ %<nj+1(Xj+1)|n3’(xj+l)>5zx'
(A7)

., X always appears multiplied by;, so we have
nj’(X)ocpi, etc. The first term on the right-hand side of Eq.
(A7) is 5nj+1'nj. Consider the second ternil) If n; .,

=n;, we may assume than;,,|/n/)=0; that amounts to
assigning a phase factor to each eigenved®r.If nj,;
#n;, the term(n;,|n;) is proportional top;6X. The last

term is of orderO(p26°X). Thus,
<nj+1(xj+1)|nj(xj)>~5nj+1,nj+(l_ 5nj+1,nj)o(pi5X)

+0(p?6°X),

and

N-1
]];[O <nj+l|ni>~[5n,nN_l+(1_ 5nynN_1)O(pi5X)

+0(pf8*X)]- [ 8, nt (1= 8y )

X O(p;8X) +O(p?6°X)]. (A8)

Consider the path for whichj=n;,,, Vje[0, N—1]. For
this particular path we have

N—1
j1:[0 (nj+1/n))=1+Np?&X+N(N+1)pf(82X)2+ - - ~1,
(A9)
since p;—0 and 6XxN~2 We see that terms of even
power of p;6X make a negligible contribution to the path
integral.
Now consider a path for which there is a mismatch be-

tween somen;,; andn;, say atj=k. Such a path will
contribute to the path integral with

h j ka+lf dXy-- -ef(MN/ZB)(XHkaH)Z

X MN2B)(Xpi1—Xp?
X o~ (MN2BY (X=X, 1)
X e(B/N)f(Xk+1+Xk)pi(Xk+l —X,)=0.

| N ———
5%,

(A10)

To zeroth order irf this contribution is zero because revers-
ing the path would lead to the interchangeXqf, ; and Xy,
which means the same contribution but with opposite sign.
The same is true for any term containing an odd power of
pi oX.
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Hence, to zeroth order ifj the only nonvanishing contri-
bution to the path integral for a givetcomes from the path
for which all |n;)’s are the same, that ign;)=|n),Vj. For
this path,

N—1 N—1
IL (eI~ I1 8y (ALY
and therefore

N/2
BH(D) =
(X,n|le” |X,n)= I|m<2 ,3) f DX,

N— oo

X ex;{ - f:d 7'( %XZ( 7)

—fX(r)) e AV, (A12)
where we have used
N—1 N—1
f dT—x2 (A13)
etc.
We will write
EEI (A14)

where the definition oﬁi (with eigenvalued\;) is obvious.
Starting from the Schwarz inequality

(s,

15)
where
KE<Z Ai>, (A16)
we have
([3A3])-{3 Az A)-{24]"
(AL7)
with
(ZAZA)=3f 0g [xnoo/3 AT A
x e~ A1 x,n(x)>

2334 (34
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X const, (A18)
whereZ is the partition function, such that
> e AV x const=Z. (A19)
n

In Eq. (A18) the sum over (or j) includes a large number of
the eigenvalueg,;, distributed according to thermal equilib-
rium for the bath. Therefore, we can apply the law of large
numbers and write

(A20)

[34) (24

which means that the sums are approximately independent of
the staten. Hence, from Eqs(A18), (A19), and (A20), it
follows that

2
<E A Aj>~<2_ Ai) . (A21)
i j i
Similarly,
<Z Ai>~(2 Ai)- (A22)
Therefore, Eq(A17) becomes
R ) 2
<(E Ai_A> >~0, (A23)
hence,
R N\ 2
‘<<E Ai—A)P(t’)> ~0, (A24)
or
<2 Aiﬁ’(t’>>~<2 A><P(t ), (A25)

and the proof is complete.

APPENDIX B:
Here we outline the proof of several important results of
Sec. IV. For details the reader is referred[i®]. First we

calculate <I§i : I:), which is needed for the fluctuation-
dissipation theorem of the second kind. We will work again

in the basis set of eigenvectors Bféi . I: :
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= & a0 To calculate the equilibrium average of the random force
JdXE (X,n[B;-Lie"#"X,n) operator we need
2 R n(X)
(Bi-Li)= -
dXx>, (X,nle”PHX,n) A )
ne (F(0)=2 2pio; siwit){L4i(0))~ 2 2pjo; cod wt)
E (§i.|ji)nie—5wi(|§i'':i)ni A .
- S (81) X(co§2pX(0)]Ly,1(0))+ 2 2pjo; cog wit)
2 e Boi(Bi-Lin,
" X(sin2p;X(0)]L,i(0)). (BS)
where

(Bi- L) =[coS2p X)L, i +SiN2pX)Ly 1, (B2) 1S €asy to prove thefilo]

should not depend oK, as explained earlier. Therefore, we

can choos&=0. In that case, (L,i(0))=(cog 2p;X(0)]L,;(0))
(Bi- L) =(Lg)n=m;, (B3) =(si2p;X(0)]L;(0))=0. (B6)

where them;’s are the possible values bf ;. Hence, in Eq.
(B1) we can sum over then's, arriving at Thus,

li

m: e~ Beim; ~
<BI LI>: Ii = (|) (B4)
2 e Boim
mi=—1; We now consider Eq@89), where

(F(F(0))= E 4p;pjw;w; Sin(wit)(cog 2p;X(0)]L,;(0) L ( 0>>+E 4p;pjwjw; Sin(wit)
X(sinf 2p;X(0)]L ()L 0>>+E 4pipjw;;(cog 2p;X(0)1cog 2p;X(0)]Ly,i(0) Ly ;(0))
><cos(wit>—i2j 4p;pjw;wj(cog 2p;X(0)Isin 2p;X(0)]L, i (0) L, ;(0))
><cos(wit>—i2j 4p;pjw;wi(si 2p;X(0)]cog 2p;X(0)]L,,;(0)L ;(0))

X cog wit) + X, 4pipjwiw;(sin 2p;X(0)]sin 2p;X(0)]L,,;(0)L,;(0))cod w;t). (B8)
1)

After calculating each of the six sums above separdtedy, we arrive at

(F(F0)=—> 2pi2wi2f2(i)cotl-<@)cos{wit)HE 2pi2wi23in(wit)f2(i). (B9)
i fa(i) 2 i fa(i)
In a similar fashion we calculatg=(0)F(t)) to be
2oova » o fa(i) /3 b 5 f,(i)
(F(O)F(t))=— 2 2p; w; NG )cot cof wit)— |2 2pf i sin(w ) () (B10)

and therefore

F(OF(0) +(FOF(W)]= -2 2pfw F%c tf<ﬁ;i)00$wit)- (B11)
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