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Tightness of random knotting

Vsevolod Katritch,1,* Wilma K. Olson,1 Alexander Vologodskii,2 Jacques Dubochet,3 and Andrzej Stasiak3,†

1Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903
2Department of Chemistry, New York University, New York, New York 10003

3Laboratoire d’Analyse Ultrastructurale, Baˆtiment de Biologie, Universite´ de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
~Received 19 February 1999; revised manuscript received 15 February 2000!

Long polymers in solution frequently adopt knotted configurations. To understand the physical properties of
knotted polymers, it is important to find out whether the knots formed at thermodynamic equilibrium are
spread over the whole polymer chain or rather are localized as tight knots. We present here a method to analyze
the knottedness of short linear portions of simulated random chains. Using this method, we observe that
knot-determining domains are usually very tight, so that, for example, the preferred size of the trefoil-
determining portions of knotted polymer chains corresponds to just seven freely jointed segments.
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A topological perspective dominates current thinki
about knotted polymers@1,2#. Knotted configurations ob
tained by numerical approaches based on random-walk s
lations @3–7# and experimentally obtained knots@4,8# are
typically characterized in terms of knot types and/or glo
physical properties. The comparable average sizes of
long knotted and unknotted circular trajectories simulated
a cubic lattice@9,10# as well as entropy considerations@11#
suggest the presence of tight knots in long, randomly d
torted polymers. However, other numerical studies@12# were
not supporting the preference for tight knotting.

To our knowledge, the question of whether entangleme
tend to be ‘‘spread’’ over the whole molecule or localiz
within a short region has never been directly analyzed;
Fig. 1 for a schematic illustration of these two extrem
Also, the typical extent of tightness of random knots has
been investigated before. We decided, therefore, to simu
trajectories adopted by knotted polymeric chains freely s
pended in a solvent under conditions where the segm
neither attract nor repel one another and then to measure
size of the knot-determining domains for different types
knots made up of different length polymers. We first c
lected ensembles of independent knotted configurations f
sets of 500 000 or more closed random walks of a giv
length using the simulation method described in Refs.@13,
14#, distinguishing different knot types on the basis of th
Alexander polynomials@15–17#. The chain length is mea
sured in terms of the number of freely jointed~Kuhn! seg-
ments, each segment corresponding to the real length
which the correlation between the starting and ending dir
tions of the polymer is completely lost, e.g.,;300 base pairs
in double-stranded DNA@18,19#. It was conjectured@20,21#
and rigorously proven for lattice and continuum models
polymer behavior@22,23# that the probability of knotting
tends to unity for very long walks. Numerous simulatio
studies and cyclization of long DNA molecules@3–5,7,8#
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addressed previously the probability of knotting as a funct
of the size of random walks. Figure 2 shows that the pr
ability of remaining unknotted drops exponentially to;1%
as chain length grows from 50 to 1500 freely jointed se
ments, while the formation of simple prime knots reache
maximum in chains of;260 segments. For still longe
chains the competition between the increasing numbe
realizable knots~particularly composite knots! brings about a
gradual decrease in the probability of forming a given prim
knot; see also Ref.@5#. The designation of the knot types i
Fig. 2 follows the standard notation in which the main nu
ber indicates the minimal number of crossings that a giv
knot can have in a planar projection and the subscript in
cates the tabular position of this knot among all knots w
the same minimal number of crossing@16,17#. The compos-
ite knot notation lists the two or more independent fac
knots tied on the same string. Regularized configurations
the analyzed knots can be seen in Refs.@16,17,24,25#.

The frequency of knotting versus chain length does
directly tell us whether polymer knots are loose, i.e., distr
uted over the whole length of the modeled walk@Fig. 1~a!#,
or tight, i.e., localized within a short portion of the molecu
@Fig. 1~b!#. To identify and measure the size of knotted d
mains, we systematically scanned the generated config
tions by providing an external closure to a ‘‘moving win
dow’’ containing a given number of segments. Conceptua
similar types of closures were proposed earlier to de
knotting in linear random chains@26#. We looked for the
minimal number of segments that, upon closure with an
ternal planar loop, formed the same type of knot as the en
circular chain. Knot-type recognition was based on calcu
tions of the Alexander polynomial for complete circul
walks and for selected length linear subchains that w
closed with external planar loops. A large planar loop for
ing almost a complete circle was attached to the starting
ending vertices of the analyzed subdomain. The actual in
nation of the planar loop with respect of the enclosed s
chain was random since local orientation does not affect
topology of the construct. The diameter of the closing lo
was chosen to be much larger than the dimensions of
analyzed subdomain in order to minimize the risk of pierci
through the enclosed portion of the chain and thereby cha
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FIG. 1. ~Color! Schematic illustration of~a! loose and~b! tight trefoil (31) knotting. Notice that real and simulated polymer chains
equilibrium do not have such smooth, regular trajectories~see Fig. 3 for one such simulated trajectory!.
is
er
te
00
d
s

nly
the
the

al
not-
ing the knot type of the total construct. Accidental piercing
a problem during the closure of long subchains but is v
rare for small enclosed subchains. Figure 3 illustrates de
tion of the knotted domain in a randomly generated, 1
segment knotted chain. The detected trefoil-determining
main, which is composed of seven segments, is evident a
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the unknotted character of the remainder of the chain. O
part of the 200-segment long virtual arc attached to
boundaries of the knot-determining domain is shown in
figure.

While knotting events induced by closure with an extern
loop are rare, it is important to see whether these false k
s
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FIG. 2. ~Color! Probability of forming simple prime and composite knots as a function of the numberN of freely jointed chain segment
in simulated closed polymers. The smooth curves are fits of the computed probabilities to an exponential,p5aNb exp(2N/c). The composite
knots ~31#31 , 31#41 , and 31#31#31! are described in terms of the prime knots@16,17# that comprise them. Thus, the notation 31#41

denotes a knot built from a trefoil (31) and an achiral four-noded (41) knot @24#. Random closed chains were simulated using the algori
described in Refs.@13,14#. Because the Alexander polynomial does not distinguish between mirror images of chiral knots such as1 , 51 ,
and 52 , the right- and left-handed versions of these knots are grouped together. For similar topological reasons, the sample1#31

composite knots includes a very small proportion of 820 knots with the same Alexander polynomial@9#. While other more complex knots ca
have the same Alexander polynomial as the simple 31 , 41 , 51 , and 52 knots analyzed by us, the occurrence of such knots is so rare that
will not affect the statistics in an appreciable way and are most likely absent from our samples. Qualitatively similar findings were
previously by Deguchi and Tsurusaki@5#. The ‘‘step number’’ associated with the;10 000 random chains generated in that work, howev
does not correspond to the number of freely jointed segments reported here. The present results are also based on a better sa
more than 500 000 independent closed configurations analyzed at each chain length.
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PRE 61 5547TIGHTNESS OF RANDOM KNOTTING
ting events significantly affect our results. To this aim w
performed a control of our knot detection method by car
ing out a ‘‘knotted domain search’’ on unknotted clos
chains. The proportion of incorrectly detected trefoil d
mains on 500-segment unknotted rings that resulted f
additional crossings by an external closing loop was;3% in
a sample of;100 000 chains. The distribution of minima
sizes among these false knotted domains, however,
strongly shifted toward much larger values than in the c
responding set of knotted domains detected in real kno
chains. False knotting occurs at larger chain lengths, s
only for larger subdomains is there a significant chance
the closing procedure will introduce topological entang
ments. Real knots are detected in smaller subdomains,
cause they do not need additional entanglements. T
while a small proportion of the data for trefoil knots in Fig.
may result from false knotting events, the position of t
maximum is unlikely to be affected by false knotting. Fal
detection of 41 knots is of the order of 1%, while that o
more complex knots is even lower.

The histograms in Fig. 4 show the distributions of t
minimal number of segments in knot-determining doma
within 500-segment circular random walks forming 31 , 41 ,
51 , 52 , and 61 prime knots and in 31#31 composite knots
made up of two trefoils. The most frequent minimal size
the trefoil-determining domains is 6–8 segments, and
observed maximum of this distribution is well pronounce

FIG. 3. ~Color! Example of a tight trefoil-determining domai
identified in a random configuration of a trefoil forming poly
mer: ~a! stereo representation of a seven-segment trefoil, colo
in green, in the context of a 100-segment chain;~b! a virtual qua-
sicircular planar arc is attached to the ends of the seven segm
shown above. Alexander polynomial calculation applied to this c
struct ~seven segments of the chain and the virtual closure! detects
a 31 knot. Careful visual analysis of the figure also confirms t
presence of a trefoil knot.
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As could be expected, the domains determining 41 knots
span more segments with the most frequent minimal real
tions of such domains requiring;15 segments, and th
maximum of the distribution being less pronounced than t
of the trefoil domains. For 51 and 52 knots we see further
broadening of the distributions with the most frequent mi
mal size of the domains determining these knots at;20
segments, while the most frequent minimal size of 61 knots
reaches more than 30 segments. As can be seen in Fig. 4
most frequent minimal size of prime knots grows progre
sively with the complexity of these knots. We showed earl
that the length to diameter ratio of ideal geometric config
rations of knots is a good measure of the knots’ complex
@24#. We checked, therefore, how the length/diameter ratio
ideal knots relates to the most frequent minimal size of r
dom knots of the corresponding size. For the prime kn
analyzed here~31 , 41 , 51 , 52 , and 61!, this relation is close
to linear. However, 31#31 composite knots display qualita
tively different behavior consistent with independent loc
ization of both factor knots@10,27#. For 31#31 composite
knots, a minimal size of more than 50 segments is neede
enclose both factor knots, although this knot in its ideal g
metric configuration has a very similar length/diameter ra
to the 61 knot @24,25#.

In addition to measuring the distribution of minimal siz
of knot-determining domains, we have checked the prop
tion of confined and redistributed configurations of differe

d

nts
-

FIG. 4. ~Color! Sizes of knot-determining domains found
computer simulated freely jointed chains composed of 500 s
ments. The data were obtained by scanning thousands
(31,41,51,52,61) prime and (31#31) composite knots collected from
a set of 900 000 random circular walks of 500 steps~see Table I for
the corresponding numbers of analyzed knots!. The length of the
knot-determining domain in each of the individual configurations
defined as the smallest number of segments which, upon vir
closure~Fig. 3!, produces the knot type of the whole knotted cha
The smoother histograms of some knot types (31,41,31#31) reflect
the greater numbers of those knots in our sample; see Tab
Notice that for each knot type, 100% corresponds to the total n
ber of analyzed trajectories of a given knot type.
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knots. As a somewhat arbitrary criterion, we chose to m
sure the proportion of knots that are localized in1

10 of the
contour length of a knotted polymer. As shown in Table
more than 55% of the trefoil-determining domains of 50
segment trefoil-forming chains are confined within this lim
i.e., 50 segments or fewer. For more complicated knots
proportion becomes smaller but is still as large as 20%
knots with six crossings. As expected, the chance of the
trefoil-determining domains of 500-segment, compos
31#31 knots falling within a 50-segment window is ver
small ~5%!, a result confirming the independent localizati
of both factor knots@10,27#.

It follows that relatively simple knots such as 31 , 41 , 51 ,
and 52 prime knots tend to be confined rather than distr
uted over circular polymers of several hundred freely join
segments. To understand the physical basis of this con
ment, it is useful to consider first the probability of simp
circularization of a polymer as a function of chain leng
The polymer should be long enough that the overall bend
energy required to close the chain can be furnished by t
mal fluctuations. On the other hand, the chain should no
so long that the chance that its two ends will meet gets v
small. The average distance between the ends of a therm
agitated polymer increases with chain length, and both
relative concentration of one end of the polymer in the
cinity of the other and the probability of circularization d
crease@19#. Thus polymer circularization occurs at an op
mum chain length in which the two ends of the molecule
not too far apart but where the chain is sufficiently long
undergo thermally induced 360° bending. In the case o
freely jointed polymer, this chain length corresponds to
proximately two statistical segments@28,29#.

TABLE I. Frequency of confinement of knots-determining d
mains into 1

10 size of 500-segment-long closed random walks~in a
set of 900 000 walks!.

Knot
type

Number of analyzed
trajectories Confined knots~%!

31 151278 55.6
41 32420 44.6
51 11199 33.8
52 19273 32.5
61 5938 21.4
62 6420 20.4
63 3722 17.5

31#31 85895 5.1
31#41 35809 3.4
A
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If we apply the above reasoning to the probability of fo
mation of a trefoil-determining domain by a growing pol
mer, we conclude that the chain must be sufficiently long
allow the thermally induced bending required for the form
tion of the knotted domain. In addition, since the total cu
vature of a knot is much greater than that of an unknot@30#,
both the bending and the required length of the polym
should be significantly greater than the corresponding va
needed for simple circularization. At the same time, we n
that stochastically formed loops are most likely to be pierc
by a growing chain end which is not far away. As soon as
growing end becomes distant from the loop, the chance
it will pierce this subdomain and form a knot decreases. T
knotting events will tend to be confined to relatively sho
chain lengths.

Our observation of tight knotting may at first seem inco
patible with the results in Fig. 2, which demonstrate that v
long polymers~corresponding to;250 freely jointed seg-
ments! are needed to achieve a substantial probability of
foil formation. While polymer lengths corresponding
seven segments are the most frequent size of tre
determining domains, the actual probability that a giv
seven statistical segments will form a trefoil-determining d
main is quite low. Therefore, a polymer must sample ma
independent configurations of seven freely jointed segme
to achieve a substantial probability of trefoil formation. Th
observed tightness is a ‘‘local’’ characteristic of trefo
forming polymers, whereas the lengths in Fig. 2 reflect
most likely ways of incorporating this topological constrai
in a long, closed circular molecule.

Although we have concentrated in this work on the size
knot-determining domains in closed chains of a given k
type, our results can be extended to long linear chains wh
accumulate tightly entangled domains@26,31#. Here we have
focused on the knotting of chains of zero thickness wh
reflect the ideal behavior of polymers under so-calledu con-
ditions @32,33#. After this work was completed, we learne
about a study which shows that knots also tend to loca
within small domains of long self-avoiding random walk
@34#. Self-avoiding random walks mimic the behavior
polymers subject to so-called excluded volume effects wh
act on polymers suspended in good solvents@32,33#.
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