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Patterns in thin vibrated granular layers: Interfaces, hexagons,
and superoscillons
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A theoretical and experimental study of patterns in vibrated granular layers is presented. An order parameter
model based on the parametric Ginzburg-Landau equation is used to describe strongly nonlinear excitations
including hexagons, interfaces between flat antiphase domains, and new localized objects,superoscillons. The
experiments confirm the existence of superoscillons and bound states of superoscillons and interfaces. On the
basis of the order parameter model we predict analytically and confirm experimentally that additional subhar-
monic driving results in the controlled motion of interfaces.

PACS number~s!: 47.54.1r, 47.35.1i, 45.05.1x, 83.70.Fn
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INTRODUCTION

The collective dynamics of granular materials is a subj
of current interest@1–5#. The intrinsic dissipative nature o
the interactions between the constituent macroscopic
ticles gives rise to several basic properties specific to gra
lar substances which set granular matter apart from con
tional gaseous, liquid, or solid states.

Driven granular systems manifest collective fluidlike b
havior: convection, surface waves, and pattern forma
~see, e.g., Ref.@1#!. One of the most fascinating examples
collective dynamics in these materials is the appearanc
long-range coherent patterns and localized excitations in
tically vibrated thin granular layers@2–8#. The particular pat-
tern is determined by the interplay between driving f
quencyf and acceleration of the containerG54p2Af 2/g (A
is the amplitude of oscillations,g is the acceleration due t
gravity! @2,3#.

Patterns appear atG'2.4 almost independently of th
driving frequencyf. At small frequenciesf , f * @3,4# the
transition is subcritical~hysteretic!, leading to the formation
of squares. In the hysteretic region, localized excitatio
such as individualoscillonsas well as bound states of osc
lons appear asG is decreased. For higher frequenciesf
. f * the pattern becomes stripes, and at frequencies slig
higher than f * the transition becomes supercritical. Bo
squares and stripes, as well as oscillons, oscillate at ha
the driving frequencyf /2. At higher acceleration (G.4),
stripes and squares become unstable, and hexagons a
instead. When the driving acceleration is increased furt
G'4.5 hexagons are converted into a domainlike struct
of flat layers oscillating with frequencyf /2 with opposite
phases. Depending on parameters, interfaces which sep
flat domains are either smooth or ’’decorated’’ by period
undulations. ForG.5.7 various quarter-harmonic pattern
emerge.
PRE 611063-651X/2000/61~5!/5600~11!/$15.00
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Pattern formation in thin layers of granular material we
studied theoretically by several groups. Direct molecular
namics simulations@9,10# ~see also Ref.@11#! reproduced a
majority of patterns observed in experiments, and many f
tures of the bifurcation diagram. Until now these stud
have not yielded superoscillons and interfaces. Hydro
namic and phenomenological models@12,13# reproduced
certain experimental features; however, neither of these
fered a complete description of the rich variety of the o
served phenomena. In Refs.@14,15# we introduced the orde
parameter characterizing the complex amplitude of subh
monic oscillations. The equations of motion following fro
the symmetry arguments and mass conservation reprod
the essential phenomenology of patterns near the thres
of the primary bifurcation: stripes, squares, and, localiz
objects, oscillons.

In this paper we describe high-acceleration patterns on
basis of the same order parameter model and compare it
experimental observations. Our preliminary results w
published earlier in Refs.@5,15,16#. Here we show that a
large amplitude of driving both hexagons and interfac
emerge. We find a morphological instability leading to t
formation of ‘‘decorated’’ interfaces. We study the motion
the interface under the influence of a small subharmo
component in the driving acceleration. We also find a n
localized structure, a ‘‘superoscillon,’’ which exists for high
acceleration values. We discuss possible mechanism
saturation of the interface instability. Our experimental
sults demonstrate the existence of superoscillons and bo
states of superoscillons and interfaces. They also confirm
theoretical predictions for the external control of interfa
motion.

The structure of the paper is as follows. In Sec. I w
introduce our phenomenological order-parameter model
Sec. II we develop the weakly nonlinear theory for the fl
period-doubled state of the vibrated layer. In Sec. III w
analyze the interface solution, and study its stability w
respect to transverse perturbations. In Sec. IV we disc
5600 ©2000 The American Physical Society
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new localized solutions. In Sec. V we present the combi
theoretical phase diagram of the model. In Sec. VI we de
onstrate that in a certain limit our model can be reduced
the real Swift-Hohenberg equation. This equation also p
sesses a similar variety of patterns including stripes, he
gons, stable and unstable interface solutions, and local
solutions. In Sec. VII we demonstrate that additional subh
monic driving results in drift of the interface with the velo
ity determined by the amplitude of the driving and the dire
tion determined by the relative phase. In Sec. VIII we pres
our experimental results. This includes a phase diagram
the effect of additional subharmonic driving. Section
summarizes our conclusions.

I. PARAMETRIC GINZBURG-LANDAU EQUATION

The essence of the model@14,15# is the order-paramete
equation for the complex amplitudec of parametric layer
oscillations h5c exp(ipft)1c.c. at the frequency f /2
coupled with the equation for the thickness of the layer
averaged over the period of vibrations:

] tc5gc* 2~12 iv!c1~11 ib !¹2c2ucu2c2rc, ~1!

] tr5z¹•~r¹ucu2!1b¹2r. ~2!

Here g is the normalized amplitude of forcing at the fr
quencyf. Linear terms in Eq.~1! can be obtained from the
complex growth rate for infinitesimal periodic layer pertu
bations h; exp@L(k)t1ikx#. ExpandingL(k) for small k,
and keeping only two leading terms in the expansionL(k)
52L02L1k2, we obtain the linear terms in Eq.~1!, where
b5 Im L1 / ReL1 characterizes the ratio of dispersion to d
fusion and parameterv5(V02p f )/ReL0 , V052 Im L0,
characterizes the frequency of the driving. In Eq.~2!, z and
b are transport coefficients forr. The slowly varying thick-
ness of the layerr controls the dissipation rate@the last term
in Eq. ~1!#. The second equation~2! describes the re
distribution of the averaged thickness due to the diffus
flux }2¹r, and an additional flux}2r¹ucu2 caused by
the spatially nonuniform vibrations of the granular materi
This coupled model was used in Refs.@14,15# to describe
pattern selection near the threshold of the primary bifur
tion. It was shown that at smallzr0b21 ~which corresponds
to low frequencies and thick layers! the primary bifurcation
is subcritical, and leads to the emergence of square patt
For higher frequencies and/or thinner layers, the transitio
supercritical and leads to roll patterns. At intermediate f
quencies (f ' f * ), the stable localized solutions of Eqs.~1!
and ~2!, corresponding to isolatedoscillonsand a variety of
bound states, were found to be in agreement with exp
ment.

In this paper we focus on high-acceleration patterns
high frequencies. In Ref.@14# it was indicated that the den
sity transport coefficientb is proportional to the energy o
the plate vibration (}A 2f 2), whereA is the amplitude of the
vibration, therefore, it should increase with the driving fr
quencyf. As a result, for high frequencies the coupling b
tweenr and c becomes less relevant, and one can assu
r5const and exclude it from Eq.~1! by rescaling. Then the
model can be reduced to a single order-parameter equa
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] tc5gc* 2~12 iv!c1~11 ib !¹2c2ucu2c. ~3!

Equation~3! also describes the evolution of the order para
eter for the parametric instability in vertically oscillatin
fluid layers~see Refs.@17,18#!.

It is convenient to shift the phase of the complex ord
parameter viac̃5c exp(if) with sin 2f5v/g. The equations
for the real and imaginary parts ofc̃5A1 iB are

] tA5~s21!A22vB2~A21B2!A1¹2~A2bB!, ~4!

] tB52~s11!B2~A21B2!B1¹2~B1bA!, ~5!

wheres25g22v2.

II. STABILITY OF UNIFORM STATES

At s,1, Eqs.~4! and ~5! have only one trivial uniform
stateA50, B50. At s.1, two new uniform states appea
A56As21,B50. The onset of these states corresponds
the period doubling of the layer flights sequence, as obser
in experiments@2#, and predicted by the simple inelastic ba
model @2,19#. Signs6 reflect two relative phases of laye
flights with respect to container vibrations@20#.

The trivial flat stateA5B50 loses stability if the follow-
ing condition is fulfilled~compare with Ref.@14#!:

g2.
~v1b!2

11b2
. ~6!

Because of the symmetry of Eq.~3!, small perturbations
from the trivial state lead to the formation of a periodic s
quence of rolls or stripes.

Let us analyze the stability of the nontrivial statesA5
6As21 andB50 with respect to small perturbations wit
wave numberk:

S A
BD5S 6As21

0 D1S Uk

Vk
D exp@l~k!t1 ikx#. ~7!

The uniform state loses its stability with respect to perio
modulations with the critical wave numberkc at s,sc ~cor-
respondingly,g,gc), where

sc5
A~11v2!~11b2!2v1b

2b
, ~8!

kc
252

2s212vb

11b2
. ~9!

Small perturbations in every direction of the wave vec
grow at the same rate. The resultant selected pattern is
termined by the nonlinear competition between the modes
the presence of the reflection symmetryc→2c, quadratic
nonlinearity is absent, and cubic nonlinearity near the triv
state favors stripes corresponding to a single mode. Nea
fixed pointsA56As21,B50 the reflection symmetry for
perturbationsU→2U,V→2V is broken, and hexagon
emerge at the threshold of the instability. To clarify th
point we perform a weakly nonlinear analysis of Eqs.~4! and
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~5! for s5sc2e ande!1. At e→0, the variablesU andV
are related as in a linear system:

S U
V D5S 1

h DC,

~10!

C5( Aj exp@ ik"r #1c.c.,

whereuku5kc andh5@2(sc21)1kc
2#/(bkc

222v).
The corresponding adjoint eigenvector is

S U1

V1 D5S 1
h1 D , ~11!

where h152@2(sc21)1kc
2#/bkc

2 . Substituting Eq.~10!
into Eqs.~4! and ~5! and performing the orthogonalization
we obtain equations for the slowly varying complex amp
tudesAj , j 51, 2, and 3~we assume only three waves wi
triangular symmetry, favored by quadratic nonlinearity!:

] tAj52eAj1a2Aj 11* Aj 21* 2a3@ uAj u212~ uAj 21u2

1uAj 11u2!#Aj , ~12!

where the coefficientsa2 anda3 are

a2562As21S 21
11h2

11hh1D , a353~11hh1!.

~13!

Equations~12! were well studied~see Ref.@21#!. There
exist three critical values ofe: eA52a2

2/40a3 ,eR5a2
2/2a3,

and eB52a2
2/a3. Hexagons are stable foreA,e,eB , and

stripes are stable fore.eR . Thus, nears5sc the model
exhibits stable hexagons@22#. Since we have two symmetri
fixed points, both up and down hexagons coexist. For sma
s stripes are stable, and for largers flat layers are stable, in
agreement with observations@3,16#, as well as direct numeri
cal simulations of Eq.~3! @23#. The above analysis require
the values of eA,B,R to be small. For parametersv,b
5O(1), this requirement is satisfied foreA , but not for
eB,R . The estimates can be improved by substitutings5sc
1e instead ofs5sc in Eq. ~13!. The resulting range of stabl
hexagons is plotted in the phase diagram (v,g) ~see Fig. 7
below!.

III. INTERFACE SOLUTION

At s.1, Eqs.~4! and ~5! have an interface solution con
necting two uniform statesA56As21, B50. Let x be the
coordinate perpendicular to the interface andy the parallel
coordinate. The interface is the stationary solutions to E
~4! and ~5!:

~s21!A022vB02~A0
21B0

2!A01A0xx2bB0xx50,

2~s11!B02~A0
21B0

2!B01B0xx1bA0xx50.

~14!

For b50, Eqs. ~14! have a solution of the formA05
6As21tanh(As21x/2),B050. For bÞ0 the solution is
er

s.

available only numerically. We used the shooting match
technique to find this solution in the range of paramet
v, b, andg. A typical solution is shown in Fig. 1. As one
sees from the figure, forbÞ0 the asymptotic behavior of th
interface exhibits decaying oscillations.

Let us now consider the perturbed solution

S A
BD 5S A0

B0
D 1S Ã~x!

B̃~x!
D exp@l~k!t1 iky#, ~15!

wherek is the transverse modulation wave number andl(k)
is the corresponding growth rate. ForÃ andB̃ we obtain the
linear equation

L̂S Ã

B̃
D 5@l~k!1k2#S Ã

B̃
D 1bk2S B̃

2Ã
D , ~16!

where the matrixL̂ is of the form

L̂5S s2123A0
22B0

21]x
2 22v22A0B02b]x

2

22A0B01b]x
2 2s212A0

223B0
21]x

2D .

~17!

In order to determine the spectrum of eigenvaluesl(k)
we have solved Eq.~16! along with stationary equations~14!
numerically using numerical matching-shooting techniq
We have found that for smallv the interface is stable with
respect to transverse undulations, i.e.,l(k)<0. However,
for the values ofv above certain critical valuevc(g,b) the
interface exhibits transverse instability:l(k).0 in the band
of wave numbersuku,kc ; see Fig. 2.

This instability is confirmed by direct numerical simula
tions of Eq. ~3!. An example of the evolution of slightly
perturbed interface is shown in Fig. 4. Small perturbatio
grow to form a ‘‘decorated’’ interface. With time these dec
rations evolve slowly, and eventually form a labyrinthin
pattern.

The neutral curve for this instability can be determined
follows. Numerical analysis shows that at the threshold
most unstable wave number isk50, and we can expect tha
for k→0, l;k2; see Fig. 2. Expanding Eq.~16! in a power
series ofk2,

FIG. 1. Interface solution to Eqs.~14! obtained numerically for
v51, b54, andg52. The solid line corresponds toA and the
dashed line toB, respectively.
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S Ã

B̃
D 5S A(0)

B(0)D 1k2S A(1)

B(1)D 1•••, ~18!

in the zeroth order ink we obtainL̂(A(0),B(0)50. The cor-
responding solution is the translation modeA(0)

5]xA0(x),B(0)5]xB0(x). In the first order ink2 we arrive
at the linear inhomogeneous problem

L̂S A(1)

B(1)D5@l~k!1k2#S A(0)

B(0)D1bk2S B(0)

2A(0)D . ~19!

A bounded solution to Eq.~19! exists if the right-hand side is
orthogonal to the localized mode of the adjoint opera
A†,B†. The adjoint operatorL̂† is of the form

L̂†5S s2123A0
22B0

21]x
2 22A0B01b]x

2

22v22A0B02b]x
2 2s212A0

223B0
21]x

2D .

~20!

Since the operatorL̂† is not self-adjoint, the adjoint mod
does not coincide with the translation mode, and, theref
must be obtained numerically.

The orthogonality condition fixes the relation betweenl
andk:

l52sk2, s511b

E
2`

`

@A(0)B†2B(0)A†#dx

E
2`

`

@A(0)A†1B(0)B†#dx

, ~21!

wheres is ‘‘surface tension’’ of the interface. The instabi
ity, corresponding to the negative surface tension of the
terface, onsets ats50. Although the interface solutionA(x)
is not localized~see Fig. 1!, the integrals in Eq.~21! con-
verge because the adjoint functionsA† andB† are localized.
The numerically obtained adjoint eigenmode is shown in F
3. The neutral curve is shown in Fig. 7. Direct numeric
simulations of Eq.~3! show that this instability leads to s
called ‘‘decorated’’ interfaces@see Fig. 4~a!#; however, at
later stages the undulations grow and finally form labyr
thine patterns~Figs. 4~b!–4~d!#.

FIG. 2. Spectrum of eigenvaluesl(k) for v51.3, b54, and
g52 ~solid line! andv51, b54, andg52 ~dashed line! obtained
from numerical solution of Eq.~16!.
r

e,

-

.
l

-

The emergence of the labyrinthine patterns as a resu
interface instability contradicts experiments@4,5,16# where
stable decorated interfaces are typically observed. Thus
model @Eq. ~3!# does not capture saturation of the interfa
instability and requires modification. We also checked t
the coupling to the density field introduced in Ref.@14# does
not provide desired saturation.

Let us now discuss possible mechanisms of saturatio
the transverse instability of the interface, which is not ca
tured by Eq.~3!. The reason for the proliferation of the laby
rinths is that local stabilization mechanisms cannot satu
the ‘‘negative surface tension instability’’ of the interfac
Indeed, the behavior of the small perturbationz of an almost
flat interface is described by the linear equationz t52sDz,
wheres is the surface tension. The linear growth must
counterbalanced by nonlinear terms. Due to translation
variance the local nonlinearity can be a function of gradie
of z only. In the lowest order the first term isu¹zu3, since the
quadratic term does not saturate the monotonic instabi

FIG. 3. Adjoint eigenfunction obtained numerically forv
51.3, b54, andg52. The solid line corresponds toA† and the
dashed line toB†, respectively.

FIG. 4. ~a!–~d! Interface instability and labyrinth formation@Eq.
~3!#. v52, b54, andg52.9, the domain size is 1003100 units,
and snapshots are taken at timest51000, 1600, 2300, and 4640.
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Since for the modulation wave numberk→0 one hasu¹zu3
;k2uzu3 and Dz;k2z, the linear instability always over
comes the local nonlinearity at small wave numbers. A
result, small perturbations grow and saturation occurs du
nonlocal interactions as in a labyrinthine pattern which
stabilized by nonlocal repulsion of the fronts~see Ref.@24#!.

As we see in our model, the interface instability does
result in stable decorated interfaces. One possibility for
saturation of this instability could be local convection i
duced by the interface. Indeed, due to the shear motio
grains at the interface~the flat regions move in antiphase!
local convective flow can be created. The scale of this fl
can be larger than the interface thickness. One of the pos
manifestations of the convection beside grain transport
reduction of the effective ‘‘viscosity’’ of the flat layer, or a
increase in the sensitivity to external vibrations@25#. As we
can see from Fig. 7, an increase in vibration magnitudeg
suppresses the interface instability. As the instability dev
ops, the length of the interface grows, which increases
convection and finally suppresses the instability. This fe
back mechanism results in a saturation of the interface in
bility, and creates stable decorations.

Although the details of this coupling are not yet known,
can be implemented within the order-parameter approac
a phenomenological way. In Eq.~3! the forcinggc* must be
replaced by (g01w)c* , wherew includes the effect of loca
convective flow andg05const. We take the simplest po
sible form of the coupling to the convective flow,

w5
e

SE dr8 expS 2
ur 2r 8u2

r 0
2 D u¹c~r 8!u2, ~22!

where r 0 characterizes the typical scale of the convect
flow, e is the amplitude of the coupling, andS is the area of
integration domain. Sinceu¹c(r 8)u is nonzero only at the
interface, this integral is proportional to the total length
the interface. With the growth of the interface length t
value of the ‘‘effective forcing’’g5g01w grows as well,
and eventually leaves the instability domain.

We performed numerical simulations with Eq.~3! modi-
fied in the following way. The convolution integral~22! was
calculated using the fast Fourier transform. The results
presented in Fig. 5. Remarkably, for a certain range of
rameters the instability indeed saturates due to the nonl
term @Eq. ~22!#, and we find interfaces with stable decor
tions; see Fig. 5~a!.

IV. LOCALIZED SOLUTIONS

In addition to the interface solution which exists fors
.1, for even higher values ofs Eq. ~3! possesses a variety o
other nontrivial two dimensional solutions including loca
ized superoscillons. A typical solution and its correspond
localized linear mode are shown in Fig. 6.

Although super-oscillons appears to be similar to
‘‘conventional oscillon’’ discovered in Ref.@4#, there is a
significant difference. The asymptotic behavior of the su
eroscillon isC→A0Þ0 for r→`, whereas the regular os
cillon has C→0. This implies that the phase of the su
eroscillon is always locked into the phase of the fl
layerexhibitingperiod-doubled behavior, whereas ‘‘conven-
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tional oscillons’’ of either phase coexist on theharmonic
background~the amplitude of period 2 oscillations is zero!.
As a result oppositely phased superoscillons must be s
rated by an interface connecting two opposite phases of
period-doubled flat layer, whereas oppositely phased os
lons can easily form stable bound states~dipoles@4#!.

Superoscillons, in the presence of additional subharmo
driving, are somewhat similar to normal oscillons of lik
polarity ~see Ref.@4#!. In this case the external driving cre
ates a period-doubled background of the flat layer, and lo
the phase of the superoscillons. However, superoscillons
ist for parameter values where the oscillons of Ref.@4# are
impossible even with additional subharmonic driving.

Superoscillons exist in a relatively narrow domain of p
rameters of Eq.~3!. A decrease ofg leads to a destabilization
of the localized eigenmode leading to a subsequent nu
ation of new ‘‘superoscillons’’ on the periphery of the un
stable superoscillon; with an increase ofg superoscillons
disappear in a saddle-node bifurcation.

For certain values ofg0 we also find an interesting struc
ture consisting of a decorated interface and a chain of s
eroscillons bound to the decorations; see Fig. 5~b!. These

FIG. 5. Computer simulations of modified Eq.~3!. Surface plots
show ReC for different stationary solutions:~a! A saturated inter-
face; v51.2, g51.85, b54, e50.002, r 0540, andL5160. ~b!
A saturated interface with boundsuperoscillons; v51.2, g
51.75, b54, e50.002, r 0540, andL5160. ~c! A single sup-
eroscillonat v51.2,g52.2,b54, e50.002, r 0540, andL5100.
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objects can exist completely independently of the interf
@Fig. 5~c!#, as one may expect for Eq.~3!. Thus we conclude
that the extended equation~3! qualitatively describes the ob
served phenomenology.

V. PHASE DIAGRAM

The results of a linear stability analysis can be summ
rized in the phase diagram shown in Fig. 7. Remarkably,
structure of the phase diagram of Fig. 7 is qualitatively sim
lar to that of experiments for high frequencies of vibratio
see Fig. 10 and Refs.@2–5,10,16#. Increasing the vibration
amplitude g leads to a transition from a trivial state t
stripes, hexagons, decorated interfaces, and, finally, to st
interfaces. A transition from unstable to stable interfaces a
occurs with decreasingv ~increasing vibration frequencyf ),
in agreement with Refs.@16,26#. In experiments at still
higherG ’s, quarter-harmonic patterns appear; however, th
patterns are not described by our model. Our analysis
predicts the coexistence of stripes and hexagons in a
narrow parameter range~see Sec. II!. Superoscillons were
found in a narrow domain close to line 7 of Fig. 7.

Note that square patterns, which emerge at lower frequ
cies, are not included in the phase diagram. They are

FIG. 6. ~a! Axisymmetric localized solution~superoscillon! ob-
tained for b54, v51, andg51.8 for Eq. ~3! at b54. A, solid
line; B, dashed line.~b! Localized eigenfunction corresponding
the maximum eigenvaluel520.0009.
e

-
e
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;

ble
o

e
so
ry
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b-

tained within the full model of Eqs.~1! and ~2!, with an
additional density fieldr; see Ref.@14#.

VI. SWIFT-HOHENBERG EQUATION

Near the lines51 ~see Fig. 7! Eq. ~3! can be simplified.
In the vicinity of this line A;(s21)1/2 and B;(s21)3/2

!A. In leading order we can obtainB5b¹2A/2 from Eq.
~5!, and Eq.~4! yields @27#

] tA5~s21!A2A31~12vb!¹2A2
b2

2
¹4A. ~23!

Rescaling the variablest→(s21)t, A→(s21)21/2A, x
→@2(s21)/b2#1/4, we arrive at the Swift-Hohenberg equa
tion ~SHE!

] tA5A2A32d¹2A2¹4A, ~24!

where

d5
vb21

b
A 2

s21
. ~25!

The description by the SHE is valid ifd;O(1), which im-
plies an additional condition for the validity of this approa
vb21!1 at s→1.

Although this equation is simpler than Eq.~3!, it captures
many essential features of the original system dynamics,
cluding the existence and stability of stripes and hexagon
different parameter regions~see Refs.@28,29#!; the existence
of the interface solutions, interface instability, and su
eroscillons; and the emergence of labyrinthine patterns@30#.
Indeed, a simple analysis shows that the growth rate of
instability of the uniform stateA51 as a function of the
perturbation wave number is determined by the form
l(k)5221dk22k4; it becomes unstable atd.dc52A2 at
a critical wave numberkc5A2. As in the original model,

FIG. 7. Phase diagram for Eq.~3! at b54. Line 1, g25(v
1b)2/(11b2); line 2, s2[g22v251; line 3, s5sc ; line 4, s
5sc2eR ; line 5, s5sc2eB ; line 6, s5sc2eA ; line 7, surface
tensions50. Below line 1 there are no patterns. Between lines
and 4, stripes are stable. Between lines 5 and 6, hexagons are s
Above line 2, nontrivial flat states exist. Above line 3 these sta
are stable. Interfaces are unstable below line 7. Hexagons
stripes coexist between lines 4 and 5.
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near the threshold of this instability, subcritical hexago
patterns are preferred. The interface stability can also be
lyzed more simply, as the linearized operator correspond
to model ~24! is self-adjoint. The threshold value ofd is
obtained from the solvability condition

E
2`

`

~d thA0x
2 22A0xx

2 !dx50, ~26!

which yieldsd th51.011. This yields an equation for the ne
tral curve of the interface instability in the Swift-Hohenbe
limit in the form

s511
2~vb21!2

d th
2 b2

. ~27!

Figures 8~a!–8~d! show the development of the interfac
instability within the SHE with a subsequent transition
labyrinthine patterns, similar to the dynamics of the f
parametric equation~3!. Again, to saturate the instability, a
additional nonlocal mechanism is required.

As was shown recently, the Swift-Hohenberg equat
also possesses localized solutions~see Refs.@30,31#!. These
localized states are analogous to the superoscillons of
~3!.

VII. SUBHARMONIC FORCING AND
INTERFACE MOTION

Now we will focus on the effect of additional subha
monic driving on the motion of the interface. In the origin
model@Eq. ~3!#, the interface does not move due to symm
try between the left and right halves of the interface. Ho
ever, if the plate oscillates with two frequenciesf and f /2, the
symmetry between these two states, connected by the i
face, is broken, and the interface moves. The velocity of
interface motion depends on the relative phase of the sub
monic forcing with respect to the forcing atf. The effect of a
small external subharmonic driving applied in the bac

FIG. 8. ~a!–~d! Labyrinth formation from a circular spot~SHE!;
d51.4, the domain size is 1003100 units, andt5200, 1300, 1700,
and 1900.
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ground of the primary harmonic driving with the frequencyf
can be described by the equation@cf. Eq. ~3!#

] tc5gc* 2~12 iv!c1~11 ib !¹2c2ucu2c1qeiF,
~28!

where q characterizes the amplitude of the subharmo
pumping, andF determines its relative phase.

For smallq, we look for a moving interface solution in th
forms c5c0(x2vt)1qc1(x2vt)1••• and v5O(q), or,
alternatively,

S A
BD5S A0~x2vt !

B0~x2vt ! D1qS a~x2vt !
b~x2vt ! D1O~q2!. ~29!

The solvability condition@compare with Eq.~21!# fixes
the interface velocity as a function of the amplitude a
phase of the external subharmonic driving,

v52q
cosFE A†dx1 sinFE B†dx

E ~A†]xA01B†]xB0!dx

5qa sin~F2F0!,

~30!

wherea5const is the susceptibility of the interface for e
ternal forcing, andF05const is some phase shift. An ex
plicit answer is obtained forb50 when A†5]xA0 and F
50,p, which yields the interface velocityv57 3

2 qA0
225

7 3
2 q(s21)21. In general,A, B, A†, andB†, and hencev,

can be found numerically. The interface velocity as functi
of q,F is shown in Fig. 9.

Thus from this analysis we conclude that additional su
harmonic driving results in a controlled motion of the inte
face. The velocity of the interface depends on the amplitu
of the driving, and the direction is determined by the relat
phaseF.

VIII. EXPERIMENTAL RESULTS

We performed experiments with a thin layer of granu
material subjected to periodic driving. Our experimen

FIG. 9. Interface velocityv for v51, b54, andg52.5 vsq at
F50. Inset:v vs F at q50.01. (d), numerical results;~—!, ana-
lytical expression~30!.
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FIG. 10. Phase diagram. The material is 15
mm copper balls, and the layer thickness is t
particle diameters.
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setup is similar to that of Ref. @5#. We used
0.15-mm-diameter bronze or copper balls, and the la
thickness in our experiments was ten particles. We p
formed experiments in a rectangular cell of 4312 cm2. We
were able to vary the accelerationG and frequencyf of the
primary driving signal as well as the accelerationg, fre-
quencyf 1 and phaseF of the secondary~additional! driving
signal. The interface position and vertical accelerations w
acquired using high-speed video and accelerometers, and
ther analyzed on a Pentium computer. To maintain and m
sure the proper acceleration atf and f /2 we employed the
lock-in technique with our signal originating from an acce
erometer attached to the bottom of the cell. This allowed
simultaneousreal-time feedback and control of the device
To reduce the interstitial gas effects@32# we reduced the
pressure to 2 mTorr. Our visual data were acquired usin
high-speed digital camera~Kodak SR-1000c!, in addition to
high-speed recording this also allowed for a synchroniza
between the patterns and the image acquisition.

A. Phase diagram

The experimental phase diagram is shown in Fig. 10. I
similar to that of Refs.@3,4,16#; however, the transition from
hexagons to interfaces is elaborated in more detail. There
small hysteresis at the transition line from stripes to he
gons~not shown in the phase diagram!. The dashed line in-
dicates the stability line for interfaces with respect to pe
odic undulations, determined as the average half-width of
pattern. To determine this stability limit, we kept the value
accelerationG fixed and increased the driving frequencyf.
For each value of the frequency we extracted the interf
width by averaging up to ten images of the interface. In or
to find that amplitude of the periodic undulationsl we sub-
tracted the thickness of the flat interfacel 0 from the obtained
value. The resultant amplitude or undulationsl as functions
of driving frequencyf are shown in Fig. 11. As one see
from the figure, the amplitude of undulationsl decreases
gradually, approaching the critical value of the frequen
However, a small hysteresis at the transition point canno
excluded because of large error bars.

As follows from the phase diagram, for a small amplitu
of the vertical accelerationG,3.6 stripes are the only stabl
pattern~note that we focus on high-frequency patterns wh
r
r-

re
ur-
a-

r
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e
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e
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.
e

n

squares do not exist; compare Ref.@3#!. At slightly higher
values (G53.6–3.7) stripes and hexagons coexist. F
higher values (G53.7–4.0) the hexagons become stab
Due to the subharmonic character of motion both up a
down hexagons may coexist, separated by a line phase d
@Fig. 12~a!#. There exists a narrow band, fromG53.85 to
4.0, where localized states, orsuperoscillons, appear both
within the bulk of the material and also pinned to the fro
between the interface and the bulk@Fig. 12~b!#. For even
higher values of the accelerationG.4.0 the superoscillons
disappear@Fig. 12~c!#, leading to isolated interfaces with pe
riodic decorations.

B. Controlled motion of interface

In the absence of additional driving the interface dri
toward the middle of the cell~see Fig. 12!. We attribute this
effect to the feedback between the oscillating granular la
and the plate vibrations, due to the finite ratio of the mass
the granular material to the mass of the vibrating plate. E
in the absence of subharmonic drive, the vibrating cell c
acquire subharmonic motion from the periodic impacts of
granular layer on the bottom plate at half the driving fr
quency. If the interface is located in the middle of the ce
the masses of material on both sides of the interface
equal, and, due to the antiphase character of the layer mo

FIG. 11. The amplitude of periodic undulationsl as a function
of driving frequencyf. The acceleration amplitude isG54.1.
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on both sides, an additional subharmonic driving is not p
duced. The displacement of the interfaceX from the center of
the cell leads to a mass differenceDm on opposite sides o
the interface, which in turn causes an additional subharmo
driving proportional toDm. In a rectangular cell,Dm}X.
Our experiments show that the interface moves in such a
to decrease the subharmonic response, and the feedback
vides an additional term2X/t on the right-hand side of Eq
~30!, yielding

dX

dt
52X/t1qa sin~F2F0!. ~31!

The relaxation time constantt depends on the mass rat
~this also holds for the circular cell ifX is small compared to
the cell radius!. Thus, in the absence of an additional subh
monic drive (q50), the interface will eventually divide the
cell into two regions of equal area~see Fig. 12!.

In order to verify the prediction of Eq.~31! we performed
the following experiment. We positioned the interface o
center by applying an additional subharmonic drive. Then
turned off the subharmonic drive and immediately measu
the amplitudem of the plate acceleration at the subharmo
frequency@33#. The results are presented in Fig. 13. T
subharmonic acceleration of the cell decreases exponen
as the interface propagates to the center of the cell.
measured relaxation timet of the subharmonic acceleratio
increases with the mass ratio of the granular layer and of
cell with all other parameters fixed. The mass of the granu
layer was varied by using two different cell sizes—circul
diameter 15.3 cm, and rectangular, 4312 cm—while keep-
ing the thickness of the layer unchanged. For these cells
found that the relaxation timet in the rectangular cell is
about four times greater than for the circular cell~see Fig.
13!. This is consistent with the ratio of the total masses
granular material~52 grams in rectangular cell and 19
grams in the circular cell!. In a separate experiment the ma
of the cell was changed by attaching an additional weigh

FIG. 12. Representative high-acceleration patterns in the rec
gular 4312-cm cell, driving frequencyf 540 Hz: ~a! G53.75
shows the onset of theinterfacewith up and down hexagons.~b!
G53.94 superoscillonsare present in the flat layer and are pinn
to the front near the interface.~c! G54, isolated decorated inter
face.
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250 grams to the moving shaft, which weighs 2300 gram
This led to an increase of the corresponding relaxation tim
of 15–25 %. The relaxation timet increases rapidly withG
~see the inset of Fig. 13!.

When an additional subharmonic driving is applied, t
interface is displaced from the middle of the cell. For sm
amplitude of the subharmonic drivingg, the stationary inter-
face position isX5qat sin(F2F0), since the restoring force
balances the external driving force. The equilibrium positi
X as function ofF is shown in Fig. 14~a!. The solid line
depicts the sinusoidal fit predicted by the theory. Becaus
the finite mass ratio effect, the amplitude of the measu
plate accelerationm at frequencyf 1 also shows periodic be
havior with F @see Fig. 14~b!#, enabling us to infer the in-
terface displacement from the acceleration measureme

n- FIG. 13. Amplitude of the subharmonic accelerationm of the
cell averaged over four measurements vs time for the interf
propagating to the center of the cell forG53.97 andf 540 Hz.
Circles and squares correspond to circular and rectangular cells
open and closed symbols correspond to light and heavy cells
spectively. Heavy cells differ from light ones by an addition
weight of 250 g attached to the moving shaft. Solid lines show
exponential fitm; exp(t/t)1const. Inset:t vs G for light rectangu-
lar cell.

FIG. 14. ~a! Equilibrium positionX and ~b! amplitude of mea-
sured subharmonic accelerationm as functions of phaseF. Circular
cell: G54.1, f 540 Hz, andq51.25% ofG.
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For an even larger amplitude of subharmonic driving~more
than 4–5 % of the primary driving! extended patterns~hexa-
gons! re-emerge throughout the cell.

The velocityV05qa, which the interface would have in
an infinite system, can be found from measurements of
relaxation timet and maximum displacementXm at a given
amplitude of subharmonic accelerationg, V05Xm /t; see
Eq. ~31!. We verified that in the rectangular cell the displac
mentX depends linearly ong almost up to values at which
the interface disappears at the short side wall of the cell~see
the inset of Fig. 15!. Figure 15 shows the susceptibilitya as
a function of the amplitude of the primary accelerationG.
The susceptibility decreases withG. The cusplike features in
the G dependence ofa ~andt; see the inset to Fig. 13! are
presumably related to the commensurability between the
eral size of the cell and the wavelength of the interface de
rations.

We developed an alternative experimental techniq
which allowed us to measure simultaneously the relaxa
time t and the ‘‘asymptotic’’ velocityV0. This was achieved
by a small detuningD f of the additional frequencyf 1 from
the exact subharmonic frequencyf /2, i.e., D f 5 f 12 f /2! f .
This is equivalent to the linear increase of the phase shifF
with the rate 2pD f . This linear growth of the phase resul
in a periodic motion of the interface with frequencyD f and
amplitude Xm5V0 /At221(2pD f )2 @see Eq ~31!#. The
measurements of the ‘‘response functions’’Xm(D f ) are pre-
sented in Fig. 16. From the dependence ofXm on D f we can
extract parametersV0 , a, and t by a fit to the theoretica
function. The measurements are in a very good agreem
with previous independent measurements of the relaxa
time t and susceptibilitya. For a comparison with the pre
vious results, we indicate the values fort and a, obtained
from the response function measurements of Figs. 13 an
~stars!. The measurements agree within 5%.

CONCLUSIONS

In this paper we studied the dynamics of thin vibrat
granular layers in the framework of a phenomenologi
model based on the Ginzburg-Landau-type equation for
order parameter characterizing the amplitude of subharm

FIG. 15. Susceptibilitya vs G at f 540 Hz, rectangular cell.
Inset: displacementX as a function ofq at F52600.
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sand vibrations. Although a rigorous derivation of this mod
is not possible to date, our approach gives a significant
sight into the problem at hand, and results in testable pre
tions. Our model is complementary to more elaborate flu
dynamic-like continuum descriptions or direct molecu
dynamics simulations, and allows us to carry out analyti
calculations of various regimes and predict their stability.
challenging problem is to establish a quantitative relat
between our order-parameter model and other models as
as experiments.

We have shown in this paper that the generic parame
Ginzburg-Landau model of Eq.~3! captures not only pattern
of vibrated sand near the primary bifurcation, but also la
acceleration patterns such as hexagons, interfaces, and
eroscillons. The structure of the phase diagram of Fig. 7
high frequencies and amplitudes of vibrations is qualitativ
similar to that of previous experiments~Refs.@2,3,5,16#!, as
well as the experiments reported here. Increasing the vi
tion amplitude leads to a transition from a trivial state
stripes, hexagons, decorated interfaces, and finally, to st
interfaces. Interface decorations were found to be a resu
the transversal instability of a flat interface, which is ana
gous to the negative surface tension. We found that Eq.~3! is
not sufficient to describe the saturation of the interface ins
bility. We propose a possible nonlocal mechanism of satu
tion of this instability which takes into account the depe
dence of the overall length of the interface and t
magnitude of parametric forcing, which may occur due to
large scale convective flow induced by the sand motion n
the interface. We described analytically the motion of t
interface under the symmetry-breaking influence of the sm
subharmonic driving.

In our experimental study we found that on a qualitati
level the theoretical phase diagram is similar to the exp
mental one. The experiments also confirmed the existenc
superoscillons and their bound states with the interface
predicted by the theory. Further experimental study is nec
sary to elucidate the specific mechanism for saturation of
interface instability.

FIG. 16. Maximum displacementXm from the center of the
rectangular cell as a function of frequency differenceD f 5 f 12 f /2
for f 540 Hz, and forG53.97 ~circles! and G54.1 ~diamonds!.
Dashed lines are fit toXm5V0 /At221(2pD f )2. The values ofa
andt obtained from the fit are also indicated in Figs. 13 and 15
arrows with stars.
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Stimulated by the theoretical prediction, we also p
formed experimental studies of interface motion under ad
tional subharmonic driving. The experiment confirmed th
the direction and magnitude of the interface displacem
depend sensitively on the amplitude and relative phase o
subharmonic driving. Moreover, we found that the perio
doubling motion of the flat layers produces subharmo
driving because of the finite ratio of the mass of the granu
layer and the cell. This in turn leads to the restoring fo
driving the interface toward the middle of the cell.
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