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Tightness of random knotting
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Long polymers in solution frequently adopt knotted configurations. To understand the physical properties of
knotted polymers, it is important to find out whether the knots formed at thermodynamic equilibrium are
spread over the whole polymer chain or rather are localized as tight knots. We present here a method to analyze
the knottedness of short linear portions of simulated random chains. Using this method, we observe that
knot-determining domains are usually very tight, so that, for example, the preferred size of the trefoil-
determining portions of knotted polymer chains corresponds to just seven freely jointed segments.

PACS numbgs): 61.41+e, 05.40.Fb, 83.10.Nn

A topological perspective dominates current thinkingaddressed previously the probability of knotting as a function
about knotted polymer$1,2]. Knotted configurations ob- of the size of random walks. Figure 2 shows that the prob-
tained by numerical approaches based on random-walk simability of remaining unknotted drops exponentially td.%
lations [3—7] and experimentally obtained knofd,8] are  as chain length grows from 50 to 1500 freely jointed seg-
typically characterized in terms of knot types and/or globalments, while the formation of simple prime knots reaches a
physical properties. The comparable average sizes of vempaximum in chains of~260 segments. For still longer
long knotted and unknotted circular trajectories simulated orthains the competition between the increasing number of
a cubic lattice[9,10] as well as entropy consideratiofisl] realizable knotgparticularly composite knotdrings about a
suggest the presence of tight knots in long, randomly disgradual decrease in the probability of forming a given prime
torted polymers. However, other numerical studit® were  knot; see also Ref5]. The designation of the knot types in
not supporting the preference for tight knotting. Fig. 2 follows the standard notation in which the main num-

To our knowledge, the question of whether entanglementber indicates the minimal number of crossings that a given
tend to be “spread” over the whole molecule or localized knot can have in a planar projection and the subscript indi-
within a short region has never been directly analyzed; seeates the tabular position of this knot among all knots with
Fig. 1 for a schematic illustration of these two extremesthe same minimal number of crossiftg,17]. The compos-
Also, the typical extent of tightness of random knots has noite knot notation lists the two or more independent factor
been investigated before. We decided, therefore, to simulatenots tied on the same string. Regularized configurations of
trajectories adopted by knotted polymeric chains freely susthe analyzed knots can be seen in REi§,17,24,2%
pended in a solvent under conditions where the segments The frequency of knotting versus chain length does not
neither attract nor repel one another and then to measure threctly tell us whether polymer knots are loose, i.e., distrib-
size of the knot-determining domains for different types ofuted over the whole length of the modeled whfig. 1(a)],
knots made up of different length polymers. We first col-or tight, i.e., localized within a short portion of the molecule
lected ensembles of independent knotted configurations froffFig. 1(b)]. To identify and measure the size of knotted do-
sets of 500000 or more closed random walks of a givermains, we systematically scanned the generated configura-
length using the simulation method described in REES,  tions by providing an external closure to a “moving win-
14], distinguishing different knot types on the basis of theirdow” containing a given number of segments. Conceptually
Alexander polynomial§15—-17. The chain length is mea- similar types of closures were proposed earlier to detect
sured in terms of the number of freely jointéduhn) seg-  knotting in linear random chaing26]. We looked for the
ments, each segment corresponding to the real length ovetinimal number of segments that, upon closure with an ex-
which the correlation between the starting and ending directernal planar loop, formed the same type of knot as the entire
tions of the polymer is completely lost, e.g:300 base pairs circular chain. Knot-type recognition was based on calcula-
in double-stranded DNA18,19. It was conjectured20,2l]  tions of the Alexander polynomial for complete circular
and rigorously proven for lattice and continuum models ofwalks and for selected length linear subchains that were
polymer behavior{22,23 that the probability of knotting closed with external planar loops. A large planar loop form-
tends to unity for very long walks. Numerous simulation ing almost a complete circle was attached to the starting and
studies and cyclization of long DNA molecul¢8-5,7,§ ending vertices of the analyzed subdomain. The actual incli-

nation of the planar loop with respect of the enclosed sub-
chain was random since local orientation does not affect the
*Present address: The Scripps Research Institute, Mail MB-37, Ltéopology of the construct. The diameter of the closing loop

Jolla, CA 92037. was chosen to be much larger than the dimensions of the
TAuthor to whom correspondence should be addressed. Electron@nalyzed subdomain in order to minimize the risk of piercing
address: Andrzej.Stasiak@lau.unil.ch through the enclosed portion of the chain and thereby chang-
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FIG. 1. (Color) Schematic illustration ofa) loose andb) tight trefoil (3;) knotting. Notice that real and simulated polymer chains at
equilibrium do not have such smooth, regular trajectofg&® Fig. 3 for one such simulated trajecjory

ing the knot type of the total construct. Accidental piercing isthe unknotted character of the remainder of the chain. Only
a problem during the closure of long subchains but is verypart of the 200-segment long virtual arc attached to the
rare for small enclosed subchains. Figure 3 illustrates detedoundaries of the knot-determining domain is shown in the
tion of the knotted domain in a randomly generated, 100figure.

segment knotted chain. The detected trefoil-determining do- While knotting events induced by closure with an external

main, which is composed of seven segments, is evident as Igop are rare, it is important to see whether these false knot-
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FIG. 2. (Color) Probability of forming simple prime and composite knots as a function of the nuishbéfreely jointed chain segments
in simulated closed polymers. The smooth curves are fits of the computed probabilities to an expgreafi exp(—N/c). The composite
knots (3:#3,, 3:#4,, and 3#3,#3,) are described in terms of the prime knis,17 that comprise them. Thus, the notatiop#3,
denotes a knot built from a trefoil (3 and an achiral four-noded (}knot[24]. Random closed chains were simulated using the algorithm
described in Refq.13,14]. Because the Alexander polynomial does not distinguish between mirror images of chiral knots syctbas 3
and 5, the right- and left-handed versions of these knots are grouped together. For similar topological reasons, the saj#ifle of 3
composite knots includes a very small proportion gf Bnots with the same Alexander polynomiil. While other more complex knots can
have the same Alexander polynomial as the simpled3, 5,, and 5 knots analyzed by us, the occurrence of such knots is so rare that they
will not affect the statistics in an appreciable way and are most likely absent from our samples. Qualitatively similar findings were reported
previously by Deguchi and Tsurusdk]. The “step number” associated with the10 000 random chains generated in that work, however,
does not correspond to the number of freely jointed segments reported here. The present results are also based on a better sampling with
more than 500 000 independent closed configurations analyzed at each chain length.
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FIG. 4. (Colon Sizes of knot-determining domains found in
s ] computer simulated freely jointed chains composed of 500 seg-
) o ments. The data were obtained by scanning thousands of
(31,41,51,5,,6;) prime and (3#3;) composite knots collected from

FIG. 3. (Colorn Example of a tight trefoil-determining domain a set of 900 000 random circular walks of 500 stégee Table | for
identified in a random configuration of a trefoil forming poly- the corresponding numbers of analyzed khothe length of the
mer: (@) stereo representation of a seven-segment trefoil, colorettnot-determining domain in each of the individual configurations is
in green, in the context of a 100-segment ch&b);a virtual qua-  defined as the smallest number of segments which, upon virtual
sicircular planar arc is attached to the ends of the seven segment®sure(Fig. 3), produces the knot type of the whole knotted chain.
shown above. Alexander polynomial calculation applied to this con-The smoother histograms of some knot types,433,#3;) reflect
struct(seven segments of the chain and the virtual closdet¢ects  the greater numbers of those knots in our sample; see Table I.
a 3, knot. Careful visual analysis of the figure also confirms theNotice that for each knot type, 100% corresponds to the total num-
presence of a trefoil knot. ber of analyzed trajectories of a given knot type.

ting events significantly affect our results. To this aim weAs could be expected, the domains determining kéots
performed a control of our knot detection method by carry-span more segments with the most frequent minimal realiza-
ing out a “knotted domain search” on unknotted closedtions of such domains requiring-15 segments, and the
chains. The proportion of incorrectly detected trefoil do-maximum of the distribution being less pronounced than that
mains on 500-segment unknotted rings that resulted fronof the trefoil domains. For pand 5 knots we see further
additional crossings by an external closing loop w90 in  broadening of the distributions with the most frequent mini-
a sample of~100000 chains. The distribution of minimal mal size of the domains determining these knots~&0
sizes among these false knotted domains, however, waegments, while the most frequent minimal size pfk6ots
strongly shifted toward much larger values than in the corteaches more than 30 segments. As can be seen in Fig. 4, the
responding set of knotted domains detected in real knottethost frequent minimal size of prime knots grows progres-
chains. False knotting occurs at larger chain lengths, sincgively with the complexity of these knots. We showed earlier
only for larger subdomains is there a significant chance thahat the length to diameter ratio of ideal geometric configu-
the closing procedure will introduce topological entangle-rations of knots is a good measure of the knots’ complexity
ments. Real knots are detected in smaller subdomains, bg24]. We checked, therefore, how the length/diameter ratio of
cause they do not need additional entanglements. Thugleal knots relates to the most frequent minimal size of ran-
while a small proportion of the data for trefoil knots in Fig. 4 dom knots of the corresponding size. For the prime knots
may result from false knotting events, the position of theanalyzed her€3,, 4., 51, 5,, and ), this relation is close
maximum is unlikely to be affected by false knotting. Falseto linear. However, 3#3,; composite knots display qualita-
detection of 4 knots is of the order of 1%, while that of tively different behavior consistent with independent local-
more complex knots is even lower. ization of both factor knot$10,27. For 3,#3, composite
The histograms in Fig. 4 show the distributions of theknots, a minimal size of more than 50 segments is needed to
minimal number of segments in knot-determining domainsenclose both factor knots, although this knot in its ideal geo-
within 500-segment circular random walks forming, 34, metric configuration has a very similar length/diameter ratio
5,, 5,, and 6 prime knots and in 3#3; composite knots to the 6, knot[24,25|.
made up of two trefoils. The most frequent minimal size for In addition to measuring the distribution of minimal sizes
the trefoil-determining domains is 6—8 segments, and thef knot-determining domains, we have checked the propor-
observed maximum of this distribution is well pronounced.tion of confined and redistributed configurations of different



5548 VSEVOLOD KATRITCH et al. PRE 61

TABLE |. Frequency of confinement of knots-determining do-  If we apply the above reasoning to the probability of for-
mains intos; size of 500-segment-long closed random waiksa ~ mation of a trefoil-determining domain by a growing poly-

set of 900 000 walks mer, we conclude that the chain must be sufficiently long to

allow the thermally induced bending required for the forma-

Knot Number of analyzed tion of the knotted domain. In addition, since the total cur-
type trajectories Confined knot$o) vature of a knot is much greater than that of an unk@6i,

both the bending and the required length of the polymer

31 151278 55.6 should be significantly greater than the corresponding values
4 32420 44.6 needed for simple circularization. At the same time, we note
1 11199 33.8 that stochastically formed loops are most likely to be pierced
52 19273 325 by a growing chain end which is not far away. As soon as the
6, 5938 21.4 growing end becomes distant from the loop, the chance that
6, 6420 20.4 it will pierce this subdomain and form a knot decreases. Thus
63 3722 17.5 knotting events will tend to be confined to relatively short

3,#3, 85895 5.1 chain lengths. _ _ _ _

3,#4, 35809 3.4 Our observation of tight knotting may at first seem incom-

patible with the results in Fig. 2, which demonstrate that very
long polymers(corresponding to~250 freely jointed seg-
knots. As a somewhat arbitrary criterion, we chose to meaMents are needed to achieve a substantial probability of tre-
sure the proportion of knots that are localized4nof the ~ foil formation. While polymer lengths corresponding to
contour length of a knotted polymer. As shown in Table |,S€Ven segments are the most frequent size of trefoil-
more than 55% of the trefoil-determining domains of 500-detérmining domains, the actual probability that a given

segment trefoil-forming chains are confined within this limit, SEVEN statistical segments will form a trefoil-determining do-

i.e., 50 segments or fewer. For more complicated knots thidai IS quite low. Therefore, a polymer must sample many
ndependent configurations of seven freely jointed segments

Err]%?:rvt\'lic:ﬂ giicgrrgse;nsgagire?(me'cst:é"ltﬁz !:?Er?cssof t?:)/eo t];eto achieve a substantial probability of trefoil formation. The
toforl-determin dg L pf 500, ! " Observed tightness is a “local” characteristic of trefoil-
refoi-determining -domains - Segment, - CompOSIt&q ming polymers, whereas the lengths in Fig. 2 reflect the
3:#3; knots falling within a 50-segment window is Very s jikely ways of incorporating this topological constraint
small (5%), a result confirming the independent localization, 5 long, closed circular molecule.
of both factor knot§10,27. Although we have concentrated in this work on the size of
It follows that relatively simple knots such a$,341, 51, knot-determining domains in closed chains of a given knot
and 5 prime knots tend to be confined rather than distrib-yyne our results can be extended to long linear chains which
uted over circular polymers of several hundred freely jointed;-c,ymulate tightly entangled domaii®6,31. Here we have
segments. To understand the physical basis of this confingscysed on the knotting of chains of zero thickness which
ment, it is useful to consider first the probability of simple efiect the ideal behavior of polymers under so-callezbn-
circularization of a polymer as a function of chain length. gitions [32,33. After this work was completed, we learned
The polymer should be long enough that the overall bendingyot a study which shows that knots also tend to localize
energy required to close the chain can be furnished by thegithin small domains of long self-avoiding random walks
mal fluctuations. On the other hand, the chain should not bF34]- Self-avoiding random walks mimic the behavior of

so long that the chance that its two ends will meet gets veryolymers subject to so-called excluded volume effects which
small. The average distance between the ends of a thermally o polymers suspended in good solvdB®33.

agitated polymer increases with chain length, and both the

relative concentration of one end of the polymer in the vi- We thank Alexander Grosberg and John Marko for dis-
cinity of the other and the probability of circularization de- cussions. This work was supported by the U.S. Public Health
creasdg 19]. Thus polymer circularization occurs at an opti- Service (Grants Nos. GM34809 and GM542]15the
mum chain length in which the two ends of the molecule areBurroughs-Wellcome Fund through the Program in Math-
not too far apart but where the chain is sufficiently long toematics and Molecular Biology based at Florida State Uni-
undergo thermally induced 360° bending. In the case of aersity, the Swiss National FoundatiofGrant No. 31-
freely jointed polymer, this chain length corresponds to ap42158, and the Foundation Herbette of the University of
proximately two statistical segmenta8,29|. Lausanne.
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