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D. Blair, I. S. Aranson, G. W. Crabtree, and V. Vinokur
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, lllinois 60439

L. S. Tsimring
Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402

C. Josserand
James Frank Institute, University of Chicago, 5640 S. Ellis Avenue, Chicago, lllinois 60637
(Received 6 October 1999

A theoretical and experimental study of patterns in vibrated granular layers is presented. An order parameter
model based on the parametric Ginzburg-Landau equation is used to describe strongly nonlinear excitations
including hexagons, interfaces between flat antiphase domains, and new localized sbjetsscillonsThe
experiments confirm the existence of superoscillons and bound states of superoscillons and interfaces. On the
basis of the order parameter model we predict analytically and confirm experimentally that additional subhar-
monic driving results in the controlled motion of interfaces.

PACS numbes): 47.54+r, 47.35+i, 45.05+x, 83.70.Fn

INTRODUCTION Pattern formation in thin layers of granular material were
studied theoretically by several groups. Direct molecular dy-
The collective dynamics of granular materials is a subjecfamics simulation$9,10] (see also Refl11]) reproduced a

of current interesf1-5]. The intrinsic dissipative nature of Majority of patterns observed in experiments, and many fea-

the interactions between the constituent macroscopic paLFJres of the bifurcation diagram. Until now these studies

ticles gives rise to several basic properties specific to gran lave not yielded superoscillons and interfaces. Hydrody-

lar substances which set granular matter apart from conve namic and phenomenological moddl§2,13 reproduced
. - gra P "Certain experimental features; however, neither of these of-
tional gaseous, liquid, or solid states.

g ¢ . o fered a complete description of the rich variety of the ob-
Driven granular systems manifest collective fluidlike be-ggped phenomena. In Refd4,15 we introduced the order
havior: convection, surface waves, and pattern formatioharameter characterizing the complex amplitude of subhar-

(see, e.g., Ref1]). One of the most fascinating examples of monic oscillations. The equations of motion following from
collective dynamics in these materials is the appearance dhe symmetry arguments and mass conservation reproduced
long-range coherent patterns and localized excitations in vethe essential phenomenology of patterns near the threshold
tically vibrated thin granular layef2—8]. The particular pat- of the primary bifurcation: stripes, squares, and, localized
tern is determined by the interplay between driving fre-0bjects, oscillons.

quencyf and acceleration of the container 472.Af%/g (A b In th:cstr;])aper we dgscribe higr:-accelgzr?tiog patierns O.? tht?]
is the amplitude of oscillationgy is the acceleration due to asis ot the same order parameter model and compare it wi

) experimental observations. Our preliminary results were

gravity) [2,3]. , published earlier in Refd5,15,1§. Here we show that at

Patterns appear df~2.4 almost independently of the |3rge amplitude of driving both hexagons and interfaces
driving frequencyf. At small frequenciesf<f* [3,4] the  emerge. We find a morphological instability leading to the
transition is subcriticalhysteretig, leading to the formation  formation of “decorated” interfaces. We study the motion of
of squares. In the hysteretic region, localized excitationghe interface under the influence of a small subharmonic
such as individuabscillonsas well as bound states of oscil- component in the driving acceleration. We also find a new
lons appear ad’ is decreased. For higher frequencies |ocalized structure, a “superoscillon,” which exists for high-
>f* the pattern becomes stripes, and at frequencies slightlicceleration values. We discuss possible mechanisms of
higher thanf* the transition becomes supercritical. Both saturation of the interface instability. Our experimental re-
squares and stripes, as well as oscillons, oscillate at half afults demonstrate the existence of superoscillons and bound
the driving frequencyf/2. At higher accelerationI{>4), states of superoscillons and interfaces. They also confirm our
stripes and squares become unstable, and hexagons appgaforetical predictions for the external control of interface
instead. When the driving acceleration is increased furthemotion.
I'=4.5 hexagons are converted into a domainlike structure The structure of the paper is as follows. In Sec. | we
of flat layers oscillating with frequency/2 with opposite introduce our phenomenological order-parameter model. In
phases. Depending on parameters, interfaces which separ&@ec. Il we develop the weakly nonlinear theory for the flat
flat domains are either smooth or "decorated” by periodicperiod-doubled state of the vibrated layer. In Sec. Il we
undulations. Forl’>5.7 various quarter-harmonic patterns analyze the interface solution, and study its stability with
emerge. respect to transverse perturbations. In Sec. IV we discuss
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new localized solutions. In Sec. V we present the combined dp=y* —(1—iw)y+ (L+ib)V2y—|y|%y. ®)
theoretical phase diagram of the model. In Sec. VI we dem-
onstrate that in a certain limit our model can be reduced td&quation(3) also describes the evolution of the order param-
the real Swift-Hohenberg equation. This equation also poseter for the parametric instability in vertically oscillating
sesses a similar variety of patterns including stripes, hexdfiuid layers(see Refs[17,18)).
gons, stable and unstable interface solutions, and localized It is convenient to shift the phase of the complex order
solut.ior;s_. In Sec. \I/II yvedd.?tm?nrs]trqte tr;at additfi]or;]al Sulbharparameter viah= i exp( ) with sin 2= wly. The equations
monic driving results in drift of the interface with the veloc- - - e AL
ity determined by the amplitude of the driving and the direc—for the real and imaginary parts gi=A+iB are
tion determined by the relative phase. In Sec. Vil we present 5 A= (s—1)A—2wB—(A2+B2)A+V3(A—bB), (4)
our experimental results. This includes a phase diagram and
the effect of additional subharmonic driving. Section IX B=—(s+1)B—(A?+B?B+V?B+bA), (5
summarizes our conclusions.

wheres?= y?— w?.

. PARAMETRIC GINZBURG-LANDAU EQUATION

. Il. STABILITY OF UNIFORM STATES
The essence of the modgl4,15 is the order-parameter

equation for the complex amplitudg of parametric layer At s<1, Egs.(4) and (5) have only one trivial uniform
oscillations h=exp(nft)+c.c. at the frequencyf/2  stateA=0, B=0. Ats>1, two new uniform states appear:
coupled with the equation for the thickness of the lager A=+ ,s—1,B=0. The onset of these states corresponds to
averaged over the period of vibrations: the period doubling of the layer flights sequence, as observed
in experiment$?2], and predicted by the simple inelastic ball
=y —(1—iw) g+ (1+ib)VZ3y—[y|>y—py, (1)  model[2,19). Signs =+ reflect two relative phases of layer
flights with respect to container vibratioh20].
dp=1L,V-(pV|¢?) + BV?p. 2 The trivial flat stateA=B=0 loses stability if the follow-
ing condition is fulfilled(compare with Ref{14]):
Here vy is the normalized amplitude of forcing at the fre- 5
quencyf. Linear terms in Eq(1) can be obtained from the 2>(w+b) ®)
complex growth rate for infinitesimal periodic layer pertur- 4 1+b?
bations h~ exg A(K)t+ikx]. ExpandingA (k) for small k,
and keeping only two leading terms in the expansiofk)  Because of the symmetry of E@3), small perturbations
=—Ap— A1k? we obtain the linear terms in E¢L), where  from the trivial state lead to the formation of a periodic se-
b= Im A,/ ReA; characterizes the ratio of dispersion to dif- quence of rolls or stripes.
fusion and parametan=(Qqg— 7f)/ReAy, Qo=—Im Ay, Let us analyze the stability of the nontrivial statés-
characterizes the frequency of the driving. In E2), { and  +./s—1 andB=0 with respect to small perturbations with
B are transport coefficients far. The slowly varying thick-  wave numbek:
ness of the layep controls the dissipation raf¢he last term
in Eqg. (1)]. The second equatiori2) describes the re- A *+ys—1
distribution of the averaged thickness due to the diffusive (B) = 0
flux «—Vp, and an additional fluxc—pV|4|? caused by
the spatially nonuniform vibrations of the granular material. The uniform state loses its stability with respect to periodic
This coupled model was used in Refd44,15 to describe  modulations with the critical wave numbkg at s<s, (cor-
pattern selection near the threshold of the primary bifurcarespondingly,y<y.), where
tion. It was shown that at smaflp,8~* (which corresponds

Uy

+Vk

exdg A(k)t+ikx]. @)

to low frequencies and thick layerthe primary bifurcation Vd+0?)(1+b%)—w+b
is subcritical, and leads to the emergence of square patterns. Sc= 2b , (8)

For higher frequencies and/or thinner layers, the transition is

supercritical and leads to roll patterns. At intermediate fre-

quencies {~f*), the stable localized solutions of Eq4) K2= — 23_1_“’b_ 9)

and (2), corresponding to isolategiscillonsand a variety of ¢ 1+b?

bound states, were found to be in agreement with experi-

ment. Small perturbations in every direction of the wave vector
In this paper we focus on high-acceleration patterns agrow at the same rate. The resultant selected pattern is de-

high frequencies. In Ref14] it was indicated that the den- termined by the nonlinear competition between the modes. In

sity transport coefficien is proportional to the energy of the presence of the reflection symmetpy- — ¢, quadratic

the plate vibration € 42f2), whereA is the amplitude of the nonlinearity is absent, and cubic nonlinearity near the trivial

vibration, therefore, it should increase with the driving fre- state favors stripes corresponding to a single mode. Near the

quencyf. As a result, for high frequencies the coupling be-fixed pointsA= *s—1,B=0 the reflection symmetry for

tweenp and ¢ becomes less relevant, and one can assumeerturbationsU— —U,V——V is broken, and hexagons

p=const and exclude it from Eq@l) by rescaling. Then the emerge at the threshold of the instability. To clarify this

model can be reduced to a single order-parameter equatiompoint we perform a weakly nonlinear analysis of E@g.and
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(5) for s=s,— € ande<1. At e—0, the variabled) andV
are related as in a linear system:

uy (1
V| gy v,
(10)
V=2 Ajexdikr]+cc,
where|k| =k, and 7=[2(s,— 1)+ k3]/(bk2— 2w).
The corresponding adjoint eigenvector is

u+ 1

(V+):(77+ ’ D

where 7" =—[2(s,—1)+k?]/bk?. Substituting Eq.(10)
into Egs.(4) and (5) and performing the orthogonalization,
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FIG. 1. Interface solution to Eq$14) obtained numerically for

we obtain equations for the slowly varying complex ampli- @=1, b=4, and y=2. The solid line corresponds t# and the
tudesA;, j=1, 2, and 3(we assume only three waves with dashed line td, respectively.

triangular symmetry, favored by quadratic nonlinearity

GA = 2€A]+aAY AT —agl |A2+2(|Aj 4]

+|Aj DA, (12)
where the coefficienta, andas are
+ 772 N
a,==*+2\s—1| 2+ , a3=3(1+7nn").
1+ 7]7]+
(13

Equations(12) were well studied(see Ref[21]). There
exist three critical values of: ex=—a3/40a;,eg=as/2as,
and eB:2a§/a3. Hexagons are stable faa,<e<eg, and
stripes are stable foe>eg. Thus, nears=s; the model
exhibits stable hexagorg2]. Since we have two symmetric

available only numerically. We used the shooting matching
technique to find this solution in the range of parameters
o, b, andy. A typical solution is shown in Fig. 1. As one
sees from the figure, fdy# 0 the asymptotic behavior of the
interface exhibits decaying oscillations.
Let us now consider the perturbed solution
A(x)
B(x

Al Ao
B/ ~1Bo) " Bx)
wherek is the transverse modulation wave number aikl)

is the corresponding growth rate. FarandB we obtain the
linear equation

) exg A (K)t+iky], (15

fixed points, both up and down hexagons coexist. For smaller

s stripes are stable, and for largeflat layers are stable, in
agreement with observatiof®,16], as well as direct numeri-

cal simulations of Eq(3) [23]. The above analysis requires

the values ofeppgr to be small. For parameters,b
=0(1), this requirement is satisfied fog,, but not for
egr- The estimates can be improved by substitutsisgs,

+ e instead ofs=s; in Eq.(13). The resulting range of stable
hexagons is plotted in the phase diagram ) (see Fig. 7
below).

Ill. INTERFACE SOLUTION

At s>1, Eqgs.(4) and(5) have an interface solution con-
necting two uniform state8=*+\s—1, B=0. Letx be the
coordinate perpendicular to the interface anthe parallel

L A =[A(K)+Kk?] A +bk? B (16)
B B A/
where the matrix is of the form
. [s—1-3A5-BZ+9> —2w—2ABy—bd?
| —2A(Bo+ b2 —s—1-A3-3BZ+42)
(17)

In order to determine the spectrum of eigenvaldék)
we have solved Eq16) along with stationary equatiori$4)
numerically using numerical matching-shooting technique.
We have found that for smalb the interface is stable with
respect to transverse undulations, ix(k)=<0. However,
for the values ofw above certain critical value.(vy,b) the
interface exhibits transverse instability(k) >0 in the band
of wave numbersk|<k.; see Fig. 2.

This instability is confirmed by direct numerical simula-

coordinate. The interface is the stationary solutions to Eqgions of Eq. (3). An example of the evolution of slightly

(4) and(5):
(s—1)Ag—2wBg— (A3+B3)Ag+ Agyy— bBoyy=0,
—(5+1)By— (A3+ B2)Bo+ Boyyt+ bAgy=0.
(14

For b=0, Egs. (14) have a solution of the formA,=
+4/s—1tanh((s—1x/2),B,=0. For b#0 the solution is

perturbed interface is shown in Fig. 4. Small perturbations
grow to form a “decorated” interface. With time these deco-
rations evolve slowly, and eventually form a labyrinthine
pattern.

The neutral curve for this instability can be determined as
follows. Numerical analysis shows that at the threshold the
most unstable wave numberks- 0, and we can expect that,
for k—0, A~k?; see Fig. 2. Expanding E16) in a power
series ofk?,
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FIG. 2. Spectrum of eigenvalueqk) for =1.3, b=4, and
y=2 (solid line) andw=1, b=4, andy=2 (dashed lingobtained
from numerical solution of Eq(16).

A A0)
B/ | BO
in the zeroth order ik we obtainL (A(®,B(®)=0. The cor-
responding solution is the translation mod&®

=0,A0(X),B@=03,By(x). In the first order ink? we arrive
at the linear inhomogeneous problem

AL

+ k2 B(l)

+ . (18)

[ AM ) A0)
L(B(l))=[)\(k)+k ](B(O)

B

+bk? _A(o)). (19)

A bounded solution to Eq19) exists if the right-hand side is
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FIG. 3. Adjoint eigenfunction obtained numerically fab
=1.3, b=4, andy=2. The solid line corresponds o’ and the
dashed line tdB", respectively.

The emergence of the labyrinthine patterns as a result of
interface instability contradicts experimeri#,5,16 where
stable decorated interfaces are typically observed. Thus the
model[Eg. (3)] does not capture saturation of the interface
instability and requires modification. We also checked that
the coupling to the density field introduced in Relf4] does
not provide desired saturation.

Let us now discuss possible mechanisms of saturation of
the transverse instability of the interface, which is not cap-
tured by Eq.(3). The reason for the proliferation of the laby-
rinths is that local stabilization mechanisms cannot saturate

orthogonal to the localized mode of the adjoint operatolihe “negative surface tension instability” of the interface.

A" BT. The adjoint operatot. is of the form

—2AyBg+bd?

[T=
—s—1—A3—3B2+ 2

(20

s—1-3A3— B2+ 42
—2w—2ABy—hd?

Indeed, the behavior of the small perturbatibof an almost
flat interface is described by the linear equatipn — oA/,
where o is the surface tension. The linear growth must be
counterbalanced by nonlinear terms. Due to translation in-
variance the local nonlinearity can be a function of gradients
of £ only. In the lowest order the first term € |3, since the

Since the operatoET is not self-adjoint, the adjoint mode duadratic term does not saturate the monotonic instability.
does not coincide with the translation mode, and, therefore,

must be obtained numerically.
The orthogonality condition fixes the relation between
andk:

J . [ACBT—BOAT]dx

A=—0ok? o=1+b , (21

f [AOAT+BOBT]dx

whereo is “surface tension” of the interface. The instabil-
ity, corresponding to the negative surface tension of the in-

terface, onsets at=0. Although the interface solutiofi(x)
is not localized(see Fig. 1, the integrals in Eq(21) con-
verge because the adjoint functioAs andB" are localized.

The numerically obtained adjoint eigenmode is shown in Fig.
3. The neutral curve is shown in Fig. 7. Direct numerical
simulations of Eq(3) show that this instability leads to so

called “decorated” interface$see Fig. 4a)]; however, at

FIG. 4. (a)—(d) Interface instability and labyrinth formatidiEg.

later stages the undulations grow and finally form labyrin-(3)]. w=2, b=4, andy=2.9, the domain size is 160100 units,

thine patterngFigs. 4b)—4(d)].

and snapshots are taken at tintes1000, 1600, 2300, and 4640.
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Since for the modulation wave numbler~0 one hagV¢|?
~Kk?|¢|® and A¢~k?¢, the linear instability always over-
comes the local nonlinearity at small wave numbers. As a
result, small perturbations grow and saturation occurs due to
nonlocal interactions as in a labyrinthine pattern which is
stabilized by nonlocal repulsion of the frorisee Ref[24]).

As we see in our model, the interface instability does not
result in stable decorated interfaces. One possibility for the
saturation of this instability could be local convection in-
duced by the interface. Indeed, due to the shear motion of
grains at the interfacéhe flat regions move in antiphgse
local convective flow can be created. The scale of this flow
can be larger than the interface thickness. One of the possible
manifestations of the convection beside grain transport is a
reduction of the effective “viscosity” of the flat layer, or an
increase in the sensitivity to external vibratid2s]. As we
can see from Fig. 7, an increase in vibration magnityde
suppresses the interface instability. As the instability devel-
ops, the length of the interface grows, which increases the
convection and finally suppresses the instability. This feed-
back mechanism results in a saturation of the interface insta-
bility, and creates stable decorations.

Although the details of this coupling are not yet known, it
can be implemented within the order-parameter approach in
a phenomenological way. In E() the forcingyy* must be
replaced by §,+w)¢*, wherew includes the effect of local
convective flow andy,=const. We take the simplest pos-
sible form of the coupling to the convective flow,

_ 12
Wzgf dr’exp(—|r i )|V¢/x(r’)|2, (22

2
o

where r.o CharaCte.rlzeS the typical _scale of the convective FIG. 5. Computer simulations of modified E®). Surface plots
,ﬂOW’ €1S the amplltud_e of the C,OUP“”Q’ arglis the area of show Re¥ for different stationary solutionga) A saturated inter-
integration QOmam. Slncévw(r ).| is nonzero only at the f5ce =12, y=1.85, b=4, e=0.002, ro=40, andL = 160. (b)
interface, this integral is proportional to the total length of o saturated interface with boundsuperoscillons w=1.2, y
the interface. With the growth of the interface length the—1 .75 p=4, ¢=0.002, r,=40, andL=160. (c) A single sup-
value of the “effective forcing” y=y,+w grows as well, eroscillonat w=1.2,y=2.2p=4, e=0.002,r,=40, andL = 100.
and eventually leaves the instability domain.

We performed numerical simulations with E@) modi-  tional oscillons” of either phase coexist on tharmonic
fied in the following way. The convolution integré?2) was  backgroundthe amplitude of period 2 oscillations is zgro
calculated using the fast Fourier transform. The results arés a result oppositely phased superoscillons must be sepa-
presented in Fig. 5. Remarkably, for a certain range of parated by an interface connecting two opposite phases of the
rameters the instability indeed saturates due to the nonloc@eriod-doubled flat layer, whereas oppositely phased oscil-
term [Eq. (22)], and we find interfaces with stable decora-lons can easily form stable bound statdipoles[4]).

tions; see Fig. &). Superoscillons, in the presence of additional subharmonic
driving, are somewhat similar to normal oscillons of like
IV. LOCALIZED SOLUTIONS polarity (see Ref[4]). In this case the external driving cre-

ates a period-doubled background of the flat layer, and locks
In addition to the interface solution which exists fer the phase of the superoscillons. However, superoscillons ex-
>1, for even higher values afEq. (3) possesses a variety of ist for parameter values where the oscillons of Réf.are
other nontrivial two dimensional solutions including local- impossible even with additional subharmonic driving.
ized superoscillons. A typical solution and its corresponding Superoscillons exist in a relatively narrow domain of pa-
localized linear mode are shown in Fig. 6. rameters of Eq(3). A decrease o¥ leads to a destabilization
Although super-oscillons appears to be similar to theof the localized eigenmode leading to a subsequent nucle-
“conventional oscillon” discovered in Refl4], there is a ation of new “superoscillons” on the periphery of the un-
significant difference. The asymptotic behavior of the sup-stable superoscillon; with an increase gfsuperoscillons
eroscillon isW¥—Ay#0 for r—o, whereas the regular os- disappear in a saddle-node bifurcation.
cillon has¥—0. This implies that the phase of the sup- For certain values of, we also find an interesting struc-
eroscillon is always locked into the phase of the flatture consisting of a decorated interface and a chain of sup-
layerexhibitingperiod-doubled behavipmwhereas “conven-  eroscillons bound to the decorations; see Figh).5These
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=2 |

FIG. 7. Phase diagram for E43) at b=4. Line 1, y>=(w
+b)2/(1+b?); line 2, ’=y?—w?=1; line 3,s=s;; line 4, s
=s.—€R; line 5, s=s.—€g; line 6, s=s.—e€,; line 7, surface
tensiono=0. Below line 1 there are no patterns. Between lines 1
and 4, stripes are stable. Between lines 5 and 6, hexagons are stable.
Above line 2, nontrivial flat states exist. Above line 3 these states
are stable. Interfaces are unstable below line 7. Hexagons and
stripes coexist between lines 4 and 5.

tained within the full model of Eqs(l) and (2), with an
additional density fielgp; see Ref[14].

VI. SWIFT-HOHENBERG EQUATION

Near the lines=1 (see Fig. 7 Eq. (3) can be simplified.

-6 . .
0 10 20 30 In the vicinity of this line A~(s—1)Y? and B~ (s—1)%2
r <A. In leading order we can obtaiB=bV?A/2 from Eq.
FIG. 6. (8) Axisymmetric localized solutiotsuperoscillopob-  (5), and Eq.(4) yields[27]
tained forb=4, w=1, and y=1.8 for Eq.(3) at b=4. A, solid b2
line; B, (_jashed _Ilne(b) Loiallzed eigenfunction corresponding to IA=(5— l)A—A3+(1—wb)V2A— —_V4A. (23)
the maximum eigenvalue= —0.0009. 2

. . . _1\-12
objects can exist completely independently of the interfaceRescallng the variables—(s—1)t, A—(s—1) ™A, x

_ 211/4 ; e _
[Fig. 5(c)], as one may expect for EB). Thus we conclude —[2(s~1)/b7]™, we arrive at the Swift-Hohenberg equa

that the extended equati@8) qualitatively describes the ob- tion (SHB
served phenomenology. dA=A—A3— SV2A—V*A, (24)
V. PHASE DIAGRAM where
The results of a linear stability analysis can be summa- 5= wb—1 [ 2 (25)
rized in the phase diagram shown in Fig. 7. Remarkably, the b s—1

structure of the phase diagram of Fig. 7 is qualitatively simi-
lar to that of experiments for high frequencies of vibration; The description by the SHE is valid #~0O(1), which im-
see Fig. 10 and Ref$2-5,10,16. Increasing the vibration plies an additional condition for the validity of this approach
amplitude y leads to a transition from a trivial state to wb—1<1 ats—1.
stripes, hexagons, decorated interfaces, and, finally, to stable Although this equation is simpler than E@), it captures
interfaces. A transition from unstable to stable interfaces alshany essential features of the original system dynamics, in-
occurs with decreasing (increasing vibration frequendy), cluding the existence and stability of stripes and hexagons in
in agreement with Refs[16,26. In experiments at still different parameter regiorisee Refs[28,29); the existence
higherI'’s, quarter-harmonic patterns appear; however, thesgf the interface solutions, interface instability, and sup-
patterns are not described by our model. Our analysis alseroscillons; and the emergence of labyrinthine patt80%
predicts the coexistence of stripes and hexagons in a veipdeed, a simple analysis shows that the growth rate of the
narrow parameter rangesee Sec. )l Superoscillons were instability of the uniform stateA=1 as a function of the
found in a narrow domain close to line 7 of Fig. 7. perturbation wave number is determined by the formula
Note that square patterns, which emerge at lower frequen(k) = — 2+ sk?—k*; it becomes unstable at> 8.=242 at
cies, are not included in the phase diagram. They are ola critical wave numbek,= V2. As in the original model,
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®=0. Inset.v vs® atq=0.01. (@), numerical results(—), ana-

FIG. 8. (a)—(d) Labyrinth formation from a circular sp¢SHE); lytical expression(30).

6=1.4, the domain size is 100L00 units, and =200, 1300, 1700,

and 1900. ground of the primary harmonic driving with the frequerfcy

. . " can be described by the equatifaf. Eq. (3)]
near the threshold of this instability, subcritical hexagonal

patterns are preferred. The interface stability can also be ana- g,¢=yy* — (1—iw) g+ (1+ib)V2y—|y|?¢+qe?,
lyzed more simply, as the linearized operator corresponding (28
to model (24) is self-adjoint. The threshold value & is
obtained from the solvability condition

.

which yieldséy,= 1.011. This yields an equation for the neu- (

where gq characterizes the amplitude of the subharmonic
pumping, andb determines its relative phase.

For smallg, we look for a moving interface solution in the
forms = po(x—vt) +qy(x—vt)+--- andv=0(q), or,
alternatively,

4

The solvability condition[compare with Eq(21)] fixes

(8As,—2A3,,)dx=0, (26)

a(x—ut)
A b(x—ot)

tral curve of the interface instability in the Swift-Hohenberg
limit in the form

Ao(x_vt))
Bo(X_Ut)

) +0(g%). (29

2(wb—1)2

2
b2 (27)

Figures 8a)—8(d) show the development of the interface

instability within the SHE with a subsequent transition to

labyrinthine patterns, similar to the dynamics of the full
parametric equatiofB). Again, to saturate the instability, an
additional nonlocal mechanism is required.

the interface velocity as a function of the amplitude and
phase of the external subharmonic driving,

cos@f ATdx+ sin(I)f BTdx

- =qasin(®—dy),
f (AT9,Ay+BT9,Bg)dx
(30)

As was shown recently, the Swift-Hohenberg equation

also possesses localized solutigese Refs[30,31). These

where a=const is the susceptibility of the interface for ex-

localized states are analogous to the superoscillons of Edernal forcing, andd,=const is some phase shift. An ex-
3. plicit answer is obtained fob=0 whenA'=4,A, and ®
=0,7, which yields the interface velocity =¥ $qA, °=
F3q(s—1) 1 In generalA, B, AT, andB', and hence,
can be found numerically. The interface velocity as function
of q,® is shown in Fig. 9.

Now we will focus on the effect of additional subhar-  Thus from this analysis we conclude that additional sub-
monic driving on the motion of the interface. In the original harmonic driving results in a controlled motion of the inter-
model[Eq. (3)], the interface does not move due to symme-face. The velocity of the interface depends on the amplitude
try between the left and right halves of the interface. How-of the driving, and the direction is determined by the relative
ever, if the plate oscillates with two frequencfendf/2, the  phased.
symmetry between these two states, connected by the inter-
face, is broken, and the interface moves. The velocity of the
interface motion depends on the relative phase of the subhar-
monic forcing with respect to the forcing itThe effect of a We performed experiments with a thin layer of granular
small external subharmonic driving applied in the back-material subjected to periodic driving. Our experimental

VII. SUBHARMONIC FORCING AND
INTERFACE MOTION

VIIl. EXPERIMENTAL RESULTS
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FIG. 10. Phase diagram. The material is 150-

3.8 Hexagons with Phase Defects um copper balls, and the layer thickness is ten
particle diameters.
37 _
36 Sl:ripes =
3.5 1 | 1 | 1 |
25 30 35 45 50 55 60

40
f(Hz)

setup is similar to that of Ref.[5]. We wused squares do not exist; compare RE3]). At slightly higher
0.15-mm-diameter bronze or copper balls, and the layevalues ({"=3.6-3.7) stripes and hexagons coexist. For
thickness in our experiments was ten particles. We perhigher values [ =3.7-4.0) the hexagons become stable.
formed experiments in a rectangular cell 042 cnf. We  Due to the subharmonic character of motion both up and
were able to vary the acceleratibhand frequency of the ~ down hexagons may coexist, separated by a line phase defect
primary driving signal as well as the acceleratign fre-  [Fig. 12a)]. There exists a narrow band, froh=3.85 to
quencyf, and phase&b of the secondaryadditiona) driving 4.0, where localized states, superoscillons appear both
signal. The interface position and vertical accelerations wergithin the bulk of the material and also pinned to the front
acquired using high-speed video and accelerometers, and fusetween the interface and the bylkig. 12b)]. For even

ther analyzed on a Pentium computer. To maintain and medyigher values of the acceleratidh>4.0 the superoscillons
sure the proper acceleration faand f/2 we employed the disappeafFig. 12c)], leading to isolated interfaces with pe-
lock-in technique with our signal originating from an accel- riodic decorations.

erometer attached to the bottom of the cell. This allowed for

simultaneougeal-time feedback and control of the device. B. Controlled motion of interface

To reduce the interstitial gas effecf82] we reduced the
pressure to 2 mTorr. Our visual data were acquired using
high-speed digital camer@odak SR-10005 in addition to
high-speed recording this also allowed for a synchronizatio
between the patterns and the image acquisition.

In the absence of additional driving the interface drifts
?oward the middle of the celsee Fig. 12 We attribute this
r?ffect to the feedback between the oscillating granular layer
and the plate vibrations, due to the finite ratio of the mass of
the granular material to the mass of the vibrating plate. Even
in the absence of subharmonic drive, the vibrating cell can

A. Phase diagram acquire subharmonic motion from the periodic impacts of the

The experimental phase diagram is shown in Fig. 10. It jgranular layer on the bottom plate at half the driving fre-
similar to that of Refs[3,4,16; however, the transition from quency. If the interface is located in the middle of the cell,
hexagons to interfaces is elaborated in more detail. There iste masses of material on both sides of the interface are
small hysteresis at the transition line from stripes to hexa€qual, and, due to the antiphase character of the layer motion
gons(not shown in the phase diagranThe dashed line in-
dicates the stability line for interfaces with respect to peri- ' ' ) ' ' '
odic undulations, determined as the average half-width of the i
pattern. To determine this stability limit, we kept the value of
accelerationl” fixed and increased the driving frequenty 0 ¥
For each value of the frequency we extracted the interface I
width by averaging up to ten images of the interface. In order - 11
to find that amplitude of the periodic undulatiohs/e sub-
tracted the thickness of the flat interfdgerom the obtained s ]
value. The resultant amplitude or undulatidras functions
of driving frequencyf are shown in Fig. 11. As one sees
from the figure, the amplitude of undulatiohsdecreases
gradually, approaching the critical value of the frequency. ok
However, a small hysteresis at the transition point cannot be : ’ . ' . '
excluded because of large error bars. AHD

As follows from the phase diagram, for a small amplitude
of the vertical acceleratiohi <3.6 stripes are the only stable  FIG. 11. The amplitude of periodic undulatiohss a function
pattern(note that we focus on high-frequency patterns wherof driving frequencyf. The acceleration amplitude I3=4.1.

I (mm)
[
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FIG. 12. Representative high-acceleration patterns in the rectan-
gular 4x12-cm cell, driving frequencyf=40 Hz: (a) '=3.75
shows the onset of thimterfacewith up and down hexagonsb)
I"'=3.94 superoscillonsare present in the flat layer and are pinned
to the front near the interfacéc) I'=4, isolated decorated inter-
face.

FIG. 13. Amplitude of the subharmonic accelerati@nof the

cell averaged over four measurements vs time for the interface
propagating to the center of the cell for=3.97 andf=40 Hz.
Circles and squares correspond to circular and rectangular cells, and
open and closed symbols correspond to light and heavy cells, re-
spectively. Heavy cells differ from light ones by an additional
weight of 250 g attached to the moving shaft. Solid lines show an
on both sides, an additional subharmonic driving is not proexponential fitu~ expt/7)+const. Insetr vs I for light rectangu-
duced. The displacement of the interfac&om the center of  lar cell.

the cell leads to a mass differenden on opposite sides of

the interface, which in turn causes an additional subharmonig50 grams to the moving shaft, which weighs 2300 grams.
driving proportional toAm. In a rectangular celAm=X.  This led to an increase of the corresponding relaxation times
Our experiments show that the interface moves in such a waygf 15—25 %. The relaxation time increases rapidly witi’

to decrease the subharmonic response, and the feedback prsee the inset of Fig. 13

vides an additional term-X/ on the right-hand side of Eq.  When an additional subharmonic driving is applied, the
(30), yielding interface is displaced from the middle of the cell. For small
amplitude of the subharmonic driving the stationary inter-
d_X: — Xl t+qa sin(®—dy). (31) face position i9<=qa7-sir_1(fl>—¢o), since the rgstqring forgg
dt balances the external driving force. The equilibrium position

X as function of® is shown in Fig. 14a). The solid line

The relaxation time constant depends on the mass ratio depic_t§ the sinusoidal fit predicted by _the theory. Because of
(this also holds for the circular cell X is small compared to  the finite mass ratio effect, the amplitude of the measured
the cell radiug Thus, in the absence of an additional subhar-Platé acceleratiom at frequencyf, also shows periodic be-
monic drive @=0), the interface will eventually divide the havior with ® [see Fig. 14b)], enabling us to infer the in-
cell into two regions of equal ardaee Fig. 12 terface displacement from the acceleration measurements.
In order to verify the prediction of Ed31) we performed
the following experiment. We positioned the interface off
center by applying an additional subharmonic drive. Then we
turned off the subharmonic drive and immediately measured g
the amplitudeu of the plate acceleration at the subharmonic £
frequency[33]. The results are presented in Fig. 13. The X
subharmonic acceleration of the cell decreases exponentially

as the interface propagates to the center of the cell. The 3

measured relaxation time of the subharmonic acceleration 004 | B - aig_ |
increases with the mass ratio of the granular layer and of the i1 . - . TEy
cell with all other parameters fixed. The mass of the granular 0.03 Tm . - -

layer was varied by using two different cell sizes—circular, = o002 m - " -

diameter 15.3 cm, and rectangular<42 cm—while keep- 0.01 I 'l..' -.-'

ing the thickness of the layer unchanged. For these cells we

found that the relaxation time in the rectangular cell is O'Ood 1(')0 260 3(')0
about four times greater than for the circular qske Fig. @ (degrees)

13). This is consistent with the ratio of the total masses of

granular material(52 grams in rectangular cell and 198  FIG. 14. (a) Equilibrium positionX and (b) amplitude of mea-
grams in the circular céll In a separate experiment the masssured subharmonic acceleratigras functions of phas®. Circular
of the cell was changed by attaching an additional weight otell: T =4.1, =40 Hz, andg=1.25% ofT.
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FIG. 16. Maximum displacemenX,, from the center of the
rectangular cell as a function of frequency differedce=f,—f/2
for f=40 Hz, and forI'=3.97 (circles andI'=4.1 (diamonds.

| litude of subh ic dri Dashed lines are fit t&X,,= Vo /\7 2+ (27Af)2. The values ok
For an even larger amp Itu € Of subharmonic rivingpre and 7 obtained from the fit are also indicated in Figs. 13 and 15 by
than 4-5% of the primary drivingextended patterndexa-  5rrows with stars.

gons re-emerge throughout the cell.

Th? \./eIOCItyVOan’ which the interface would have in sand vibrations. Although a rigorous derivation of this model
an infinite system, can be found from measurements of the . . L )
S . ) . I5 not possible to date, our approach gives a significant in-

relaxation timer and maximum displaceme, at a given L ; )
amplitude of subharmonic acceleration Vo=X./7; see sight into the problem at hand, and results in testable predic-
0~ Aml 7, i i id-

Eq. (31). We verified that in the rectangular cell the displace-tlons' Our model is complementary to more elaborate fluid

mentX depends linearly ory almost up to values at which dynamic-like continuum descriptions or direct molecular
the interface disappears at the short side wall of the(sef dynamics simulations, and allows us to carry out analytical

. ) . o calculations of various regimes and predict their stability. A
th? |nst§t of ';'?h 15 F'gll.Jtredls ?Qﬁws the suscepulbllutgt/igs challenging problem is to establish a quantitative relation
a function of the ampiitude of the primary acceleration —,qoyaen our order-parameter model and other models as well
The susceptibility decreases with The cusplike features in

) ) as experiments.
theI" dependence of (and 7; see the inset to Fig. 1are P

i~ We have shown in this paper that the generic parametric
presu_mably related to the commensurability b_etween the IatGinzburg-Landau model of E€3) captures not only patterns
eral size of the cell and the wavelength of the interface dec

. O5f vibrated sand near the primary bifurcation, but also large
rations. . . . acceleration patterns such as hexagons, interfaces, and sup-
We developed an alternatlye experimental teChn'q.u%roscillons. The structure of the phase diagram of Fig. 7 for
V.Vh'Ch allowed us to measure S|rr_1ultaneo_usly the rglaxatlorp]igh frequencies and amplitudes of vibrations is qualitatively

time 7 and the “asymptotic” velocity/,. This was achieved

similar to that of previous experimentRefs.[2,3,5,16), as
by a small detuning\ f of the additional frequency; from m previous experiment : 9

. _ well as the experiments reported here. Increasing the vibra-
the exact subharmonic frequenti2, i.e., Af=f,—f/2<f. 4, amplitude leads to a transition from a trivial state to

This is equivalent to the linear increase of the phase dhift gqjye5 hexagons, decorated interfaces, and finally, to stable
with the rate 2rAf. This linear growth of the phase results jhterfaces. Interface decorations were found to be a result of
in & periodic motion of the interface with frequendy and ¢ ransversal instability of a flat interface, which is analo-
amplitude X,=Vo/{7 “+(2mAf)" [see Eq(3D]. The  gous to the negative surface tension. We found that®Bds
measurements of the “response functiongy(Af) are pre-  not sufficient to describe the saturation of the interface insta-
sented in Fig. 16. From the dependenc&gfon Af we can  pjjity. We propose a possible nonlocal mechanism of satura-
extract parameter¥,, a, and 7 by a fit to the theoretical tjon of this instability which takes into account the depen-
function. The measurements are in a very good agreemeglence of the overall length of the interface and the
with previous independent measurements of the relaxatiomagnitude of parametric forcing, which may occur due to a
time 7 and susceptibilitye. For a comparison with the pre- |arge scale convective flow induced by the sand motion near
vious results, we indicate the values forand «, obtained  the interface. We described analytically the motion of the
from the response function measurements of Figs. 13 and Jisterface under the symmetry-breaking influence of the small
(starg. The measurements agree within 5%. subharmonic driving.

In our experimental study we found that on a qualitative
level the theoretical phase diagram is similar to the experi-
mental one. The experiments also confirmed the existence of

In this paper we studied the dynamics of thin vibratedsuperoscillons and their bound states with the interface, as
granular layers in the framework of a phenomenologicalpredicted by the theory. Further experimental study is neces-
model based on the Ginzburg-Landau-type equation for asary to elucidate the specific mechanism for saturation of the
order parameter characterizing the amplitude of subharmonioiterface instability.

FIG. 15. Susceptibilitye vs I' at f=40 Hz, rectangular cell.
Inset: displacemenX as a function ofj at & =260.

CONCLUSIONS
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