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Mean field theory for asymmetric neural networks

H. J. Kappen and J. J. Spanjers
SNN University of Nijmegen, Geert Grooteplein Noord 21, 6525 EZ Nijmegen, The Netherlands

~Received 5 October 1999!

The computation of mean firing rates and correlations is intractable for large neural networks. For symmetric
networks one can derive mean field approximations using the Taylor series expansion of the free energy as
proposed by Plefka. In asymmetric networks, the concept of free energy is absent. Therefore, it is not imme-
diately obvious how to extend this method to asymmetric networks. In this paper we extend Plefka’s approach
to asymmetric networks and in fact to arbitrary probability distributions. The method is based on an informa-
tion geometric argument. The method is illustrated for asymmetric neural networks with sequential dynamics.
We compare our approximate analytical results with Monte Carlo simulations for a network of 100 neurons. It
is shown that the quality of the approximation for asymmetric networks is as good as for symmetric networks.

PACS number~s!: 87.18.Sn, 87.10.1e, 07.05.1Mh
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I. INTRODUCTION

Networks of stochastic binary neurons are an abst
computational model for neural information processing. T
dynamics of these networks is defined as a Markov proc
Under rather mild conditions, this dynamics converg
asymptotically to a stationary probability distribution@1#.
For symmetrically connected networks, this stationary dis
bution is a known function of the network parameters, d
pending on the type of dynamics. For random sequential
namics one obtains the Boltzmann-Gibbs distribution;
parallel dynamics one obtains the Little model.

Computing the statistics of the stationary distributio
such as mean firing rates and correlations, is intractable.
can, however, use mean field theory to obtain approxim
results. For Boltzmann distributions, it is possible to der
mean field theory as a Taylor expansion in the weights of
free energy around a factorized model. When only the fi
term in the expansion is considered, one obtains the n
mean field equations@2,3#. When one also includes the se
ond order term, one obtains the Thouless-Anderson-Pa
~TAP! equations@4,5#. The TAP correction improves th
quality of the approximation, depending on the amount
frustration in the network. This approach is different fro
the replica mean field approach because it retains a des
tion in terms of the individual neural activities~and correla-
tions! instead of in terms of a small number of order para
eters. No quenched averaging is performed. Such a det
description is useful when one considers learning in ne
networks@6,7#

For asymmetric networks, the stationary distribution
not known. In particular, the concept of free energy does
exist. Therefore, it is not immediately clear how to exte
the above procedure to asymmetric networks. One can, h
ever, reformulate the Plefka expansion in an informat
geometric language@8,9#. One considers a manifold of prob
ability distributions, containing a submanifold of factorize
distributions. In geometric terms, the mean field or TAP a
proximations become orthogonal projections onto the fac
ized submanifold. The advantage of the geometric interp
tation is that it can be directly extended to asymme
PRE 611063-651X/2000/61~5!/5658~6!/$15.00
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networks. The aim of this paper is to present the mean fi
approximation for asymmetric networks. This approach
essentially identical to approximately solving the dynami
equations for the mean firing rates and correlations. To fi
order, this approach was used in@10#.

This paper is organized as follows. In Sec. II we brie
introduce stochastic neural networks. In Sec. III we introdu
the information theoretic description of the mean field a
proximation, and we apply the method to asymmetric n
works with sequential dynamics. We obtain expressio
valid to second order in the weights for the mean firing ra
and the correlations. In Sec. IV we compare the approxim
tions with Monte Carlo results.

II. STOCHASTIC NEURAL NETWORKS

Consider a network ofn binary neuronssi561. Each
neuron has a bias or thresholdu i and the activity of neuronj
affects neuroni through a synaptic couplingwi j . The dy-
namics of the network is sequential Glauber dynamics. D
fine the operatorFi that flips the value of thei th neuron:
s85Fis⇔sj85sj , j Þ i ,si852si . At discrete time steps, the
network in states can make a transition to states85Fis with
probability

T~s8us!5
1

n
s~hisi8! ~2.1!

where hi5( j Þ iwi j sj1u i and s(x)5 1
2 @11tanh(x)#. The

probability of remaining in states is given implicitly by the
equality(s8T(s8us)51.

This probabilistic dynamics is a first order Markov pr
cess. When the weights are finite, the dynamics is ergo
and converges to a unique stationary distributionp(suw,u),
which is a right eigenvector ofT with eigenvalue 1:

p5Tp. ~2.2!

For symmetric networks,p is the Boltzmann distribution. Fo
asymmetric networks the dependence ofp on the weights
and the thresholds is not known.
5658 ©2000 The American Physical Society
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From Eq.~2.2!, one can derive that the stationary me
firing rates and correlations satisfy

^si&5^tanh@hi~s!#&, ~2.3!

^sisj&5 1
2 ^si tanh@hj~s!#&1~ i↔ j !. ~2.4!

III. INFORMATION THEORY AND MEAN FIELD
APPROXIMATION

Let P5$p(suw,u)% be the manifold of all probability dis-
tributions that can be obtained by considering different v
ues ofw andu. P contains a submanifoldM,P of factor-
ized probability distributions. This submanifold is describ
by

M5$q~suu,w!PPuw50%.

u5(u1 , . . . ,un) parametrizes the submanifoldM, and w
parametrizes directions inP orthogonal toM. Since q
PM is factorized, we can write the stationary distributio
explicitly:

q~suuq!5)
i

s~u i
qsi !5)

i

1
2 ~11mi

qsi !,

wheremi
q5^si&q5tanh(u i

q) and^•&q denotes the expectatio
value with respect to the distributionq.

Consider a network whose weights and thresholds
given byu andw. This network has a stationary distributio
p(suu,w)PP. We want to find itsmean field approximation,
which we define as the factorized distributionqPM that we
obtain by minimizing the relative entropy

D~p,q!5(
s

p~suu,w!lnS p~suu,w!

q~suuq!
D

with respect to the coordinatesuq of the factorized distribu-
tion q @8,9#. We find

dD~p,q!

du i
q

5mi
q2mi

p50, ~3.1!

with mi
p5^si&p . This equation states that the closest fact

ized model has its first moments equal to the first mome
of the target distributionp. This is illustrated in Fig. 1.

We need to solve Eq.~3.1! for mi
q5tanh(ui

q). However,
we cannot computemi

p since we do not know the stationar
distributionp. Even if we knewp ~for instance, a Boltzmann
Gibbs distribution! it would be of little help, since computa
tion of mi

p is intractable. In order to proceed, we assume t
the distributionp is somehow close to the submanifoldM.
Define du i5u i2u i

q and dwi j 5wi j 205wi j . Expanding
dmi5mi

p2mi
q to second order, we obtain

05dmi'(
J

]mi

]QJ
UqdQJ1

1

2 (
J,K

]2mi

]QJ]QK
U

q

dQJdQK ,

~3.2!

whereQ I5(u i ,wi j ) is the vector of all weights and thresh
olds, andI runs over all relevant indices.
l-

re

-
ts

t

Equations~3.2! are the mean field equations~including
TAP corrections!. They can be applied to any manifold o
probability distributions that contains a submanifold of tra
table distributions~such as factorized distributions! and for
which the evaluation of the derivatives atq is tractable.1 For
Boltzmann distributions this derivation is essentially iden
cal to the approach introduced in@5#.

The computation of the derivatives ofmi with respect to
u,w at the factorized pointq can be obtained from Eq.~2.3!.
The computation of the derivatives is tedious but straightf
ward. It is presented in the Appendix. The result is

mi5tanhS (
j

wi j mj1u i2mi(
j

wi j
2 ~12mj

2! D , ~3.3!

wheremi5mi
p5mi

q because of Eq.~3.1!.
Note that this result is identical to the TAP equations

symmetric networks. This is somewhat surprising if one tr
to understand this equation from a cavity type of argume
The cavity argument is that in computing the mean fie
equation for neuroni, the mean firing rates of all neuronsj
Þ i are subject to a polarizationdmj5x j j wji mi which shifts
their firing rates tomj2dmj . Here,x i j 5]mj /]u i . From the
linear response theory one obtains thatx j j 512mj

2 . Substi-
tuting this altered value ofmj in the naive mean field equa
tion then gives the TAP equation. When one applies t
argument to the asymmetric network, one obtains a T
term of the form 2mi( jwi j wji (12mj

2), in disagreement
with Eq. ~3.3!. The paradox is resolved when one observ
that the linear response relation does not hold for the as
metric network due to the absence of equilibrium.

If one wants to learn the parameterswi j andu i from data,
one needs also an approximate expression for the cor
tions. Due to the absence of equilibrium this expression c
not be obtained from the linear response theorem, as
done in @6# for the Boltzmann machine. Instead, one mu
compute the correlations in a similar perturbative manne
the mean firing rates. Although we will not pursue the issu

1This is not the case, for instance, for directed graphs, when
number of parents is large. In that case additional approximat
must be made@11#.

FIG. 1. Manifold of probability distributionsP is computed for
a Boltzmann distribution on two variablesp(s1 ,s2uw,u)
5exp@ws1s21u (s11s2)#/Z. Solid lines are lines of constant^s1&
5^s2&. Broken lines are lines of constant^s1s2&. Both (w,u) and
(^s1&,^s1s2&) are coordinate systems ofP. M is given by the line
w50. For anypPP, the closestqPM satisfieŝ s&q5^s&p .
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of learning in this paper, we give the approximate expr
sions for the correlations. We will address learning in a se
rate publication.

Unlike the mean firing rates, the stationary correlatio
depend on the type of dynamics. We restrict ourselves
sequential dynamics and equal time correlations. When
expandx i j 5^sisj&2^si&^sj& around the factorized solutio
x i j

q 50, we obtain

x i j 5
1
2 ~12mi

2!~12mj
2!

3S wi j 1(
kÞ i

wjkwik
s ~12mk

2!12mimj~wji !
2D

1~ i↔ j !, ~3.4!

wherewi j
s denotes the symmetric part ofwi j . The derivation

is given in the Appendix.

IV. NUMERICAL RESULTS

To evaluate the quality of our mean field approximatio
we compare them to results of Monte Carlo simulations.
consider networks ofn5100 neurons. We choosewi j

0 ,iÞ j ,
randomly and independently from a normal distribution w
mean zero and variance 1/An. We consider two different
types of weights: symmetric weightswi j

0 5wji
0 and asymmet-

ric weights, wherewi j
0 andwji

0 are drawn independently. W
consider two types of thresholds:u i

050 andu i
0 chosen ran-

domly and independently from a normal distribution wi
mean zero and variance 1. Since the approximation is
pected to deteriorate with increasing weight size, we c
sider networks with (wi j ,u i)5b(wi j

0 ,u i
0) and vary 0<b

<1.
We use Monte Carlo simulation to estimate the mean

ing rates^si& and correlationsx i j . The states are generate
using sequential Glauber dynamics. To minimize the initi
ization ~burn in! effect, we start the network in a rando
state and do not include the firstt0 iterations. We compute
the average over the subsequentt states:

^si&
MC5

1

t (
t5t0

t5t01t

si~ t !, ~4.1!

x i j
MC5

1

t (
t5t0

t5t01t

si~ t !sj~ t !2^si&
MC^sj&

MC. ~4.2!

The results are rather dependent on a proper choice oft0 and
t. We obtained stable results by choosingt05105n and t
5106n. These values are rather large, but necessary to
results accurate enough to compute the smallx i j ’s. ~The
x i j ’s are small because to lowest orderx i j }wi j }1/An.)

From Eq.~3.3! we compute the mean field approximatio
of the mean firing rates. In order to assess the importanc
the second order~TAP! contribution, we also compute thes
approximate values taking only the terms ofO(w) into ac-
count. In Fig. 2, we show the root mean square~RMS! val-
ues of the mean firing rates as a function ofb for the Monte
Carlo solution~MC!, the mean field solution~MF! solution,
and the TAP solution. The statistical errors in the Mon
Carlo results formi are of the orderdmi'0.002. In addition,
-
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we show the RMS values of the difference between the
and MC solutions and between the TAP and MC solutio
We conclude that the second order approximation is sign
cantly better than the first order approximation whenb,1,
for both symmetric and asymmetric networks.

The results for the correlations are presented in Fig. 3.
compute the TAP values for the mean firing rates and in
these in Eq.~3.4!. With these values ofm, we consider sepa
rately theO(w) approximation and theO(w2) approxima-
tions of Eq.~3.4!. The statistical errors in the Monte Carl
results forx i j are very small due to the large sampling time
For instance, atb50.5 they are of the order ofdx i j
'0.002. We conclude that the second order approxima
of the correlations gives a small, but statistically significa
improvement over the first order approximation whenb
,0.5, for both symmetric and asymmetric networks.

V. DISCUSSION

We have derived a mean field theory for asymmetric n
works includingO(w2) ~‘‘TAP-like’’ ! corrections. Surpris-
ingly, these equations are identical to the well-known eq
tions for symmetric networks. In addition, we have deriv
an approximation for the correlations which is valid
O(w2). Numerical results show that the mean field resu
are equally accurate for symmetric and asymmetric n
works.

It is easy to show that Eqs.~2.3! also hold for parallel
dynamics. Therefore, Eqs.~3.3! also describe the approxi
mate mean firing rates for parallel dynamics. The tim
delayed correlations are given by^si(t11)sj (t)&
5^sj tanh(hi)&, which is identical to the unsymmetrized ve
sion of Eqs.~2.4!. Therefore, the unsymmetrized version
Eqs.~3.4! describes the time-delayed correlations toO(w2).
The equal-time correlations are given bŷ sisj&
5^tanh(hi)tanh(hj)& and are not related to any of the resu
of this paper, but can be expanded using the same meth
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APPENDIX

In this Appendix we present the main steps to deriving
TAP equations, Eqs.~3.3!, and the equal-time correlations
Eqs.~3.4!.

1. TAP equations

We start with the computation of the derivatives in E
~3.2!. From Eq.~2.3! we obtain

]^si&
]u j

U
q

5(
s

]p~s!

]u j
U

q

tanh~u i
q!1q~s!~12mi

2!d i j

5~12mi
2!d i j .

The first term is zero because of the normalization(sp(s)
51 andmi5mi

q . Similarly,
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FIG. 2. Mean firing rates as a function of the strength of the connections for sequential dynamics,n5100. RMS valuesRm
2

5(1/n)( i
nmi

2 of Monte Carlo results~—!, first order approximation (1 –), and second order approximation (!—). In addition, RMS values
of the difference between the first order approximation and the MC value (1•••) and the difference between the second order approxi
tion and the MC value (!•••). Top row, symmetric connections (wi j 5wji ). Bottom row, asymmetric connections (wi j andwji are drawn
independently!. Left columnu i50, right columnu i random. In the top left figure, both the TAP results and the Monte Carlo results
mi50 due to symmetry. Therefore, the errors in the TAP results are zero. The mean field solution breaks atb50.5 and the errors in the
mean field results (mMC2mMF) equal the mean field results (mMF).
iv
]^si&
]wjk

U
q

5~12mi
2!d i j mk .

Inserting in Eq.~3.2!, we obtain to lowest order

05dmi5~12mi
2!S du i1(

j
mjdwi j D 1O~dQ2!.

~A1!

Using du i5u i2u i
q anddwi j 5wi j , this is equivalent to

mi5tanhS (
j

wi j mj1u i D .

In a similar way one computes the second order der
tives:

(
jk

]2^si&
]u j]uk

U
q

du jduk522mi~12mi
2!~du i !

2,

(
jkl

]2^si&
]u j]wkl

U
q

du jdwkl5~12mi
2!(

j
@~12mj

2!

3du j22mimjdu i #dwi j ,
a-

(
jklm

]2^si&
]wjk]wlm

U
q

dwjkdwlm

5~12mi
2!(

jk
@~12mk

2!mjdwk jdwik

1~12mj
2!mkdwjkdwi j 22mi^sjsk&dwi j dwik#.

Substituting these into Eq.~3.2! we obtain

05dmi

5~12mi
2!S Ai2miAi

21(
j

~12mj
2!wi j Aj

2mi(
j

wi j
2 ~12mj

2! D 1O~dQ3!, ~A2!

where we have definedAi5du i1( jdwi j mj . Since Ai50
1O(dQ2), because of Eq.~A1!, we obtain

Ai5mi(
j

wi j
2 ~12mj

2!1O~dQ3!,

which is equivalent to Eq.~3.3!.
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2. Correlations

From Eqs.~2.3! and ~2.4! we obtain

2xab5(
s

p~s!sa$tanh@hb~s!#2mb%1~a↔b!.

From this equation, we directly compute the derivatives ofxab with respect tou i andwi j :

2
]xab

]u i
U

q

50, 2
]xab

]wi j
U

q

5~12ma
2!~12mb

2!d iad jb1~a↔b!, 2
]2xab

]u i]u j
U

q

50,

2
]2xab

]u i]wkl
U

q

5~12mb
2!FdbkS ]^sasl&

]u i
2ml

]^sa&
]u i

D22d ibdkbmb~^sasl&2maml !2ma~12ml
2!dkbd i l G1~a↔b!,

2
]2xab

]wi j ]wkl
U

q

5~12mb
2!FdbkS ]^sasl&

]wi j
2ml

]^sa&
]wi j

D1dbiS ]^sasj&
]wkl

2mj

]^sa&
]wkl

D22d ibdkbmb~^sasjsl&2ma^sjsl&!

2mamj~12ml
2!dkbd i l 2maml~12mj

2!d ibdk jG1~a↔b!.

Thus,

FIG. 3. Correlations as a function of the strength of the connections for sequential dynamics,n5100. RMS valuesRx25@2/n(n
21)#( i . j

n x i j
2 of Monte Carlo results~—!, first order approximation (1—), and second order approximation (!—). In addition, RMS values

of the difference between the first order approximation and the MC value (1•••) and the difference between the second order approxi
tion and the MC value (!•••). Top row, symmetric connections (wi j 5wji ). Bottom row, asymmetric connections (wi j andwji are drawn
independently!. Left columnu i50, right columnu i random.
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xab
p 5(

i j

]xab

]wi j
dwi j 1(

i jkl

1

2

]2xab

]wi j ]wkl
dwi j dwkl1(

ikl

]2xab

]u i]wkl
du idwkl

5(
i j

]xab

]wi j
dwi j 1(

i jkl
S 1

2

]2xab

]wi j ]wkl
2mj

]2xab

]u i]wkl
Ddwi j dwkl

5
1

2
~12mb

2!F ~12ma
2!wab1(

i j l
dwi j dwblS ]^sasl&

]wi j
2mj

]^sasl&
]u i

2mbd ib~^sasjsl&

2ma^sjsl&!

12mjmbd ib~^sasl&2maml ! D G1~a↔b!

5
1

2
~12ma

2!~12mb
2!S wab1(

lÞa
dwbldwal

s ~12ml
2!12mamb~dwba!

2D 1~a↔b!.

This is identical to Eq.~3.4!.
a
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