
lia

PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Generalized Fourier law for heat flow in a fluid with a strong, nonuniform strain rate

Peter. J. Daivis* and J. L. Khayyam Coelho
Department of Applied Physics, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne, Victoria 3001, Austra

~Received 17 September 1999!

We derive the leading terms of a generalized Fourier law for heat conduction in fluids under strong,
nonuniform shear by expanding the heat flux vector as a Taylor series about the equilibrium state in powers of
the temperature gradient, the velocity gradient~the first spatial derivative of the streaming velocity or the strain
rate tensor!, and, in an extension of previous work, the second spatial derivative of the streaming velocity~a
third rank tensor!. This results in a general macroscopic constitutive equation, independent of any microscopic
model, and valid for all flow geometries. Assuming that the fluid is isotropic at equilibrium, we find a term
representing heat flow due to a gradient in the square of the strain rate. This shows that it is possible for a
nonuniform velocity gradient to generate a heat flow in the absence of a temperature gradient. We also find
terms corresponding to heat flow parallel to the streamlines that are not present in uniform shear flow.

PACS number~s!: 83.20.Bg, 44.10.1i
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I. INTRODUCTION

Coupled transport processes in fluids are well underst
in the context of linear nonequilibrium thermodynamics.
classic example is the Dufour effect, in which heat flow c
be caused by a concentration gradient in the absence
temperature gradient@1#. Coupled linear transport process
for isotropic fluids are governed by a set of rules that res
from the symmetry of the fluid and the parities of the r
evant thermodynamic forces and fluxes. These consi
ations together are known as Curie’s principle@1,2#, and can
be stated briefly as follows: In an isotropic fluid under t
influence of small thermodynamic forces, the expression
a thermodynamic flux only contains terms that are direc
proportional to the thermodynamic forces having the sa
tensor rank and parity as the flux itself. This allows a h
flux ~first rank polar tensor! to be caused by a concentratio
gradient~first rank polar tensor!, but prohibits a strain rate
tensor~second rank polar tensor! from causing a heat flux.

Couplings between fluxes and forces of different ten
rank and/or parity become possible when we allow nonlin
relationships between thermodynamic fluxes and forces.
vestigation of these nonlinear couplings has been the sub
of several recent publications dealing with isotropic flui
@3–9#. Note that coupling between thermodynamic flux
and forces of different tensor rank or parity is possible ev
in the linear regime, for anisotropic fluids such as liqu
crystals@10#.

Baranyai, Evans, and Daivis@4# have previously reported
the results of nonequilibrium molecular dynamics simu
tions of a simple fluid subjected to a spatially sinusoid
transverse force. The force resulted in sinusoidal stream
velocity, shear stress, temperature gradient and heat
fields. By applying a position-dependent constraint fo
thermostat that homogeneously removed the viscous h
they eliminated all temperature gradients in the system. S
prisingly, a heat flux that was proportional to the gradient
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the square of the strain rate was found in the absence of
temperature gradient. This strain rate dependent heat
was also observed in independent investigations of Poise
flow in narrow channels@11,12#, but a detailed understand
ing of its origin was not achieved. In this paper, we show
macroscopic arguments that this term can be found by in
sion of the gradient of the strain rate as a thermodyna
force.

II. THEORY

We begin by assuming that the heat flux vector in
strongly shearing fluid can be written as a Taylor series
pansion about the equilibrium state, in powers of the therm
dynamic forces@2,5#. For example, with three vector force
we would have

J~X1 ,X2 ,X3!5J~0!1(
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where the partial derivatives are evaluated at equilibriu
andJ(0), theequilibrium flux, is equal to zero. The symbo
(•) @3# represents a third order contraction between the th
rank tensorX iX jXk representing the thermodynamic forc
and the fourth rank phenomenological coefficient ten
given by the partial derivative. This is easily generalized
thermodynamic forces of higher rank.

A crucial step in applying this method to the current pro
lem is the identification of the relevant thermodynam
forces. We explicitly consider the non-linear regime,
higher order tensor forces must be included. The tempera
ic
6003 ©2000 The American Physical Society
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6004 PRE 61BRIEF REPORTS
gradient¹T is obviously important, and the magnitude of th
strain rate is assumed to be large, so we also include hi
order products involving the strain rate tensor¹u and ¹T.
The second derivative of the streaming velocity,¹¹u will
also be included, because we will allow the strain rate to
spatially inhomogeneous. The expression that results is c
plicated, so it will be developed in parts. The first ord
terms are:

¹T•
]J

]¹TU
0

1¹u•
]J

]¹uU
0

1¹¹u•
]J

]¹¹uU
0

. ~2!

The partial derivatives are phenomenological coeffici
tensors and are material properties. They are evaluate
equilibrium, and if we assume that the equilibrium fluid
isotropic, some simplification results. The heat flux vecto
a polar vector, and the thermodynamic forces are polar
sors, so the first phenomenological coefficient tensor mus
a second rank isotropic polar tensor. There is only one s
tensor—the unit tensor, which we will write as1 or dab .
Thus, the first term can be written as a constant multiplied
the second rank isotropic tensor:

Aab5ldab . ~3!

The constant in this equation is the usual thermal conduc
ity. There are no isotropic polar third rank tensors, so
second term is zero due to symmetry, and the phenom
logical coefficient tensor in the third term must be a line
combination of the three isotropic fourth rank polar te
sors:@2,13#

Babgd5b1dabdgd1b2dagdbd1b3daddgb . ~4!

Further simplification of this tensor is made possible by
ing the additional symmetry@14# implied by ¹a¹bug
5¹b¹aug . This results in the relationshipb25b3 . When
these expressions for the phenomenological coefficient
sors are inserted into the constitutive equation and the c
tractions performed, we obtain an equation for the heat
vector that is correct to linear order in the chosen thermo
namic forces, i.e.,

J~¹T,¹u,¹¹u!5l¹T1b1¹¹•u1b2¹•~¹u!T1b2¹•¹u,
~5!

where the superscriptT denotes the transpose. Although th
equation results from the first order terms of the expansio
contains terms that are second derivatives of the stream
velocity. Terms of this type are not usually included in line
constitutive equations, and they would only become imp
tant for strongly nonuniform flow profiles.

Next, we consider the second order terms in the exp
sion. Only the isotropic polar tensors of even rank will co
tribute, so we can simplify the second order terms to obt
the following equation for the heat flux vector to seco
order:

J~¹T,¹u,¹¹u!5J~X1!1¹T¹u~• !@3#C1¹u¹T~• !@3#D

1¹u¹¹u~• !@5#E1¹¹u¹u~• !@5#F,

~6!
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whereJ(X1) represents the first order terms. The fourth ra
tensorsC and D again possess additional symmetry due
the equality of the mixed second order partial derivatives t
appear in their definitions@see Eq. ~1!#, giving Cabgd
5Cgabd5Dabgd . This results in relationships similar to th
one between the coefficients appearing in Eq.~4!. The sixth
rank tensorsE andF can be written as linear combinations
the 15 isotropic sixth rank tensors, e.g.,

Eabgd«z5e1dabdg«ddz1e2dabdgddez1e3dabdgzdd«

1e4dagdbdd«z1e5dagdb«ddz1e6dagdbzd«d

1e7daddbgd«z1e8daddb«dgz1e9daddbzd«g

1e10da«dgddbz1e11da«dbgddz1e12da«dgzdbd

1e13dazdgdd«b1e14dazdbgdd«1e15dazdg«dbd .

~7!

Again, the equality of mixed second order partial derivativ
and the symmetry implied by the relationship¹a¹bug
5¹b¹aug lead to considerable simplification, with the re
sult thatE5F and all of theei are found to be equal. Afte
substituting Eqs.~7! into ~6! and evaluating the contractions
the complete expression for the heat flux vector to sec
order in the chosen thermodynamic forces becomes:

J~¹T,¹u,¹¹u!5J~X1!1c@¹u1~¹u!T1¹•u1#•¹T

1e$@¹u1~¹u!T

1¹•u1#•@¹¹1~¹¹!T1¹•¹1#•u

1@¹u1~¹u!T#:@¹~¹u1~¹u!T!#

1¹¹u:@¹u1~¹u!T#%. ~8!

The third-order terms can be treated in a similar way. We
only interested in the weak temperature gradient, stro
shear case, so we restrict our attention to those terms tha
of linear or lower order in the temperature gradient. Cons
ering the combinations of thermodynamic forces that g
rise to phenomenological coefficient tensors of even rank~as
the odd rank tensors will not contribute!, the remaining
combinations of thermodynamic forces are¹u¹u¹T
¹¹u¹¹u¹T ¹u¹u¹¹u ¹¹u¹¹u¹¹u. We will only
consider the first, as the others result in phenomenolog
coefficient tensors of rank greater than 6. They also invo
high-order products of the second derivative of the stream
velocity, and may thus be considered to be negligible co
pared with the first term.

Making use of similar symmetry arguments as before,
obtain our final form for the heat flux vector

J~¹T,¹u,¹¹u!5J~X1!1J~X2!1 f $@¹u1~¹u!T

1¹•u1#•@¹u1~¹u!T1¹•u1#

1@¹u1~¹u!T#•@¹u1~¹u!T#

1@¹u:¹u1¹u:~¹u!T#1%•¹T, ~9!
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where the first- and second-order terms are given by Eqs~5!
and ~8!.

These equations might be simplified by using the irred
ible representations@13# of the tensors, but it is difficult to
express the general sixth-rank isotropic tensors in irreduc
form, so the approach taken here is probably the simple

III. DISCUSSION

The results given in the previous section are far simp
when specific flow geometries are considered. We now c
sider some specific examples.

The first simplification is to consider a general veloc
field of the formu5 iux(y), which we will call general pla-
nar shear. This results in the strain rate tensor given by

¹u5F 0 0 0

ġ~y! 0 0

0 0 0
G , ~10!

where ġ(y)5]ux(y)/]y. It is immediately apparent that in
this case,¹•u50, which eliminates many of the terms i
Eqs.~5!, ~8!, and~9!. The constitutive equation for the he
flux that results is made more compact by combining
terms that contain the temperature gradient into an effect
strain rate-dependent thermal conductivity tensor for
shearing fluid, as was done in previous work@5#. This allows
us to write the expression for the heat flux vector in t
relatively simple form

J5leff•¹T1b2

]ġ~y!

]y
i13dġ~y!

]ġ~y!

]y
j , ~11!

where

leff5F l13 f ġ2 cġ 0

cġ l13 f ġ2 0

0 0 l1 f ġ2
G . ~12!

In the case of simple planar shear~linear velocity gradient!,
only the first term of Eq.~11! survives. This is in agreemen
with the conclusions reached in previous work@5,6#. The
additional two terms correspond to longitudinal and tra
verse heat fluxes that are caused by a transverse gradie
the strain rate. The transverse heat flux term could also
written as

j]ġ2~y!/]y52jġ~y!]ġ~y!/]y, ~13!

which is the form of the shear induced heat flux that w
postulated by Baranyaiet al. to explain their sinusoida
transverse force molecular dynamics simulation results@4#,
and has been found essential to properly describe heat
in narrow pores containing fluids undergoing Poiseuille fl
by Todd and Evans and Aytonet al. @11,12#. It was also
found by Cordero and Risso in their investigations of P
seuille flow of dilute gases using the Boltzmann equation@9#.

Another flow geometry that is of particular interest is th
of simple planar elongational flow, in which the strain ra
tensor is given by
-

le
.

r
n-

e
e,
e

-
t in
be

s

w

-

t

¹u5F «̇ 0 0

0 2 «̇ 0

0 0 0
G ~14!

and the elongation rate is assumed to be constant. The r
in this case is a constitutive equation of the form

J5leff•¹T, ~15!

where the effective thermal conductivity tensor, given by

leff5F l12c«̇112 f «̇2 0 0

0 l22c«̇112 f «̇2 0

0 0 l14 f «̇2
G
~16!

contains terms of both first and second order in the elon
tion rate in the diagonal elements.

An obvious question that arises is whether the new te
are physically significant. The answer, based on the evide
currently available, is that they are. In the analysis of no
equilibrium molecular-dynamics computer simulations, er
neous values of the thermal conductivity will be obtained
the correct constitutive equation including the heat—sh
coupling term is not used@4,11#. A dimensional analysis
similar to that given by Baranyai@4#, but more general, will
now be discussed.
The heat equation for the case whereu5 iux(y) ~and conse-
quently¹•u50! can be written as

dT

dt
52

1

rcv
¹•J2

1

rcv
PT:¹u, ~17!

whereT is the temperature,r is the density,cv is the specific
heat capacity andPT is the transpose of the nonequilibrium
part of the pressure tensor@2#. If we assume a generalize
Newtonian constitutive equation for the nonequilibriu
stress, the viscous heat production is given by

PT:¹u5Pyx~y!ġ~y!52h~y!ġ2~y!. ~18!

Substituting Eq.~11! for the heat flux vector converting th
whole equation to dimensionless form, we obtain

dT*

dt*
52¹* •S 1

Re Pr
leff* D •¹* T*

2
j

rL3u0

Br

Pr

]

]y* S ]ġ* 2

]y* D1
Br

Re Pr
h* ġ* 2. ~19!

In this equation, we have used a characteristic velocityu0
lengthL and temperature differenceT12T0 as the reduction
parameters, following Bird, Stewart, and Lightfoot@15#. This
gives the reduced time ast* 5tu0 /L and the reduced tem
perature asT* 5(T2T0)/(T12T0). The dimensionless ef
fective thermal conductivity tensor and viscosity appear
in eq. ~19! are formed by dividingleff and h(y) by their
linear values,l and h0 and the standard dimensionle
groups in the equation are the Reynolds number
5Lu0r/h0, the Prandtl number Pr5cvh0 /l, and the Brink-
man number Br5h0u0

2/l(T12T0). The dimensionless num
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ber related to the heat-shear coupling term,jBr/rL3u0Pr
5ju0 /rL3cv(T12T0) shows that this term will be signifi
cant in relation to the other terms for a given fluid when t
characteristic lengthL is small, the maximum temperatur
difference is small and the maximum velocity is large. Th
corresponds to fast flow in a very narrow pore or chan
with very efficient removal of viscous heat. However,
should be noted that the theory described here assumes
the fluid is isotropic at equilibrium. This is not the case fo
fluid confined to a pore that is so narrow that it induce
layered structure in the fluid.

Note that Eq.~19! does not contain the constantb2 ~cor-
responding to the longitudinal heat flow!, because it occurs
in a term of the heat flux vector with zero divergence. Th
it has no effect on the temperature profile, but it should
accessible by direct computation of the heat flux vector.

IV. CONCLUSION

We have derived the leading terms of a general mac
scopic constitutive equation for heat flow in a fluid underg
-

-

l

hat

a

,
e

-
-

ing strong, nonuniform shear from a Taylor series expans
of the heat flux vector in terms of the temperature gradie
the strain rate tensor, and the spatial derivative of the st
rate tensor. We find a term due to the coupling of heat fl
to the strain rate and the gradient of the strain rate tha
identical to the one postulated by Baranyai, Evans, a
Daivis @4# to explain their nonequilibrium molecular dynam
ics simulations of a nonuniformly sheared simple fluid. O
results are consistent with theoretical results from kine
theory studies of heat flow in dilute gases undergoing sim
shear and Poiseuille flow@9#, but they are independent of an
microscopic fluid model and they apply to any flow geom
etry. The new constitutive equation should be particula
useful in studies of non-Newtonian fluids under strong, no
uniform shear.
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