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Early stages of homopolymer collapse
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Interest in the protein folding problem has motivated a wide range of theoretical and experimental studies of
the kinetics of the collapse of flexible homopolymers. In this paper, a phenomenological model is proposed for
the kinetics of the early stages of homopolymer collapse following a quench from temperatures above to below
the u temperature. In the first stage, nascent droplets of the dense phase are formed, with little effect on the
configurations of the bridges that join them. The droplets then grow by accreting monomers from the bridges,
thus causing the bridges to stretch. During these two stages, the overall dimensions of the chain decrease only
weakly. Further growth of the droplets is accomplished by the shortening of the bridges, which causes the
shrinking of the overall dimensions of the chain. The characteristic times of the three stages scale asN0, N1/5,
andN6/5, respectively, whereN is the degree of polymerization of the chain.

PACS number~s!: 36.20.2r, 61.25.Hq, 83.10.Nn, 87.15.2v
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I. INTRODUCTION

The purpose of this paper is to discuss the evolution of
structure of a single polymer molecule after the environm
has been changed from a good solvent to a poor solvent.
approach is via a phenomenological model for the kinetics
the early stages of collapse. We have in mind a long flex
polymer chain immersed in a simple solvent, and a chang
the temperatureT as the means of altering the solvent qu
ity. The initial state is one of equilibrium in a good solven
in which the chain is swollen and has radius of gyrationR
5RF;N3/5, whereN is the degree of polymerization. Th
final state is one of equilibrium in a poor solvent, in whic
the chain is collapsed into a dense, spherical globule,
R5Rc;N1/3. The variation of the equilibrium state with th
solvent quality is, with some important caveats, well und
stood@1–4#. In marked contrast, there is no comparable c
sensus concerning the kinetics of collapse following
abrupt T quench, i.e., a rapid change in temperature fr
above to below theu temperature. The experimental pictu
is not clear because of difficulties due to the competit
between the collapse of the individual chains and the ag
gation of different ones. As a result, there have been on
few experimental studies of the kinetics of collapse of is
lated chains@5–7#. Theoretical studies have utilized a varie
of approaches in focusing on different aspects of the pr
lem. Langevin models@8–11#, phenomenological model
@12–14#, and computer simulations@15–21# have been used
to consider the kinetics of collapse in the absence of to
logical constraints. Other studies have focused on the rol
internal entanglements@22,23# or the competition with
chain-chain aggregation@24,25#. In spite of the extensive
activity is this area, a complete picture of the kinetics
collapse has yet to emerge. The search for such a pictu
motivated primarily by the intense current interest in the p
tein folding question@26–28# because early stages of prote
folding are thought to proceed as the collapse of flexi
homopolymers.
PRE 611063-651X/2000/61~1!/565~9!/$15.00
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The collapse of a flexible chain following an abru
change of solvent quality displays certain features of a fi
order phase transition. These features occur for chain
finite N for which the surface free energy of the globu
plays an important role. Two such features are importan
the present discussion. First, the onset of collapse invol
as we shall discuss, the formation of droplets of the de
‘‘phase.’’ Second, the collapse proceeds via intermed
states corresponding to the ‘‘tadpole’’ configuration of
stretched, collapsed globule@29#, which involve the coexist-
ence of dense globules and strongly stretched segme
With this picture in mind, it is possible to distinguish be
tween four stages in the kinetics of collapse~Fig. 1!. Each
stage is characterized by a length scale and a time scale.
characteristic time scale increases with the relevant len
scale. The formation ofp(!N) droplets of the dense phas
which we refer to as ‘‘pearls,’’ is the fastest process. T
‘‘pearling’’ stage involves local rearrangement of the cha
configurations within the randomly placed droplets duri
which the dimensions and configurations of the chain a
whole are only weakly modified. The nascent droplets th
grow by accreting monomers from the bridges that conn
them. The positions of the growing droplets are roughly s
tionary and their growth is accommodated by the grad
stretching of the bridges. This ‘‘bridge-stretching’’ stag
ends when the tension in the bridges attains the equilibr
value f co corresponding to the ‘‘tadpole’’ configuration of
stretched globule. During this process the dimensions of
chain as a whole remain essentially constant, i.e.,R;N3/5,
but the configurations of the bridges are qualitatively mo
fied. The number of dropletsp is set by the requirement tha
R;N3/5 at the end of this stage, thus leading top;N4/5.
Beyond this point, the growth of the ‘‘pearls’’ is accomp
nied by shortening of the bridges and the overall shrinking
the chain. The third stage, the collapse of the ‘‘pearl ne
lace,’’ involves the chain as a whole. The correspond
length scaleRF(;N3/5) is larger and the characteristic tim
is thus longer. It is assumed thatp remains roughly constan
565 ©2000 The American Physical Society
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566 PRE 61A. HALPERIN AND PAUL M. GOLDBART
during these three stages. Eventually, the droplets come
contact and coalesce into a single globule. Our discussio
limited to the early stages of the collapse. The last reg
will not be considered in the present paper. Within this p
ture, the characteristic times for the first three stages
pearling, bridge-stretching, and the collapse of the pe
necklace — are, respectively,tp;No, tbs;N1/5, and tpn
;N6/5. The model we propose differs from the existing ph
nomenological descriptions in two respects. First, the t
initial stages were not considered in these models. Sec
the treatment of the third stage, the collapse of the p
necklace, is different. A more detailed comparison with
phenomenological models, as well as the Langevin-t
theories and simulation studies, will be presented in the fi
section.

The paper is organized as follows. To obtain the tempo
evolution of the various stages, we balance the driving fo
with the entropy production. A discussion of this approach
presented in Sec. II. In Sec. III we recall some key resu
concerning collapse blobs and the thermodynamics of
lapse. In addition, we discuss the initial role of the collap
blobs as spinodal ‘‘modes’’ and the equilibrium deformati
behavior of a collapsed chain. The collapse of a chain fro
good solvent to au solvent is discussed in Sec. IV. Th
results are then used to analyze the first stage of the colla
i.e., the formation of nascent droplets or ‘‘pearling.’’ In Se
V we discuss the collapse of a chain with constrained en
This discussion is then utilized to describe the second s
of collapse, in which the stationary droplets, pearls, grow
accreting monomers from the bridges, thus causing
bridges to stretch. The shrinking of the resulting string
pearls is analyzed in Sec. VI.

FIG. 1. Proposed sequence of states during the collapse
flexible homopolymer:~a! self-avoiding configuration under goo
solvent conditions;~b! pearling;~c! bridge stretching;~d! collapse
of the pearl necklace;~e! equilibrium collapsed configuration in
poor solvent.
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II. SOME GENERAL CONSIDERATIONS;
ENTROPY PRODUCTION METHOD

The design of the phenomenological model presented
this paper involves two steps. In the first step we propos
sequence of stages followed by the collapsing chain~the
stages involved were outlined in the Introduction!. The sec-
ond step is to calculate the characteristic time associated
the various stages in the proposed route. A simple met
for calculating the characteristic times was proposed by
Gennes@12#. It focuses on a volume element of solvent co
taining a single chain and coupled to a thermal reservoir
maintains a temperatureT. The system as a whole is close
During collapse, the free energy of the chainFchain de-
creases. The decrease inFchain gives rise to an increase i
Stotal, the total entropy of the system as a whole. Since
collapse is the only irreversible process involved, t
changes inFchain andStotal are related by

DFchain52TDStotal. ~2.1!

The dynamics of the process are described by

dFchain

dt
52T

dStotal

dt
. ~2.2!

To implement this argument, it is necessary to specify~i!
Fchain as a function of the chain radiusR. One assumes tha
dFchain/dt5(dFchain/dR)V, whereV5dR/dt. The form of
Fchain for the various stages will be discussed at the app
priate sections. One must also specify~ii ! the operative dis-
sipation mechanisms that determinedStotal/dt in terms ofR
and V. This entropy production approach is independent
the model in that its applicability is not limited to a specifi
choice of Fchain or of the dissipative modes. Nor does
provide guidance for choosing this crucial input.

Two dissipation mechanisms are considered for the v
ous stages of collapse. First is the viscous dissipation a
ciated with the motion of the solvent. Second is the friction
dissipation due to the Stokes drag on the chain. The ma
tude of the viscous force@30# acting on a unit volume is on
the order ofh¹2V, whereh is the shear viscosity. In the
following we estimate it byhV/R2. The associated dissipa
tion per unit time is thus roughlyhV2/R2 and the total hy-
drodynamic dissipation within a volumeR3 is TdSh as given
by

T
dSh

dt
'h

V2

R2
R3'hV2R. ~2.3!

The Stokes drag force acting on a sphere of radiusr moving
with a constant velocityV is 6phVr, and the associated
‘‘frictional’’ dissipation per particle is

T
dS

dt
'hV2r . ~2.4!

To obtain the total frictional dissipation, it is necessary
sum the contributions due to the hydrodynamically impe
etrable objects involved in the stage considered. The num
of such objects, their radiusr, and the relationship betweenr
andR differ in the various stages of collapse. The de Gen

a



th
u
th

in-
t
k

th
ch
si
th
e

Th
th
b
ap
m

o
b

el
in
ue
en
en
he
ee
-
r-

op

io
r-

ed
th
te
va

y

c-
der
y a
ia

hed
an-

ur-
pre-
e

d

is
it

pse

lob-

n-
ain

t
of

ule

nly
hen

at

e

rst
d
od
n-

is
s

a-
op-

PRE 61 567EARLY STAGES OF HOMOPOLYMER COLLAPSE
argument is equivalent to equating the frictional force to
contraction force. It allows us, however, to consider on eq
footing the dissipation due to Stokes drag forces and to
hydrodynamic flows. Finally, note that the dissipation
creases with the length scale. This observation motivates
proposed sequence of stages which involve processes ta
place at progressively larger length scales.

The familiar methods of irreversible thermodynamics@31#
focus on linear responses, the Onsager relations, and
refinements. In marked difference, the de Gennes approa
not limited to a linear regime nor does it rely on the analy
of the regression of fluctuations. The method applies to
complete dynamic range, provided that the driving forc
and the dissipation mechanisms are correctly identified.
dissipative modes invoked in our discussion hold under
assumption that the hydrodynamic description is applica
to the collapse of a polymer. It is expedient to use this
proach, but one should note that the validity of continuu
theories at this length scale is a delicate issue.

III. COLLAPSE BLOBS, SPINODAL DECOMPOSITION,
AND THE EXTENSION ELASTICITY OF GLOBULES

While the configurations of polymers in good and po
solvents are well understood, the nature of the transition
tween the two regimes is not fully resolved. Different mod
suggest that the transition may be continuous or discont
ous, depending onN and the stiffness of the chain. The iss
of the order of the transition is, however, irrelevant wh
considering a collapse following a quench to the poor solv
regime. In this regime, the equilibrium configuration of t
chain is determined primarily by the Flory interaction fr
energyF int . The elasticity of the chain, i.e., its configura
tional entropy, plays a relatively minor role, limited to dete
mining the structure of the globule-solvent interface@2#. In
the case of a single chain, for which the translational entr
of the polymer is irrelevant, theN→` limit of F int deter-
mines the equilibrium behavior,

F int

kT
5~12f!ln~12f!1xf~12f!. ~3.1!

Here, f is the monomer volume fraction andx, the Flory
parameter, is a measure of the strength of the interact
giving rise to the mixing enthalpy. For a given polyme
solvent system,x depends only on the temperatureT. In the
good solvent regime, for whichx,1/2, F int is a convex
function of f. A critical point occurs at (xc ,fc) specified
by xc51/2 andfc50. Whenx.1/2, the solvent is poor
and the plot is concave in the range 0,f,f1 . A common
tangent construction between the origin andf1 indicates the
coexistence of a dense phase, of concentrationf1 and the
neat solvent. Thef1 phase corresponds to the collaps
globule. This amounts to setting the osmotic pressure of
polymer p within the dense phase to zero, as is expec
because there are no free polymers in the solvent. The
ishing ofp leads to ln(12f)5f1xf2. In the vicinity of the
u temperature, the ln(12f) term may be approximated b
the first three terms of its Taylor expansion. Thep50 re-
quirement then leads to
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f1'2v/2w, ~3.2!

wherev5a3(122x),0 is the second virial coefficient,a is
the size of the monomer, andw51/6.0 is the third virial
coefficient. Thus,f1 is determined by the balance of attra
tive binary monomer-monomer interactions and higher-or
repulsive interactions. The chain elasticity does not pla
role. In turn,f1 sets the radius of the collapsed globule v
Na3/R3'f1 , leading toR/a'(N/f1)1/3. The occurrence
of an unstable region inF int(f) is a crucial feature of this
discussion. Due to this feature, the collapse of a quenc
chain exhibits certain characteristics of first-order phase tr
sition.

The structure of the interface, and the corresponding s
face tension, cannot be obtained from the discussion
sented above. A ‘‘blobological’’ argument can provide th
missing information@4#. The configurations of a collapse
chain are characterized by a correlation length,jc . On length
scales smaller thanjc , the monomer-monomer attraction
too weak to perturb the configurations of the chain, and
behaves as a random walk. This allows one to define colla
blobs, which comprisegc monomers such thatgc

1/2a'jc . A
fully collapsed chain can be envisioned as a spherical g
ule composed of close-packedjc blobs. The correlation
length jc is determined by equating the interaction free e
ergy due to monomer-monomer attraction in such a ch
segment tokT. The interaction free energy isvgc

2/jc
3 , where

v is the second virial coefficient. In the vicinity of theu
temperature,v may be expressed asv'a3(DT/u), where
DT[(T2u)/u, thus leading to

gc'S u

DTD 2

, jc /a'S u

DTD . ~3.3!

The densityga3/jc
3 within a single blob is comparable to tha

of the dense phasef1 resulting from the phase separation
free polymers in a poor solvent. Thejc blobs attract each
other, and the unperturbed chain forms a collapsed glob
of radiusR'(N/gc)

1/3jc . A collapse blob in contact with
the solvent is assigned an energy ofkT. Thus, the boundary
of the globule is associated with a surface free energy

g'kT/jc
2 . ~3.4!

Note that the blob picture, as described above, is valid o
when the chain comprises many collapse blobs, i.e., w
the depth of the quench is such thatu@uDTu@u/N1/2 and
1!gc!N. We should also add that in the following we tre
the jc blobs as hydrodynamically impenetrable spheres.

WhenN is sufficiently large, the collapsed globule may b
viewed as a droplet of the dense phase with densityf1 in
coexistence with the neat solvent. Within our model, the fi
stage of collapse involvesf1 droplets, pearls, that are joine
by bridges which retain the configurations found in go
solvent conditions. This situation is reminiscent of the co
densation of fluid droplets from a supersaturated vapor@32#.
In this last situation it is found that droplets whose radius
smaller than a critical radiusr c tend to evaporate, wherea
larger drops, i.e., those for whichr .r c , grow indefinitely.
This similarity wrongly suggests that the formation of n
scent pearls is analogous to the nucleation of critical dr
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568 PRE 61A. HALPERIN AND PAUL M. GOLDBART
lets. This analogy is discredited by the following rough a
gument. The thermodynamic potential of a dense dro
coexisting with ‘‘free’’ monomers is given by

L5F~Nd!2Ndm, ~3.5!

whereNd is the number of monomers in the droplet andm is
the chemical potential of the free monomers. For a su
ciently large dropletF5Ndmd1gr 2, wheremd is the chemi-
cal potential of a monomer within the droplet. Choosing t
reference state to be a blob within the droplet and assign
kT to an ‘‘uncondensed’’ blob leads to

L

kT
'2

Nd

gc
1S Nd

gc
D 2/3

, ~3.6!

which has a maximum atNd'gc . As Eq.~3.6! is only valid
for Nd@gc , this establishes only that there is no critic
droplet of larger size. This argument does, however, sug
that chain segments incorporatinggc monomers play a spe
cial role in the onset of collapse. This view is consistent w
the definition of ajc blob: The monomer-monomer attra
tion is too weak to perturb the chain configurations
smaller length scales, but is sufficient to induce collapse
length scales larger thanjc . It is also helpful to note that the
shrinkage of a chain segment into a collapse blob does
encounter a free-energy barrier. Accordingly, a collapse b
cannot be viewed as a critical droplet. Rather, the forma
of a jc blob resembles spinodal decomposition with the
veat that the associated dissipation arises from config
tional changes of the chain as a whole. Thus, in orde
minimize the entropy production, the first step of the c
lapse involves the formation of a small numberp (!N/gc)
of collapse blobs instead of a string ofN/gcjc blobs

The concave region inF int is also the origin of the force
law governing the extension of a collapsed globule. Wh
the end-to-end distance of the stretched globule is fixe
dense globule coexists with a stretched string ofjc blobs.
The tensionf co associated with this coexistence is the dr
ing force for the third stage of the collapse. The extension
the globule actually involves three regimes@29,33#. In the
first regime the spherical form of the globule is initially d
formed into a prolate ellipsoid, but maintains a constant v
ume corresponding to close packing of thejc blobs. Within
this linear-response regime, the free-energy penaltyF in-
curred is due to the increase of the surface free energy

F'gDA'g~L2Rc!
2, ~3.7!

whereDA'(L2Rc)
2 is the surface area increment asso

ated with the deformation, andL is the length of the axis o
rotation. The corresponding restoring force,f 52]F/]R, is
proportional to the strain (L2Rc):

f '2g~L2Rc!. ~3.8!

This type of process cannot proceed indefinitely. If it we
pursued indefinitely, the distorted globule would assum
cylindrical shape and, eventually, form a string ofjc blobs.
This scenario gives rise to a van der Waals loop in thf
versusR diagram. In turn, this is indicative of instability with
respect to the coexistence of a weakly elongated globule
-
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a stretched string ofjc blobs. This effect is reminiscent o
the Rayleigh-Plateau instability@34# involving the break-up
of a fluid jet into a succession of droplets. In the seco
coexistence, regime the chain comprises a stretched strin
n/gc jc blobs and a roughly spherical globule of (N
2n)/gc closely packedjc blobs. To characterize this equ
librium situation, it is necessary to minimize the free ener
of a stretched chain comprised of a dense globule an
string of n/gc collapse blobs, i.e.,

F

kT
'2S N2n

gc
D1S N2n

gc
D 2/3

1
L2

na2
. ~3.9!

The first term allows for the transfer of the collapse blo
from the solvent into the ‘‘dense phase,’’ i.e., the interior
the globule. This is the primary driving term for the grow
of the globule. The second term reflects the surface free
ergy of the globule. The elastic free energy of the string
blobs is described by the third term. Note thatna2

'(n/gc)jc
2 is the unperturbed span of an ideal string of c

lapse blobs. MakingF stationary with respect ton, ]F/]n
50, leads to

1

gc
F12S N2n

gc
D 21/3G' 1

gc
'

L2

n2a2
. ~3.10!

In the limit of largeL and forn&N this leads to

L

jc
'

n

gc
. ~3.11!

The equilibrium free energy of the resulting tadpole config
ration is, up to numerical prefactors,

F

kT
'S N2n

gc
D 2/3

1S n

gc
2

N

gc
D1

n

gc
. ~3.12!

The first term allows for the surface free energygr g
2 of a

globule of radiusr globule'@(N2n)/gc#
1/3jc . The transfer

free energy of blobs into the dense phase is reflected in
second term. The third term is the stretching energy of
extended string of lengthLs'(n/gc)jc as given by the
Gaussian expression for the elastic penaltykTLs

2/na2. It is
also possible to interpret this last term as the surface en
of the extended string. The end-to-end distance reflects
contributions,

L'jcF S N2n

gc
D 1/3

1
n

gc
G . ~3.13!

The first term is the radius of the globule and the secon
the span of the stretched string ofjc blobs. Whenn is suffi-
ciently large, we may approximatedR as jcdn/gc and the
corresponding force lawf 52]F/]L reads

f /kT'2jc
211r globule

21 . ~3.14!

It is important to note thatf decreases asr globule approaches
jc . This finite-size correction is reminiscent of the Lapla
law for the vapor pressure of small droplets. It is negligib
over a wide range of extensions ifN is large enough. Be-
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PRE 61 569EARLY STAGES OF HOMOPOLYMER COLLAPSE
cause of this correction, different deformation scenarios
expected for thef 5const8 and theL5const8 ensembles. In
the first case the globule unravels completely as soon
critical force f co/kT'1/jc is applied. No globule-coil coex
istence is expected. Such a coexistence is, however, expe
when an end-to-end distance is imposed. In this case
tension in the string isf co. The onset of the coexistenc
occurs whenL'Rc1jc , as can be seen by equatingf co/kT
to the force given by Eq.~3.8!. The upper boundary of this
second regime corresponds to a fully extended string
blobs,Lmax'(N/gc)jc . Stronger extension is characterized
simple Gaussian elasticity, up to the onset of finite exten
bility effects.

IV. COLLAPSE TO u CONDITIONS
AND THE FORMATION OF NASCENT DROPLETS

A quench fromT.u to T5u causes the chain to shrin
from RF /a'v1/5N3/5 to Ro /a'N1/2 ~Fig. 2!. The dynamics
of this process are of interest for two reasons. First, as
shall discuss, the formation of nascent pearls follows sim
kinetics. Second, the discussion of this process is espec
simple, thus providing a useful introduction to the sub
quent sections. The quench toT5u turns off the repulsive
interactions between the monomers so that driving force
the ‘‘collapse tou ’’ is due solely to the Gaussian elastic fre
energy of the chain,Fchain'Fel , or

Fel

kT
' 1

2 a22 lna, ~4.1!

wherea5R/Ro andR5R(t) is the instantaneous chain ra
dius at timet. To obtain the characteristic time for this pro
cess, we equate the time derivative of the elastic energy

1

kT

dFel

dt
'S a2

1

a Dda

dt
, ~4.2!

to the dissipative losses associated with the shrinkin
2TdStotal/dt, wheredStotal/dt is the corresponding entrop
production. Two dissipation processes are involved. On
the viscous dissipation due to the hydrodynamic flow res
ing from the contraction of the coil. As was discussed pre
ously, the resulting entropy production within the coil
roughly

T
dSh

dt
'hV2R, ~4.3!

FIG. 2. Collapse tou conditions:~a! initial, self-avoiding con-
figuration; ~b! the final, random-walk configuration.
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whereV5dR/dt is the velocity of the flow. Second is th
entropy production due to the Stokes drag force experien
by the monomers as they move through the solvent. T
associated entropy production is approximately

T
dSS

dt
'hNaV2. ~4.4!

The dynamics of the collapse are determined bydFel /dt
52T(dSh /dt1dSS /dt). While in this case it is possible to
solve the full equation, it is easier, and more instructive,
consider dFel /dt52TdSh /dt and dFel /dt52TdSS /dt
separately.dFel /dt52TdSh /dt leads to

dt

tZ
'

a2da

a221
, ~4.5!

and the characteristic time associated with the hydrodyna
dissipation is thus the Zimm time@1# of the ideal coil, i.e.,

tZ'
hRo

3

kT
;N3/2. ~4.6!

The frictional dissipation is dominant as it scales withN
rather thanR. It leads to

dt

N1/2tZ

'
ada

a221
~4.7!

and the corresponding characteristic time is the Rouse re
ation time@1# of an ideal coiltR'hN2a3/kT or

tR'tZN1/2;N2. ~4.8!

As the Rouse time is much longer, it dominates the proc
Within our picture, the first stage of the collapse is t

formation of nascent pearls comprising each of roughlygc
monomers. The process involvesp randomly distributed
chain segments. Initially, each of the chain segments exh
self-avoidance. Once the solvent is quenched, the monom
monomer repulsions disappear and the segments shrin
their ideal coil configuration. As the nascent pearls consis
only gc monomers, the monomer-monomer attraction is
strong enough to perturb the ideal coil configuration with
them. As long asp is small enough, the overall radius of th
chain is only weakly modified and the dissipation is due
the local configurational changes. In this picture it is possi
to neglect the couplings between the droplets and betw
the droplets and the chain as whole. Thus, the dynamic
this process are essentially identical to those of the colla
of a chain comprisinggc monomers tou conditions. The
characteristic time is, accordingly, the corresponding Ro
time or

tp'tjgc
1/2'

ha3

kT
gc

2;S u

DTD 4

, ~4.9!

where

tj'
hjc

3

kT
;S u

DTD 3

~4.10!
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is the Zimm time of a collapse blob. Note thattp is indepen-
dent of N and p as expected for a local process. A sho
relaxation-time scaling asNo is also predicted by Langevin
type theories of collapse@8,10#.

V. COLLAPSE OF A CHAIN WITH CONSTRAINED
ENDS: THE BRIDGE-STRETCHING REGIME

In the second stage of the collapse, the roughly station
droplets, ‘‘pearls,’’ grow by ‘‘sucking in’’ monomers from
the bridges joining them. This stage ends when the initia
undeformed bridges assume the configuration of a stretc
string of jc blobs. In comparison to the ‘‘spinodal’’ stag
described in Sec. IV, this process is distinguished by t
features. First, the driving force is now due to the trans
free energy of the free monomers into the dense phase.
ond, the evolution of the droplets at this stage strongly
fects the configuration of the bridges. The bridges stretch
the number of monomers in them decreases. We first c
sider the somewhat simpler situation of the collapse o
chain with its ends constrained to fixed positions separa
by a distanceL@Rc ~Fig. 3!. The free energy of such
chain, neglecting the surface free energy, is given by

Fchain

kT
'2S N2n

gc
D1

L2

na2
, ~5.1!

wheren is the number of ‘‘free’’ monomers that have n
been assimilated into a globule. We assume that then mono-
mers behave as a random walk, i.e., the instantaneous
of the chain perpendicular to the end-to-end vector is

R''~n/gc!
1/2jc'n1/2a ~5.2!

and as a result

dn

dt
'

1

a2
R'

dR'

dt
. ~5.3!

Relations~5.2! and ~5.3! are actually invalid at the initia
stages of this regime, when the configurations of the ch
still exhibit self-avoidance. They are, however, expected
apply at the final stages, which dominate the relaxation ti
Invoking them implies that the relaxation of the chain co
figuration whenn decreases is effectively instantaneous. T
driving force for this stage, as specified by Eqs.~5.1!–~5.3!,
is

FIG. 3. Collapse of chain with constrained ends:~a! the initial,
swollen configuration;~b! the final ‘‘tadpole’’ configuration in a
poor solvent.
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1

kT

dFchain

dt
'S 1

gc
2

L2

n2a2D 1

a2
R'

dR'

dt
. ~5.4!

The driving force is opposed by the two dissipation mec
nisms invoked in Sec. IV. In the present situation, howev
the dissipation reflects the cylindrical symmetry of the s
tem. The hydrodynamic dissipation, due to the flow of t
solvent as it is expelled from the region occupied by the c
is T(dSh /dt)'h(dR' /dt)2L. The Stokes drag on the
bridges formed by the collapsed blobs isT(dSb /dt)
'h(n/gc)jc(dR' /dt)2. The dynamics of the collapse ar
determined bydFchain/dt52T(dStotal/dt). At equilibrium,
n is neq'(L/jc)gc'gc

1/2(L/a). Introducing the variabley
5n/neq, we obtain

jc

L

dt

tj
'2

ydy

y21
, ~5.5!

and the characteristic time for this collapse process is th

t'
L

jc
tj . ~5.6!

A similar scenario occurs in the bridge-stretching regim
~Fig. 1!. In this stage thep randomly placed pearls ar
roughly stationary, and they grow by assimilating monom
from the bridges joining them. The bridges are initially u
deformed. This stage ends when the bridges consist o
stretched string of collapse blobs. The average length of e
stretched bridge isRp'(n/gcp)jc . As, within this model,
the p bridges are randomly placed, the overall span of
chain isR'p1/2Rp . By assuming that at this stage the ove
all size of the chain remainsR'RF'N3/5a and thatn'N,
we are led to the result

p'N4/5/gc . ~5.7!

This amounts to the completion of all short length-scale p
cesses prior to the onset of the overall shrinking of the ch
The growth of the dissipation with the length scale involv
justifies this estimate. Clearly, this is a rough estimate and
reality, R is expected to shrink somewhat whilen,N @35#.
The estimated value ofp, Eq.~5.7!, specifiesRp at the end of
the stretching stage to be

Rp'N1/5jc . ~5.8!

Note thatpRp'(N/gc)jc is the arc length of a linear string
of collapse blobs, and is shorter than the arc length of
homopolymerNa. The characteristic time corresponding
the stretching of bridges of final lengthRp is

tbs'N1/5tj . ~5.9!

In contrast withtp , the time scaletbs depends on bothp and
N.

VI. COLLAPSE OF THE ‘‘PEARL NECKLACE’’

At the end of the bridge-stretching regime, the configu
tion of the chain is that of a random walk ofp steps of length
Rp and with an overall radiusRF;N3/5. The p'N4/5/gc el-
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ementary steps are dumbbells comprised of two pearls jo
by a stretched string ofjc blobs. It is impossible to incorpo
rate more monomers into the pearls while keeping them
tionary. The pearls can only grow by shortening the bridg
thus causing the overall shrinking of the chain fromR;RF
to R'Rc;N1/3. It is assumed that the pearls are the vertic
of a random walk and that their number,p, is constant. This
approximation is reasonable in the early phase of this s
but may be questionable at later times. This issue will
discussed later. On short time scales the bridges equilib
rapidly whereas the pearls remain essentially fixed in sp
Consequently, the positioning of the pearls does not give
to an entropy and the free energy corresponding to this
cess isF'pFpb, whereFpb is the free energy of a pea
attached to a stretched string of collapse blobs. In turn,Fpb
comprises two terms. One is the excess free energy
‘‘free’’ collapse blob as given by thekT per blob ansatz. The
second is the elastic free energy of the stretched bridg
length Rp with respect to its reference state, i.e., a rand
walk of collapse blobs. The span of an undeformed brid
with an ideal coil configuration isRp0'(n/pgc)

1/2jc and the
associated Gaussian stretching penalty iskT(Rp /Rp0)2. As-
suming that the overall configuration is that of a rando
walk, R'p1/2Rp , the free energy of the chain as a whole
given by

Fchain

kT
'pS 2

N2n

pgc
1

R2

na2D . ~6.1!

The equilibrium state of the chain, at a given instant,
specified by]F/]n50 for constantR andp, thus leading to

R'
na

Apgc

. ~6.2!

We assumed that the decrease inR is slow in comparison to
the relaxation ofn for a givenR. Accordingly, the free en-
ergy for a certainR, as obtained from Eqs.~6.1! and~6.2!, is
given by

Fchain

kT
'2

N

gc
1Ap

R

jc
, ~6.3!

and the corresponding force,f /kT']F/]R, is

f 'Ap
kT

jc
'Ap fco, ~6.4!

wheref co'kT/jc is the equilibrium tension in the dumbbel
shaped, coexistence configuration. If the string of pearl
perfectly collinear,R'pRp , similar considerations lead t
R'(n/gc)jc and f ' f co . In this situation only the termina
pearls experience a net force. As the tension in the brid
ignoring finite-size effects, isf co, the net force on the middle
pearls is zero. However, if the pearls are the vertices o
random walk, each pearl is subject to a random force; f co
thus leading to Eq.~6.4!. The thermodynamic driving force
for the collapse is simplydFchain/dt' f dR/dt. This reflects
the rate of change in the number of ‘‘free’’jc blobs,
d(n/gc)/dt. As before, two dissipation mechanisms are
volved. The hydrodynamic dissipation isT(dSh /dt)
ed
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'h(dR/dt)2R. The dissipation modes in the pearl neckla
situation differ from the stretched-bridges case in two
spects. First,R(t) replacesL'const8 because the coil is as
sumed to shrink as a sphere. Second, as the pearls ar
longer stationary it is necessary to consider two dissipa
modes associated with the Stokes drag force. One is du
before, to the contribution of the stretched bridges wher
the second arises from the motion of the hydrodynamica
impenetrable pearls. The pearls term isT(dSp /dt)
'phr p(dR/dt)2, where the volume of a pearl of closed
packedjc blobs,r p

3'(N2n)/pgc , specifies the radius of an
individual pearl. The bridges term is, similarly,T(dSb /dt)
'phRp(dR/dt)2, whereRp'(n/gc)jc is the length of an
individual bridge. Altogether,dFchain/dt52T(dStotal/dt)
leads to

pgc

dt

tj
'2F n

Apgc

1pS N2n

pgc
D 1/3

1
n

gc
Gdn, ~6.5!

where the three terms on the right-hand side correspond
spectively, to the dissipation due to hydrodynamic flow, t
pearls, and the bridges. In this case it is simpler to so
individually eachdFchain/dt52T(dSi /dt) in order to find
the characteristic time for the different dissipation modes a
then to identify the dominant one. The hydrodynamic dis
pation yields

th'S N

gc
D 2

p23/2tj , ~6.6!

whereas the bridges contribution leads to

tb'S N

gc
D p21tj ~6.7!

and the pearls dissipation to

tpd'S N

gc
D 4/3

p21/3tj . ~6.8!

Estimating p by p'N4/5/gc yields th;N4/5/gc
1/2,

tb;N6/5/gc , andtpd;N16/15/gc leading to the identification
of tb'(N6/5/gc)tj as the longest relaxation time and th
bridges dissipation as the rate-determining dissipation mo
Note, however, that this is the case only for sufficiently de
quenches, whengc,N2/5. By contrast, hydrodynamic dissi
pation is dominant whengc.N2/5.

The discussion presented above is based on three ass
tions. ~i! Finite-size corrections are negligible andf co
'kT/jc . ~ii ! The pearls are placed at the vertices of a ra
dom walk.~iii ! p@1 andp'const8. The first assumption is
easiest to justify. The finite-size correction tof co is 1/r p ,
where r p is the radius of the pearl. This correction is e
pected to be small at the end of the bridge-stretching sta
In any case, it decreases with time. The second assumpti
reasonable, within our model, at the onset of the collapse
the pearl necklace. Its range of validity is, however, unc
tain. Some simulation results support this picture@16# while
others@18# suggest that the chain may approach a linear c
figuration. The assumption thatp@1 is reasonable forN
@1. Both @16# and @18# support this view. The assumptio
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of p'const8 is clearly a rough approximation andp is ex-
pected to decrease with time. It is nevertheless interestin
note that both@16# and@18# suggest thatp varies very weakly
over a wide range of times. ‘‘Pearl-pearl’’ coalescence is
most likely mechanism for the decrease inp. Initially, this is
due to one-dimensional diffusion of the pearls that coale
upon contact because of the surface free energy. At this p
it is useful to consider two possible scenarios for the coa
cence of the pearls. In the first, pearl diffusion is fast
comparison to the overall collapse of the chain. In this c
the one-dimensional diffusion incurs no free-energy pen
ties as long asn is constant. The favored mode thus involv
the transfer of monomers between two adjacent bridges
through the adjoining pearl. This transfer of monome
across the pearl must take place along the trajectory of
chain. It is, thus, a reptation-type motion in the sense that
monomer needs to diffuse across a distance (r p /a)3a instead
of r p . This dissipation mode may well dominate over t
Stokes drag force. Only the terminal pearls may diffuse i
nonreptative mode. In the other limit the pearl diffusion
relatively fast. In this case it can result from asymmetry
the rate of assimilating monomers from the two bridges.
this situation, the diffusion coefficient will reflect the Stok
drag force on the pearls. In any case, the dynamics
diffusion-controlled coalescence in one dimension is co
plex. The case of theA1A→A reaction, with constant dif-
fusion coefficientD, was studied extensively@36#, and a rig-
orous solution was reported only recently@37#. At short
times the linear concentration,c, follows the mean-field rate
equationdc/dt}2c2. However, the asymptotic solution a
large times isc;1/ADt instead ofc;1/Dt, as predicted by
the mean-field treatment. The situation encountered in
present case is more complicated in two respects. First,
diffusion coefficient is no longer a constant. Rather, it d
pends onr p and thus ont. Second, the total length varie
with p andr p , thus introducing a novel mechanism for thet
dependence ofc. A complete analysis of this problem i
beyond the scope of the present paper. It is, however,
sible to estimate a characteristic time,tpp , for the onset of
coalescence.tpp may be identified with the time required b
a pearl in order to diffuse across a distanceRp'N1/5jc , as
specified by the Einstein diffusion relationDptpp'Rp

2 . A
lower bound fortpp is obtained by assuming that the diffu
sion coefficient of the pearl scales asDp;1/jc , thus leading
to tpp;N2/5.

VII. CONCLUDING REMARKS

The literature concerning the theory of the dynamics
collapse describes three different approaches: Langevin-
theories, simulation studies, and phenomenological mod
It is simplest to compare the present model to the ear
phenomenological models. The kinetics of collapse were
considered by de Gennes in 1985@12#. In this model, the
collapsing chain was viewed as a ‘‘sausage’’ of collap
blobs. With time, the sausage diameter increases and
length decreases. The driving free energy was identified w
the interfacial free energy and the dissipation was attribu
to hydrodynamic flow. A different view was later propose
by Buguin, Brochard-Wyart, and de Gennes@13#. Within this
model the driving free energy is the transfer free energy i
to
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the dense phase. Two scenarios were considered for the
collapse. In one, the pearls form the vertices of a rand
walk. This scenario differs from the present model in tw
respects. First, the bridges joining the pearls are assume
be unstretched. Second, the associated dissipation arises
from the hydrodynamic flow. Importantly, the collapse tim
within this picture does not depend on the number of pea
p. In the second scenario, the chain is envisioned as a du
bell consisting of two pearls,p52, joined by a stretched
string of collapse blobs. The dissipation in this case is att
uted to the Stokes drag force on the pearls. Most recently
problem was reexamined by Klushin@14#. In this model the
driving free energy is the transfer free energy to the de
phase and the dissipation is due to the Stokes drag force.
chain is envisioned as a self-avoiding random walk of Ku
lengths. In turn, these can comprise either stretched brid
joining pearls or a sequence of collinear pearls connected
stretched bridges. Thus, the number of Kuhn lengths
change either because of coalescence or because of the
mation of a collinear sequence. The rate of change in
number of Kuhn lengths is assumed to follow unimolecu
kinetics. The characteristic time for this process is identifi
with that of a shrinking dumbbell, assuming a constant s
of the pearls. The number of pearls within a collinear s
quence is assumed to decrease because of monomer tra
or coalescence, both driven by the surface free ene
Within this model, the collapse is largely due to the decre
in p. The models of Buguinet al. and of Klushin focus, in
effect, on the kinetics of the collapse of a pearl necklace
do not consider possible earlier events.

In principle, the Langevin equation can provide a co
plete description of the collapse on all time scales and t
allows for a systematic analysis of the problem. Unfor
nately, a rigorous and complete solution of the appropri
Langevin equation is difficult. Accordingly, all the
Langevin-type theories introduce certain approximations
as to reach a mathematically tractable formalism. The tre
ment is mathematically demanding, and often requires
merical calculations. A detailed comparison with pheno
enological theories is difficult because of the very differe
formulations. It is interesting, however, to note that both t
theory of Garelet al. @10# and of Kuzentsovet al. @8# distin-
guish between two regimes in the early collapse: first, a v
fast process, whose characteristic time is independent oN
and is thus interpreted as local rearrangement; and seco
much slower process, reflecting large-scale reorganizat
with a characteristic time that increases withN.

We hope that a full picture of the kinetics of collapse w
eventually emerge from molecular-dynamics simulations
volving a polymer chain as well as solvent molecules. T
currently available simulation studies do not account fu
for hydrodynamics, thus introducing an uncertainty in t
interpretation of the results. In certain studies the interpre
tion is further hampered by the imposition of an ‘‘alltrans’’
initial state@15,17#. With this caveat, the simulations most
support the notion that the collapse involves a string
pearls joined by stretched bridges as an intermediate st
The configuration adopted by the string of pearls is le
clear. Snapshots of the chain configuration as obtained by
Langevin-equation simulation of Bymeet al. @16# suggest an
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almost collinear string of pearls. The visualization of co
figurations obtained by the Monte Carlo simulation of Ku
netsov et al. @18# reveals a random-walk pearl necklac
These last two studies also suggest that the first step o
collapse involves the formation of localized clusters, and t
subsequent cluster growth is attained by assimilating mo
mers from the bridges, thus causing stretching.
s
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