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Solution of the quantum fluid dynamical equations with radial basis function interpolation
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The paper proposes a numerical technique within the Lagrangian description for propagating the quantum
fluid dynamical(QFD) equations in terms of the Madelung field variabRandS, which are connected to the
wave function via the transformatiafi= exp{(R+iS)/A}. The technique rests on the QFD equations depending
only on the form, not the magnitude, of the probability dengity||?> and on the structure dR=#/21Inp
generally being simpler and smoother tharThe spatially smooth functiorandSare especially suitable for
multivariate radial basis function interpolation to enable the implementation of a robust numerical scheme.
Examples of two-dimensional model systems show that the method rivals, in both efficiency and accuracy, the
split-operator and Chebychev expansion methods. The results on a three-dimensional model system indicates
that the present method is superior to the existing ones, especially, for its low storage requirement and its
uniform accuracy. The advantage of the new algorithm is expected to increase for higher dimensional systems
to provide a practical computational tool.

PACS numbe(s): 02.70—c, 02.60.Ed, 03.65-w

I. INTRODUCTION several illustrations within both the Lagrangigit6—22 and
the Eulerian23—35 descriptions.

During the past decade, significant progress has been The QFD method based on the slowly varying dengity
made in the time-dependent treatment of atomic and molecywas implemented for studying the photodissociation of
lar dynamics and bound-state problems. A variety of methNOCI and NO, within both the Lagrangiah20] and the
ods has been proposed for numerically solving the timeEulerian[35] descriptions. In this paper, we propose an effi-
dependent Schdinger equation [1-6]. A major cient and accurate numerical technique for solving the QFD
consideration is the need to attain an accurate and efficiegquations based on the slowly varying functi@s%/2Inp
approximate representation to often highly oscillatory waven conjunction with multivariate radial basis functioRBF)
functions, particularly, in more than one dimension. Both theinterpolation. To this end, a set of dynamical equations is
spectral and pseudospectral methods employ a tensor produigrived and implemented in the Lagrangian description. In
representation as a means to treat multidimensional systen@yr previous paper36], RBF’s have been used to solve the
despite this representation being neither efficient nor accueound-state Schdinger equation. The most promising fea-
rate as a numerical scheme due to the rapid increase in tfigre of the numerical scheme proposed in this paper is its
total number of basis functions or quadrature points as thgotential for application to multidimensional systems.
dimension rises. The paper is organized as follows. Section Il presents the

The causal interpretation of quantum mechanics in the deentral motivation and RBF multivariate interpolation proce-
Broglie—Bohm theory has attracted a great deal of interesdure. Section Ill is devoted to the numerical implementation
[7—1Q] since Madelung, de Broglie, and Bohm’s pioneeringof the method, and Sec. IV presents several illustrations.
works[12—14. With the wave functions written in a polar ~ Section V concludes the presentation.
form (r,t)=Jp(r,t)e'S"V" [12] the de Broglie—Bohm
theory possesses an intuitive physical representation as quan-
tum fluid dynamicqQFD), reminiscent of classical fluid dy- Il. METHODOLOGY
namics. Besides its conceptual importance, the potential nu-
merical advantage of the QFD formulation over working
with the Schrdinger equation can be attributed to the oscil-  For simplicity, consider a single particle of magsin a
latory real and imaginary parts of the complex-valued wavepotentialV(r,t). The QFD equations within the Eulerian de-
function ¢ being replaced by the slowly varying densjty  scription can be obtained by inserting the polar form of a
and phases over the configuration space. In classical fluid complex wave functiony(r,t)=/p(r,t)e'S"Y" into the
dynamics, the motion of fluid particles can be described irSchralinger equation, separating the real and imaginary
either Eulerian or Lagrangian descriptiofik5] of the dy-  parts, and by defining=VS/u as the “velocity” of the
namics, respectively, either by fixing the “monitors” in particle. The result is a pair of coupled nonlinear partial dif-
space or by placing the “monitors” on the fluid particles. ferential equations
These two equivalent descriptions can also be employed in
the QFD formulation. The QFD formulation as a time- a—p+V-J=O 2.1)
dependent approach has successfully been applied to treat at '

A. Motivation
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where p=p(r,t)=|y(r,t)|? is the probability density,J
=vp the probability current density of the systei=
—V(V+V,) the total force acting on the particle, and

v 12 V2\p
a2, o

is the quantum potential carrying all the quantum effects o
the system. Equatio(®2.1) is the quantum probability conti-
nuity equation and Eq(2.2) is the quantum analog of the

(2.3

classical Newton equation upon identification of the total

derivative asd/dt=4d/dt+v-V and the total potential as
Viota=V+Vg.

In the Lagrangian description, the QFD equations are ofl

the form

d
Gt Pr(O.D+p(r(0),HV-v(r(1),1)=0 (2.4)

d
v(r(t),t)=—V[V(r(t),0)+Vu(r(t),H]=F(r(t),1),

HU, HO, RABITZ,

AND ASKAR PRE 61

density at different instants of time can usually be approxi-
mated by proper polynomials. Consequently, the numerical
advantage of treating jmin QFD, instead ofp, should be
capable of greatly accelerating the solution while attaining
high accuracy.

In contrast to the Schdinger equation, Eqs(2.2) and
(2.5) in the QFD formulation deal with the force fieflthat
contains a third-order spatial derivative @fwhose accurate
evaluation becomes computationally difficult, especially, as
the dimension of the system increases. To overcome this
difficulty, note that the direct result of the polar transforma-
tion is the quantum Hamilton-Jacobian equafi8h[see Egs.
(2.7 or (2.10] and the quantum probability continuity equa-
tion [see Eq.(2.1)]. The loss of part of the hydrodynamic
analogy arising from using the Hamilton-Jacobi equation in
place of its Newton counterpart is not of any concern nu-
erically because of the equivalence between these two set-
tings.

Writing ¢ in the Madelung formy= exp{(R+iS)/#} and
following the same procedure leading to E(&1) and(2.2),
an equivalent QFD formulation in the Eulerian description is
arrived at

Hat s (VS)2+V+V =0 2
where the time dependence of the trajectoft) is explicit R 1 5
and the total derivative with respect to time has replaced the ks _[ VR.VS+ —VZS] =0, (2.8
the partial derivative in the Eulerian description. Note that at 2

the evolution of the density in Eq. (2.4) can also be rear-
ranged into the evolution of the quantitydnin this case, the where the quantum potential has a new forkh=
quantum potential can be further written in a general form as- 1/2u{(VR)2+#V?R} with 2R=% In p [cf. Eq. (2.6)]. Al-

) ternatively, by taking the total derivatives & and S with

= “in V2inp+ E[V Inp]2}. 2.6 respect to time, i.e.,
. . dR JR
Equations(2.3) and (2.6) show that the quantum potential —=—+Vv-VR
depends only on the form of the density rather than its mag- dt
nitude[9,10]. At the heart of the-based QFD formulation is (2.9
the assumption that the densify and phaseS (or v ds ds
=VS/u) are more slowly varying functions than the gener- at E’LV'VS*

ally oscillatory real and imaginary parts of the corresponding
complex-valued wave fgnchon. The discussion above fur_the{he corresponding QFD equations in the Lagrangian descrip-
suggests that the densipycan be replaced by the quantity tion can be expressed as

In p without altering the nature of the QFD equations. This

replacement has several suggestive numerical advantages.
First, Inp should be a more slowly varying function than its

dsS(r(t),t)  [VS(r(t),1)]?

—V((D),D - Vg (0),1),

argumentp, and working with the former should make the dt 2u

QFD method numerically even more expedient. Second, the (2.10
practical dynamical range of jmshould be much smaller

than that ofp. For example, ifp changes in a truncated dR(r(t),t) o,

region 10 “<p<1 (i.e., 10 * can be considered as nu- At 2, SO (213

merically zero in usual double precision computatjoitisen
In p will only range accordingly from—32 to 0. Third, the
structure of Irp is in general simpler than that pfitself. For
example, the density of a compact Gaussian wave pack
possesses the form dxpa(r—r(t))?} in its spatial part
while Inp is a quadratic polynomial. Starting with a compact
Gaussian wave packet, the evolution of dynamics is a con-
tinuous deformation of the initial wave packet under the in-
fluence of the potential, and the logarithm of the deformed

These two equations are the new basis for numerical imple-
mentation of the preserR-based QFD method. As in Egs.

? .4) and(2.5), the explicit time dependence has appeared in
r(t), which is completely determined through the relation

dr(t)

B B \Y
W—V(f(t),t)—

—S(r(t)’t). (2.12
72
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B. Interpolation where the real coefficients;,c,, ... ,cy Solve the linear

Function representation is of fundamental importance irsYStem
numerically solving ordinary or partial differential equations
[37]. The quality of an interpolation scheme is dictated by N
the basis functions defining the interpolator, the total number f(r))= > ¢ é(lrj=rih, i=12,...N, (2149
of interpolating pointgi.e., grid point$, and the distribution i=1
of these points. In the Lagrangian description, the grid points
of the system instantaneously match the deformation of th?v

ket during th iuti 0 i advant ith provision that the symmetric interpolation matrix
wave packet during the evolution. One main advantage O:[Aij]:[¢(||rj_ri”)] be nonsingular. It has been shown

the Lagrangian picture is that at each instant of time thethat as long as the RBB(||r—r'||) is conditionally positive

interpolation only needs to be carried out in a limited regiondefinite in the sense that, for any setdtomplex numbers
in which the magnitude of the wave packet is significant.{a}N '
ifi=1

This keeps the total number of grid points relatively small
even in high dimension while still maintaining high accu-

racy. The disadvantage is that grid points inevitably become N
scattered, and almost all sophisticated regular grid based 2 ajf o(|Ir;—rilha;=0, (2.15
methods, such as finite difference, discrete variable represen- hi=1

tation (DVR) [38], Fourier pseudospectral approd@9,4d,
and distributed approximating functional®AF) [41], are  then the interpolation matrid is always nonsingular and
inappropriate in this circumstance. thus Eq.(2.14 is solvable[44].

Repently, dge to its simplicity and accuracy, radial .basis The accuracy and convergence of different REEfs Eq.
func'uon.(RBF) mtgrpola‘uo_n hgs attracted considerable mter—(zlla] in multivariate approximation has been carefully in-
est for interpolating multivariate scattered d@#2,43. A \estigated[42,43. One of the most important theoretical
RBF ¢([r[l) is a function that depends only on the distancefingings regarding RBF interpolation is that each positive-
Irll, with ||| denoting the norm, and it Maps & definite RBF can generate a reproducing kernel Hilbert space
D-dimensional quantity in the real vector spac® 1to a8  (RKHS) H, endowed with a proper inner product. As a re-
one-dimensional quanti in the real number spacB™. In gyt any well-behaved function can be optimally recovered
general, the RBF interpolation problem can be posed as folyjthin H from a set of scattered data by the corresponding
lows. Consider an arbitrary set df distinct scattered points RBF interpolatior[42—46. To the end, based on the RKHS

X={r1, rp, ... ry} in ®° and the corresponding scattered theory [47] and the RBF approximation theory described
dataF={f(r,), f(ry), ....f(ry)} for a functionf(r), the  ahove, an approach has been developed to numerically solve
task of RBF interpolation is to find an approximatib(r)  the multidimensional bound-state Sctinger equatiori36].
to f of the form The RBF interpolation is also attractive for analytical con-
N struction of potential energy surfaces usiag initio data
_ . . [48]. The following list covers several RBF’s that have been
Li(1) ;1 cig(r=rilD. 213 extensively studied in function approximation the@g]:

d(r)=(—1)"(c?+r?)P2(2m-2<B<2m) multiquadrics

B(r)=(c*+r?) P4 p>0) inverse multiquadrics
d(r)=(—1)Mr2M2|n(r) thin-plate splines
H(r)=(—1)M(c?+r2)M Lin(c2+r?)12 shifted thin-plate splines

2 n/2 k—n/2
d(r)= WKk_n/g(r)(E) (2k>n) Sobolev splines

B(r)=e "’ Gaussian, (2.19

where r=|r||=SP,x? is the radial distance in the problems[36]. In this paper, the multiquadrics and the thin-
D-dimensional Euclidean space, amdis usually chosen in plate splines will be employed for approximating the QFD
such a way that it coincides with the order of polynomials tovariablesR and S in the Lagrangian description Eq&.10

be included in the interpolation space. Among them, the muland (2.11).
tiguadrics withB=1 has recently been explored in compu-

tational fluid dynamicg50], while the Gaussian has had a

long history of applications in solving molecular bound-state
problems[51-55. More recently, the inverse multiquadrics ~ Several interrelated issues are pertinent to the numerical
and Sobolev splines have also been exploited for bound-statgplementation of the QFD formulation, especially, in its

C. Perspectives
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Lagrangian description in Eq&2.10 and(2.1D: (i) the ini-  vAt/Ax<1 is established in terms of the particle’s motion,
tial state of the wave functior(ji) the nodes of the wave wherev is the velocity of a particle andx is the shortest
function, and(iii) the phase of the wave function. These distance among all the moving gril20]. A second-order
points are addressed below. time propagation scheme for Eq®.10 and (2.11) can be

First, the use of a single compact node-free initial waveimplemented as follows:
packet should be generally sufficient to extract all relevant
dynamical information, as such a compact wave packet will _
be a superposition of nearly all the quantum states of the S(t+an=S(t-At)+At Z[V(tHVq(t)]]‘
dynamical system. In certain cases different symmetry- (3.1
adapted initial states may be udéb] to avoid the simulta-
neous excitation of closely spaced energy levels and thus to t
improve the numerical resolution and accuracy of calculated R(t+At)=R(t—At)— TVZS(U, (3.2
degenerate energy levels. This paper deals only with com-
pact node-free Gaussian initial wave packets.

Second, the trajectory of the particle obeying E2.5)
will never pass through a poina(r(t),t)=0 as long as
p(r(0),0#0 and V-v(r(0),0) is finite [9]. This can be
readily understood by writing Ed2.4) in terms of its inte- 2At
gral equivalence as follows r(t+At)=r(t—At)+ TVS(U' (3.3

[VS(O]?
m

where ther (t) dependence i andR has been dropped for
notational simplicity and the evolution of the particle’s posi-
tion is advanced according to its velocity as follows

t
p(r(t),t)=p(r(0),0)exp{ — Jodt’Vv(r(t’),t’)] ,

B. Spatial representation

(2.1 In contrast to fixed grid methods, the construction of a

s . . : multidimensional subspace on a mesh using RBF’s distrib-
g‘gégi:'g%é?gt dLﬁﬁgafr?gci/flgtigﬁni{grétzéts)uI\;\”I':hge(\qﬁ;ntit )gted on irregular grid points is technically straightforward.
R(r(1).1) will remain finite and the corresponding quantum pecifically, the interpolatio2.13 is formally independent

potential Eq.(2.6) can be evaluated without numerical diffi- of the dimensionality of the problem involved and all con-

. _ ) nections among grid points are properly done through the
;:ulty thrOLlJ(ghOUt the propagation within the Lagrangian QI:Dinterpolation co?wd?tior(g.lél). The |§I’g§$t gost of RBF ing'][er-
ramework.

Third, the multivalued nature & does not cause the col- ?20 Ifgor\:vlhsi(t:uescég?ecst 22“#:2”0?;: %Prgg:;l &:llgﬁlbl;zgfzqr?datlon
!apse of the QFD'equat|o'ns.. Here, the QFD gquaﬂc_ms OnI}Soints. Nevertheless, this problem can easily be overcome by
involve both the time dgnva’uve gnd the gradlent$f|.e., using the compactly supported RBF’'s as explained below.
dSdt andv=VS/yu, which are single-valued functions of =" cinie "any “grid distribution for the spatial discreti-
position and time. This means that at each space-time POINLvion of the QFD equations is acceptable as long as the
there is a unigue tangent vector associated With and

. . underlying RBF interpolation can adequately sample the
consequently, only one trajectory passes through that point Have packet. Following the discussions in Secs. | and Il, the

each instant of time. This is consistent with the quantur‘erD solutions can be implemented in three steps
probability continuity equation, which maps the non-nodal 1. Initial preparation.(a) Choose an appropriate initial

point regions into one another along the trajectories. wave :
. . . X packet for the system under study) set a density
A detailed discussion of the node and phase issues can e :
found in[9]. Moreover, it has been shown that for a Iarge%toff for the initial wave packet, e.g., 10, etc., depending

. e . on the required computational accuragg); place grid points
class of potentials and typical initial wave functions, the glo- q b . p gnap

) . . : ; in terms of the structure dR (or p) within the region deter-
pal solution of the OFD eauations exists at”‘f'j s ‘:r:"mn‘ﬂr}] _ mined by the initial density cutoff.
conclusion, no serious cully IS expecte enumer- - 5 Spatial derivatives. The gradient and Laplacian are

cal solution of Egs.(2.10—(2.1. One important feature taken by directly(i.e., analytically applying them to the in-

zcrzlrsllr;%;r?sﬂh\iavto rls(tlanl?tir\lN It\?vf:hagr? ;ilt?alﬂ\:\?a\ll_: g Cvi?heo-ut terpolatedR(t) and S(t) functions, respectively, evaluated
P ’ g P on the dynamic grid$r;(t)} at each instant of timé

\?vil?ol?d%eéﬁrﬁg(;i(r?)ﬁ?gf —, then subsequently nowhere 3. Propagation. With the chosen grid, the discretized field
gufar. variablesR, Sand the positiom are propagated according to

Si(t+At)=S(t—At) + At —2[Vi() + VgD ]y,

(3.9

Il. NUMERICAL DETAILS [VS(D]?
A. Time propagation m

In a previous pap€r20], the explicit central differencing
scheme was adopted for time integration of the QFD equa- hAt
tions. In the case of the Schitimger equation, this scheme Ri(t+At)=R;(t—At)— — V?2S,(1), (3.5
has been shown to be stable under the condition K
(At/2uAx?)<1, whereAt and Ax are the discretized tem- AL
poral and spatial grid sizé5§7]. In the present case, working . P <At
in the Lagrangian description, the new stability condition ftHAD=rit-Ay+ i VS, 3.6
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where the index denotes theth grid pointr; at three dif-
ferent adjacent instants(t+At), r;(t—At), andr;(t) in
each propagation cycle. Interpolation B{t) and S(t) is
performed at each instant of timeby use of the RBF's
distributed on the dynamic grids;(t)} whose configuration

SOLUTION OF THE QUANTUM FLUID DYNAMICAL ...
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are calculated many times. In this case, if these grid points
are not located at the boundary of each local interpolation,
the calculated results are kept when the corresponding grid
points are first employed in a local interpolation. The pro-

posed procedure usually implies a deformalble whose

changes in response to the action of the potential. shape change8.e., the choices in step 3 generally do not
The RBF interpolation is a global scheme, however, inprescribe a spherical domaiwith the distribution of grid
practice, compactly supported RBF's can be invoked tgpoints in each local interpolation.
avoid solving a large linear algebraic systef@.14. A
simple way to obtain the compactly supported RBF'’s is to
introduce a suitable weight function. For example, suppose
Q) is a hypersphere centered g in a multidimensional
space and the compactly supported weight functior
—rp) satisfies

IV. NUMERICAL ILLUSTRATIONS

Numerical tests in this section are performed on two-
dimensional2D) and(3D) free particle models, a 2D coher-
ent state model and a 2D model of NOCI photodissociation.
For comparison, parallel calculations are also carried out us-
ing the Chebychev expansioiCE) [3] and split-operator
(SO [56] methods, respectively. It is known that the CE
method is not efficient for the short-time steps although some
) . methods are availabld,3] to enhance its efficiency. There-
then the corresponding compactly supported RBF's are giveRy e 1 assess the efficiency of the QFD method, one single
as¢(r)w(r—rg). Systematically relocatinf will cover the giant time step in the CE method to complete the propaga-
entire region of interest and all discretized quantities will begjgn, is taken as a reference except for the 2D coherent state
described locally through the RBF interpolation. It is appar-case that does not favor a giant time step in the CE method.
ent that at each position, only a small portion of the grid  \joregver, the same time steps are taken for the second-order
points reside in() and, thus, only a small linear algebra|clso and the QFD methods. Finally, due to the short-time
system needs to be solved. In general, the number of grigh,1re of the QFD method, intermediate results are available
points inside() at different positions, is not fixed for a ¢4, any quantity of interest requiring time integration.

given size of the hypershere because of the irregularity of th@iomic units are used throughout the calculations.
grid. Consequently, it may happen that only a few grid points

are insideQ) in some positions and a great deal in others. In

practice, the size of) may be distinct at each positiog so

that a sufficient number of grid points is always included to  For aD-dimensional free particle with an initial momen-

attain the required accuracy. tum distribution chosen as a Gaussian in each dimension, the
In this paper, a practical procedure to achieve this adaptime-dependent solution of the ScHinger equation can be

able compactly supported interpolation scheme is introduceglritten, in terms ofR andS as

as follows.

1, ifr insideQ)
W(r=ro)=yo0, ifr outsideQ,

3.7

A. Analytical test solutions and initial wave packets

1. All the N grid points are initially numbered in an arbi-
trary manner.

2. A lower boundr ,;, is set for the distance between any
two grid points.

3. Upon choosing a grid point as a center, then a search is
made for itsn—1 closest neighbors under the conditions 1
<n<N andr;>r,, wherer; is the distance between grid
pointsi andj.

4. Local interpolation oR andSis performed over these
n points by solving the corresponding linear algebraic
equationg2.14) based on the compactly supported RBF's.

5. Derivatives ofR and S at thesen points are directly
taken over the locally interpolate® and S.

6. The results in steps 4 and 5 as well as their numbered t
indices are kept except far, boundary grid points of each + E
local interpolation. Ki

7. Steps 1-6 are repeatéfl,(N/n<N,<N) times until
all discretized quantities on thé grid points are calculated.

R({xi},t)=— AxZ+

D
1
i:E:L E'n(’ﬂ

N[ -

(X; —Xgi —vgit)? @.1)

AxZ+

2\
AXi,U«i)

D
S<{xi},t>=i§1 Poi (X —Xoi) + 6;(t)

(X; —Xgi —vgit)?

i )T ~Poi | { s
AXj i

4.2

Ax?

AxZ+

The lower bound ,,;,, in step 2 is set to prevent the linear
algebraic system in step 4 from becoming ill-conditioned andvhere
the operations of step 5 eliminate any interpolation edge ef-
fects. It can happen that some grid points are shared by a
couple of partly overlapped local interpolations in step 7 and
thus the results in step 5 corresponding to these grid points

, (4.3

0 1 t
i(H=>ta " A
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andui, voi, Poi» Xoi » @ndAXx; are the mass, initial velocity,
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x=(mg/m,) "y,

momentum, position, and position width along each dimen-

sion, respectively.
For a D-dimensional harmonic oscillator, the time-
dependent coherent state is given[BY

R(r,t)=%ln “—:)—“z—w(r—rc(t))% (4.4
SD=pUD(T 1)~ pDut, 45

where
re(t)=re(0)cog wt) + (nw) 'pe(0)sin(wt), (4.6
Pe(t) = —por(0)sinwt) +p(0)cogwt),  (4.7)

with r (t) andp.(t), respectively, being the position of the
center of the coherent state and its conjugate momentum;
andw are, respectively, the mass and frequency.

For the simplified 2D model of NOCI photodissociation

[58-60, the initial wave packet is a Gaussigf. Eqgs.(4.1)
and(4.2) att=0] with appropriate parameters.

B. NOCI

For the NOCI molecule, the Hamiltonian based on Jacob,

coordinates can be written as

1 1 5 1 g 4
sing—

oot T L L 9
ZMdrd ﬁrg 2/.Lvrv (yr?) v 2|05|n0 00 06

+V(rgq,r,,0), 4.9

wherer, is the bond lengthvibrational coordinateof frag-

ment NO and 4 the distancedissociative coordinajefrom

Cl to the center the mass of fragment N@;ndicates the
angle betweemy andr,. The reduced masses;, », and
the moment of inertid , for NOCI molecule are

1 1 1 1 1
——— =+ (49
Mg MytMo Mg, My Mg

1 1 1

e (4.10

IH IL'LUrU Mdrd

with my, mg, andmg, being the masses of atoms N, O, an
Cl, respectively. Model potential energy
V(rq,r,,0) for the S; and S, states of NOCI are available

[58-60. For simplicity, the calculations were carried out

with the angle variable fixed at a specific value. In this
case, all parts involving angular derivatives in E4.8) dis-
appear and the Hamiltonian reduces to a simple form

- 1
2

P 5P
—2 +V(X,y, 00),

5 (4.11)
X2  ay

surfaces

y=(m,/mg)*r,, (4.12

d)(x!y):rdrvl//(rd’rv '00)1
that 0<x, y<« in Eq. (4.1).

C. Results and discussion

In fixed grid methods for solving the time-dependent
Schralinger equation, an adequate choice of spatial region to
cover the wave packet propagation is important. Insufficient
spatial coverage will cause unphysical boundary reflection
that contaminates the wave packet. Too large a spatial do-
main can result in either inefficiendy.e., the need for many
grid points to maintain accuragyr inaccuracy(i.e., when
fewer than necessary grid points are used in an attempt to
increase efficiengy These two considerations have been
taken into account in our calculations using the CE and SO
methods. The spatial regions and the numbers of grid points
for each case discussed later in Table Il have been chosen to
yield the best results on balance in terms of accuracy and
efficiency for these two methods. It is found that in two-
dimensional cases the fast Fourier transfqefrT) spatial
representation incorporated in the CE and SO methods is
both efficient and accurate, whereas, in three and higher di-
mensions the FFT representation becomes inefficient due to
ts tensor product forni40]. Although an optimal sampling
for multidimensional systems may alleviate the latter grid
size issue, its actual implementation can be extremely cum-
bersome[40]. As a result, the calculations for the 3D free
particle in this paper were carried out on a supercomputer
(CRAY J90. All other calculations were done on Sun work-
station OS 5.6.

The RBF's used in the calculations for the QFD method
are the multiquadrics and shifted-thin-plate spl[see Eq.
(2.16)]. Due to the fact that the spatial dependenc® @ind
S for the free particle and coherent state cases are at most
quadratic, the parametef3=3 and m=2 are chosen for
these two RBF’s. For the 2D NOCI photodissociation calcu-
lation, the corresponding parameters for the RBF'’s were in-
vestigated; it is found that the parameters are only slightly
dependent on the choice of,;,, the lower bound of the
spacings set for preventing the local linear algebraic systems
from becoming ill conditioned. Numerical tests have been
carried out for3=1,3,5,7,9 andn=1,2,3,4,5 with good re-
sults found atB=>5,7 andm=3,4. Insensitivity is found for

dthe shifted parameter characterizing these two RBF’s and

its value can range from 15 to 3 atomic unit$ without
altering the propagation results. Hereafter, all subsequent
discussions for the 2D NOCI model involvgg=5, m=3,

and c=20. The multiquadrics and shifted-thin-plate spline,
used in all model calculations, give results of almost the
same accuracy.

Table I lists the number of grid points and boundary
pointsn, employed in the local interpolation as well as the
wave packet parameters for the different cases involved. Be-
cause of the simple structures Rfand Sin the free particle
and coherent state cases, the number of grid paintsed in

where 6, is frozen at 127.4°, the equilibrium value for the the local interpolation is taken to be the same as the total grid

excited state5,, u=ymygm,, and

numberN listed in Table Il. Tables Il and Il clearly show
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TABLE |. Parameters for wave packets and local interpolatmn,).

Free particle Coherent state NOCI model
wave packet

©=5000 ©=5000 ©~=5000

AX;=AX,=Ax3=0.25 ®»=0.0032 Ax=0.135,Ay=0.078

X01: X02: X03:O ch(o):X2c(0):o X04314,y0:2155

Local interpolations,n,)?@

(57,0 (25,0 (25,9
B=5m=2 B=5,m=2 5=5,m=3
c=15~35 c=15~-35 c=15~-35

an andn, are the numbers of grid points and boundary grid points used in each local interpolation, respec-
tively.

that, compared to the CE and SO methods, the QFD teclsize of the local interpolation matrix in ER.14), while the
nigue requires substantially less computer overheadtorage needed for FFT used in the CE and SO methods
(memory and CPU time especially in the three-dimensional scales as & 128 =32 768, being~50 times as large as that
case. required by the QFD method. As the spatial dimension in-
In the cases of the 2D free particle and the 2D NOClcreases, the storage savings by the QFD method becomes
photodissociation, the storage requirement for the QFDvery significant as seen in the 3D free particle case where the
method scales approximately as>X285=625, which is the storage scaling for FFT rises tox2128°, while that of the

TABLE Il. Data used for comparison calculatiofes.u).

pPT? TSP TNGP® ssd GR®

CEf So¢ QFD CE & SO QFD CE & SO QFD CE & SO

2D free particle case

1000 1000 5 5 128 25 2x 128 252 [-5,7]?
2000 2000 5 5 128 25 2x 128 252 [—7,10?
3000 3000 5 5 1238 25 2x 128 252 [-10,132
4000 4000 5 5 1238 25 2x 128 252 [—13,172
3D free particle case
1000 1000 5 5 128 57 2x 128 572 [-57)°
2000 2000 5 5 128 57 2x 128 572 [-7,10°3
3000 3000 5 5 128 57 2x 128 572 [-10,13°
4000 4000 5 5 128 57 2x 128 572 [—13,17°
2D coherent state case
1000 1 1 1 33 25 2% 32 252 [—2,2]%
2000 1 1 1 33 25 2x 32 252 [—2,2]?
3000 1 1 1 33 25 2x 32 252 [—2,2]?
4000 1 1 1 33 25 2x 32 252 [—2,2]?
2D model for NOCI
500 500 1.25 1.25 25632 127 2x 256X 32 25 [1.8,2.[3.5,8

1000 1000  1.25  1.25 25632 127 2x256x32 2%  [1.8,2.9[35,9
1500 1500  1.25  1.25 25632 127 2x256x32 2%  [1.8,2.9[35.9

8PT=propagation time.

bTS=time step.

‘TNGP=total number of grid points.
dSRS=storage scaling.

®GR=grid region.

fCE=Chebychev expansion.
9SO=split operator.
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TABLE lll. Comparison of accuracy and efficiency.

Propagation timda.u) CPUT(seg 2 Error®
CE SO QFD CE SO QFD
2D free particle casé
1000 19 40 1 3.0-14) 3.1(—14 3.2—6)
2000 18 79 2 8.6-7) 8.3—7) 2.0(—6)
3000 16 125 4 63-4) 6.3(—4) 1.8—6)
4000 13 165 6 18-3) 1.8(—3) 3.0—-6)
3D free particle casé
1000 16 346 57 16-149 2.5—-6)
2000 15742 124 4(2-7) 1.5—6)
3000 12 144 194 1(3-4) 2.3—6)
4000 10098 268 3(6-3) 3.5—6)
2D coherent state caSe
1000 49 9 6 1.4-11) 2.3—7) 3.6—7)
2000 98 17 12 14-11) 4.5-7) 7.3—=7)
3000 165 26 19 1411 6.8—7) 1.1(—6)
4000 199 35 25 16-11) 1.0(—-6) 1.5-6)
2D NOCI model
500 38 81 75
1000 63 145 128
1500 98 220 211

8CPUT=CPU time(seconql.

PError=1/NZN , [exp(R(r; ,t)®*°Y — exp{R(r; ,t)°2'°4].

‘Calculations done on a Sun workstation OS 5.6.

dCalculations done on Cray J90 at Lawrence Berkeley National Laboratory. SO calculations were not per-
formed on the 3D free particle model due to large CPU time consumption.

QFD method only to 5% The ratio of the former to latter is more accurate but less efficient. Here, no absorbing poten-
~1300 times in favor of the QFD. The storage needed fotials were implemented in the CE and SO methods, and to
the QFD method scales roughly B, the size of the local avoid unphysical boundary reflection, proper regions have
interpolation matrix, withn slowly growing with the dimen- been optimally chosen for different lengths of propagation

sion of the systentisee Table I\

In the case of 2D and 3D free particles, despite using a 2.8
short-time second-order propagatiike the SO methoq the
QFD method is comparable in time efficiency to the CE and
SO methods in the 2D case and is far superior in the 3D casés 24 |
The CPU time for the QFD method scales approximately ass,
N,n®X total propagation time¥t, where N,, is defined in ~
step 7 of Sec. Il B. As discussed above, the growth wfith
the dimension of the system is generally slow. Table Il
shows the comparison of CPU time. The data for the 3D free
particle was obtained on a CRAY J90 supercomputer. In
addition, no data entries are presented for the SO method il
the 3D free particle case because it requires almost thre:
times more of CPU time than the CE method.

The 2D coherent-state model can pose a challenge to th:_
Lagrangian moving grid QFD method. The harmonic poten- 3
tial of the 2D coherent-state model reaches its maximum on<
the truncated boundary, and the corresponding depsitith
energy below the cutoff must always preserve its shape whel
it propagates to and fro and evolves into complicated quan-
tum interference patterns. The QFD method must be able tc
guide the associated moving grids to constantly adjust theit

trajectories. Even if only one moving grid point, particularly 16 1. contour snaphots of the densjiyfor the 2D NOCI

one that carries significant density value, becomes out of Stegotodissociation model superimposed onSispotential energy
with the rest of grid points at any instant of time, then thesyrface contours as a function of the Jacobi coordinagemdr,
coherent-state wave function will collapse soon afterwardsor fixed angled,=127.4 at five instants of timea) t=0 a.u.(b)

Table Il shows that the QFD method can yield excellentt=500 a.u.,(c) t=1000 a.u.,(d) t=1500 a.u.,(e) t=2000 a.u..
results for the 2D coherent state, on par with the SO methotthe upper panel corresponds to the results of the CE and SO meth-
in both accuracy and efficiency, while the CE method isods and the lower one to the QFD method.

CE and SO

(]

28

24 [

rqg(au.)



PRE 61 SOLUTION OF THE QUANTUM FLUID DYNAMICAL ... 5975

time. simpler structure oR is exploited to further raise the com-

It is especially instructive to note that, in the 2D and 3D putational efficiency and accuracy, as compared to those us-
free particle cases and for long time propagation, the QFDng p; (3) radial basis functiongor reproducing kernelsare
method is more favorable in terms of accuracy when comsuitable for the spatial representation of moving grids and are
pared to the CE and SO methods. This can be explained aapable of yielding accurate interpolation of the smooth field
follows. As the propagation proceeds, the wave packet disguantitiesR and S and their first and second derivativéd)
perses rapidly and its real and imaginary parts become morte Lagrangian version of the QFD method does not suffer
and more oscillatory with the growth of its phalsee Eq. from boundary reflection of the evolving wave packet and
(4.2)]. As a result, the initial number of fixed Fourier grid hence no artificial absorbing potentials are needed, in con-
points eventually becomes insufficient to give an accuratérast to solving the Schdinger equation using a fixed grid;
spatial representation. On the other hand, in the Lagrangiaand(5) the particle or trajectory picture of a quantum system
QFD method, not only do the quantitiBsandSstay smooth, can be obtained by interpolating moving grids.
but the underlying grid points also move with the wave The numerical development of the QFD method is in its
packet, thus, maintaining the quality of spatial interpolationinfancy, and there is ample room for further improvement. A
throughout the evolution. central task in the Lagrangian QFD method is the establish-

To further examine the Lagrangian QFD method, snapment of a stable and efficient spatial representation, e.g., the
shots of the density contours for the 2D NOCI photodisso+adial basis functions, for the moving grid interpolations.
ciation model at five different instants of time are displayedHigher-order time integrators can also be introduced by us-
in Fig. 1. The upper panel gives the results of the CE and S@ng various sophisticated integration procedures, e.g., Runge-
methods and the lower panel those of the QFD method. IKutta schemes. It is also important to develop a proper
can be seen that these results are in excellent agreement witieans to analyze the data available from the Lagrangian
each other and also with the results of Manghal.[60] and  QFD method because of the irregularity of the grids. Finally,
Untchet al.[61]. The same NOCI photodissociation processfurther applications of the QFD method to realistic bound-
with similar snapshots can be found in these two papers. state problems would help settle open questions regarding

the node issug9].
V. SUMMARY

The following points and conclusions can be drawn from
. . . . ACKNOWLEDGMENT
the present study(l) The first implementation of QFD is
presented within the Lagrangian description using the quan- The authors acknowledge support from the Department of
tities R and S instead ofp andv; (2) the smoother and Energy.
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