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Mean field theory for asymmetric neural networks
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The computation of mean firing rates and correlations is intractable for large neural networks. For symmetric
networks one can derive mean field approximations using the Taylor series expansion of the free energy as
proposed by Plefka. In asymmetric networks, the concept of free energy is absent. Therefore, it is not imme-
diately obvious how to extend this method to asymmetric networks. In this paper we extend Plefka’s approach
to asymmetric networks and in fact to arbitrary probability distributions. The method is based on an informa-
tion geometric argument. The method is illustrated for asymmetric neural networks with sequential dynamics.
We compare our approximate analytical results with Monte Carlo simulations for a network of 100 neurons. It
is shown that the quality of the approximation for asymmetric networks is as good as for symmetric networks.

PACS numbd(s): 87.18.Sn, 87.16-e, 07.05+Mh

[. INTRODUCTION networks. The aim of this paper is to present the mean field
approximation for asymmetric networks. This approach is
Networks of stochastic binary neurons are an abstragessentially identical to approximately solving the dynamical
computational model for neural information processing. Theequations for the mean firing rates and correlations. To first
dynamics of these networks is defined as a Markov proces§rder, this approach was used|[{0].
Under rather mild conditions, this dynamics converges This paper is organized as follows. In Sec. Il we briefly
asymptotically to a stationary probability distributiga].  introduce stochastic neural networks. In Sec. Il we introduce
For symmetrically connected networks, this stationary distrithe information theoretic description of the mean field ap-
bution is a known function of the network parameters, deProximation, and we apply the method to asymmetric net-
pending on the type of dynamics. For random sequential dyworks with sequential dynamics. We obtain expressions
namics one obtains the Boltzmann-Gibbs distribution; forvalid to second order in the weights for the mean firing rates
parallel dynamics one obtains the Little model. and the correlations. In Sec. IV we compare the approxima-
Computing the statistics of the stationary distribution,tions with Monte Carlo results.
such as mean firing rates and correlations, is intractable. One
can, however, use mean field theory to obtain approximate Il. STOCHASTIC NEURAL NETWORKS
results. For Boltzmann distributions, it is possible to derive ) .
mean field theory as a Taylor expansion in the weights of the Consider a network oh binary neuronss;==1. Each
free energy around a factorized model. When only the firsf'€uron has a bias or threshaidand the activity of neuron
term in the expansion is considered, one obtains the naiv&ffects neuron through a synaptic coupling; . The dy-
mean field equation,3]. When one also includes the sec- N@mics of the network is .sequent|al Glauber.dynamlcs. De-
ond order term, one obtains the Thouless-Anderson-Paimdine the operatof; that flips the value of theth neuron:
(TAP) equations[4,5]. The TAP correction improves the S =Fis©s{=sj,j#i,s/=—s;. At discrete time steps, the
qua“ty of the approxima’[ion, depending on the amount O'Inetwork in states can make a transition to stagé= FiS with
frustration in the network. This approach is different from probability
the replica mean field approach because it retains a descrip-
tion in terms of the individual neural activitigand correla-
tions) instead of in terms of a small number of order param-
eters. No quenched averaging is performed. Such a detailed
description is useful when one considers learning in neuravhere h;==;.;w;;s;+ 6; and o(x)=3[1+tanh§)]. The
networks[6,7] probability of remaining in stats is given implicitly by the
For asymmetric networks, the stationary distribution isequality>¢ T(s'[s)=1.
not known. In particular, the concept of free energy does not This probabilistic dynamics is a first order Markov pro-
exist. Therefore, it is not immediately clear how to extendcess. When the weights are finite, the dynamics is ergodic
the above procedure to asymmetric networks. One can, hovand converges to a unique stationary distributigs|w, ),
ever, reformulate the Plefka expansion in an informationwhich is a right eigenvector of with eigenvalue 1:
geometric languaggs,9]. One considers a manifold of prob-
ability distributions, containing a submanifold of factorized p=Tp. (2.2
distributions. In geometric terms, the mean field or TAP ap-
proximations become orthogonal projections onto the factorFor symmetric networks is the Boltzmann distribution. For
ized submanifold. The advantage of the geometric interpreasymmetric networks the dependencepobn the weights
tation is that it can be directly extended to asymmetricand the thresholds is not known.

T(s'[s)= %cr(hisi’) (2.1
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From Eq.(2.2), one can derive that the stationary mean
firing rates and correlations satisfy

(si)=(tanihi(s)]), 2.3
(sisj)= 3(si tantih;(s)]) + (i<]). (2.9

tanh(6)

lIl. INFORMATION THEORY AND MEAN FIELD : i
APPROXIMATION 05 0 05

tanh(w)

Let P={p(s|w,6)} be the manifold of all probability dis-
tributions that can be obtained by considering different val-  FIG. 1. Manifold of probability distributions is computed for
ues ofw and #. P contains a submanifold1CP of factor-  a Boltzmann distribution on two variablesp(s;,s,|w, 6)
ized probability distributions. This submanifold is described=exgws;s,+ 8(s,+5s,))/Z. Solid lines are lines of constars,)

by =(s,). Broken lines are lines of constafg;s,). Both (w,6) and
({s1),{s15,)) are coordinate systems & M is given by the line
M={q(s|6,w) e Plw=0}. w=0. For anype P, the closestje M satisfies(s)q=(s),, .
0=(64, ...,0,) parametrizes the submanifolé1, andw

Equations(3.2) are the mean field equatiorigcluding
TAP corrections They can be applied to any manifold of
probability distributions that contains a submanifold of trac-
table distributiongsuch as factorized distributionand for
which the evaluation of the derivativesats tractable’ For
a(sleH =11 o(6%)=1] (1+mds), Boltzmann distributions this derivation is essentially identi-

i i cal to the approach introduced [i].

The computation of the derivatives of; with respect to
0,w at the factorized poing can be obtained from E@2.3).
The computation of the derivatives is tedious but straightfor-
fvard. It is presented in the Appendix. The result is

parametrizes directions iP orthogonal to M. Since q
e M is factorized, we can write the stationary distribution
explicitly:

wherem=(s;),=tanh@{) and(- ), denotes the expectation
value with respect to the distributian

Consider a network whose weights and thresholds ar
given by 6 andw. This network has a stationary distribution
p(s|6,w) e P. We want to find itsnean field approximatign
which we define as the factorized distributige: M that we miztanl'( > wim+g—m > wi(l-m?) |, (3.3
obtain by minimizing the relative entropy J !

(p(s| o,w) wherem;=mP=m{ because of Eq3.1).
D(p,q)=2, p(s|6,w)in —) Note that this result is identical to the TAP equations for
s a(s| 6% symmetric networks. This is somewhat surprising if one tries
to understand this equation from a cavity type of argument.
The cavity argument is that in computing the mean field
equation for neurom, the mean firing rates of all neurofs
#1 are subject to a polarizatiofm; = y;;w;;m; which shifts
db(p.a) —mi—mP=0 (3.1) their firing rates tan; — ém; . Here, x;;=dm; /36, . From the
d6f Lo linear response theory one obtains tjaﬁt— 1—m?. Substi-
tuting this altered value af; in the naive mean f|eld equa-
with mP=(s;),. This equation states that the closest factorion then gives the TAP equatlon When one applies this
ized model has its first moments equal to the first momentargument to the asymmetric network, one obtains a TAP
of the target distributiom. This is illustrated in Fig. 1. term of the form _miEjWijoi(l_mjz)! in disagreement
We need to solve Eq3.1) for m=tanh@). However, with Eq. (3.3. The paradox is resolved when one observes
we cannot computen” since we do not know the stationary that the linear response relation does not hold for the asym-
distributionp. Even if we knewp (for instance, a Boltzmann- metric network due to the absence of equilibrium.

with respect to the coordinate® of the factorized distribu-
tion g [8,9]. We find

Gibbs distribution it would be of little help, since computa- If one wants to learn the parametevg and 6; from data,
tion of mP is intractable. In order to proceed, we assume thabne needs also an approximate expression for the correla-
the distributionp is somehow close to the submanifold. tions. Due to the absence of equilibrium this expression can-
Define d#,=6,— 6 and dw;=w;—0=w;;. Expanding not be obtained from the linear response theorem, as was
dm,=mP—md to second order, we obtain done in[6] for the Boltzmann machine. Instead, one must
compute the correlations in a similar perturbative manner to
0=d E am 46 1 2 a%m 40,40 the mean firing rates. Although we will not pursue the issues
90 A Ko
(3.2

_ _ IThis is not the case, for instance, for directed graphs, when the
where®,=(6; ,w;;) is the vector of all weights and thresh- number of parents is large. In that case additional approximations
olds, andl runs over all relevant indices. must be mad¢11].
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of learning in this paper, we give the approximate expreswe show the RMS values of the difference between the MF

sions for the correlations. We will address learning in a sepaand MC solutions and between the TAP and MC solutions.

rate publication. We conclude that the second order approximation is signifi-
Unlike the mean firing rates, the stationary correlationscantly better than the first order approximation whea 1,

depend on the type of dynamics. We restrict ourselves tdor both symmetric and asymmetric networks.

sequential dynamics and equal time correlations. When we The results for the correlations are presented in Fig. 3. We

expandy;; =(s;s;) —(s;)(s;) around the factorized solution compute the TAP values for the mean firing rates and insert

Xﬂ =0, we obtain these in Eq(3.4). With these values ai, we consider sepa-
. ) 5 rately theO(w) approximation and th€©(w?) approxima-
Xij = 2(1=m7)(1—mj) tions of Eq.(3.4). The statistical errors in the Monte Carlo
results fory;; are very small due to the large sampling times.
x| wy; +I§i ijWiSk(l_mE)+2mimj(Wji)2 For instance, at3=0.5 they are of the order oby;;

~0.002. We conclude that the second order approximation
of the correlations gives a small, but statistically significant,
improvement over the first order approximation whgn
wherew;; denotes the symmetric part f; . The derivation <0.5, for both symmetric and asymmetric networks.

is given in the Appendix.

+(i=]), (3.9

V. DISCUSSION

IV. NUMERICAL RESULTS . . .
We have derived a mean field theory for asymmetric net-

To evaluate the quality of our mean field approximationsworks includingO(w?) (“TAP-like” ) corrections. Surpris-
we compare them to results of Monte Carlo simulations. Wengly, these equations are identical to the well-known equa-
consider networks ofi=100 neurons. We choosmﬂ d#], tions for symmetric networks. In addition, we have derived
randomly and independently from a normal distribution withan approximation for the correlations which is valid to
mean zero and variance \li. We consider two different O(w?). Numerical results show that the mean field results
types of weights: symmetric Weigmﬁ}=wﬁ and asymmet- are equally accurate for symmetric and asymmetric net-
ric weights, wherav{} andw]; are drawn independently. We works.
consider two types of thresholds’=0 and #° chosen ran- It is easy to show that Eqs2.3) also hold for parallel
domly and independently from a normal distribution with dynamics. Therefore, Eqg¢3.3) also describe the approxi-

mean zero and variance 1. Since the approximation is e)mate mean firing rates for parallel dynamics. The time-

pected to deteriorate with increasing weight size, we condélayed correlations ~are —given — by(si(t+1)s;(t))

. . v 0 40 =(s; tanhfy)), which is identical to the unsymmetrized ver-
idler networks with Wj, 6))=B(wjj ,67) and vary 6<p sion of Egs.(2.4). Therefore, the unsymmetrized version of

; ima. ; 2
We use Monte Carlo simulation to estimate the mean fir-EqS'(3'4) describes the time-delayed correlation<w®).

: . The equal-time correlations are given bys;s;)
ing rates(s;) and correlationg;; . The states are generated _ !

4 : I L .. =(tanhfy)tanhf)) and are not related to any of the results
using sequential Glauber dynamics. To minimize the initial- |

ization (burn in effect, we start the network in a random of this paper, but can be expanded using the same method.
state and do not include the firgt iterations. We compute

the average over the subsequerdtates: ACKNOWLEDGMENT
t=to+r This research was funded in part by the Dutch Technol-
(s)M=— > si(b), (4.1  ogy FoundatioSTW).
t=tg
t=to+r APPENDIX

MC_ © e () — /e AMC/ e \MC
Xij =7 tZEto Si(Dsj(H) —(s)" (s (4.2 In this Appendix we present the main steps to deriving the

TAP equations, Eq93.3), and the equal-time correlations,
The results are rather dependent on a proper choitgafd  Egs.(3.4).
7. We obtained stable results by choosig10°n and 7
=10°n. These values are rather large, but necessary to get
results accurate enough to compute the smglls. (The _ _ S
Xij’s are small because to lowest ordﬁ]’ocwijoc]_/\/ﬁ_) We start with the compu'Fatlon of the derivatives in Eq.

From Eq.(3.3) we compute the mean field approximation (3.2). From Eq.(2.3) we obtain

of the mean firing rates. In order to assess the importance of

1. TAP equations

the second orde(TAP) contribution, we also compute these A 5 9P(S) tanh( 69) + 1-m?) 8.
approximate values taking only the terms®@fw) into ac- a0, s d0 q

count. In Fig. 2, we show the root mean squérdMS) val- )

ues of the mean firing rates as a functiongofor the Monte =(1=mp)&;; -

Carlo solution(MC), the mean field solutiofMF) solution,
and the TAP solution. The statistical errors in the MonteThe first term is zero because of the normalizatiyp(s)
Carlo results fom; are of the ordepm;~0.002. In addition, =1 andm;=m. Similarly,
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FIG. 2. Mean firing rates as a function of the strength of the connections for sequential dynamit80. RMS vaIuesR,2n
=(1/n)="'m? of Monte Carlo result¢—), first order approximation —), and second order approximation-). In addition, RMS values
of the difference between the first order approximation and the MC vatue () and the difference between the second order approxima-
tion and the MC valuexX- - -). Top row, symmetric connectionsv(;=w;;). Bottom row, asymmetric connectionw;{ andw;; are drawn
independently Left column 6,=0, right columng; random. In the top left figure, both the TAP results and the Monte Carlo results give
=0 due to symmetry. Therefore, the errors in the TAP results are zero. The mean field solution bygak&Sand the errors in the
mean field resultsra™®—mMF) equal the mean field resultsn{'F).

o(s;) , _Hsi)
1-mf)é;m dw;, dw,
IWik| ( )01 m idm IWj Wi | i m
Inserting in Eq.(3.2), we obtain to lowest order :(1_mi2)2 [(1-md)m dw;dwi
0=dmi=(1fmi2) d0i+2 m;dw;; +0(d0?). +(1*mjz)mdejdeij*2mi<3j5k>dWijdWik]-
i

(AL) Substituting these into E{3.2) we obtain

Usingd#;=6,— 67 and dw;j=w;j; , this is equivalent to 0=dm

mi:tani‘(Z W,ij+0| .
J

=(1—mi2)(Ai—miAi2+$ (1-m)w;;A

tivér;.a similar way one computes the second order deriva- ,m_E Wizj 17mj2) +0(dO3), (A2)
0%(s;) ) ) where we have defined;=d¢,+>;dw;m;. Since Aj=0
% 90,306, d6;d6=—2m;(1—m7)(d6)", +0(d0®?), because of EqA1), we obtain
q
9?(s;) A= mE Wi (1—m?)+0(de3),
2 36,0, d6;dwig=(1-m; )E [(1—m?)

Xdo;—2mm;do; ]dw;; , which is equivalent to Eq(3.3).
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FIG. 3. Correlations as a function of the strength of the connections for sequential dynamit8p. RMS valuesRy?=[2/n(n
- 1)]2{‘>J-Xﬁ- of Monte Carlo result$—), first order approximation{ —), and second order approximation-). In addition, RMS values
of the difference between the first order approximation and the MC vatue () and the difference between the second order approxima-

tion and the MC valueX- - -). Top row, symmetric connectionsv(; =w;;). Bottom row, asymmetric connectiona/{ andw;; are drawn
independently Left column §,=0, right columné; random.

2. Correlations
From Egs.(2.3) and(2.4) we obtain

2xab=25 p(S)ss{tani hy(s)]—my} + (ab).

From this equation, we directly compute the derivativesygf with respect tod; andw;; :

dXab _ dXab _ 2 2 aZXab _
2 76 =0, 2(7Wij q—(l M) (1—mp) 8ia6jp + (2> b), 2(79”90]_ q—0,
I*Xab 9(SaS1) 9(Sa)
59if9\7Vk| q—(l—mﬁ)[ﬁbk( (9; —m (90? — 281 SpMp({SaS1) — MaMy) — My(1—M7) Sy | + (2> b),
(72Xab 2 [9<Sasl> ‘9<Sa> ’9<Sasj> ‘9<Sa>)
o, (1—=mp)| Spk ow, m aw, Obi Wi m; W 28 SkpMp((SaSjSi) — MalS;Si))

— MaMy(1—m7) Sy — MaMy(1—m?) 8,6y | + (2= h).

Thus,
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IXab 1
P — _Aab __+ +
Xab 1 (92Xab aZXab
E &W” .J% 2 AW AW 196,0w,, dw;; dwy

9(SaS) a8
&Wij ) 50,

1
25(1_ mﬁ)[ (1—mZ)Wp+ %‘4 dWidebI< — My 8ip((SaS;SI)
—My(s;s;))

+(a~bh)

+2m;my, Sip((SaS) — maml))

1
= 5 (1—mg)(1—mg)

Wapt z de|dWZ|(1_ m|2) + 2mamb(dea)2 + (a.<—> b)
I+a

This is identical to Eq(3.4).
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