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Ultrashort free-electron laser pulse
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Three-dimensional characteristics of short free-electron laser pulses are analyzed. When the optical pulse
length is short, the growth rate and optical guiding will vary among the Fourier components comprising the
pulse. Matched beam solutions of the wave equation, including diffraction and nonparaxial effects, are dis-
cussed. In certain limits a front to back asymmetry develmpsg the pulse as well as a frequency spread
acrossit. In these limits the asymmetry and the frequency spread are relatively small unless the number of
optical cycles in the pulse approaches unity.

PACS numbd(s): 41.60.Cr

[. INTRODUCTION this paper finite-pulse solutions for an FEL operating in the
exponential regime are found that are generalizations of the
Development of intense, short-pulse ladérg] is making  infinite-pulse case. A notable characteristic of the new solu-
new applications possible. For example, the breaking antlons is that in the matched regime the optical pulse is a
formation of chemical bonds occur on pico- to femtosecondsuperposition of Fourier components with nearly the same
time scales. Time resolved spectroscopic observation dRayleigh rangerrri/)\, where \ is any wavelength in the
these processes requires short-pulsed lasers. The energy gpectrum. As a result of this, in certain limits the original
sorption efficiency of a dielectric slab is pulse length depenfrequency spread on the pulse is manifested as a frequency
dent[3]. For lasing wavelengths in the vicinity of the visible spread across the pulse.
region these applications imply relatively few optical cycles Short optical pulses are critical in laser wakefield accel-
per pulse. There is even interest in subcycle laser pulsesrators[14,15. Short pulses have also been studied in FELs
[4,5]. Ultrashort pulse generation and propagation is also relparticularly in the context of superradianggs-19, ignor-
evant in other applications, such as plasma diagnofics ing diffraction.
Currently the drive toward shorter pulses is mostly confined
to conventional lasers. 1I. FORMULATION
Since the early 1980s a number of analyses and experi-
ments have been performed to study and characterize free- TO analyze the propagation of a short optical pulse in an
electron lasersFELS) in the gain guiding regime of opera- FEL amplifier one can make use of the fluid equations along
tion where the effects of diffraction are importaim-13. with the wave equation. Maxwell's equations can be written
Notably, several studies pointed out the existence of matche®s
beam operation of an FEL wherein the spot size and wave
front curvature of an infinitely long optical beam remain ( 2_£i —
: - A 7 2|a =S, (13
fixed as a result of the gain process. Many short wavelength
FELs require matched beams to operate. To date the effects
of finite radiation pulse length on matched beam operation in 5 >[N
an FEL have not been addressed. This paper presents an VZp=kpo n_o_l ’ (1b)
analysis of the propagation characteristics of an ultrashort
pulse FEL in the exponential, gain-guiding regime of operaiwhere the source term is expressible as
tion.
In the absence of a waveguide, diffraction of light can
play an important role in the operation of an FEL. A measure pOn BL Vi (10
of diffraction is provided by the Rayleigh rang&g
= wrglxo, wherer ¢ is the waist(minimum spot sizgof the  Here,A(r,t) and®(r,t) are the vector and scalar potentials,
optical beam and, is the free-space wavelength. Diffrac- respectively, & ¢)=|e|(A, ®)/mc? define the normalized
tion can change the relative overlap of the electron and oppotentials, the Coulomb gauge€-A=0 is assumedkp,
tical beams, as measured by the filling facfer(r,/r)2,  =(4mngle|¥mc?)Y? is the plasma wave number evaluated
wherery, is the electron beam radius, and thus modify thewith the equilibrium electron beam density(r), e andm
growth rate. Observe that the Rayleigh range and hence difire the electronic charge and mass, respectivelis the
fraction depend on the wavelength. speed of lightin vacug and the suffixL denotes the trans-
A finite-duration pulse implies a spread around the carrieverse component. The lowest order normalized transverse
frequencyw, and wave numbeky=2m/\,. A spread in fluid velocity is given byB, =v, /c=a, /y, while the fluid
wave numbet k|~ 1/L accompanies a pulse of lengthln  densityn(r,t), normalized velocityB(r,t), and relativistic
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factor y(r,t) are assumed to satisfy the relativistic cold fluid ~ Most analyses of FELs neglect ti#{ derivative on the

equations. These can be combined to obtain an equation fégft-hand side(LHS) of Eq. (3) since|d/d¢|~1/L—0 for a
the density long pulse. This derivative must be retained for short optical

pulses. The operator on the LHS of E§) is thus not of the
nB n usual paraxial form; it can, however, be transformed into one
ot n—(B'V)ﬂ) by a simple meang14]. The dependence af on the laser
o o pulse frame variablg is expanded in a Fourier integral,

a%n 2w | gv
PRk

1oa
[( 1-BB) | s 7tV |- Bx(VXa)
r,{,z)= f aﬁk (r,z)expi k), (4)
=0. (1d)
In principle the appropriate description for the electron mo-here Eq.(3) becomes
tion is provided by the Vlasov equation. The analysis in this
paper is limited to the cold fluid equations, neglecting the V2+2|k ay=F 5(1.2), (58
spread in electron velocities. kT ok

Taking a planar wiggler polarized in thedirection, the
vector potential may be written as the sum of the wiggler andgand where
optical contributionsa=(ax+a, )&, where the suffixw
refers the wiggler an@, is a unit vector along the axis. o
Perturbing about an assumed equilibrium state, averaging F(sk(r,Z):Zf

d
%€ exp(—i k) Sexpl —ikoz
over the wiggler period, and neglecting harmonics, &qg. 27

— o0

reduces to the following pair for the perturbed density K2

and the optical vector potential: +iwot) ot —= k(85— 1)as
d? 5n ¢’k _ a2y 2
o (1 Bzo)— +2Ko k(1= BpBglast(1—By) ok as
dt‘ ng (5b)

(Qw,x3x), (28 andk=Kkq+ 5k.
The operator on the left-hand side of E§a) is now in
the standard paraxial form. To solve it, the source-dependent

c o9 9
= —_— C— —
Y2 9z\ " 9z Bz

2 . : . .
v 17 Ky A k2 ﬁaw,xzs (op ~ expansion (SDE) method, with Laguerre-Gaussian basis
cat? )X PNy e functions, is employefl10]. Specifically, the vector potential
is written as
where the total time derivativel/dt=d/dt+cB,0d/dz is
evaluated with the equilibrium axial velocif§,q. In writing
R : - )
Eq. (28 the transverse variation in the electron variables are a(r,z)= mE:O af{,ﬁ‘ (Z)D%T (r.2), (6a)

neglected.

Next, the optical and wiggler vector potentials are written
as ay=[a(r,t)/2]expkoz—iwgt)+c.C., a,x=a, CcosK2),
where a(r,t) is a slowly varying amplitudek, and wq { 2r2

where

=2mcl\, are the carrier wave number and angular fre- DUV (r,z)=L,,
guency, respectively) is the free-space wavelength,,
=2m/\,, and\,, is the wiggler period. Making use of these

and effecting a change of variables to the group velocity . . .
frame ¢,2)—(£,2), with {=z—cfgt, Eq. (2b) takes the L, is _the Laguerre polynqmlal of ordemn, andrg s is the
spot size, and g is proportional to the wave front curvature,

exp{—[1—ian(2)Ir?/r 4(2)},
(6b)

g s(2)

form
both of which are, in general, functions of the propagation
P distancez. Consistent with these, the perturbed density is
2 expanded as follows:
VE+2|ikot+ — P a p
_ _ k2, on d sk
=2[Sexp(—ikoz+iwgt) lsiowt yia—kﬁ(ﬁg—l)a n—o \/_exm5k » SHIVD!
Ja d%a x exfi(Ko+ky)z— wot]+c.C., (60)
—2ikg(1— ﬁpﬁg) ag —(1-8) 2 IR (3)

where sill) represents the relative density amplitude.
wherecpy is the group velocityc,=wq /Ky is the phase The virtue of the SDE technique is that the fundamental
velocity, and the suffix slow indicates that the slowly varyingamplitudea{f=® is dominant, i.e.|a{'=?|>|a{i"9)|. As-
part of the quantity is to be retained. suming this, one obtains
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g 2i(l-iaz)] , R L one Fourier component to the next, thus leading to distortion
PR — ap=—i[FY+F{1, (78  of the pulse shape with propagation distazce
s, 9k To proceed the electron density is assumed to be Gaussian
P g F(&}) in radius,
=2 = _rs,ﬁklm[w}y (70) s o )
9z Krs s Ak kpo=kp exp(—r?/rp), (10
dag, (1+a%) [ E{F(ﬁ}g {F%}QH wherer,, is the electron beam radius. Then, for a matched
- = —or | —asIm| =57 | 1 : _
97 krg,ﬁk agl)() s agl)() , Fourier component Eq$7a—(7¢) reduce to
C
(79 2 2(1+f)(1—a?)
1 (= Akgye=— kr2 kr2
F% =2k fo dxFa(x. 205 (x.21*, (79 oK o

1
+ o [(Ba—1)kg—2(1—
wherex=2r2/r2 ;. Sk L(Bp~ Dko=2(1=BpBg)

To obtain the final set of equations the discussion is lim-
ited to the case of an FEL amplifier in the exponential regime
of operation. That is, it is assumed that

XKook — (1 B5) k], (118

2am(1+21)

. =, 11b
[l oY= (b, M) exii 0(2)], ® L (11H
where 64(z) is a complex-valued quantity expressing the 1+ 2,2
entirez dependence of the functions. Making use of this, the agk: — 1= A+~ ) rsﬁkU/4, (110
perturbed density is given by 1+2f
koo aw(kotkw)® | koBoB 2y0aa(1+2f)%(1+a5)
(Az_ pz >5ﬁ: W2 2 ;V ( X jk s b, krg,&k: ‘ K2 2 ) (11d
Y0720 BzYo 0T Kw 93 YoKwl b7
where
where
n 2
d 65 _[ Ko kot ku _raw (118
A=, TKA=Bp/Botkalko) + (1= Byl Br), ke Ko 2B,073°

(9b)
and y,=1/(1— B%,)*2. Making use of Eq.(9a), Eq. (5b)

and

| k
R U:[(Bs_l)kgﬂ 1o Bo K kok—2(1—B,B4)kodK
k2 aZ(k Tk )2 BZO kO
O | 8,
4%oB20(A% Kool Y0¥20) +2 1- % [kok—(1- ) ok?|. (11
b ﬁzo
0
+%_(B;2)—1)k3+(1—,3§)5k2 These equations are valid in the high-gdiexponential

Compton regime, wherein the collective electron response
(plasma wavesare neglected, i.ek,— 0.
: (90) In the limit of an infinitely long pulsegk—0, Eq. (11)
must go over to previous resulf0]. From Eq. (113 it
Equation(9¢) may be used to perform the integration in Eq. follows that8,= wy/(cky) =1, i.e., the phase velocity of the

+2koSK(1— BpBy)

(7d) and hence evaluate the right-hand sides of Egg—  carrier wave is equal te. Next, from Eq.(110 it follows
(70). that
I1l. MATCHED PULSE SOLUTION kozlﬁzﬁo Ky (12)
~Pz0

In general Eq.(7) leads to solutions for the spot size,
curvature, and) 5 (z) = [*dz' [Ak(z") —iT 5(z")] that de-  which is the usual relationship between the optical and wig-
pend on the distance along the wiggler, wheré\ky and  gler wave numbers. The functidhin Eq. (11f) can be made
I' 5 are the wave number shift and growth rate, respectivelyindependent ok by choosingB,=1. It should, however,
Matched solutions for each Fourier component are obtainege noted that this is an arbitrary choice. Finally, Etjld)
by insertingdrg s/9z=0, da g /dz=0, and 05(z) = (Aks  can be rewritten, leading to the following cubic for the filling
—iI' 5)z into Egs.(7a)—(7c), i.e., the spot size and curvature factor [20]
are constants for afl. Since the resulting equations are func-
tions of 8k, the matching conditions in general vary from f3+f2+(1/4-3P/2)f—P=0, (133
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FIG. 3. Ratio of|a] and a pure Gaussidag|=a, exp(—4/L?

FIG. 1. Plot of normalized vector potential amplitufié as a  —r%r?), for the same parameters as in Fig. 1. This plot shows that
function of axial and radial coordinates. Pulse frame axial coordifinite-pulse length effects are relatively large at the back and on the
nate is {/L=(z—ct)/L and radial coordinate is/[(kL)Yr], edge of the pulse.
wherelL is the optical pulse length. In this plot there is one wave-
length in the optical pulsekoL =24, and a=1/2. where the suffixok has been omitted.

Noting that the definition of frequency is the negative of
where the time derivative of the phase, tifedependence of this

213 function implies that there is frequency shift across the pulse
, (130 given by

k(ko+ky)riaw [ v
| 87080 2y,

0

R w— wy 1 2r?
andv = (k,ry/2)? is Budker's parameter. It follows from Eq. o KoL ki2L (15
(133 that in the high current or short wavelength lirRitan s
be large and thefﬁ_*V(3P/2)°‘k1/3- At the other extreme, physically this frequency shift is related to the variation of
where the current is small or the wavelength is I6hgan be  the spot size with wave number. Observe that the frequency
small and therf ~4Pok?°. This shows that the filling factor grops with increasing distancefrom the axis; this is consis-
can be a relatively weak function of the wave numken  tent with the fact that longer wavelengths diffract more.
some limits. Thus, fopy= B,=1, only the spot size depends  Figure 1 is a surface plot of the pulse in the group velocity
on &k. In Sec. IV this special case is examined in moreframe for the cas&,L=2. If L is taken to be the nominal
detail. pulse length, this corresponds to one optical cycle in the
pulse. Admittedly this is an extreme example. Nonetheless it
IV. EXAMPLE OF MATCHED BEAM is an example that well illustrates the effects of pulse length
n the standard FEL behavior. To highlight the difference

As an example, take the input signal to be a Gaussian qgetween this solution and a pure Gaussian pulse, Fig. 2 is a

length L, proportional to apexp(—Z%/L?), where b .
=(:?10L/\/§)e>r<)[:{|—o(5kIJ2)2]. As sOhOV\E)rS irf Se)c. lll the filling  P'Ot of the difference betweefal, from Eq. (14), and|ag|

- 2 2 22 : .
factor can be a relatively weak function of the wave number= 20 €XP(—{/L"—rIr5), neglecting the growth factor, while
k; then, for 3,=8,=1 only the spot size depends dik. Fig. 3 is a plot of the ratio ofa] and|ag|. Figure 2 shows

. ; ; ; that atr =0 the pulse is centered && 0. In other words, the
After Fourier inversion the slowly varying optical vector po-
tential is given by y varying op P peak of the pulse does indeed move at the speed of light.

However, forr >0 the pulse is deformed and a front to back

) 2ir? ar? ~ Kkor? asymmetry is observed. The relative frequency shift across
a(r.{.z)~apexp 0= =3| itz -(1-ia) - the pulse is plotted in Fig. 4. A large relative frequency shift
S s s of ~30% is observedcrossthe pulse. It follows from Eq.
1 ar?\? ro\? (15) that, in terms of the scaled radial variablg(kL)Y?r ],
] Yl | (149 the frequency shift scales inversely with the pulse length.
S S
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£ 00® 5
3 010 T —0.30¢f X
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FIG. 2. Difference betweera] and a pure Gaussiafag| FIG. 4. Plot of relative frequency shift as a function of normal-

=a, exp(—gzle—rZ/rg), for the same parameters as in Fig. 1. This ized radial coordinate for the same parameters as in Fig. 1. At one
plot shows the deviation of the pulse shape due to finite-pulsevavelength per pulse there is a large frequency $hi80%); the
length effects. frequency shift drops te-3% for ten wavelengths per pulse.
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Hence the relative frequency shift drops to a mode826  tion are discussed. In certain limits a front to back asymme-
for the case of ten optical wavelengths in the pulse. Note thary forms along the pulse. Additionally a frequency drop
the percentages quoted here refer to the frequency shifts developsacrossthe pulse owing to the larger diffraction ten-

the point where the scaled radial variable is unity. dency of longer wavelengths. In these limits the asymmetry
and the frequency spread are relatively small unless the num-
V. SUMMARY ber of optical cycles in the pulse approaches unity.

When the laser pulse length is short, the gain and hence
optlcal_ gwdlng will vary among the_ Fourier components ACKNOWLEDGMENT
comprising the pulse. Three-dimensional characteristics of
short free-electron laser pulses are analyzed, including non- This work was supported in part by the Office of Naval
paraxial effects. Matched beam solutions of the wave equaResearch.
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