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Early stages of homopolymer collapse
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Interest in the protein folding problem has motivated a wide range of theoretical and experimental studies of
the kinetics of the collapse of flexible homopolymers. In this paper, a phenomenological model is proposed for
the kinetics of the early stages of homopolymer collapse following a quench from temperatures above to below
the 0 temperature. In the first stage, nascent droplets of the dense phase are formed, with little effect on the
configurations of the bridges that join them. The droplets then grow by accreting monomers from the bridges,
thus causing the bridges to stretch. During these two stages, the overall dimensions of the chain decrease only
weakly. Further growth of the droplets is accomplished by the shortening of the bridges, which causes the
shrinking of the overall dimensions of the chain. The characteristic times of the three stages salnlHy
andN®®, respectively, wher@\ is the degree of polymerization of the chain.

PACS numbeps): 36.20-r, 61.25.Hq, 83.10.Nn, 87.15v

[. INTRODUCTION The collapse of a flexible chain following an abrupt
change of solvent quality displays certain features of a first-
The purpose of this paper is to discuss the evolution of therder phase transition. These features occur for chains of
structure of a single polymer molecule after the environmenfinite N for which the surface free energy of the globule
has been changed from a good solvent to a poor solvent. Opiays an important role. Two such features are important to
approach is via a phenomenological model for the kinetics othe present discussion. First, the onset of collapse involves,
the early stages of collapse. We have in mind a long flexibles we shall discuss, the formation of droplets of the dense
polymer chain immersed in a simple solvent, and a change ifiphase.” Second, the collapse proceeds via intermediate
the temperaturd as the means of altering the solvent qual-states corresponding to the “tadpole” configuration of a
ity. The initial state is one of equilibrium in a good solvent, stretched, collapsed globul29], which involve the coexist-
in which the chain is swollen and has radius of gyratitn ence of dense globules and strongly stretched segments.
=Rg~N¥5 whereN is the degree of polymerization. The With this picture in mind, it is possible to distinguish be-
final state is one of equilibrium in a poor solvent, in which tween four stages in the kinetics of collap$eg. 1). Each
the chain is collapsed into a dense, spherical globule, i.estage is characterized by a length scale and a time scale. The
R=R.~ N3, The variation of the equilibrium state with the characteristic time scale increases with the relevant length
solvent quality is, with some important caveats, well under-scale. The formation gb(<N) droplets of the dense phase,
stood[1-4]. In marked contrast, there is no comparable conwhich we refer to as “pearls,” is the fastest process. This
sensus concerning the kinetics of collapse following an‘pearling” stage involves local rearrangement of the chain
abruptT quench, i.e., a rapid change in temperature fromconfigurations within the randomly placed droplets during
above to below thed temperature. The experimental picture which the dimensions and configurations of the chain as a
is not clear because of difficulties due to the competitionwhole are only weakly modified. The nascent droplets then
between the collapse of the individual chains and the aggregrow by accreting monomers from the bridges that connect
gation of different ones. As a result, there have been only éhem. The positions of the growing droplets are roughly sta-
few experimental studies of the kinetics of collapse of iso-tionary and their growth is accommodated by the gradual
lated chaing5-7]. Theoretical studies have utilized a variety stretching of the bridges. This “bridge-stretching” stage
of approaches in focusing on different aspects of the probends when the tension in the bridges attains the equilibrium
lem. Langevin modeld8-11], phenomenological models valuef., corresponding to the “tadpole” configuration of a
[12-14], and computer simulatiof45-21] have been used stretched globule. During this process the dimensions of the
to consider the kinetics of collapse in the absence of topochain as a whole remain essentially constant, Re- N,
logical constraints. Other studies have focused on the role djut the configurations of the bridges are qualitatively modi-
internal entanglement$22,23 or the competition with fied. The number of droplefsis set by the requirement that
chain-chain aggregatiof24,25. In spite of the extensive R~N®? at the end of this stage, thus leading pe- N*®,
activity is this area, a complete picture of the kinetics ofBeyond this point, the growth of the “pearls” is accompa-
collapse has yet to emerge. The search for such a picture iged by shortening of the bridges and the overall shrinking of
motivated primarily by the intense current interest in the pro-the chain. The third stage, the collapse of the “pearl neck-
tein folding questiorj26—28 because early stages of protein lace,” involves the chain as a whole. The corresponding
folding are thought to proceed as the collapse of flexibldength scaleRe(~N®P) is larger and the characteristic time
homopolymers. is thus longer. It is assumed thatremains roughly constant
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(a) (b) Il. SOME GENERAL CONSIDERATIONS;
ENTROPY PRODUCTION METHOD

T The design of the phenomenological model presented in

Ry this paper involves two steps. In the first step we propose a
sequence of stages followed by the collapsing ch#ie
stages involved were outlined in the Introduciofhe sec-
ond step is to calculate the characteristic time associated with

(d) the various stages in the proposed route. A simple method
for calculating the characteristic times was proposed by de
Genneg12]. It focuses on a volume element of solvent con-
taining a single chain and coupled to a thermal reservoir that
maintains a temperatufe The system as a whole is closed.

During collapse, the free energy of the chdiy, de-

creases. The decrease R ,i, gives rise to an increase in

Sta, the total entropy of the system as a whole. Since the
collapse is the only irreversible process involved, the

(c)
(e)
A changes irF ¢.in and Sy are related by
R
*C AF chair= — TASital- (2.1

The dynamics of the process are described by

d Fchain: T d Sotal

FIG. 1. Proposed sequence of states during the collapse of a dt T (2.2
flexible homopolymeri(a) self-avoiding configuration under good
solvent conditions{b) pearlin_g;((?) bridge stretchinggd) co'llap_se To implement this argument, it is necessary to speify
of the pearl necklaceg) equilibrium collapsed configuration in a F.nain @S @ function of the chain radit® One assumes that
poor solvent. dFepain/dt=(dFenain/ dR)V, whereV=dR/dt. The form of

F chain fOr the various stages will be discussed at the appro-

during these three stages. Eventually, the droplets come infariate sections. One must also spedify the operative dis-
contact and coalesce into a single globule. Our discussion &pation mechanisms that determiti§,/dt in terms ofR
limited to the early stages of the collapse. The last regim@nd V. This entropy production approach is independent of
will not be considered in the present paper. Within this pic-the model in that its applicability is not limited to a specific
ture, the characteristic times for the first three stages —choice of Fenqn or of the dissipative modes. Nor does it
pearling, bridge-stretching, and the collapse of the pearProvide guidance for choosing this crucial input. _
necklace — are, respectivelyr,~N°, o~ N3 and 7, Two dissipation mechanisms are considered for the vari-
~N®5, The model we propose differs from the existing phe-0us stages of collapse. First is the viscous dissipation asso-
nomenological descriptions in two respects. First, the twdsiated with the motion of the solvent. Second is the frictional
initial stages were not considered in these models. Secon@issipation due to the Stokes drag on the chain. The magni-
the treatment of the third stage, the collapse of the peaffide of the viscous forcg30] acting on a unit volume is on
necklace, is different. A more detailed comparison with thethe order of7V2V, where 7 is the shear viscosity. In the
phenomenological models, as well as the Langevin-typdollowing we estimate it byyV/R?. The associated dissipa-
theories and simulation studies, will be presented in the finaion per unit time is thus roughlyV?/R? and the total hy-
section. drodynamic dissipation within a voluni®® is TdS, as given

The paper is organized as follows. To obtain the temporaby
evolution of the various stages, we balance the driving force 5
with the entropy production. A discussion of this approach is Td_Sw% \LRS% V2R 2.3
presented in Sec. Il. In Sec. lll we recall some key results dt R2 7 ' '
concerning collapse blobs and the thermodynamics of col-
lapse. In addition, we discuss the initial role of the collapseThe Stokes drag force acting on a sphere of radinsving
blobs as spinodal “modes” and the equilibrium deformationwith a constant velocity is 67 »Vr, and the associated
behavior of a collapsed chain. The collapse of a chain from &frictional” dissipation per particle is
good solvent to a¥ solvent is discussed in Sec. IV. The
results are then used to analyze the first stage of the collapse, d_SN 2
i.e., the formation of nascent droplets or “pearling.” In Sec. Tdt ~ V. (2.4
V we discuss the collapse of a chain with constrained ends.
This discussion is then utilized to describe the second stagko obtain the total frictional dissipation, it is necessary to
of collapse, in which the stationary droplets, pearls, grow bysum the contributions due to the hydrodynamically impen-
accreting monomers from the bridges, thus causing thetrable objects involved in the stage considered. The number
bridges to stretch. The shrinking of the resulting string ofof such objects, their radius and the relationship between
pearls is analyzed in Sec. VI. andR differ in the various stages of collapse. The de Gennes
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argument is equivalent to equating the frictional force to the b.~—VvI2w, (3.2
contraction force. It allows us, however, to consider on equal
footing the dissipation due to Stokes drag forces and to thevherev=a3(1—2y)<0 is the second virial coefficierd,is
hydrodynamic flows. Finally, note that the dissipation in-the size of the monomer, antl=1/6>0 is the third virial
creases with the length scale. This observation motivates thepefficient. Thusg ., is determined by the balance of attrac-
proposed sequence of stages which involve processes takitige binary monomer-monomer interactions and higher-order
place at progressively larger length scales. repulsive interactions. The chain elasticity does not play a
The familiar methods of irreversible thermodynan{i8&]  role. In turn, ¢, sets the radius of the collapsed globule via
focus on linear responses, the Onsager relations, and theira®/R3~ ¢ , leading toR/a~(N/¢, ). The occurrence
refinements. In marked difference, the de Gennes approachdé$ an unstable region i (¢) is a crucial feature of this
not limited to a linear regime nor does it rely on the analysisdiscussion. Due to this feature, the collapse of a quenched
of the regression of fluctuations. The method applies to thehain exhibits certain characteristics of first-order phase tran-
complete dynamic range, provided that the driving forcessition.
and the dissipation mechanisms are correctly identified. The The structure of the interface, and the corresponding sur-
dissipative modes invoked in our discussion hold under théace tension, cannot be obtained from the discussion pre-
assumption that the hydrodynamic description is applicableented above. A “blobological” argument can provide the
to the collapse of a polymer. It is expedient to use this apmissing information[4]. The configurations of a collapsed
proach, but one should note that the validity of continuumchain are characterized by a correlation length,On length
theories at this length scale is a delicate issue. scales smaller tha#., the monomer-monomer attraction is
too weak to perturb the configurations of the chain, and it
behaves as a random walk. This allows one to define collapse
blobs, which comprisg, monomers such thaft?a~¢;. A
fully collapsed chain can be envisioned as a spherical glob-
While the configurations of polymers in good and poorule composed of close-packegl blobs. The correlation
solvents are well understood, the nature of the transition bdength &, is determined by equating the interaction free en-
tween the two regimes is not fully resolved. Different modelsergy due to monomer-monomer attraction in such a chain
suggest that the transition may be continuous or discontinusegment tkT. The interaction free energy \&2/ £, where
ous, depending oN and the stiffness of the chain. The issuey is the second virial coefficient. In the vicinity of the
of the order of the transition is, however, irrelevant whentemperaturey may be expressed as~a®(AT/6), where
considering a collapse following a quench to the poor solvenA T=(T- ¢)/¢, thus leading to
regime. In this regime, the equilibrium configuration of the
chain is determined primarily by the Flory interaction free 0
energyF;,.. The elasticity of the chain, i.e., its configura- 9c~<ﬁ
tional entropy, plays a relatively minor role, limited to deter-
mining the structure of the globule-solvent interfd@8. In  The densityga® £ within a single blob is comparable to that
the case of a single chain, for which the translational entropy the dense phasg, resulting from the phase separation of
of the polymer is irrelevant, th&l—ce limit of Fi, deter-  free polymers in a poor solvent. Thi blobs attract each

Ill. COLLAPSE BLOBS, SPINODAL DECOMPOSITION,
AND THE EXTENSION ELASTICITY OF GLOBULES

2

, Ela= (3.3

2)

mines the equilibrium behavior, other, and the unperturbed chain forms a collapsed globule
of radiusR~(N/g.)*3¢.. A collapse blob in contact with
Fint the solvent is assigned an energykdf. Thus, the boundary
w7 - A= dIN(1-d)+xd(1-¢). (3.)  of the globule is associated with a surface free energy
y=~KkT/&2. (3.9

Here, ¢ is the monomer volume fraction ang the Flory

parameter, is a measure of the strength of the interactiondote that the blob picture, as described above, is valid only
giving rise to the mixing enthalpy. For a given polymer- when the chain comprises many collapse blobs, i.e., when
solvent systemy depends only on the temperatufreln the  the depth of the quench is such th&t|AT|> 60/NY2 and
good solvent regime, for whicly<<1/2,F;,; is a convex 1<g.<N. We should also add that in the following we treat
function of ¢. A critical point occurs at . ,¢.) specified the & blobs as hydrodynamically impenetrable spheres.

by x.=1/2 and ¢.=0. When y>1/2, the solvent is poor WhenN is sufficiently large, the collapsed globule may be
and the plot is concave in the rangee@<<¢_, . Acommon viewed as a droplet of the dense phase with dengityin
tangent construction between the origin afd indicates the  coexistence with the neat solvent. Within our model, the first
coexistence of a dense phase, of concentrafignand the  stage of collapse involves, droplets, pearls, that are joined
neat solvent. Thap, phase corresponds to the collapsedby bridges which retain the configurations found in good
globule. This amounts to setting the osmotic pressure of theolvent conditions. This situation is reminiscent of the con-
polymer 7 within the dense phase to zero, as is expectediensation of fluid droplets from a supersaturated vapal.
because there are no free polymers in the solvent. The vata this last situation it is found that droplets whose radius is
ishing of 7 leads to In(t ¢)= ¢+ x¢? In the vicinity of the  smaller than a critical radius, tend to evaporate, whereas
0 temperature, the Infi¢) term may be approximated by larger drops, i.e., those for whiah>r., grow indefinitely.
the first three terms of its Taylor expansion. The=0 re-  This similarity wrongly suggests that the formation of na-
quirement then leads to scent pearls is analogous to the nucleation of critical drop-
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lets. This analogy is discredited by the following rough ar-a stretched string of. blobs. This effect is reminiscent of
gument. The thermodynamic potential of a dense droplethe Rayleigh-Plateau instabilify34] involving the break-up

coexisting with “free” monomers is given by of a fluid jet into a succession of droplets. In the second,
coexistence, regime the chain comprises a stretched string of
A=F(Ng)—Ngpu, (3.9  n/g. & blobs and a roughly spherical globule oN (

) ) , —n)/g. closely packed. blobs. To characterize this equi-
whereNy is the number of monomers in the droplet gnds  |ipriym situation, it is necessary to minimize the free energy

the chemical potential of the frg:e monomers. For a suffipt 5 stretched chain comprised of a dense globule and a
ciently large dropleF = Nyuq+ yr, whereuq is the chemi- string of n/g, collapse blobs, i.e.,
cal potential of a monomer within the droplet. Choosing the

reference state to be a blob within the droplet and assigning = (N—n) (N_n)z/s L2

KT to an “uncondensed” blob leads to —~— +—. (3.9
KT 9c 9c na?

(3.6 The first term allows for the transfer of the collapse blobs
from the solvent into the “dense phase,” i.e., the interior of
the globule. This is the primary driving term for the growth
of the globule. The second term reflects the surface free en-
gy of the globule. The elastic free energy of the string of

which has a maximum aiy~g.. As Eg.(3.6) is only valid
for Ng>g., this establishes only that there is no critical
droplet of larger size. This argument does, however, sugge . : .
that chain segments incorporating monomers play a spe- obs is ZQescnbed by the - third term: Note _thaaz
cial role in the onset of collapse. This view is consistent with ™= (1/9c) & is the unperturbed span of an ideal string of col-
the definition of a&. blob: The monomer-monomer attrac- '@PSe blobs. Making- stationary with respect ta, JF/an
tion is too weak to perturb the chain configurations on=0, léads to
smaller length scales, but is sufficient to induce collapse on

length scales larger thafy . It is also helpful to note that the i _ ( N- n) 1/3} - i% L_2 (3.10
shrinkage of a chain segment into a collapse blob does not Oc Oc e n2a2’ ‘
encounter a free-energy barrier. Accordingly, a collapse blob

cannot be viewed as a critical droplet. Rather, the formatiorin the limit of largeL and forn=N this leads to

of a & blob resembles spinodal decomposition with the ca-

veat that the associated dissipation arises from configura- L~£ (3.11)
tional changes of the chain as a whole. Thus, in order to & O '

minimize the entropy production, the first step of the col- o . .
|apse involves the formation of a small numbE(< N/gc) The equlllbrlum free e'nergy of the reSUlUng tadp0|e Conf|gU'
of collapse blobs instead of a string Wfg.&. blobs ration is, up to numerical prefactors,

The concave region if; is also the origin of the force F N2 /n N N
law governing the extension of a collapsed globule. When _w( +(__ _) +— (3.12
the end-to-end distance of the stretched globule is fixed, a KT 9c 9c 9¢/ Ye
dense globule coexists with a stretched stringépfblobs. i
The tensionf ., associated with this coexistence is the driv- 1€ first term allows for the surface Jgee energy; of a
ing force for the third stage of the collapse. The extension oflobule of radiusr gooue~[(N—n)/gc]"¢;. The transfer
the globule actually involves three regimg29,33. In the free energy of blobs_mto the _dense phase_ls reflected in the
first regime the spherical form of the globule is initially de- S&€cond term. The third term is the stretching energy of the
formed into a prolate ellipsoid, but maintains a constant vol-£xtended string of lengti.s~(n/gc)é. as given by the
ume corresponding to close packing of theblobs. Within ~ Gaussian expression for the elastic penafL;/na®. It is
this |inear-resp0nse regime' the free-energy penﬁh'm- also pOSSib'e to interpret this last term as the surface energy
curred is due to the increase of the surface free energy of the extended string. The end-to-end distance reflects two

contributions,

F~yAA~y(L—R,)? (3.7

N-n\¥® n
L

+ —
9c 9c

where AA~(L—R.)? is the surface area increment associ- L~&
ated with the deformation, ardis the length of the axis of
rotation. The corresponding restoring forées —JF/dR, is  The first term is the radius of the globule and the second is

proportional to the strainl(—R,): the span of the stretched string &f blobs. Whem is suffi-
ciently large, we may approximaR as ¢.dn/g. and the

f~—y(L-Ro). (3.8 corresponding force lai= — 9F/JL reads
This type of process cannot proceed indefinitely. If it were fIkT~ _551+r&§bu|e- (3.14

pursued indefinitely, the distorted globule would assume a

cylindrical shape and, eventually, form a string&fblobs. It is important to note that decreases agyjqpue approaches
This scenario gives rise to a van der Waals loop in fthe &.. This finite-size correction is reminiscent of the Laplace
versusR diagram. In turn, this is indicative of instability with law for the vapor pressure of small droplets. It is negligible
respect to the coexistence of a weakly elongated globule anaver a wide range of extensions N is large enough. Be-
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(a) (b) whereV=dR/dt is the velocity of the flow. Second is the
l entropy production due to the Stokes drag force experienced
by the monomers as they move through the solvent. The
R Ro % associated entropy production is approximately
d
l T Td—sfm pNaV2, (4.9

The dynamics of the collapse are determined dfy, /dt
=—-T(dS,/dt+dSs/dt). While in this case it is possible to
solve the full equation, it is easier, and more instructive, to

cause of this correction, different deformation scenarios argonsider dFe'/dt:__TdS‘/dt and dFq/dt=—-TdS/dt
expected for thd =const and theL =const ensembles. In SeparatelydFq/dt=—TdS,/dt leads to

the first case the globule unravels completely as soon as a dt o2da

critical forcef.,/kT~ 1/, is applied. No globule-coil coex- ~~
istence is expected. Such a coexistence is, however, expected 7 a?-1
when an end-to-end distance is imposed. In this case the

tension in the String ijco_ The onset of the coexistence and the characteristic time associated with the hydrOdynamiC
occurs wherL~R_+ £, as can be seen by equatifig/kT  dissipation is thus the Zimm timel] of the ideal call, i.e.,

to the force given by Eq3.8). The upper boundary of this
second regime corresponds to a fully extended string of
blobs,L ,.,~(N/gy)&. . Stronger extension is characterized by

simple Gaussian elasticity, up to the onset of finite extensi- o S ) ]
bility effects. The frictional dissipation is dominant as it scales whh

rather tharR. It leads to

FIG. 2. Collapse t®¥ conditions:(a) initial, self-avoiding con-
figuration; (b) the final, random-walk configuration.

: (4.5

3
nRO ~ N3/2

T (4.6)

T727

IV. COLLAPSE TO 6 CONDITIONS dt ada

AND THE FORMATION OF NASCENT DROPLETS W% m (4.7

A quench fromT> @ to T= 6 causes the chain to shrink ‘
from Rg/a~VvY°N®® to R,/a~N*? (Fig. 2). The dynamics and the corresponding characteristic time is the Rouse relax-
of this process are of interest for two reasons. First, as wation time[1] of an ideal coilrg~ 7N2a%/kT or
shall discuss, the formation of nascent pearls follows similar o
kinetics. Second, the discussion of this process is especially TR~ TzZN"“~N*. (4.8
simple, thus providing a useful introduction to the subse- . ) ,
guent sections. The quench 1= 6 turns off the repulsive As th_e Rouse t|.me IS much.longer, it dominates the process.
interactions between the monomers so that driving force for Within our picture, the first stage of the collapse is the

the “collapse tof” is due solely to the Gaussian elastic free formation of nascent pearl; comprising each OT ro_ugjuy
energy of the chainE ,~F., Of monomers. The process involvgs randomly distributed
" chain el

chain segments. Initially, each of the chain segments exhibits
self-avoidance. Once the solvent is quenched, the monomer-
(4.1) monomer repulsions disappear and the segments shrink to
their ideal coil configuration. As the nascent pearls consist of
only g. monomers, the monomer-monomer attraction is not
where a=R/R, and R=R(t) is the instantaneous chain ra- strong enough to perturb the ideal coil configuration within
dius at timet. To obtain the characteristic time for this pro- them. As long ap is small enough, the overall radius of the
cess, we equate the time derivative of the elastic energy, chain is only weakly modified and the dissipation is due to
the local configurational changes. In this picture it is possible
da to neglect the couplings between the droplets and between
T (4.2 the droplets and the chain as whole. Thus, the dynamics of
this process are essentially identical to those of the collapse
of a chain comprisingg. monomers tof conditions. The

to the dissipative losses associated with the shrinking, characteristic time is, accordingly, the corresponding Rouse
—TdSua/dt, whered Sy, /dt is the corresponding entropy  time or

production. Two dissipation processes are involved. One is

Fa
kT

1a°—Ine,

1 dFy 1
KT dt

a— —
o

the viscous dissipation due to the hydrodynamic flow result- " na’ 5 g \*
ing from the contraction of the coil. As was discussed previ- To~ T = Wgcw AT) 4.9
ously, the resulting entropy production within the coil is
roughly where
s, AN
TWfV‘I]V R, (4.3) T KT -~ ﬁ (4.10)
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tnsion £TIE LdFaan (1 LP)1_dR
dc nZ%a? '

/ Pl R

The driving force is opposed by the two dissipation mecha-
nisms invoked in Sec. IV. In the present situation, however,
; the dissipation reflects the cylindrical symmetry of the sys-
(a) H H (b) tem. The hydrodynamic dissipation, due to the flow of the
solvent as it is expelled from the region occupied by the call,
FIG. 3. Collapse of chain with constrained en¢:the initial,  is T(dS,/dt)~5(dR, /dt)’L. The Stokes drag on the
swollen configuration(b) the final “tadpole” configuration in a  pridges formed by the collapsed blobs E(dS,/dt)
poor solvent. ~n(nlge) é.(dR, /dt)2. The dynamics of the collapse are
determined bydF pai/dt=—T(d S /dt). At equilibrium,

is the Zimm time of a collapse blob. Note thatis indepen-  p s neq~(L/§c)gc%gi’2(L/a)- Introducing the variabley
dent of N and p as expected for a local process. A short:n/neq, we obtain

relaxation-time scaling al® is also predicted by Langevin-

type theories of collapsfs,10]. & dt ydy
T v_1 (5.5
Tg y
V. COLLAPSE OF A CHAIN WITH CONSTRAINED o ) )
ENDS: THE BRIDGE-STRETCHING REGIME and the characteristic time for this collapse process is thus
In the second stage of the collapse, the roughly stationary _ L 56
droplets, “pearls,” grow by “sucking in” monomers from K g_cTﬁ' (5.6

the bridges joining them. This stage ends when the initially

undeformed bridges assume the configuration of a stretched A similar scenario occurs in the bridge-stretching regime
string of &. blobs. In comparison to the “spinodal” stage (Fig. 1). In this stage thep randomly placed pearls are
described in Sec. IV, this process is distinguished by twaoughly stationary, and they grow by assimilating monomers
features. First, the driving force is now due to the transferfrom the bridges joining them. The bridges are initially un-
free energy of the free monomers into the dense phase. Sedeformed. This stage ends when the bridges consist of a
ond, the evolution of the droplets at this stage strongly afstretched string of collapse blobs. The average length of each
fects the configuration of the bridges. The bridges stretch astretched bridge iRy~ (n/g.p)¢.. As, within this model,

the number of monomers in them decreases. We first corthe p bridges are randomly placed, the overall span of the
sider the somewhat simpler situation of the collapse of achain isR~ pl’sz. By assuming that at this stage the over-
chain with its ends constrained to fixed positions separatedll size of the chain remain@~Rg~N*®a and thatn~N,

by a distanceL>R. (Fig. 3). The free energy of such a we are led to the result

chain, neglecting the surface free energy, is given by

p~N*%g. (5.7
_ 2
MN _(N n) + L_ (5.1) This amounts to the completion of all short length-scale pro-
KT de na?’ cesses prior to the onset of the overall shrinking of the chain.

The growth of the dissipation with the length scale involved
wheren is the number of “free” monomers that have not justifies this estimate. Clearly, this is a rough estimate and, in
been assimilated into a globule. We assume thantimeno-  reality, Ris expected to shrink somewhat white<N [35].
mers behave as a random walk, i.e., the instantaneous sp&he estimated value g, Eq.(5.7), specifieR; at the end of
of the chain perpendicular to the end-to-end vector is the stretching stage to be

~N1/5
R, ~(n/gc)Y%.~n"%a (5.2 Rp~N"¢. (5.9

Note thatpR,~(N/g¢) & is the arc length of a linear string
of collapse blobs, and is shorter than the arc length of the
homopolymerNa. The characteristic time corresponding to

dn 1 dR, the stretching of bridges of final leng®y, is
—~—=R, —. (5.3
dt 32 dt

and as a result

T Nl/57'§ . (5.9

Relations(5.2) and (5.3) are actually invalid at the initial |n contrast Witth, the time Sca|e-bs depends on bOth and
stages of this regime, when the configurations of the chainp.

still exhibit self-avoidance. They are, however, expected to
apply at the final stages, which dominate the relaxation time.
Invoking them implies that the relaxation of the chain con-
figuration whem decreases is effectively instantaneous. The At the end of the bridge-stretching regime, the configura-
driving force for this stage, as specified by E¢g1)—(5.3), tion of the chain is that of a random walk pfsteps of length

is R, and with an overall radiuRe~N*3. The p~N*%/g, el-

VI. COLLAPSE OF THE “PEARL NECKLACE”
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ementary steps are dumbbells comprised of two pearls joinest 7(dR/dt)’R. The dissipation modes in the pearl necklace
by a stretched string of,. blobs. It is impossible to incorpo- situation differ from the stretched-bridges case in two re-
rate more monomers into the pearls while keeping them staspects. FirstR(t) replaces.~const because the coil is as-
tionary. The pearls can only grow by shortening the bridgessumed to shrink as a sphere. Second, as the pearls are no
thus causing the overall shrinking of the chain frétw Re longer stationary it is necessary to consider two dissipation
to R~R,~N*2. It is assumed that the pearls are the verticesnodes associated with the Stokes drag force. One is due, as
of a random walk and that their numbex,is constant. This before, to the contribution of the stretched bridges whereas
approximation is reasonable in the early phase of this stagine second arises from the motion of the hydrodynamically
but may be questionable at later times. This issue will bémpenetrable pearls. The pearls term i§(dS,/dt)
discussed later. On short time scales the bridges equilibrate pnrp(dR/dt)Z, where the volume of a pearl of closed-
rapidly whereas the pearls remain essentially fixed in spacgackedé, blobs,rg~(N—n)/ng, specifies the radius of an
Consequently, the positioning of the pearls does not give risihdividual pearl. The bridges term is, similarly(dS,/dt)

to an entropy and the free energy corresponding to this pro~ p7R,(d R/dt)?, where Rp~(n/g;)é. is the length of an
cess isF~pFy,, whereF, is the free energy of a pearl individual bridge. Altogether,dFpan/dt=—T(dSg/dt)
attached to a stretched string of collapse blobs. In thgg, leads to

comprises two terms. One is the excess free energy of a

“free” collapse blob as given by thkT per blob ansatz. The dt { n

_n)1/3 n

Jp +p< Po. | o
length R, with respect to its reference state, i.e., a random PYe % 9e

walk of collapse blobs. The span of an undeformed bridggynere the three terms on the right-hand side correspond, re-
with an ideal coil configuration iRy~ (n/pgc)~“¢. a2nd the  spectively, to the dissipation due to hydrodynamic flow, the

associated Gaussian stretching penalty TR, /Ry0)“. AS-  nearls; and the bridges. In this case it is simpler to solve
suming that the overall configuration is that of a ra”domindividually eachdF,/dt=—T(dS /dt) in order to find

~ n1/2 i i C . . T .
walk, R~p™R,, the free energy of the chain as a whole is he characteristic time for the different dissipation modes and

second is the elastic free energy of the stretched bridge of pgcr_§~_ an, (6.9

given by then to identify the dominant one. The hydrodynamic dissi-
2 pation yields
Fchainw . N—n 4 R_ (6 1)
kT Pg 2)" ' N2
. na Th%(g_) p~ 2z, (6.6
c

The equilibrium state of the chain, at a given instant, is
specified bydF/dn=0 for constanR andp, thus leading to  whereas the bridges contribution leads to

na N
R~ . 6.2 7 ~(—)p‘1r (6.7)

We assumed that the decreasdiis slow in comparison to and the pearls dissipation to

the relaxation ofn for a givenR. Accordingly, the free en- N | 473
ergy for a certairR, as obtained from Eq$6.1) and(6.2), is Tpﬁ(—) p s, 6.9
given by 9c
Fean N R Estimating p by p~N*¥g, vyields 7,~N*3gl?
kT~ o +p . (6.3 7,~N®%g,, andr,s~N*®9g, leading to the identification
¢ ¢ of 7,~(N®%g.)7, as the longest relaxation time and the
and the corresponding forc&lk T~ dF/JR, is bridges dissipation as the rate-determining dissipation mode.
Note, however, that this is the case only for sufficiently deep
KT quenches, wheg.<N?%®. By contrast, hydrodynamic dissi-
f~\p € Vpfeo, 6.4 pation is dominant wheg,>N?"5.

The discussion presented above is based on three assump-
wheref ,~kT/&. is the equilibrium tension in the dumbbell- tions. (i) Finite-size corrections are negligible anfd,
shaped, coexistence configuration. If the string of pearls isskT/£.. (i) The pearls are placed at the vertices of a ran-
perfectly collinear,R~pR,;, similar considerations lead to dom walk.(iii) p>1 andp~const. The first assumption is
R~(n/gc)é; andf~f;,. In this situation only the terminal easiest to justify. The finite-size correction tg, is 1f,
pearls experience a net force. As the tension in the bridgesyherer , is the radius of the pearl. This correction is ex-
ignoring finite-size effects, i§.,, the net force on the middle pected to be small at the end of the bridge-stretching stage.
pearls is zero. However, if the pearls are the vertices of @n any case, it decreases with time. The second assumption is
random walk, each pearl is subject to a random fordg, reasonable, within our model, at the onset of the collapse of
thus leading to Eq(6.4). The thermodynamic driving force the pearl necklace. Its range of validity is, however, uncer-
for the collapse is simplgFg,.in/dt~fdR/dt. This reflects tain. Some simulation results support this pict[t8] while
the rate of change in the number of “free. blobs, others[18] suggest that the chain may approach a linear con-
d(n/g.)/dt. As before, two dissipation mechanisms are in-figuration. The assumption thgt>1 is reasonable foN
volved. The hydrodynamic dissipation is(dS,/dt) >1. Both[16] and[18] support this view. The assumption
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of p~const is clearly a rough approximation armlis ex-  the dense phase. Two scenarios were considered for the early
pected to decrease with time. It is nevertheless interesting teollapse. In one, the pearls form the vertices of a random
note that bott16] and[18] suggest thap varies very weakly ~walk. This scenario differs from the present model in two
over a wide range of times. “Pearl-pearl” coalescence is theespects. First, the bridges joining the pearls are assumed to
most likely mechanism for the decreasepinnitially, thisis  be unstretched. Second, the associated dissipation arises only
due to one-dimensional diffusion of the pearls that coalescérom the hydrodynamic flow. Importantly, the collapse time
upon contact because of the surface free energy. At this poinithin this picture does not depend on the number of pearls,
it is useful to consider two possible scenarios for the coalesp, In the second scenario, the chain is envisioned as a dumb-
cence Of the peal’|S. In the fiI’St, peal’l dlfoS|0n is f.ast |nbe|| Consisting of two pear'spzzl joined by a stretched
comparison to the overall collapse of the chain. In this casgyring of collapse blobs. The dissipation in this case is attrib-
the one-dimensional diffusion incurs no free-energy penalyieq 1o the Stokes drag force on the pearls. Most recently the
ties as long as is constant. The favored mode thus mvolvesr{:ﬁ)iiomem was reexamined by Klushi4]. In this model the
S . iving free energy is the transfer free energy to the dense
g]crr?)i%hthtgepez(:{orlr%g? tglf:rpl).lazglsalégn?;eer tgjer(gg?;rgfetrﬁ hase and the dissipation is due to the Stokes drag force. The
hain is envisioned as a self-avoiding random walk of Kuhn

chain. It is, thus, a reptation-type motion in the sense that th : . :
! . 3. engths. In turn, these can comprise either stretched bridges
monomer needs to diffuse across a distamgéd)“a instead ~_~. = .
joining pearls or a sequence of collinear pearls connected by

of r,. This dissipation mode may well dominate over the )
p
Stokes drag force. Only the terminal pearls may diffuse in astretched bridges. Thus, the number of Kuhn lengths can

nonreptative mode. In the other limit the pearl diffusion is c@nge either because of coalescence or because of the for-
relatively fast. In this case it can result from asymmetry inMation of a collinear sequence. The rate of change in the
the rate of assimilating monomers from the two bridges. IfnUmber of Kuhn lengths is assumed to follow unimolecular
this situation, the diffusion coefficient will reflect the Stokes Kinetics. The characteristic time for this process is identified
drag force on the pea”s_ In any case, the dynamics O\f\llth that of a Shrinking dumbbell, aSSUming a constant size
diffusion-controlled coalescence in one dimension is comof the pearls. The number of pearls within a collinear se-
plex. The case of th&+ A— A reaction, with constant dif- quence is assumed to decrease because of monomer transfer
fusion coefficientD, was studied extensive[\86], and a rig- or coalescence, both driven by the surface free energy.
orous solution was reported only recenfl§7]. At short  Within this model, the collapse is largely due to the decrease
times the linear concentration, follows the mean-field rate in p. The models of Buguiret al. and of Klushin focus, in
equationdc/dtx —c2. However, the asymptotic solution at effect, on the kinetics of the collapse of a pearl necklace and
large times isc~ 1/,/Dt instead ofc~1/Dt, as predicted by do not consider possible earlier events.
the mean-field treatment. The situation encountered in the In principle, the Langevin equation can provide a com-
present case is more complicated in two respects. First, thelete description of the collapse on all time scales and thus
diffusion coefficient is no longer a constant. Rather, it de-allows for a systematic analysis of the problem. Unfortu-
pends onr, and thus ort. Second, the total length varies nately, a rigorous and complete solution of the appropriate
with p andr,, thus introducing a novel mechanism for the |angevin equation is difficult. Accordingly, all the
dependence of. A complete analysis of this problem is Langevin-type theories introduce certain approximations so
beyond the scope of the present paper. It is, however, pogs to reach a mathematically tractable formalism. The treat-
sible to estimate a characteristic timg,,, for the onset of ment is mathematically demanding, and often requires nu-
coalescencer,, may be identified with the time required by merical calculations. A detailed comparison with phenom-
a pearl in order to diffuse across a distaieg~ N5, as enological theories is difficult because of the very different
specified by the Einstein diffusion relatidd,,,~ RE. A formulations. It is interesting, however, to note that both the
lower bound forr,, is obtained by assuming that the diffu- theory of Garekt al.[10] and of Kuzentsoet al. [8] distin-
sion coefficient of the pearl scalesBg~ 1/&., thus leading  guish between two regimes in the early collapse: first, a very
to rpp~N2’5. fast process, whose characteristic time is independeii of
and is thus interpreted as local rearrangement; and second, a
much slower process, reflecting large-scale reorganization,
with a characteristic time that increases with

The literature concerning the theory of the dynamics of We hope that a full picture of the kinetics of collapse will
collapse describes three different approaches: Langevin-typeventually emerge from molecular-dynamics simulations in-
theories, simulation studies, and phenomenological modelsolving a polymer chain as well as solvent molecules. The
It is simplest to compare the present model to the earliecurrently available simulation studies do not account fully
phenomenological models. The kinetics of collapse were firstor hydrodynamics, thus introducing an uncertainty in the
considered by de Gennes in 19B8B2]. In this model, the interpretation of the results. In certain studies the interpreta-
collapsing chain was viewed as a ‘“sausage” of collapsetion is further hampered by the imposition of an “&&ns’
blobs. With time, the sausage diameter increases and itgitial state[15,17]. With this caveat, the simulations mostly
length decreases. The driving free energy was identified witlsupport the notion that the collapse involves a string of
the interfacial free energy and the dissipation was attributegearls joined by stretched bridges as an intermediate stage.
to hydrodynamic flow. A different view was later proposed The configuration adopted by the string of pearls is less
by Buguin, Brochard-Wyart, and de Genn&8]. Within this  clear. Snapshots of the chain configuration as obtained by the
model the driving free energy is the transfer free energy intd_angevin-equation simulation of Bynet al.[16] suggest an

VIl. CONCLUDING REMARKS
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