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Generalized Fourier law for heat flow in a fluid with a strong, nonuniform strain rate
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We derive the leading terms of a generalized Fourier law for heat conduction in fluids under strong,
nonuniform shear by expanding the heat flux vector as a Taylor series about the equilibrium state in powers of
the temperature gradient, the velocity gradighe first spatial derivative of the streaming velocity or the strain
rate tensor, and, in an extension of previous work, the second spatial derivative of the streaming v&ocity
third rank tensor. This results in a general macroscopic constitutive equation, independent of any microscopic
model, and valid for all flow geometries. Assuming that the fluid is isotropic at equilibrium, we find a term
representing heat flow due to a gradient in the square of the strain rate. This shows that it is possible for a
nonuniform velocity gradient to generate a heat flow in the absence of a temperature gradient. We also find
terms corresponding to heat flow parallel to the streamlines that are not present in uniform shear flow.

PACS numbeps): 83.20.Bg, 44.10ki

[. INTRODUCTION the square of the strain rate was found in the absence of any
temperature gradient. This strain rate dependent heat flux
Coupled transport processes in fluids are well understoodas also observed in independent investigations of Poiseduille
in the context of linear nonequilibrium thermodynamics. A flow in narrow channel$11,12, but a detailed understand-
classic example is the Dufour effect, in which heat flow caning of its origin was not achieved. In this paper, we show by
be caused by a concentration gradient in the absence ofgacroscopic arguments that this term can be found by inclu-
temperature gradierif]. Coupled linear transport processession of the gradient of the strain rate as a thermodynamic
for isotropic fluids are governed by a set of rules that resulforce.
from the symmetry of the fluid and the parities of the rel-
evant thermodynamic forces and fluxes. These consider- Il. THEORY
ations together are known as Curie’s princifile?], and can
be stated briefly as follows: In an isotropic fluid under the

influence of small thermodynamic forces, the expression fo?tron.eg sgea?tnhg f'“'d_fgr_‘ be vtvr;tte_n asa Tayl;):hse{rl]es ex-
a thermodynamic flux only contains terms that are directlypanSlon about the equilibrium state, in powers of the thermo-

proportional to the thermodynamic forces having the sam(—f*jynarmC forceg2,5]. For example, with three vector forces,

tensor rank and parity as the flux itself. This allows a heat"® would have

flux (first rank polar tensorto be caused by a concentration 3 93
gradient(first rank polar tensgr but prohibits a strain rate J(X1,X5,X3)=3(0)+ >, X;- —
tensor(second rank polar tengofrom causing a heat flux. i=1 X

Couplings between fluxes and forces of different tensor

We begin by assuming that the heat flux vector in a

rank and/or parity become possible when we allow nonlinear 13 _ 3?J

relationships between thermodynamic fluxes and forces. In- +§21 ;l XiXj: IX; X

vestigation of these nonlinear couplings has been the subject Hx=0

of several recent publications dealing with isotropic fluids 18 8 3

[3-9]. Note that coupling between thermodynamic fluxes +§2 > D XXX

and forces of different tensor rank or parity is possible even 1=1j=1k=1

in the linear regime, for anisotropic fluids such as liquid 723

crystals[10]. — = e (1
Baranyai, Evans, and Daivjg] have previously reported IXiIXIX |

the results of nonequilibrium molecular dynamics simula-
tions of a simple fluid subjected to a spatially sinusoidalwhere the partial derivatives are evaluated at equilibrium,
transverse force. The force resulted in sinusoidal streamingndJ(0), theequilibrium flux, is equal to zero. The symbol
velocity, shear stress, temperature gradient and heat flux)[®! represents a third order contraction between the third
fields. By applying a position-dependent constraint forcerank tensorX;X;X representing the thermodynamic force
thermostat that homogeneously removed the viscous heand the fourth rank phenomenological coefficient tensor
they eliminated all temperature gradients in the system. Sugiven by the partial derivative. This is easily generalized to
prisingly, a heat flux that was proportional to the gradient ofthermodynamic forces of higher rank.
A crucial step in applying this method to the current prob-
lem is the identification of the relevant thermodynamic
* Author to whom correspondence should be addressed. Electronforces. We explicitly consider the non-linear regime, so
address: peter.daivis@rmit.edu.au higher order tensor forces must be included. The temperature
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gradientV T is obviously important, and the magnitude of the whereJ(X?') represents the first order terms. The fourth rank
strain rate is assumed to be large, so we also include highéensorsC and D again possess additional symmetry due to
order products involving the strain rate tendtw and VT. the equality of the mixed second order partial derivatives that
The second derivative of the streaming veloc¥ u will appear in their definitiondsee EQq.(1)], giving C,z,s
also be included, because we will allow the strain rate to be=C,,35=D,4,s- This results in relationships similar to the
spatially inhomogeneous. The expression that results is conone between the coefficients appearing in . The sixth
plicated, so it will be developed in parts. The first orderrank tensor& andF can be written as linear combinations of
terms are: the 15 isotropic sixth rank tensors, e.g.,

33
VT o=

NT +VVu-

0

+V _&J
o Y

avvu . (2) Eaﬁ758{2e15aﬁ5785§§+e26a,35y556{+e36a,85y§558
0

+€400y05505; T €504y0p5:05;F €664,05:055
The partial derivatives are phenomenological coefficient

tensors and are material properties. They are evaluated at +€70a50py0:; 1 €80a50p: 0yt €90as0p;Ocy

equilibrium, and if we assume that the equilibrium fluid is NIPNEY S NI JUNIDNUS SN U JUNIDNES S NP
isotropic, some simplification results. The heat flux vector is 10%ae TyoTpe T m I ae Ty ot T m120ae Ty (TR0
a polar vector, and the thermodynamic forces are polar ten- +€1304:6,50: 5T €1404:05y05: T €15040,: 05 -
sors, so the first phenomenological coefficient tensor must be @)

a second rank isotropic polar tensor. There is only one such
tensor—the unit tensor, which we will write dsor 6,4. _ _ _ _ o
Thus, the first term can be written as a constant multiplied byAgain, the equality of mixed second order partial derivatives

the second rank isotropic tensor: and the symmetry implied by the relationsh¥p,Vgu,
=V,;V,u, lead to considerable simplification, with the re-
Axp=Nb,p. (3)  sult thatE=F and all of thee; are found to be equal. After

o o ~ substituting Eqs(7) into (6) and evaluating the contractions,
The constant in this equat|0n is the usual thermal CondUCUVthe Comp'ete expression for the heat flux vector to second

ity. There are no isotropic polar third rank tensors, so theyrder in the chosen thermodynamic forces becomes:
second term is zero due to symmetry, and the phenomeno-

logical coefficient tensor in the third term must be a linear L .
combination of the three isotropic fourth rank polar ten- J(VT,Vu,VVu)=J(X")+c[Vu+(Vu)'+V.ul]-VT

sorsf2,13| +e{[Vu+(Vu)T
BaB75: blaaﬁay§+ b25a75,35+ b35a557,3' (4) +VU1][VV+(VV)T+VV1]U
Further simplification of this tensor is made possible by us- +[Vu+(Vu) :[V(Vu+(Vu) "]

ing the additional symmetry{14] implied by V,Vzu,
=VzV,u,. This results in the relationship,=bs. When
these expressions for the phenomenological coefficient ten-

sors are inserted into the constitutive equation and the conrne third-order terms can be treated in a similar way. We are
tractions performed, we obtain an equation for the heat fluynly interested in the weak temperature gradient, strong
vector that is correct to linear order in the chosen thermodyshear case, so we restrict our attention to those terms that are
namic forces, i.e., of linear or lower order in the temperature gradient. Consid-
ering the combinations of thermodynamic forces that give
rise to phenomenological coefficient tensors of even fask

the odd rank tensors will not contribyfethe remaining
combinations of thermodynamic forces ar@éuVuVT

+VVu:[Vu+(Vu) T} (8)

J(VT,Vu,VVU)=AVT+b,VV-u+b,V-(Vu) +b,V-Vu,

where the superscrifdt denotes the transpose. Although this ;
equation results from the first order terms of the expansion, it YUVYUVT VuVuvVvu VVuvVvuvvu. We will only

contains terms that are second derivatives of the streaming)onfsf'.dfar the first, a? thekothers ref]ult '('; [)rrr]]enorrllenplog:cal
velocity. Terms of this type are not usually included in linear oefficient tensors of rank greater than 6. They also involve

constitutive equations, and they would only become impor_hlgh-order products of the second derivative of the streaming

tant for strongly nonuniform flow profiles velocity, and may thus be considered to be negligible com-

Next, we consider the second order terms in the exparparl\jdkv_v'th the f'ert. te_lrm. i ¢ bef
sion. Only the isotropic polar tensors of even rank will con- _ V:akiNg USe of similar Symmetry arguments as betore, we

tribute, so we can simplify the second order terms to obtair?btaln our final form for the heat flux vector
the following equation for the heat flux vector to second

order: J(VT,Vu,VVu)=J(XY) +I(X?) + f{[Vu+(Vu)"
J(VT,Vu,VVu)=J(XH)+ VTVu(-)LBIC+VuvT(-)EID +V-ul]-[Vu+(Vu) '+ V-ul]
+VuVVu(-)BIE+VVUVu(- ), +[Vu+(Vu)T]-[Vu+(Vu)T]

(6) +[Vu:Vu+Vu:(Vu)"1}-vT, (9
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where the first- and second-order terms are given by &js. e 0 0
and(8). )

These equations might be simplified by using the irreduc- Vu=|0 —& O (14
ible representationgl3] of the tensors, but it is difficult to 0O 0 O

express the general sixth-rank isotropic tensors in irreducible ) )
form, so the approach taken here is probably the simplest. a2nd the elongation rate is assumed to be constant. The result
in this case is a constitutive equation of the form

lll. DISCUSSION J=Ngi- VT, (15)

The results given in the previous section are far simpler . - .
e . . where the effective thermal conductivity tensor, given by
when specific flow geometries are considered. We now con-

sider some specific examples. N+2ce+12f82 0 0
The first simplification is to consider a general velocity . 5
field of the formu=iu,(y), which we will call general pla-  Ner= 0 N—2ce+12fe 0
nar shear. This results in the strain rate tensor given by 0 0 N+4f&?
(16)
0 00O
. contains terms of both first and second order in the elonga-
Vu=| ¥y) 0 0f, (10 tion rate in the diagonal elements.
0O 0O An obvious question that arises is whether the new terms

are physically significant. The answer, based on the evidence
where y(y) = duy(y)/dy. It is immediately apparent that in currently available, is that they are. In the analysis of non-
this case,V-u=0, which eliminates many of the terms in equilibrium molecular-dynamics computer simulations, erro-
Egs.(5), (8), and(9). The constitutive equation for the heat neous values of the thermal conductivity will be obtained if
flux that results is made more compact by combining thehe correct constitutive equation including the heat—shear
terms that contain the temperature gradient into an effectivesoupling term is not use®4,11]. A dimensional analysis,
strain rate-dependent thermal conductivity tensor for thesimilar to that given by Baranyd#], but more general, will
shearing fluid, as was done in previous wfk This allows now be discussed.
us to write the expression for the heat flux vector in theThe heat equation for the case whereiu,(y) (and conse-

relatively simple form quentlyV-u=0) can be written as
VY)Y, T 1 1
J=Neit- VT+by ay i+3dy(y) 7], (11 at PCUV‘J PCUH :Vu, (17)
where whereT is the temperature is the density¢, is the specific
heat capacity andll" is the transpose of the nonequilibrium
A+ 352 cy 0 part of the pressure tensf2]. If we assume a generalized
: - Newtonian constitutive equation for the nonequilibrium
= +3f4?
Aeit €y AE3ty 0 ' (12 stress, the viscous heat production is given by
0 0 A+ 92

T Vu=I1,,(y) ¥(y) = = 7(y) ¥*(y). (18
In the case of simple planar shegéinear velocity gradient
only the first term of Eq(11) survives. This is in agreement Substituting Eq(11) for the heat flux vector converting the
with the conclusions reached in previous wdg6]. The  whole equation to dimensionless form, we obtain
additional two terms correspond to longitudinal and trans-

verse heat fluxes that are caused by a transverse gradient in T __ux. AREE
the strain rate. The transverse heat flux term could also be dt* Re Py eff
written as

Br

& Br a9 [dy*? _
( +RePrn*y*z' (19

Eav2(y)lay=2&y(y)av(y)l ay, (13)  pL3ug Pray* | ay*

which is the form of the shear induced heat flux that wadn this equation, we have used a characteristic veloaity
postulated by Baranyaét al. to explain their sinusoidal lengthL and temperature differendg — T, as the reduction
transverse force molecular dynamics simulation reddlfs ~ parameters, following Bird, Stewart, and Lightfga6]. This
and has been found essential to properly describe heat flogives the reduced time &5 =tuy/L and the reduced tem-
in narrow pores containing fluids undergoing Poiseuille flowperature asT* =(T—T,)/(T;—T,). The dimensionless ef-
by Todd and Evans and Aytoet al. [11,17. It was also fective thermal conductivity tensor and viscosity appearing
found by Cordero and Risso in their investigations of Poi-in eq. (19) are formed by dividingh¢ and 7(y) by their
seuille flow of dilute gases using the Boltzmann equafi@jn  linear values,A and 7, and the standard dimensionless
Another flow geometry that is of particular interest is thatgroups in the equation are the Reynolds number Re
of simple planar elongational flow, in which the strain rate =Lugp/7,, the Prandtl number Prc, 7y/\, and the Brink-
tensor is given by man number B 7ou3/\ (T, — To). The dimensionless num-
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ber related to the heat-shear coupling te@Br/pL3u,Pr  ing strong, nonuniform shear from a Taylor series expansion
=¢&ug/pL3c,(T,—To) shows that this term will be signifi- of the heat flux vector in terms of the temperature gradient,
cant in relation to the other terms for a given fluid when thethe strain rate tensor, and the spatial derivative of the strain
characteristic length. is small, the maximum temperature rate tensor. We find a term due to the coupling of heat flow
difference is small and the maximum velocity is large. Thisto the strain rate and the gradient of the strain rate that is
corresponds to fast flow in a very narrow pore or channeldentical to the one postulated by Baranyai, Evans, and
with very efficient removal of viscous heat. However, it Daivis[4] to explain their nonequilibrium molecular dynam-
should be noted that the theory described here assumes the$ simulations of a nonuniformly sheared simple fluid. Our
the fluid is isotropic at equilibrium. This is not the case for aresults are consistent with theoretical results from kinetic
fluid confined to a pore that is so narrow that it induces aheory studies of heat flow in dilute gases undergoing simple
layered structure in the fluid. shear and Poiseuille floj@], but they are independent of any
Note that Eq(19) does not contain the constam (cor-  microscopic fluid model and they apply to any flow geom-
responding to the longitudinal heat flpwbecause it occurs etry. The new constitutive equation should be particularly
in a term of the heat flux vector with zero divergence. Thususeful in studies of non-Newtonian fluids under strong, non-
it has no effect on the temperature profile, but it should beuniform shear.
accessible by direct computation of the heat flux vector.
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