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Solution of the quantum fluid dynamical equations with radial basis function interpolation
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The paper proposes a numerical technique within the Lagrangian description for propagating the quantum
fluid dynamical~QFD! equations in terms of the Madelung field variablesR andS, which are connected to the
wave function via the transformationc5exp$(R1iS)/\%. The technique rests on the QFD equations depending
only on the form, not the magnitude, of the probability densityr5ucu2 and on the structure ofR5\/2 ln r
generally being simpler and smoother thanr. The spatially smooth functionsR andSare especially suitable for
multivariate radial basis function interpolation to enable the implementation of a robust numerical scheme.
Examples of two-dimensional model systems show that the method rivals, in both efficiency and accuracy, the
split-operator and Chebychev expansion methods. The results on a three-dimensional model system indicates
that the present method is superior to the existing ones, especially, for its low storage requirement and its
uniform accuracy. The advantage of the new algorithm is expected to increase for higher dimensional systems
to provide a practical computational tool.

PACS number~s!: 02.70.2c, 02.60.Ed, 03.65.2w
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I. INTRODUCTION

During the past decade, significant progress has b
made in the time-dependent treatment of atomic and mole
lar dynamics and bound-state problems. A variety of me
ods has been proposed for numerically solving the tim
dependent Schro¨dinger equation @1–6#. A major
consideration is the need to attain an accurate and effic
approximate representation to often highly oscillatory wa
functions, particularly, in more than one dimension. Both
spectral and pseudospectral methods employ a tensor pro
representation as a means to treat multidimensional syst
despite this representation being neither efficient nor ac
rate as a numerical scheme due to the rapid increase in
total number of basis functions or quadrature points as
dimension rises.

The causal interpretation of quantum mechanics in the
Broglie–Bohm theory has attracted a great deal of inte
@7–10# since Madelung, de Broglie, and Bohm’s pioneeri
works @12–14#. With the wave functionc written in a polar
form c(r ,t)5Ar(r ,t)eiS(r ,t)/\ @12#, the de Broglie–Bohm
theory possesses an intuitive physical representation as q
tum fluid dynamics~QFD!, reminiscent of classical fluid dy
namics. Besides its conceptual importance, the potential
merical advantage of the QFD formulation over worki
with the Schro¨dinger equation can be attributed to the osc
latory real and imaginary parts of the complex-valued wa
function c being replaced by the slowly varying densityr
and phaseS over the configuration space. In classical flu
dynamics, the motion of fluid particles can be described
either Eulerian or Lagrangian descriptions@15# of the dy-
namics, respectively, either by fixing the ‘‘monitors’’ i
space or by placing the ‘‘monitors’’ on the fluid particle
These two equivalent descriptions can also be employe
the QFD formulation. The QFD formulation as a tim
dependent approach has successfully been applied to
PRE 611063-651X/2000/61~5!/5967~10!/$15.00
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several illustrations within both the Lagrangian@16–22# and
the Eulerian@23–35# descriptions.

The QFD method based on the slowly varying densityr
was implemented for studying the photodissociation
NOCl and NO2 within both the Lagrangian@20# and the
Eulerian@35# descriptions. In this paper, we propose an e
cient and accurate numerical technique for solving the Q
equations based on the slowly varying functionR5\/2 lnr
in conjunction with multivariate radial basis function~RBF!
interpolation. To this end, a set of dynamical equations
derived and implemented in the Lagrangian description.
our previous papers@36#, RBF’s have been used to solve th
bound-state Schro¨dinger equation. The most promising fe
ture of the numerical scheme proposed in this paper is
potential for application to multidimensional systems.

The paper is organized as follows. Section II presents
central motivation and RBF multivariate interpolation proc
dure. Section III is devoted to the numerical implementat
of the method, and Sec. IV presents several illustratio
Section V concludes the presentation.

II. METHODOLOGY

A. Motivation

For simplicity, consider a single particle of massm in a
potentialV(r ,t). The QFD equations within the Eulerian de
scription can be obtained by inserting the polar form o
complex wave functionc(r ,t)5Ar(r ,t)eiS(r ,t)/\ into the
Schrödinger equation, separating the real and imagin
parts, and by definingv5¹S/m as the ‘‘velocity’’ of the
particle. The result is a pair of coupled nonlinear partial d
ferential equations

]r

]t
1¹•J50 ~2.1!
5967 ©2000 The American Physical Society
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mS ]

]t
1v•¹ D v52¹~V1Vq!5F, ~2.2!

where r5r(r ,t)5uc(r ,t)u2 is the probability density,J
5vr the probability current density of the system,F5
2¹(V1Vq) the total force acting on the particle, and

Vq52
\2

2m

¹2Ar

Ar
, ~2.3!

is the quantum potential carrying all the quantum effects
the system. Equation~2.1! is the quantum probability conti
nuity equation and Eq.~2.2! is the quantum analog of th
classical Newton equation upon identification of the to
derivative asd/dt5]/]t1v•¹ and the total potential a
Vtotal5V1Vq .

In the Lagrangian description, the QFD equations are
the form

d

dt
r„r ~ t !,t…1r„r ~ t !,t…¹•v„r ~ t !,t…50 ~2.4!

m
d

dt
v„r ~ t !,t…52¹@V„r ~ t !,t…1Vq„r ~ t !,t…#5F„r ~ t !,t…,

~2.5!

where the time dependence of the trajectoryr (t) is explicit
and the total derivative with respect to time has replaced
the partial derivative in the Eulerian description. Note th
the evolution of the densityr in Eq. ~2.4! can also be rear
ranged into the evolution of the quantity lnr. In this case, the
quantum potential can be further written in a general form

Vq52
\2

4m H ¹2 ln r1
1

2
@¹ ln r#2J . ~2.6!

Equations~2.3! and ~2.6! show that the quantum potentia
depends only on the form of the density rather than its m
nitude@9,10#. At the heart of ther-based QFD formulation is
the assumption that the densityr and phaseS ~or v
5¹S/m) are more slowly varying functions than the gene
ally oscillatory real and imaginary parts of the correspond
complex-valued wave function. The discussion above furt
suggests that the densityr can be replaced by the quanti
ln r without altering the nature of the QFD equations. Th
replacement has several suggestive numerical advanta
First, lnr should be a more slowly varying function than i
argumentr, and working with the former should make th
QFD method numerically even more expedient. Second,
practical dynamical range of lnr should be much smalle
than that ofr. For example, ifr changes in a truncate
region 10214<r<1 ~i.e., 10214 can be considered as nu
merically zero in usual double precision computations!, then
ln r will only range accordingly from232 to 0. Third, the
structure of lnr is in general simpler than that ofr itself. For
example, the density of a compact Gaussian wave pa
possesses the form exp$2a(r2r (t))2% in its spatial part
while lnr is a quadratic polynomial. Starting with a compa
Gaussian wave packet, the evolution of dynamics is a c
tinuous deformation of the initial wave packet under the
fluence of the potential, and the logarithm of the deform
f
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density at different instants of time can usually be appro
mated by proper polynomials. Consequently, the numer
advantage of treating lnr in QFD, instead ofr, should be
capable of greatly accelerating the solution while attain
high accuracy.

In contrast to the Schro¨dinger equation, Eqs.~2.2! and
~2.5! in the QFD formulation deal with the force fieldF that
contains a third-order spatial derivative ofr whose accurate
evaluation becomes computationally difficult, especially,
the dimension of the system increases. To overcome
difficulty, note that the direct result of the polar transform
tion is the quantum Hamilton-Jacobian equation@8# @see Eqs.
~2.7! or ~2.10!# and the quantum probability continuity equ
tion @see Eq.~2.1!#. The loss of part of the hydrodynami
analogy arising from using the Hamilton-Jacobi equation
place of its Newton counterpart is not of any concern n
merically because of the equivalence between these two
tings.

Writing c in the Madelung formc5exp$(R1iS)/\% and
following the same procedure leading to Eqs.~2.1! and~2.2!,
an equivalent QFD formulation in the Eulerian description
arrived at

]S

]t
1

~¹S!2

2m
1V1Vq50, ~2.7!

]R

]t
1

1

m H ¹R•¹S1
\

2
¹2SJ 50, ~2.8!

where the quantum potential has a new formVq5
21/2m$(¹R)21\¹2R% with 2R5\ ln r @cf. Eq. ~2.6!#. Al-
ternatively, by taking the total derivatives ofR and S with
respect to time, i.e.,

dR

dt
5

]R

]t
1v•¹R

~2.9!
dS

dt
5

]S

]t
1v•¹S,

the corresponding QFD equations in the Lagrangian desc
tion can be expressed as

dS„r ~ t !,t…

dt
5

@¹S„r ~ t !,t…#2

2m
2V„r ~ t !,t…2Vq„r ~ t !,t…,

~2.10!

dR„r ~ t !,t…

dt
52

\

2m
¹2S„r ~ t !,t…. ~2.11!

These two equations are the new basis for numerical im
mentation of the presentR-based QFD method. As in Eqs
~2.4! and~2.5!, the explicit time dependence has appeared
r (t), which is completely determined through the relation

dr ~ t !

dt
5v„r ~ t !,t…5

¹S„r ~ t !,t…

m
. ~2.12!



i
ns
by
be

in
th

th
ion
nt
al
u-
m
s
se

si
er

ce
a

fo

d

n

n-
l
e-
ace
e-
ed
ing
S
ed
olve

n-

en

PRE 61 5969SOLUTION OF THE QUANTUM FLUID DYNAMICAL . . .
B. Interpolation

Function representation is of fundamental importance
numerically solving ordinary or partial differential equatio
@37#. The quality of an interpolation scheme is dictated
the basis functions defining the interpolator, the total num
of interpolating points~i.e., grid points!, and the distribution
of these points. In the Lagrangian description, the grid po
of the system instantaneously match the deformation of
wave packet during the evolution. One main advantage
the Lagrangian picture is that at each instant of time
interpolation only needs to be carried out in a limited reg
in which the magnitude of the wave packet is significa
This keeps the total number of grid points relatively sm
even in high dimension while still maintaining high acc
racy. The disadvantage is that grid points inevitably beco
scattered, and almost all sophisticated regular grid ba
methods, such as finite difference, discrete variable repre
tation ~DVR! @38#, Fourier pseudospectral approach@39,40#,
and distributed approximating functionals~DAF! @41#, are
inappropriate in this circumstance.

Recently, due to its simplicity and accuracy, radial ba
function~RBF! interpolation has attracted considerable int
est for interpolating multivariate scattered data@42,43#. A
RBF f(ir i) is a function that depends only on the distan
ir i , with i•i denoting the norm, and it maps
D-dimensional quantityr in the real vector spaceRD to a
one-dimensional quantityf in the real number spaceR1. In
general, the RBF interpolation problem can be posed as
lows. Consider an arbitrary set ofN distinct scattered points
X5$r1 , r2 , . . . ,rN% in RD and the corresponding scattere
data F5$ f (r1), f (r2), . . . ,f (rN)% for a function f (r ), the
task of RBF interpolation is to find an approximationL f(r )
to f of the form

L f~r !5(
i 51

N

cif~ ir2r i i !, ~2.13!
to
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where the real coefficientsc1 ,c2 , . . . ,cN solve the linear
system

f ~r j !5(
i 51

N

cif~ ir j2r i i !, j 51,2, . . . ,N, ~2.14!

with provision that the symmetric interpolation matrixA
5@Ai j #5@f(ir j2r i i)# be nonsingular. It has been show
that as long as the RBFf(ir2r 8i) is conditionally positive
definite in the sense that, for any set ofN complex numbers
$ai% i 51

N ,

(
i , j 51

N

aj* f~ ir j2r i i !ai>0, ~2.15!

then the interpolation matrixA is always nonsingular and
thus Eq.~2.14! is solvable@44#.

The accuracy and convergence of different RBF’s@cf. Eq.
~2.16!# in multivariate approximation has been carefully i
vestigated@42,43#. One of the most important theoretica
findings regarding RBF interpolation is that each positiv
definite RBF can generate a reproducing kernel Hilbert sp
~RKHS! H, endowed with a proper inner product. As a r
sult, any well-behaved function can be optimally recover
within H from a set of scattered data by the correspond
RBF interpolation@42–46#. To the end, based on the RKH
theory @47# and the RBF approximation theory describ
above, an approach has been developed to numerically s
the multidimensional bound-state Schro¨dinger equation@36#.
The RBF interpolation is also attractive for analytical co
struction of potential energy surfaces usingab initio data
@48#. The following list covers several RBF’s that have be
extensively studied in function approximation theory@49#:
f~r !5~21!m~c21r 2!b/2~2m22,b,2m! multiquadrics

f~r !5~c21r 2!2b/2~b.0! inverse multiquadrics

f~r !5~21!mr 2m22 ln~r ! thin-plate splines

f~r !5~21!m~c21r 2!m21 ln~c21r 2!1/2 shifted thin-plate splines

f~r !5
2pn/2

G~k!
Kk2n/2~r !S r

2D k2n/2

~2k.n! Sobolev splines

f~r !5e2(cr)2
Gaussian, ~2.16!
n-
D

rical
ts
where r 5ir i5A( i 51
D xi

2 is the radial distance in the
D-dimensional Euclidean space, andm is usually chosen in
such a way that it coincides with the order of polynomials
be included in the interpolation space. Among them, the m
tiquadrics withb51 has recently been explored in comp
tational fluid dynamics@50#, while the Gaussian has had
long history of applications in solving molecular bound-sta
problems@51–55#. More recently, the inverse multiquadric
and Sobolev splines have also been exploited for bound-s
l-

te

problems@36#. In this paper, the multiquadrics and the thi
plate splines will be employed for approximating the QF
variablesR and S in the Lagrangian description Eqs.~2.10!
and ~2.11!.

C. Perspectives

Several interrelated issues are pertinent to the nume
implementation of the QFD formulation, especially, in i
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Lagrangian description in Eqs.~2.10! and ~2.11!: ~i! the ini-
tial state of the wave function,~ii ! the nodes of the wave
function, and~iii ! the phase of the wave function. The
points are addressed below.

First, the use of a single compact node-free initial wa
packet should be generally sufficient to extract all relev
dynamical information, as such a compact wave packet
be a superposition of nearly all the quantum states of
dynamical system. In certain cases different symme
adapted initial states may be used@56# to avoid the simulta-
neous excitation of closely spaced energy levels and thu
improve the numerical resolution and accuracy of calcula
degenerate energy levels. This paper deals only with c
pact node-free Gaussian initial wave packets.

Second, the trajectory of the particle obeying Eq.~2.5!
will never pass through a pointr„r (t),t…50 as long as
r„r (0),0…Þ0 and ¹•v„r (0),0… is finite @9#. This can be
readily understood by writing Eq.~2.4! in terms of its inte-
gral equivalence as follows

r„r ~ t !,t…5r„r ~0!,0…expH 2E
0

t

dt8¹•v~r ~ t8!,t8!J ,

~2.17!

indicating that the associated densityr„r (t),t… will never
become zero during the evolution. As a result, the quan
R„r (t),t… will remain finite and the corresponding quantu
potential Eq.~2.6! can be evaluated without numerical diffi
culty throughout the propagation within the Lagrangian Q
framework.

Third, the multivalued nature ofSdoes not cause the co
lapse of the QFD equations. Here, the QFD equations o
involve both the time derivative and the gradient ofS, i.e.,
dS/dt and v5¹S/m, which are single-valued functions o
position and time. This means that at each space-time p
there is a unique tangent vector associated with¹S, and
consequently, only one trajectory passes through that poi
each instant of time. This is consistent with the quant
probability continuity equation, which maps the non-nod
point regions into one another along the trajectories.

A detailed discussion of the node and phase issues ca
found in @9#. Moreover, it has been shown that for a lar
class of potentials and typical initial wave functions, the g
bal solution of the QFD equations exists and is unique@11#.
In conclusion, no serious difficulty is expected in the nume
cal solution of Eqs.~2.10!–~2.12!. One important feature
arising from working withR and S in the Lagrangian de-
scription is that, starting with an initial wave packet witho
a node, i.e.,R„r (0),0…Þ2`, then subsequently nowher
will R become singular.

III. NUMERICAL DETAILS

A. Time propagation

In a previous paper@20#, the explicit central differencing
scheme was adopted for time integration of the QFD eq
tions. In the case of the Schro¨dinger equation, this schem
has been shown to be stable under the condi
(Dt/2mDx2),1, whereDt andDx are the discretized tem
poral and spatial grid sizes@57#. In the present case, workin
in the Lagrangian description, the new stability conditi
e
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vDt/Dx,1 is established in terms of the particle’s motio
wherev is the velocity of a particle andDx is the shortest
distance among all the moving grids@20#. A second-order
time propagation scheme for Eqs.~2.10! and ~2.11! can be
implemented as follows:

S~ t1Dt !5S~ t2Dt !1DtH @¹S~ t !#2

m
22@V~ t !1Vq~ t !#J ,

~3.1!

R~ t1Dt !5R~ t2Dt !2
\Dt

m
¹2S~ t !, ~3.2!

where ther (t) dependence inS andR has been dropped fo
notational simplicity and the evolution of the particle’s pos
tion is advanced according to its velocity as follows

r ~ t1Dt !5r ~ t2Dt !1
2Dt

m
¹S~ t !. ~3.3!

B. Spatial representation

In contrast to fixed grid methods, the construction of
multidimensional subspace on a mesh using RBF’s dist
uted on irregular grid points is technically straightforwar
Specifically, the interpolation~2.13! is formally independent
of the dimensionality of the problem involved and all co
nections among grid points are properly done through
interpolation condition~2.14!. The largest cost of RBF inter
polation is the direct solution of the linear algebraic equat
~2.14!, which scales as the cube of total numberN of grid
points. Nevertheless, this problem can easily be overcom
using the compactly supported RBF’s as explained below

In principle, any grid distribution for the spatial discret
zation of the QFD equations is acceptable as long as
underlying RBF interpolation can adequately sample
wave packet. Following the discussions in Secs. I and II,
QFD solutions can be implemented in three steps.

1. Initial preparation.~a! Choose an appropriate initia
wave packet for the system under study;~b! set a density
cutoff for the initial wave packet, e.g., 1027, etc., depending
on the required computational accuracy;~c! place grid points
in terms of the structure ofR ~or r) within the region deter-
mined by the initial density cutoff.

2. Spatial derivatives. The gradient and Laplacian
taken by directly~i.e., analytically! applying them to the in-
terpolatedR(t) and S(t) functions, respectively, evaluate
on the dynamic grids$r i(t)% at each instant of timet.

3. Propagation. With the chosen grid, the discretized fi
variablesR, Sand the positionr are propagated according t

Si~ t1Dt !5Si~ t2Dt !1DtH @¹Si~ t !#2

m
22@Vi~ t !1Vqi~ t !#J ,

~3.4!

Ri~ t1Dt !5Ri~ t2Dt !2
\Dt

m
¹2Si~ t !, ~3.5!

r i~ t1Dt !5r i~ t2Dt !1
2Dt

m
¹Si~ t !, ~3.6!
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where the indexi denotes thei th grid point r i at three dif-
ferent adjacent instantsr i(t1Dt), r i(t2Dt), and r i(t) in
each propagation cycle. Interpolation ofR(t) and S(t) is
performed at each instant of timet by use of the RBF’s
distributed on the dynamic grids$r i(t)% whose configuration
changes in response to the action of the potential.

The RBF interpolation is a global scheme, however,
practice, compactly supported RBF’s can be invoked
avoid solving a large linear algebraic system~2.14!. A
simple way to obtain the compactly supported RBF’s is
introduce a suitable weight function. For example, supp
V is a hypersphere centered atr0 in a multidimensional
space and the compactly supported weight functionw(r
2r0) satisfies

w~r2r0!5H 1, if r insideV

0, if r outsideV, ~3.7!

then the corresponding compactly supported RBF’s are g
asf(r )w(r2r0). Systematically relocatingV will cover the
entire region of interest and all discretized quantities will
described locally through the RBF interpolation. It is app
ent that at each positionr0 only a small portion of the grid
points reside inV and, thus, only a small linear algebra
system needs to be solved. In general, the number of
points insideV at different positionsr0 is not fixed for a
given size of the hypershere because of the irregularity of
grid. Consequently, it may happen that only a few grid poi
are insideV in some positions and a great deal in others.
practice, the size ofV may be distinct at each positionr0 so
that a sufficient number of grid points is always included
attain the required accuracy.

In this paper, a practical procedure to achieve this ad
able compactly supported interpolation scheme is introdu
as follows.

1. All the N grid points are initially numbered in an arb
trary manner.

2. A lower boundr min is set for the distance between an
two grid points.

3. Upon choosing a grid point as a center, then a searc
made for itsn21 closest neighbors under the conditions
!n!N andr i j .r min , wherer i j is the distance between gri
points i and j.

4. Local interpolation ofR andS is performed over these
n points by solving the correspondingn linear algebraic
equations~2.14! based on the compactly supported RBF’s

5. Derivatives ofR and S at thesen points are directly
taken over the locally interpolatedR andS.

6. The results in steps 4 and 5 as well as their numbe
indices are kept except fornb boundary grid points of each
local interpolation.

7. Steps 1–6 are repeatedNn(N/n,Nn,N) times until
all discretized quantities on theN grid points are calculated

The lower boundr min in step 2 is set to prevent the linea
algebraic system in step 4 from becoming ill-conditioned a
the operations of step 5 eliminate any interpolation edge
fects. It can happen that some grid points are shared b
couple of partly overlapped local interpolations in step 7 a
thus the results in step 5 corresponding to these grid po
o
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ts

are calculated many times. In this case, if these grid po
are not located at the boundary of each local interpolati
the calculated results are kept when the corresponding
points are first employed in a local interpolation. The pr
posed procedure usually implies a deformableV whose
shape changes~i.e., the choices in step 3 generally do n
prescribe a spherical domain! with the distribution of grid
points in each local interpolation.

IV. NUMERICAL ILLUSTRATIONS

Numerical tests in this section are performed on tw
dimensional~2D! and~3D! free particle models, a 2D coher
ent state model and a 2D model of NOCl photodissociati
For comparison, parallel calculations are also carried out
ing the Chebychev expansion~CE! @3# and split-operator
~SO! @56# methods, respectively. It is known that the C
method is not efficient for the short-time steps although so
methods are available@1,3# to enhance its efficiency. There
fore, to assess the efficiency of the QFD method, one sin
giant time step in the CE method to complete the propa
tion is taken as a reference except for the 2D coherent s
case that does not favor a giant time step in the CE meth
Moreover, the same time steps are taken for the second-o
SO and the QFD methods. Finally, due to the short-ti
feature of the QFD method, intermediate results are availa
for any quantity of interest requiring time integratio
Atomic units are used throughout the calculations.

A. Analytical test solutions and initial wave packets

For aD-dimensional free particle with an initial momen
tum distribution chosen as a Gaussian in each dimension
time-dependent solution of the Schro¨dinger equation can be
written, in terms ofR andS as

R~$xi%,t !52
1

2 (
i 51

D H 1

2
lnS pFDxi

21S t

Dxim i
D 2G D

1
~xi2x0i2v0i t !

2

Dxi
21S t

Dxim i
D 2J , ~4.1!

S~$xi%,t !5(
i 51

D H p0i~xi2x0i !1u i~ t !

1
t

2m i F ~xi2x0i2v0i t !
2

Dxi
2FDxi

21S t

Dxim i
D 2G 2p0i

2 G J ,

~4.2!

where

u i~ t !5
1

2
tanS 2

t

Dxi
2m i

D , ~4.3!
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andm i , v0i , p0i , x0i , andDxi are the mass, initial velocity
momentum, position, and position width along each dim
sion, respectively.

For a D-dimensional harmonic oscillator, the time
dependent coherent state is given by@8#

R~r ,t !5
D

4
lnS mv

p D2
mv

2
~r2r c~ t !!2, ~4.4!

S~r ,t !5pc~ t !~r2r c~ t !!2
1

2
Dvt, ~4.5!

where

r c~ t !5r c~0!cos~vt !1~mv!21pc~0!sin~vt !, ~4.6!

pc~ t !52mvr c~0!sin~vt !1pc~0!cos~vt !, ~4.7!

with r c(t) andpc(t), respectively, being the position of th
center of the coherent state and its conjugate momentumm
andv are, respectively, the mass and frequency.

For the simplified 2D model of NOCl photodissociatio
@58–60#, the initial wave packet is a Gaussian@cf. Eqs.~4.1!
and ~4.2! at t50] with appropriate parameters.

B. NOCl

For the NOCl molecule, the Hamiltonian based on Jac
coordinates can be written as

Ĥ52
1

2mdr d

]2

]r d
2

R2
1

2mvr v

]2

]r v
2

r v2
1

2I u sinu

]

]u
sinu

]

]u

1V~r d ,r v ,u!, ~4.8!

wherer v is the bond length~vibrational coordinate! of frag-
ment NO andr d the distance~dissociative coordinate! from
Cl to the center the mass of fragment NO;u indicates the
angle betweenr d and r v . The reduced massesmd , mv and
the moment of inertiaI u for NOCl molecule are

1

md
5

1

mN1mO
1

1

mCl
,

1

mv
5

1

mN
1

1

mO
, ~4.9!

1

I u
5

1

mvr v
2

1
1

mdr d
2

, ~4.10!

with mN , mO, andmCl being the masses of atoms N, O, a
Cl, respectively. Model potential energy surfac
V(r d ,r v ,u) for the S0 and S1 states of NOCl are availabl
@58–60#. For simplicity, the calculations were carried o
with the angle variableu fixed at a specific value. In this
case, all parts involving angular derivatives in Eq.~4.8! dis-
appear and the Hamiltonian reduces to a simple form

Ĥ52
1

2m S ]2

]x2
1

]2

]y2D 1V~x,y,u0!, ~4.11!

whereu0 is frozen at 127.4°, the equilibrium value for th
excited stateS1 , m5Amdmv, and
-

i

x5~md /mv!1/4r d ,

y5~mv /md!1/4r v , ~4.12!

f~x,y!5r dr vc~r d ,r v ,u0!,

that 0<x, y,` in Eq. ~4.11!.

C. Results and discussion

In fixed grid methods for solving the time-depende
Schrödinger equation, an adequate choice of spatial regio
cover the wave packet propagation is important. Insuffici
spatial coverage will cause unphysical boundary reflect
that contaminates the wave packet. Too large a spatial
main can result in either inefficiency~i.e., the need for many
grid points to maintain accuracy! or inaccuracy~i.e., when
fewer than necessary grid points are used in an attemp
increase efficiency!. These two considerations have be
taken into account in our calculations using the CE and
methods. The spatial regions and the numbers of grid po
for each case discussed later in Table II have been chose
yield the best results on balance in terms of accuracy
efficiency for these two methods. It is found that in tw
dimensional cases the fast Fourier transform~FFT! spatial
representation incorporated in the CE and SO method
both efficient and accurate, whereas, in three and highe
mensions the FFT representation becomes inefficient du
its tensor product form@40#. Although an optimal sampling
for multidimensional systems may alleviate the latter g
size issue, its actual implementation can be extremely c
bersome@40#. As a result, the calculations for the 3D fre
particle in this paper were carried out on a supercompu
~CRAY J90!. All other calculations were done on Sun wor
station OS 5.6.

The RBF’s used in the calculations for the QFD meth
are the multiquadrics and shifted-thin-plate spline@see Eq.
~2.16!#. Due to the fact that the spatial dependence ofR and
S for the free particle and coherent state cases are at m
quadratic, the parametersb53 and m52 are chosen for
these two RBF’s. For the 2D NOCl photodissociation calc
lation, the corresponding parameters for the RBF’s were
vestigated; it is found that the parameters are only sligh
dependent on the choice ofr min , the lower bound of the
spacings set for preventing the local linear algebraic syst
from becoming ill conditioned. Numerical tests have be
carried out forb51,3,5,7,9 andm51,2,3,4,5 with good re-
sults found atb55,7 andm53,4. Insensitivity is found for
the shifted parameterc characterizing these two RBF’s an
its value can range from 15 to 35~in atomic units! without
altering the propagation results. Hereafter, all subsequ
discussions for the 2D NOCl model involvedb55, m53,
and c520. The multiquadrics and shifted-thin-plate splin
used in all model calculations, give results of almost t
same accuracy.

Table I lists the number of grid pointsn and boundary
pointsnb employed in the local interpolation as well as th
wave packet parameters for the different cases involved.
cause of the simple structures ofR andS in the free particle
and coherent state cases, the number of grid pointsn used in
the local interpolation is taken to be the same as the total
numberN listed in Table II. Tables II and III clearly show
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TABLE I. Parameters for wave packets and local interpolation~a.u.!.

Free particle Coherent state
wave packet

NOCl model

m55000 m55000 m55000
Dx15Dx25Dx350.25 v50.0032 Dx50.135,Dy50.078
x015x025x0350 x1c(0)5x2c(0)50 x04.314, y052.155

Local interpolationsn,nb)a

~57,0! ~25,0! ~25,9!
b55, m52 b55, m52 b55, m53
c515;35 c515;35 c515;35

an andnb are the numbers of grid points and boundary grid points used in each local interpolation, r
tively.
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that, compared to the CE and SO methods, the QFD te
nique requires substantially less computer overh
~memory and CPU time!, especially in the three-dimension
case.

In the cases of the 2D free particle and the 2D NO
photodissociation, the storage requirement for the Q
method scales approximately as 253255625, which is the
h-
d

l
D

size of the local interpolation matrix in Eq.~2.14!, while the
storage needed for FFT used in the CE and SO meth
scales as 231282532 768, being;50 times as large as tha
required by the QFD method. As the spatial dimension
creases, the storage savings by the QFD method beco
very significant as seen in the 3D free particle case where
storage scaling for FFT rises to 231283, while that of the
TABLE II. Data used for comparison calculations~a.u.!.

PT a TS b TNGPc SSd GR e

CE f SOg QFD CE & SO QFD CE & SO QFD CE & SO

2D free particle case

1000 1000 5 5 1282 25 231282 252 @25,7#2

2000 2000 5 5 1282 25 231282 252 @27,10#2

3000 3000 5 5 1282 25 231282 252 @210,13#2

4000 4000 5 5 1282 25 231282 252 @213,17#2

3D free particle case

1000 1000 5 5 1283 57 231283 572 @25,7#3

2000 2000 5 5 1283 57 231283 572 @27,10#3

3000 3000 5 5 1283 57 231283 572 @210,13#3

4000 4000 5 5 1283 57 231283 572 @213,17#3

2D coherent state case

1000 1 1 1 322 25 23322 252 @22,2#2

2000 1 1 1 322 25 23322 252 @22,2#2

3000 1 1 1 322 25 23322 252 @22,2#2

4000 1 1 1 322 25 23322 252 @22,2#2

2D model for NOCl

500 500 1.25 1.25 256332 127 23256332 252 @1.8,2.8#@3.5,8#
1000 1000 1.25 1.25 256332 127 23256332 252 @1.8,2.8#@3.5,8#
1500 1500 1.25 1.25 256332 127 23256332 252 @1.8,2.8#@3.5,8#

aPT5propagation time.
bTS5time step.
cTNGP5total number of grid points.
dSRS5storage scaling.
eGR5grid region.
fCE5Chebychev expansion.
gSO5split operator.
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TABLE III. Comparison of accuracy and efficiency.

Propagation time~a.u.! CPUT ~sec! a Error b

CE SO QFD CE SO QFD

2D free particle casec

1000 19 40 1 3.1~214! 3.1~214! 3.2~26!
2000 18 79 2 8.3~27! 8.3~27! 2.0~26!
3000 16 125 4 6.3~24! 6.3~24! 1.8~26!
4000 13 165 6 1.8~23! 1.8~23! 3.0~26!

3D free particle cased

1000 16 346 57 1.8~214! 2.5~26!
2000 15 742 124 4.2~27! 1.5~26!
3000 12 144 194 1.3~24! 2.3~26!
4000 10 098 268 3.6~23! 3.5~26!

2D coherent state casec

1000 49 9 6 1.4~211! 2.3~27! 3.6~27!
2000 98 17 12 1.4~211! 4.5~27! 7.3~27!
3000 165 26 19 1.4~211! 6.8~27! 1.1~26!
4000 199 35 25 1.6~211! 1.0~26! 1.5~26!

2D NOCl model
500 38 81 75
1000 63 145 128
1500 98 220 211

aCPUT5CPU time~second!.
bError51/N( i 51

N uexp$R(r i ,t)exact%2exp$R(r i ,t)calcu%u.
cCalculations done on a Sun workstation OS 5.6.
dCalculations done on Cray J90 at Lawrence Berkeley National Laboratory. SO calculations were n
formed on the 3D free particle model due to large CPU time consumption.
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QFD method only to 572. The ratio of the former to latter is
;1300 times in favor of the QFD. The storage needed
the QFD method scales roughly asn2, the size of the local
interpolation matrix, withn slowly growing with the dimen-
sion of the system~see Table II!.

In the case of 2D and 3D free particles, despite usin
short-time second-order propagator~like the SO method!, the
QFD method is comparable in time efficiency to the CE a
SO methods in the 2D case and is far superior in the 3D c
The CPU time for the QFD method scales approximately
Nnn33total propagation time/Dt, where Nn is defined in
step 7 of Sec. III B. As discussed above, the growth ofn with
the dimension of the system is generally slow. Table
shows the comparison of CPU time. The data for the 3D f
particle was obtained on a CRAY J90 supercomputer.
addition, no data entries are presented for the SO metho
the 3D free particle case because it requires almost t
times more of CPU time than the CE method.

The 2D coherent-state model can pose a challenge to
Lagrangian moving grid QFD method. The harmonic pote
tial of the 2D coherent-state model reaches its maximum
the truncated boundary, and the corresponding densityr with
energy below the cutoff must always preserve its shape w
it propagates to and fro and evolves into complicated qu
tum interference patterns. The QFD method must be abl
guide the associated moving grids to constantly adjust t
trajectories. Even if only one moving grid point, particular
one that carries significant density value, becomes out of
with the rest of grid points at any instant of time, then t
coherent-state wave function will collapse soon afterwa
Table III shows that the QFD method can yield excelle
results for the 2D coherent state, on par with the SO met
in both accuracy and efficiency, while the CE method
r
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more accurate but less efficient. Here, no absorbing po
tials were implemented in the CE and SO methods, and
avoid unphysical boundary reflection, proper regions ha
been optimally chosen for different lengths of propagat

FIG. 1. Contour snaphots of the densityr for the 2D NOCl
photodissociation model superimposed on itsS1 potential energy
surface contours as a function of the Jacobi coordinatesr d and r v
for fixed angleu05127.4 at five instants of time:~a! t50 a.u.~b!
t5500 a.u., ~c! t51000 a.u.,~d! t51500 a.u.,~e! t52000 a.u..
The upper panel corresponds to the results of the CE and SO m
ods and the lower one to the QFD method.
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time.
It is especially instructive to note that, in the 2D and 3

free particle cases and for long time propagation, the Q
method is more favorable in terms of accuracy when co
pared to the CE and SO methods. This can be explaine
follows. As the propagation proceeds, the wave packet
perses rapidly and its real and imaginary parts become m
and more oscillatory with the growth of its phase@see Eq.
~4.2!#. As a result, the initial number of fixed Fourier gr
points eventually becomes insufficient to give an accur
spatial representation. On the other hand, in the Lagran
QFD method, not only do the quantitiesR andSstay smooth,
but the underlying grid points also move with the wa
packet, thus, maintaining the quality of spatial interpolat
throughout the evolution.

To further examine the Lagrangian QFD method, sn
shots of the density contours for the 2D NOCl photodis
ciation model at five different instants of time are display
in Fig. 1. The upper panel gives the results of the CE and
methods and the lower panel those of the QFD method
can be seen that these results are in excellent agreemen
each other and also with the results of Mantheet al. @60# and
Untchet al. @61#. The same NOCl photodissociation proce
with similar snapshots can be found in these two papers

V. SUMMARY

The following points and conclusions can be drawn fro
the present study.~1! The first implementation of QFD is
presented within the Lagrangian description using the qu
tities R and S, instead ofr and v; ~2! the smoother and
.
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simpler structure ofR is exploited to further raise the com
putational efficiency and accuracy, as compared to those
ing r; ~3! radial basis functions~or reproducing kernels! are
suitable for the spatial representation of moving grids and
capable of yielding accurate interpolation of the smooth fi
quantitiesR andS and their first and second derivatives;~4!
the Lagrangian version of the QFD method does not su
from boundary reflection of the evolving wave packet a
hence no artificial absorbing potentials are needed, in c
trast to solving the Schro¨dinger equation using a fixed grid
and~5! the particle or trajectory picture of a quantum syste
can be obtained by interpolating moving grids.

The numerical development of the QFD method is in
infancy, and there is ample room for further improvement
central task in the Lagrangian QFD method is the establ
ment of a stable and efficient spatial representation, e.g.,
radial basis functions, for the moving grid interpolation
Higher-order time integrators can also be introduced by
ing various sophisticated integration procedures, e.g., Run
Kutta schemes. It is also important to develop a pro
means to analyze the data available from the Lagrang
QFD method because of the irregularity of the grids. Fina
further applications of the QFD method to realistic boun
state problems would help settle open questions regar
the node issue@9#.
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@55# Z. Bačić and J. C. Light, Annu. Rev. Phys. Chem.40, 469

~1989!.
@56# M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Comput. Ph

47, 412 ~1982!.
@57# A. Askar and A. S. Cakmak, J. Chem. Phys.68, 2794~1978!.
@58# J. K. McDonald, J. A. Merrit, V. F. Kalasinksky, H. L. Heuse

and J. R. During, J. Mol. Spectrosc.117, 69 ~1986!.
@59# R. Schinke, M. Nonella, H. U. Suter, and J. R. Huber, J. Che

Phys.93, 1098~1990!.
@60# U. Manthe, H. D. Meyer, and L. S. Cederbaum, J. Chem. Ph

97, 3199~1992!.
@61# A. Untch, K. Weide, and R. Schnike, J. Chem. Phys.95, 6496

~1991!.


