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Noise-induced memory in extended excitable systems
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We describe a form of memory exhibited by extended excitable systems driven by stochastic fluctuations.
Under such conditions, the system self-organizes into a state characterized by power-law correlations, thus
retaining long-term memory of previous states. The exponents are robust and model independent. We discuss
implications of these results for the functioning of cortical neurons as well as for networks of neurons.

PACS numbds): 87.10+e, 87.19.La

Neurons receive thousands of perturbations affecting thehoosing a value af at least equal to or larger than the value
transmembrane voltage at various points of the synaptiof N eliminates a number of numerical complicatidgs.
membrane. Recent experimental evidence has shown active A dendritic region bombarded by many weak synaptic
nonlinearitied 1] at the dendrites of cortical neurons, imply- inputs corresponds to a relatively small value for(here
ing that models representing these neurons must have mad9™ ?). The typical response of the model under such condi-
nonlinear spatial degrees of freedom. tions is illustrated in Fig. 1. One can see that, starting from

What are the dynamical consequences of these distributedfbitrary initial conditions, eventually an element is first ex-
nonlinearities for neuronal function? The answer is not im-Cited (Ieft arrow in Fig. 1. This initiates a propagated wave
mediately certain. The prevailing view, since the work of front which coIhdgs with others initiated in the same way
Lapicque in 19072], has been that all input regiorise., somewhere e!se in the system. After the comple_tlon of the
dendrites are linear, so neurons can be represented as '§actory period the process repeats itself, originating an-

single compartment. In this view incoming excitations areOther wave fro_nt(nght side Of_ F!g. .1' An immediately ap-.
. . ' arent feature is the overall similarity of any two consecutive
linearly integrated, and whenever the resulting value excee

a predefined threshold an action potential is generated. Thl{ronts. The large-scale shape is preserved, despite the fact

th ) idered to h inal i q at each element is being randomly perturbed.
€ neuron 1S considered (o have a single noniinéar degree ot ye t5ng that important information can be extracted

freedom: the spatial region where the thresholding dynamicg g, an analysis of the dynamics of the first element to be

takes_ place. _ o excited in each wave front, denotedla@®). Figure 2 shows
This paper describes a robust form of noise-induceqnhe results of numerical simulations whekgn) of each

memory which appears naturally as a direct consequence Qfaye front is plotted as a function of time. Note the tendency
including distributed nonlinearities in the formulation of a of | (n) to remain near the previous leading site, which is
neuron’s input region. Besides having relevance at the neur@specially apparent in the larger systems. To quantify this
level, it touches other areas of biology where excitable modgynamics, we numerically estimatedL'(n) — L' }(n)|),
els have been used, as is the case for models of forest-fiighich is how far(on averaggefrom its current position the
propagation, spreading of epidemics, and noise-inducefkader will be in thenextwave front. The resulting distribu-
waves[3]. From the outset, it needs to be noted that thetions(P(An)) of thesejumpsare plotted in Fig. @) for all
phenomena to be described do not depend on the type @&f/stem sizes. The largest probability corresponds to the case
excitable model one uses. in which the wave front is first triggered from the same ele-
To show the essence of the main point, we adapt thenent as in the previous event. The power lafitells us that
Greenberg-Hastings cellular automata mddélof excitable  there is always a nonzero probability for a very long jump,
media[5]. For the purpose of this paper let us restrict our-
selves to the case of a one-dimensional lattice of coupled
identical compartmentsnE=1,... N), with open boundary
conditions. Each spatial location is assigned a discrete state \
S, which can be one of three—quiescent, excited, or
refractory—with the dynamics determined by the transition
rules: E—R (alway9, R—Q (always, Q—E (with prob-
ability p, or if at least one neighbor is in the statg, and
Q—Q (otherwise. Excitable systems have a refractory pe-
riod during which no re-excitation is possible; we introduce , )
it by delaying the transition from thie state to theQ state for 900 S 7 a0
r time steps. Thus the only two parameters in the system are Time t
p, Which determines the probability that an input to a given  FI|G. 1. An example of two consecutive noise-induced wave
site n result into an excitatiorti.e., a transitiorQ—E); and  fronts. Note the similarity in the overall shape of the two consecu-
r determining the time scale of recovery from the excitedtive wave fronts, which is typical. The arrows indicate the earliest
state. It turns out that the precise value @ not crucial, but  activated sitdi.e., the leadet(n)] in each wave front.
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which resembles some of the scenarios described in the con-
text of self-organized criticality7].

What causes this memory is trivially simple: the first site
to be activated by the noise will necessarily be the fiest
actly afterr time stepyto be recovered and consequently to
be ready to be re-excited. The two adjacent sites which were
excited by the leader will recover only aftet-1 time steps,
and so on for the other adjacent sites. Thus excitation by the
noise will always be biased by the previous sequence of ex-
citation. Therefore, this “memory” can be preserved as long
as the cycle of recoveryn this model the time stepgis not
affected by the noise. Regarding the dependence with the
noise intensity, for vanishingly small all sites will have
enough time to cycle to th@ state, and no memory will be
kept (see below.

Exponents are robusifthe phenomenology and its power

Leader (t)

. ] . laws are not model dependent. We obtained similar results
0 10000 20000 with various numerical models, so we sought the simplest
Time numerical simulation scheme, which is a simple kinematic

FIG. 2. Plot of the consecutive positions of the leading elemenf€Scription of the motion of these noise-induced propagated
in each firing eventi.e., the ones identified by the arrows in Fig. 1 €Xcitable waves in the limit of infinite system size and low
The tendency of the leader is to remain near the previous leading0ise amplitude. The algorithm is as followee the cartoon
site, a fact that is visually more apparent in the large systéfie N Fig. 4). Time and space are considered continuous vari-
system size increases froNE 128 at the top panel thi=4096 at ~ ables. Excitations can initiate a wave front at any point, so
the bottom panelp=10"2 for all panels) the first step of the algorithm then is to distribute all potential

excitation spots at random locations and times, as a two-
indeed as large as the entire system. Therefore, the cutoff @imensional(2D) Poisson process ir-t space with a prob-
the power law is the only difference between the results obability p(x,t) which we will take to be constant for now.
tained with small or large Nisee pane(A) in Fig. 3]. Filled circles in Fig. 4 denote@ throughe correspond to

Another related measure is the estimation of the averagsome of these events. The algorithm scan the space searching
distance the leader drifts from its current position as a funcfor the earliestexcitation pointi.e., in the figure is the point
tion of time lagAt (t is always given in wave front’s units ~ a). Two wave fronts come forth from that point with unit
The results are plotted in pané) of Fig. 3. The fact that speed. A front dies when it either reaches the boun¢asyn
the log-log plot of|An| vs At is linear implies a power law the initial case in the figujeor upon colliding with other
~AtH. The best-it line of the results in Fig(B) gives an  fronts as the one initiated by event labetetthe dotted lines
exponentH=0.19. For this case it is known that the power indicate two of these interrupted frohtsSo, after locating
spectrum decays asff] and thatg relates withH as 8  the earliest poing, all other points satisfyingit>|Ax]| (i.e.
=2H+1=1.4 (a random walk will have similar statistical laying inside the space-time cone with vertexainare guar-
behavior, but with an exponeht=1/2). These power laws, anteed to be “ahead” of poinh. We now proceed to look
with cutoffs given only by the system size, imply a lack of for the earliest points which areot ahead ofa (i.e., are
characteristic scaléboth in time and spage a situation outside the coneuntil all other points are ahead of our cur-

H=0.19 B FIG. 3. [(A) and(C)] Distribution of the dif-
4 ferences betweeh(n) of two consecutive wave

O/O/‘WQ//O/O’O/OM/O fronts. Results in(A) correspond to the discrete
model, while results plotted ifC) are from the
L W _ kinematic simulation. In both cases the exponent

W m~1.4. [(B) and (D)] Mean drift of L(n) as a

function of time lagAt. Results in(B) are from

: . . the discrete model, and those plotted() are

10 from the kinematic simulation. The mean drift
scales as', the best-fit line give$=0.19 in the

D case of the discrete model, ahti=0.2 for the
results using the kinematic description. The sys-
tem sizes for the discrete model &e= 128, 256,
512, 1024, 2048, and 4096 from bottom to top
plots, and the noisp=10"2. For the kinematical
description the system size is fixadhit interva),
and the noise density(x,t) increases from bot-
tom to top—as determined by the steep part of
the plots—from 108, 1075, 1074, and 10°%.
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FIG. 4. Cartoon of the kinematic algorith(eee text

rent collection. Using relativity terms, we scan the Poisson
process for the largest collection of mutually spacelike points
containinga, then locate the “earliest” pointin our refer-
ence framgand repeat iteratively, as in a convex hull algo-
rithm on Minkowski metrics. The results of such simulations
are plotted in Fig. 3 alongside of those described for the
discrete model. Jump distributions are plotted for four noise FIG. 6. (a) A spatial modulation of the noise density causes the
levels in panel(C). The mean drifts as a function of time lag fronts to be pe_rmanent_ly pinned. Shgwn i_s the kinem_atic model,
are plotted in pandD). It can be seen that there is a remark- where the density of points has a cosinusoidal modulation ox the
able agreement between the numerical values of both scalirff ©f 10%. Except for the darkened ones, only one out of ten
exponents. It needs to be noted that the kinematic algorith onts is shown(b) Fronts are invariant under a Lorentz transform.
used here is equivalefit0] to the polynuclear growttPNG)

model [8] studied extensively in the context of 1D growth whereS are the initial and subsequent states, ranked by the
processes. It has been shown that at least in one dimensiagxcitation order of each element. Means and standard error
the PNG asymptotic behavior belongs to the Kardar-Parisiof the meanfSEM) D(t) were calculated, and the results are
Zhang universality clas]. plotted in the main body of Fig.(8) as a function of time. It

~ How long does it rememberf?or the sake of demonstra- can be seen that the Hamming distance follows a power law
tion, the dissipation of memory can be estimated by first, to times of about 50 events. It was already mentioned that
imposing an initial activation sequence in the systm®., {5 yanishingly smalp no memory of previous states can be
writing) and then calculating the Hamming distance between, ,intained, since this condition implies that all the elements

the initial and subsequent wave front separatedbysing 1,5, enough time to go to th@ state preceding the excita-
the discrete model we impose an arbitrary initial configura-,

. o , . . . ion. Thus, rather paradoxically, more noise impli longer
tion of excitation, in this case the sinusoidal pattern pIottedIO us, rather paradoxically, more noise implies a longe

in the inset of panglA) of Fig. 5. As time passes, the pattern memory. This is lllustrat_ed by the resglts in Fidbk Wherg
deforms as shown by the snapshots at times 2, 5, 10, and (t) was calculated for increasing noiseThus we call this

in the figure, which can be estimated by the Hamming disPn€nomenon a form afoise-induced memary
tance defined as Inhomogeneitieslt is important to address the effect of

parameter fluctuations, since in any real system these values
N will not be constant in space or time. The same features
z |Sf1—SffM|, (1) endowing our system with a “memory” help to understand
n=1 its sensitivity to variations in the parameters. For instance, a

spatially varying noise level will result in the fronts being
10 ‘ 10 ‘ effectively pinned at the location of maximum noise
strength; as shown in Fig.(#®, a variation of only 10% in
noise density can give rise to complete localization of the
front. This feature can be understood readily within the ki-
nematic model, if we note that the fronts, which represent
waves of constant speed, are invariant under Lorentz trans-
forms, as depicted in panéb) of Fig. 6. Furthermore, the
homogeneous Poisson point process used in the kinematic
model is also invariant under Lorentz transformations. Think
of the way the “average” layer of Fig.(6) looks: its aver-
age spacing\t, average til{dt/dx), and point density are

(D(1)=

Z| -

<D(At)>
<Dip)>

1 10 100 00 0.5 1. related by 1At= \2p coshd, where# is the parameter to the
At P Lorentz transform; theqdt/dx)=tanhé. Looking back to

FIG. 5. (@) The Hamming distancéD(t)) from the original Fig. 6(A), thgse relatio.ns hpld as Iong as the mean s_eparation
sinusoidal pattern as a function of time. The inset shows the initiaP€tWeen adjacent points in the Poisson process is smaller
wave front and at time steps: 2, 5, 10, and BB=256, p=10"2  than the variations ip. Since Fig. 6a) has to satisfy a con-
means, and SEM of 256 realizatiors) The Hamming distance Stant averagét independently of the point process density,
between two consecutive wave fronts is a monotonically decreasing/e obtainy2p coshf= V2P max Wherep .y is the maximum
function of noisep (means and SEM of 256 realizations of p(x); this implies that
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p other words, the neuron can in this way remember the loca-
(dt/dx)= \/1— —. tion of the events that caused a firing. This correlated se-
Prmex quence of activation can in turn influence the spatial distri-

Implications for learning and memorithe dynamics de- bution of the molecular machinery supposedly responsible
scribed here might have important consequences for neurfr the long-term synaptic modification necessary to remen-
“plasticity.” This is the name given, in neuroscience, to the ber.
process by which interconnected neurons can strengthen or The work reported here is restricted, for simplicity, to the
weaken their synaptic contacts to modulate their communiene-dimensional case and the use of the simplest conceivable
cation. The dogma is that memory and learning in animakxcitable model. Nevertheless, the phenomenon is shown to
brains are based on long-term changes of that synaptic cole robust, and similar results can be easily obtained using
nectivity. An important point in contemporary thinking as- more detailed models. If the dynamic described here exist as

sumes that whatever the plastic process is, it must be able ch in real neurons, it would be very relevant to neural
modify the synaptic strength during a time window given by fynctioning.

the longest time scale in the neuron dynamics. This window

is given by the relaxation kinetics of the membrane, and is at

most of the order of hundreds of millisecor{ddl], a length This work was supported in part by the Sloan Foundation
which is considered too short for producing most of the necand the Norman & Rosita Winston Foundation. R.U. Com-
essary synaptic changes. Our results can solve this discreputer resources are supported by NSF ARI Grants. Discus-
ancy, since we have shown that the correlated activity lastsions with P. Bak, Maya Paczuski, R. Llinas, and Mark Mil-
orders of magnitude more than the longest time scale of thionas are appreciated. Communicated in part by DRC at the
model (i.e., the value ofr). Thus the implication for real First International Conference on Stochastic Resonance in
neurons will be that the spatial activity along the dendritesBiological Systems, Arcidosso, Italy, May% 1998 where
established by a given synaptic input will remain correlatedhe hospitality of the colleagues of the Istituto di Biofisica of
for hundreds of firing events after the particular event. InPisa was cherished.
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rent. A rough figure of hundreds of milliseconds is the current
estimate.



