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A two-time-scale, two-temperature scenario for nonlinear rheology
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We investigate a general scenario for ‘‘glassy’’ or ‘‘jammed’’ systems driven by an external, nonconserva-
tive force, analogous to a shear force in a fluid. In this scenario, the drive results in the suppression of the usual
aging process, and the correlation and response functions become time translation invariant. The relaxation
time and the response functions are then dependent on the intensity of the drive and on temperature. We
investigate this dependence within the framework of a dynamical closure approximation that becomes exact for
disordered, fully connected models. The relaxation time is shown to be a decreasing function of the drive
~‘‘shear thinning’’ effect!. The correlation functions below the glass transition temperature (Tc) display a
two-time-scalerelaxation pattern, similar to that observed at equilibrium slightly aboveTc . We also study the
violation of the fluctuation-dissipation relationship in the driven system. This violation is very reminiscent of
the one that takes place in a systemaging below Tc at zero drive. It involves, in particular the appearance of
a two-temperatureregime, in the sense of an effective fluctuation-dissipation temperature@L. F. Cugliandolo,
J. Kurchan, and L. Peliti, Phys. Rev. E55, 3898~1997!#. Although our results are, in principle, limited to the
closure relations that hold for mean-field models, we argue that a number of the salient features are not inherent
to the approximation scheme, and may be tested in experiments and simulations.

PACS number~s!: 05.70.Ln, 64.70.Pf, 83.50.Gd
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I. INTRODUCTION

The behavior of complex systems subject to an exte
drive is a very complex field of research. The generic sit
tion we may think of is the case of a fluid undergoing stea
shear flow, in which case the study of its response pertain
the field of rheology. Rheological experiments on comp
fluids are known to display a rich phenomenology, as illu
trated in the recent book by Larson@2#. Nontrivial behaviors,
however, are not restricted to complex fluids, since it is a
found that supercooled liquids exhibit a non-Newtoni
‘‘shear thinning’’ behavior@3#.

From a fundamental and theoretical point of view, t
most interesting features emerge when the intrinsic re
ation time scale of the system become of macroscopic or
so that there is a direct interplay between the ‘‘shearin
time scale and the relaxation time scale. This means tha
will be interested in systems whose dynamical evolution
hibits a two-time-scalepattern. This is the case, e.g., in s
percooled liquids, in which the particles have a fast ‘‘ra
tling’’ motion inside the ‘‘cage’’ constituted by thei
neighbors, followed by a slow ‘‘structural’’ rearrangement
these cages. The two time scales become more and m
different on approaching the glass transition. Below the gl
transition the same behavior subsists, but now the time s
of the structural relaxation~the a-relaxation timeta) is not
constant and grows with the waiting time elapsed after
quench to low temperatures: this gradual arrest is called
ing. More generally, the same situation is realized in all s
tems that are ‘‘jammed,’’ like granular materials or foam
@4#. In all these cases, it is known that a driving force ha
particularly strong influence, for it may be able to stop t
aging in an out of equilibrium system and to restore tim
translation invariance.

In order to study theoretically this interplay between t
PRE 611063-651X/2000/61~5!/5464~9!/$15.00
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drive and the relaxation of the system, it is natural to exte
the approaches that have been successful for describing
dynamical behavior of glassy systems, as reviewed, e.g
@5#. One possible and quite promising route, followed
Sollich and co-workers~for a review, see@6# and references
therein! is to extend the phenomenological ‘‘trap’’ models
driven systems, giving rise to the so-called soft glassy rhe
ogy ~SGR! model. Such a model was shown to account w
for a number of the generic features found in soft glas
materials.

Another possible, and complementary, approach is to
tend the mode-coupling approach used in the study of gla
systems to the driven case. This approach relies on a clo
relation for the dynamical equations that is known to be
act for ‘‘mean-field’’-like systems, and to provide a reaso
ably good description of the dynamics of real glass form
liquids @7#. This theoretical framework has the advantage
simultaneously giving insight into the macroscopic~rheo-
logical! and the microscopic~nonequilibrium statistical me-
chanics! aspects of the problem, since the mode-coupl
equations can be derived from specific microscopic mod

Such microscopic models with driving forces have be
studied in the context of neural networks@8,9#, the drive
being a tool to destroy the glassy phase. More closely rela
to our approach are the studies of Horner@10# and Thalmann
@11# who investigated the dynamics of a particle in a rand
potential in the presence of a driving force. Our focus in t
paper will be a bit different, since we are interested in tra
lating the results into the language of nonlinear rheology

The paper is organized as follows. In the next section
explain the general spirit of the closure approximations t
give rise to the mode-coupling equations. An explicit e
ample for a simple system is worked out, and the numer
methods used in solving the equations are presented. Se
III contains the results obtained for the correlation and
sponse functions in a stationary driven state. We discuss
5464 ©2000 The American Physical Society
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results in Sec. IV, and conclude by considering some p
sible extensions of this work in Sec. V.

II. DYNAMICAL EQUATIONS

A. The general framework

We start by briefly describing@12# the perturbative resum
mation schemes~of which the mode-coupling approximatio
is a special example! that allow us to obtain closed equation
for the time-dependent correlation and response function
an interacting system. We then specialize to the simpler c
of a single mode, and study the resulting equations num
cally.

Let us consider a system whose dynamics is describe
the microscopic level by a Langevin equation

m
]2f~x,t !

]t2
1

]f~x,t !

]t
5@2m~ t !1D#f~x,t !2gF~f!

1h~x,t !1h~x,t !, ~1!

wheref(x,t) is a vector field,F(f) is a nonlinear~possibly
nonlocal! coupling term andh’s a Gaussian white noise. Th
term containingm(t) is a restoring force andD may contain
spatial derivatives or convolutions~as one would obtain, for
instance, iff is a coarse-grained density and the evolution
driven by the Ramakrishnan-Youssouf density function
see, e.g.,@13#!. The coupling constantg serves as a book
keeping parameter to set up a perturbative expansion.

Making a spatial Fourier transform, we obtain the fiel
f̂(k,t) and the Gaussian noise such that^h(k,t)h(k8,t8)&
52Td(k1k8)d(t2t8). In terms of those Fourier
transformed variables, the correlation and response funct
are defined as

d~k1k8!C~k,t,t8!5^f̂~k,t !f̂~k8,t8!&, ~2!

d~k1k8!R~k,t,t8!5K df̂~k,t !

dh~k8,t8!
L . ~3!

The dynamical equation~1! implies a Dyson equation forC
andR of the form

m
]2C~k,t,t8!

]t2
1

]C~k,t,t8!

]t

5@2m~ t !d~k8!1Dk8#C~k2k8,t,t8!12TR~k,t8,t !

1E
2`

t8
dt9D~k8,t,t9!R~k2k8,t8,t9!

1E
2`

t

dt9S~k8,t,t9!C~k2k8,t9,t8!, ~4!

m
]2R~k,t,t8!

]t2
1

]R~k,t,t8!

]t
s-

of
se
ri-

at

s
l,

ns

5@2m~ t !d~k8!1Dk8#R~k2k8,t,t8!1d~ t2t8!

1E
t8

t

dt9S~k8,t,t9!R~k2k8,t9,t8!, ~5!

where the summation overk8 is implied. The operatorDk
acts now in the Fourier space. The functionsS(k,t,t8) and
D(k,t,t8) can be obtained@15# as functionalsof the correla-
tions and responses by adding all the two-line-irreduci
diagrams of the perturbative expansion ing of Eq. ~1! but
substituting the propagators with the dressed propaga
C(k,t,t8) andR(k,t,t8). Now, if we stay at the level of the
simplest diagrams~having only two vertices!, we obtain the
simplification1 thatS(k,t,t8) andD(k,t,t8) become ordinary
functionsof C(k,t,t8) and R(k,t,t8) ~with no integrations
over the times!. This type of ansatz constitutes the basis
the mode-coupling approximation.

Naively, one could expect that the mode-coupling strate
could be improved to any desired accuracy by including d
grams with higher-order vertices. Unfortunately, it see
that the phenomena usually described as ‘‘activated p
cesses’’ are of a nonperturbative nature, and hence wil
missed even if higher-order vertices are taken into acco
This is an intrinsic limitation of the mode-coupling or mea
field approaches when applied to realistic systems, and ha
be taken into account when interpreting the results. We s
discuss this point in a more detailed way at the end of S
II D.

B. A single-mode driven model

Staying within this approximation, we furthermore ma
the considerable simplification of considering a singlek
mode. This of course means that we give up all spatial
formation. The basic elements we find, however, can
readily generalized to the case of manyk modes, and, fur-
thermore, to approximations that include diagrams with m
and more vertices. The spirit is similar to the study of ‘‘sch
matic models’’ for the theory of supercooled liquids b
Götze and co-workers@7#. These models are also close
related to spin-glass ones, as explained in the next sec
No attempt is made to describe in aquantitativeway the
rheology of glassy systems, but still it is hoped thatgeneric
and nontrivial behaviors can be predicted at a qualitat
level.

If we restrict Eqs.~4! and ~5! to a single ‘‘important’’
mode, and furthermore absorbD which is now irrelevant in
m, and neglect the inertial term which is inessential for t
slow dynamics, we obtain

]C~ t,t8!

]t
52m~ t !C~ t,t8!12TR~ t8,t !

1E
2`

t8
dt9D„C~ t,t9!…R~ t8,t9!

1E
2`

t

dt9S~ t,t9!C~ t9,t8!,

1This is a resummation and is not the same as expanding on
orderg2, since the propagator themselves depend also ong.
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]R~ t,t8!

]t
52m~ t !R~ t,t8!1d~ t2t8!

1E
t8

t

dt9S~ t,t9!R~ t9,t8!. ~6!

If in addition, we imposeC(t,t)51 we have

m~ t !5T1E
2`

t

dt9@D„C~ t,t9!…R~ t,t9!1S~ t,t9!C~ t,t9!#.

~7!

When the force in the Langevin equation derives from
potential,so that detailed balance is verified, one has@12#

S~ t,t8!5D8„C~ t,t8!…R~ t,t8!, ~8!

with D8(x)[dD(x)/dx. Conversely, a set of equations wi
S(t,t8)2D8„C(t,t8)…R(t,t8)Þ0 can only describe a drive
system, in which detailed balance is violated. Mode-coupl
equations that describe a driven system can therefore be
tained by introducing a modified version of equation~8!.
Cugliandoloet al. @16# chose, for instance,

S~ t,t8!5aD8„C~ t,t8!…R~ t,t8!, ~9!

the parameter 12a being then a measure of the~nonconser-
vative! driving forces. They showed numerically that th
presence of the drive was sufficient to stop aging in
glassy phase, so that time translation invariance was re
ered at all temperatures.

It may be important at this point to distinguish betwe
two ways of driving a system:

~i! ‘‘Shearlike’’ driving: the system is subjected to force
that do not derive from a global potential, as when a pot
tial difference is applied at the ends of a conductor and
circuit is closed. They can be time-dependent or const
and generate currents in both cases.

~ii ! ‘‘Tappinglike’’ driving: the forces are time dependen
but do derive from a global potential. This is for example t
case of an ac magnetic field in spin models, or oscillat
acceleration of a container with frictionless walls~an ac
gravity field!. These forces do not do work if they are co
stant in time, independently of their strength.

In this paper we concentrate on the case of continu
drive, and hence only the ‘‘shearinglike’’ forces are releva
We discuss below how the analogy with a rheological
periment can be developed further. The case of an oscilla
drive will be discussed elsewhere.

C. The associated disordered model,
and the rheological analogy

Many years ago, Kraichnan@17# noted that one could find
a disordered model such that the approximate closed e
tions for the two-point correlations and responses of
original model areexactfor it. Although this hidden mode
behind the closure approximation is not otherwise direc
related to the original one, it allows to view the dynamic
equations from a different, instructive perspective.

We now specify the model we concentrate on in the r
of the paper. The case of the single mode equations w
a

g
b-

e
v-

-
e
t,

g

s
t.
-
g

a-
e

y
l

t
th

D(x)5pxp21/2 corresponds to a disordered model given
continuous variablessi ( i 51, . . . ,N) evolving with the
Langevin equation

]si~ t !

]t
52m~ t !si~ t !2

dH

dsi~ t !
1 f i

drive~ t !1h i~ t !, ~10!

where

H52 (
j 1,•••, j p

Jj 1••• j p
sj 1

•••sj p
~11!

is the Hamiltonian of thep-spin model and

f i
drive5e~ t !(

i

*
J̃i

j 1••• j k21sj 1
•••sj k21

, ~12!

with

(
i

*
[ (

i , j 1•••, j p21

1 (
j 1, i , j 2•••, j p21

1•••1 (
j 1,•••, j p21, i

.

The parameterm(t) ensures a spherical constraint( isi
25N,

andh i(t) ( i 51, . . . ,N) are random Gaussian variables wi
mean 0 and variance 2T. The couplingsJ in H are random
Gaussian variables, symmetrical about the permutation
( j 1 , . . . ,j p), with mean zero and variancep!/2Np21. The
couplings J̃ in f i

drive are random Gaussian variables, sym
metrical about the permutations of (j 1 , . . . ,j k21), with
mean zero and such that

J̃i
j 1••• j k21J̃i

j 1••• j k215
k!

2Nk21
; J̃i

j 1••• j k21J̃ j r

j 1••• i ••• j k2150.

~13!

The resulting force cannot be written as the derivative o
potential.

Equations~6! are then the exact equations satisfied by

C~ t,t8!5( i^si~ t !si~ t8!&/N

and

R~ t,t8!5( i^dsi~ t !/dh i~ t8!&/N

in the limit N→` and withC(t,t) imposed. The model stud
ied in Ref.@16# corresponds tok5p.

The important point is that, on average,only the noncon-
servative part of the force gives energy to the system, hence
the name ‘‘driving force.’’ The amplitude of the drive i
controlled by the parametere(t). If we now want to push
further the analogy with the dynamics of a fluid system u
dergoing shear flow, we have to identify the equivalent of
shear rate and stress variables. Obviously, the schem
character of the model makes it difficult to carry out such
identification at a microscopic level. A way of bypassing th
difficulty is to estimate the power input into the system d
to the existence of the nonconservative forces, which can
defined as
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P[K 1

N (
i 51

N

f i
driveṡi L . ~14!

The calculation of this quantity is given in detail in th
appendix, and assuming stationarity~see below! yields

P5
ke2

2 E
0

1`

dtC~t!k21
dR~t!

dt
. ~15!

If we assume that the fluctuation-dissipation theorem is
violated too strongly, as will be the case in the followin
examples,R is roughly proportional todC/dt. Hence the
power dissipated in the system will scale ase2/ta , whereta
is the relaxation time of the system. Comparing to a stand
shear flow, this indicates thate should in that case be inter
preted as playing the role of a stress, whilee/ta is analogous
to a shear rate.

Although Eq.~15! can be used to define the analogous
shear rate and shear stress in our model, the response
tion R does not have a direct analog in rheological measu
ments, since it is not the response associated to a shear s
Experimentally, one should think ofR andC as the response
and correlation functions associated with an observa
which is not rheologically relevant~as measured, e.g., in
dielectric measurement!. This observable would be measure
in a system made stationary by imposing an external sh
rate.

D. Reynolds effect and yield stress

Having access to a microscopic model behind the dyna
cal equations allows us to understand the evolution from
geometry of the corresponding phase space. At zero exte
drive, this connection has been studied in much detail@18–
21#, and the main results can be summarized as follows.

At a given temperature, the free-energy landscape of
purely conservative model with energy~11! can be con-
structed. Above a dynamical transition temperatureTc , the
available phase space is dominated by one large basin in
free energy, corresponding to the paramagnetic~or ‘‘liquid’’ !
state. AtTc , a threshold levelin free energy appears, belo
which the free-energy surface is split into exponentia
many disconnected regions.

The aging dynamics belowTc can be understood@22# as a
gradual descent to the threshold level, starting from hi
energy configurations. The slowing down is then the con
quence of the decreasing connectivity of the visited la
scape. The system never really reaches the deepest,
disconnected parts of phase space below the threshold
the other hand, if the system is somehow prepared in on
these deep regions, it remains trapped there for all times

When the system is quenched from a high temperat
but at the same time driven by nonconservative forces
remains drifting above the free-energy threshold, consta
receiving energy from the drive. In a mean-field system, s
a situation will hold for arbitrarily weak drive, since the un
driven system itself never falls below this energy level.

If, on the contrary the system is prepared in an ene
state below the threshold, we expect that a weak driv
force will have essentially no effect~beyond an ‘‘elastic’’
response of the system!, as it is not strong enough to mak
t
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the system overcome the barriers. If instead a strong driv
applied, the system escapes the low-lying valley and it s
faces above the threshold, where the drive will suffice
keep it forever~recall that in the rheological analogy, b
‘‘drive,’’ we really mean a stress!. An interesting analogy
can be drawn with the Reynolds dilatancy effect@4# in granu-
lar materials, or with the yield stress in a Bingham fluid@2#.
Note that the actual value of valley depths and thresh
level can be calculated from first principles within the sam
scheme of approximation we have used for the dynam
starting from the original microscopic model.

We are now in a position to see what is the main sho
coming of the mode-coupling kind of approach. In any re
istic system the structure of threshold and valleys may
main essentially the same, but now activat
~nonperturbative! processes allow to jump barriers that a
impenetrable at the perturbative level. Hence, for a real s
tem the relaxation~aging! process will allow the system to
penetrate slowly below the threshold, and after long times
access deeper valley. In order to keep the system with a
vated processes from sinking, we now need driving for
with finite strength~the ‘‘yield stress’’ effect!. This effect
can be expected to take place whenever the system has f
out of equilibrium, and is undergoing an aging process. A
ing dynamics leads the system to be trapped~on the experi-
mental time scale! in some deep lying valley. A strong
enough drive can force to leave the valley, and a small e
drive is sufficient to keep the system above the threshold

III. RESULTS FOR A STEADY DRIVE

A. Dynamical equations in the stationary state

When the system is submitted to a steady drive, it ev
tually reaches a stationary state, whatever the tempera
This allows to replace in Eqs.~6! the two-times functions
A(t,t8) by A(t) with t[t2t8. The following equations cor-
responding to the simple model described in Sec. II C
easily obtained:

dC~t!

dt
52mC~t!1E

0

t

dt8S~t2t8!C~t8!

1E
0

1`

dt8@S~t1t8!C~t8!1D~t1t8!R~t8!#,

dR~t!

dt
52mR~t!1E

0

t

dt8S~t2t8!R~t8!,

m5T1E
0

1`

dt8@D~t8!R~t8!1S~t8!C~t8!#,

D~t!5
p

2
C~t!p211e2

k

2
C~t!k21,

S~t!5
p~p21!

2
C~t!p22R~t!. ~16!

Note that these equations are ‘‘noncausal’’ in the time d
ferencet. They are, of course, still causal in the original tw
times, but the parity ofC(t) has now been used.
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The system~16! can only be solved analytically in th
limit of small drive, for all temperatures, following the step
of Ref. @22#. The solution shows that the correlation a
response functions can be split into two parts associated
the two time scales discussed in the Introduction. One t
writes C(t)5Cs(t)1Cf(t) andR(t)5Rs(t)1Rf(t), f ~s!
labeling the fast~slow! time scale. In that small drive limit
the two time scales are well separated and the fluctuat
dissipation theorem~FDT! does not hold. More precisely
one can prove a generalization of the FDT, in the form

Rf~t!52
1

T

dCf~t!

dt
; Rs~t!52

1

Teff

dCs~t!

dt
. ~17!

An interpretation is that the short time scale is thermalized
the bath temperatureT, while the longer one is thermalized a
an effective temperatureTeff @1#. This effective temperature
is determined analytically by the matching of the solutio
between the two time scales. It is interesting to remark t
the values of the effective temperatures for a stationary, v
weakly driven system coincides with the effective tempe
ture of its undriven, aging counterpart.

In order to study the preasymptotic (eÞ0) behavior of
the system, we solved numerically the system~16!, combin-
ing the numerical methods of Refs.@23,24#. In the next sec-
tion, we discuss the numerical results obtained for the c

FIG. 1. Correlation function vs time atT50.613.Tc for differ-
ent driving forces. From left to right:e55, 0.333, 0.143, 0.05
0.0158, 0.00447 and 0. The longest plateau corresponds then t
undriven case.
ith
n

n-

t

s
at
ry
-

se

k5p53. The casesk52, p53 andk5p54 have also been
studied numerically, with very similar results. We discuss
two different subsections the results forT.Tc andT,Tc .

B. Above the glass transition temperature,TÌTc

The correlation function decay above the glass transit
temperature is a two-step process, as shown in Fig. 1.
length of the plateau~the a-relaxation timeta) increases as
the glass transition temperature is approached. At fixed t
perature, for stronger driving forces the plateau region
comes shorter, and for a sufficiently strong drive the proc
has no longer two distinct time scales. In what follows, w
focus on the not too strong drive regime in which two ste
are still discernible.

The full lines in Figs. 2~a! show the variations ofta as a
function of the amplitude of the driving forcee aboveTc .
The relaxation time is defined here asta(e,T)
[*0

1`dtC(t). In the rheological analogy,ta is expected to
play the role of a viscosity~which, generally speaking, scale
as the structural relaxation time!. Hence, these curves ar
somewhat analogous to the ‘‘flow curves’’ measured in no
Newtonian fluids, and they give the behavior of the viscos
as a function of the shear stress. The translation to the m
common plots ~for us e) as a function ofġ ~for us e/ta) is
done in Fig. 2~b!.

Above the glass transition (T.Tc), ta levels off at a fi-
nite valuet0(T) when the drive vanishes, except at exac
Tc where it diverges likee2b ~the value ofb is discussed
below!. The mode-coupling theory@7# gives the scaling oft0
when approachingTc and, for the model studied here, im
plies t0(T);(T2Tc)

21.765, which is very well verified nu-
merically. AboveTc , the curves of Fig. 2~a! exhibit a pla-
teau for small driving forces whose height diverges asT
→Tc . This plateau corresponds to a Newtonian regime
the language of rheology, sometimes also called the ‘‘lin
regime.’’ By this we mean that the relaxation time in th
region ~small values ofe! is essentially independent of th
drive, implying that the drive does not substantially alter t
dynamics of the system.

For stronger driving forces, the relaxation time decreas
a shear thinningeffect. The expression

the
r

FIG. 2. ~a! a-relaxation time as a function of drive for temperatures~from bottom to top! T50.9, 0.8, 0.7, 0.64, 0.62, 0.613,Tc

.0.61237, 0.6115, 0.58, 0.45, 0.3, 0.01. Full lines are for temperatures aboveTc , the dashed line isT5Tc , and the dotted lines are fo

T,Tc . ~b! Flow curves analogous to the usuals vs ġ for the same temperatures in the same order.
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ta~e,T!5tB1
t02tB

11~e/e0!b
~18!

fits the relationta(e,T.Tc) very well as can be seen in Fig
3. The fit is obtained~following Ref. @25#!, by defining
tB(T)[ lime→`ta , and the second fitting parametere0 as
ta(e0)[0.8t0. Numerically, we findb52. Interestingly, the
sameb is found for the other cases~corresponding tok
52, p53 andk5p54) we have considered. We note th
such an exponent is clearly nontrivial, in the sense tha
could not be predicted from a simple dimensional argume

The shear thinning effect is well documented in syste
as different as gels, polymers or supercooled liqu
@2,3,25,26#, and shear thinning curves are known to be w
represented by expressions similar to Eq.~18!. It is then
tempting to interpret our results in terms of shear rate
stress, using the analogy developed at the end of Sec. II
is easily seen that for high ‘‘shear rates’’~defined asġ

[e/ta), Eq. ~18! with b52 implies the relationta;ġ22/3.
Remarkably, this is very similar to the shear thinning re
tionship observed in polymeric systems~for other systems a
variety of similar relationships can be observed, with sh
thinning exponents that are usually between21/2 and21).

Note finally that at very strong drive, the relaxation tim
becomes of the order of the microscopic time (tB;1 in re-

FIG. 3. Scaling plot ofta versus drive for several temperatur
above the transitionT50.9, 0.8, 0.7, 0.64, 0.62, and 0.613. Th
dashed line is the fit 1/(11x2).

FIG. 4. Integrated response vs correlation curves forT50.613
.Tc . Full line: asymptotic (e50) analytical curve. Dashed line
~from bottom to top! e50.333, 0.143, 0.05, 0. Inset: behavior of th
fluctuation-dissipation ratio~FDR! as a function of the drivee for
T50.613.
it
t.
s
s
ll

d
. It

-

r

duced units and depends only slightly on temperature!, the
system being Newtonian again.

We now turn to the study of the fluctuation-dissipatio
relation in the driven system. In the absence of drive,
FDT holds for T.Tc . Hence a plot of the integrated re
sponsex(t)[*0

tR(t8)dt8 as a function ofC gives a straight
line with slope21/T. In Fig. 4 we show such a plot fo
several strengths of the drivee. We immediately note tha
thex vs C curve is, for nonzero drive, well approximated b
a broken line, with a first piece having a slope21/T ~corre-
sponding to the fast relaxation! and a second piece that dis
plays a smaller slope, denoted in the following by21/Teff by
analogy with the analytical results of the above section.

To make the assumption of a ‘‘two-temperature regim
very clear, we plot in Fig. 5 the normalized fluctuatio
dissipation ratio~FDR!

X[
TR~t!

dC~t!/dt
, ~19!

~the normalized derivative of the curves 4! for several values
of the drive. The numerical solution shows clearly that,
though the effective temperatureTeff is unambiguously de-
fined only in the asymptotic limit (T→Tc ,e→0), the ‘‘two-
straight-line’’ approximation is very good even at finite dri
ing forces and of course improves ase→0.

The violation of the FDT in a driven system is an impo
tant concept, since it quantifies the deviation from the Bo
zmann weight in the phase-space distribution of the syst
The inset of Fig. 4 shows how the ratioX5Teff /T that char-
acterizes this violation changes with the driving force. F
small drives, the deviation from one is very small, whi
allows us to define a zone in the plane (e,T) where the
‘‘linear response’’ ~in the sense of irreversible thermody
namic theory! holds. This zone happens to coincide with t
‘‘linear regime’’ defined from the rheological point of view
This suggests that there is a direct link between a nonlin
response in rheological measurements and a nonequilib
behavior from the statistical mechanics point of view. No
also that one still might study the linear rheology@typically
the behavior ofG* (v)# of an aging~and hence out of equi
librium! system, see@27#.

FIG. 5. Normalized fluctuation-dissipation ratioX versus the
correlationC for e50.00141, 0.0141, 0.0448, 0.143, 0.333, 1,
~from bottom to top atC50.8). The temperature isT50.62.
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C. Below the glass transition temperature,TËTc

Below Tc , an undriven system never equilibrates, t
a-relaxation time grows with the waiting time elapsed af
the quench into the glassy phase, and the system neve
comes stationary. If we now quench the system with driv
forces acting on it, it turns out that thea-relaxation time
becomes finite, and the system eventually becomes sta
ary @4,9,10#. For a vanishingly small drive, however,ta will
again diverge. The dotted lines in Fig. 2~a! show this diver-
gence ofta with decreasing drive. For temperatures just b
low Tc , the times at first diverge likee22: the same regime
was already noted aboveTc . Still decreasinge, they then
cross over to another, faster divergence. Numerically,
find that ta(e!1,T,Tc);e2a(T), with a(T) slowly ~if at
all! dependent on temperature. For instance, atT50.3, we
obtain a.3.19. To summarize, belowTc , the system does
not have a ‘‘Newtonian’’ or linear-response region, and e
hibits shear thinningta;e2a. This power-law divergence is
also found numerically and in a rather involved analytic
treatment by Horner in the case of the forced particle i
random potential, where it is called a ‘‘creep’’ behavior@10#.

Turning now to the FDT, the situation is quite differe
from the one atT.Tc ~Fig. 6!. The ‘‘two-temperature sce
nario’’ persists even for vanishingly small drives, giving
clear demonstration of the difference between a glass dr
to stationarity and an equilibrium system. It is very remin
cent of what happens in the aging~undriven! situation: we
already noted that the limiting effective temperatures w
the same in both situations.

IV. DISCUSSION: THE TEMPERATURE-DRIVEN
‘‘PHASE DIAGRAM’’

A convenient synthetic representation of the main res
obtained in this paper is given in Fig. 7, which represent
‘‘phase diagram’’ of the system in the plane (e,T). In such a
two-dimensional representation, the usual glass phase i
stricted to the segmentT,Tc of the horizontal axis. Othe
points in the plane corresponds to states which respect
translation invariance, and can be characterized by their
laxation timeta and their fluctuation-dissipation ratio. Th
two families of curves drawn in Fig. 7 correspond indeed
constant values ofta ~‘‘iso- ta’’ ! and constant values of th
long-time FDR~‘‘iso-X’’ !. From these curves, it is manife
that when the drive is taken into account, the influence of

FIG. 6. Integrated response vs correlation curves forT50.45
,Tc . Full line: asymptotic (e50) analytical curve. Dashed line
~from bottom to top! e50.333, 0.143, 0.0442.
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glassy phase extends far beyond the horizontal axis, in
sense that systems with values ofX characteristic of the glas
are found at high temperatures for finite drives. The effec
shear is in a sense paradoxical, because at the same ti
makes a glass ‘‘liquidlike’’~by fluidifying it!, and it brings
about typical glass features~two temperatures! to a super-
cooled liquid which otherwise would be at equilibrium.

Our two-dimensional phase diagram is obviously clos
related to the~load, temperature! phase diagram proposed b
Liu and Nagel in an attempt to rationalize the similarities
behavior between glasses and granular matter@28#. In prac-
tice, the glass transition temperature is defined as the t
perature where the viscosity~or relaxation time! exceeds a
predefined threshold. Hence the surface drawn by Liu
Nagel to delimit ‘‘jammed’’ ~or glassy! and ‘‘unjammed’’
~or liquid! states would correspond in our graph to an isota
line.

The ‘‘near equilibrium’’ region of our phase diagram ca
be defined for example as the zone whereX.0.99 @note the
initially flat behavior ofX(e) in the inset of Fig. 4#. In this
region, the usual near equilibrium concepts are applica
As the glass transition is approached, this region beco
restricted to weaker and weaker driving forces, and the tw
temperature behavior typical of the glassy phase is obser
In the further limit of very large~probably unphysical in
many cases! driving strengths, when the relaxation time sca
becomes of the order of the microscopic time, the concep
Teff becomes of course badly defined.

As mentioned above, the prediction of a sharp, pur
dynamic glass transition is an unrealistic feature of a
theory not taking into account activated processes. It se
healthy at this point to discuss in some detail what kind
new features are to be expected in real situations, when
effect of activated processes is present. In Fig. 8 we ske
the modifications that can be expected in a realistic system
which the dynamic transition is smeared by activated p
cesses. To begin with, at zero drive there is a finite equ
bration time at all temperatures aboveTk (Tk,Tc), the ~so-
defined! Kauzmann temperature, which may or may not
zero. Given a system aboveTk there will, in principle, al-
ways be a sufficiently small driving force such that FDT s
holds. However, not all of the drive-temperature plane
accessible in stationary~nonaging! conditions. Given an ex-

FIG. 7. 2D view of the glass transition. Curves bent to the l
are the iso-ta , curves bent to the right are the iso-X ~see text!. The
critical temperature is indicated by the arrow. Times areta55, 10,
25, 50, . . . ,5000 ~from top to bottom!, and X50.4, 0.5, 0.6, 0.7,
0.8, 0.9, 0.99~from left to right!.
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perimental situation, there is a level~the thick line in Fig. 8!
below which the system does not have the time to beco
stationary. This is the ‘‘glass transition’’~in fact, a cross-
over! as it happens in practice, and the zero-drive intercep
this line is usually denoted the ‘‘glass transition tempe
ture’’ Tg .

From what we have learned from the idealized case,
might expect that aboveTg , in conditions such that the
a-relaxation time and therefore the viscosity are alrea
large, there will be a well established two-temperature
gime as soon as a moderately weak driving is turned on.
consequence is that in the supercooled liquid regime for
stance, a small shear rate will be sufficient to give at
same time a nonlinear rheological behavior~as seen in the
MD simulations of Ref.@3#!, and an effective temperature
different from that of the thermostat. Such an effect would
also be accessible in an experiment. We stress that an e
tive temperature could be measured in that casein a station-
ary statemaking the measurements far easier than in an
ing experiment@29#.

Below the ‘‘glass transition’’ line, on the contrary, w
expect that, as discussed in Sec. II D, history-dependen
fects will become predominant, with effects like yield stre
or hysteresis that cannot be accounted for within mean-fi
like theoretical schemes.

Having pointed out all these differences, the basic sugg
tion of a two-step, two-temperature relaxation behavior
mains, and is open for numerical and experimental chec

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied, within the framework
the mean-field~or mode-coupling! approximation, the influ-
ence of an external drive on a system undergoing a g
transition. The main results of the approach should, we
lieve, not depend too strongly on the method of approxim
tion. Hence we have constantly tried to interpret the res
within the context of a rheological experiment on a syst
with anomalous rheology, although such an interpretation
mains of course rather tentative.

In this language, we can summarize our results as follo
If a fluid having, in equilibrium, two well-separated rela
ation time scales is gently driven~e.g., sheared! the slow

FIG. 8. Same as Fig. 7, but with the activated processes ta
into account~schematic!.
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structural relaxations are accelerated~shear thinning!. This
acceleration is accompanied by the appearance of an e
tive temperature for the slow structural degrees of freedo
while the fast degrees of freedom~phonons, etc.! are still at
the bath temperature. Each temperature is associated
fluctuations at each time scale, and is well defined if
drive is gentle enough that the time scales still remain se
rated @30#. When the two temperatures differ very little
‘‘near equilibrium’’ assumptions becomes justified: this r
gime was shown to coincide with the usual ‘‘linear regime
of steady-state rheology. For stronger drive, a power-law
cay of the relaxation time with increasing drive is observe
as is the case in many complex fluids. Interestingly, the
sociated ‘‘shear thinning’’ exponent is found to be22/3, and
seems to be quite robust with respect to variations in
model. This could be an indication of why so many she
thinning exponents in real systems are found in the ra
@21/2,21#.

The obvious weakness of the approach, which is intrin
to the perturbative scheme adopted, is that the effect of a
vated processes can only be described at a qualitative le
Hence a number of interesting phenomena observed at w
driving forces~e.g., yield stress, dilatancy, hysteresis! cannot
be addressed analytically.

In principle, the present study could be extended to eq
tions with many coupled spatial modes. One can even
further and consider richer resummation schemes, for
ample, the self-consistent screening approximation@12#.
Moreover, other resummations, such as applying to
driven case a dynamical version of the hypernetted-ch
equation~in the spirit of the work on glasses of Me´zard and
Parisi@31#!, can be envisaged. In this way, one could stud
true shear applied to the largest spatial mode, and calcu
how the energy cascades to the shorter wavelengths.
two-temperature ansatz can be shown to close@14# indepen-
dently the resummation scheme, with the important prope
that there are still in the small drive limit only two temper
tures shared by all spatial modes. The implementation
these improvements may then allow us to extract actual n
bers starting from a realistic microscopic theory. However
should be born in mind that the nonperturbative activa
processes would still remain unaccessible to these more
phisticated computational schemes.
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Région Rhône-Alpes.’’

APPENDIX: CALCULATION OF THE POWER INPUT

The quantity to estimate is

P[K 1

N (
i 51

N

f i
driveṡi L . ~A1!

en



s
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To compute this quantity, we introduce a currenth, and a
generating functionalZ such that

Z[K expS E dt(
i

hi~ t ! f i
driveṡi D L . ~A2!

Then by definition

P~ t !5
1

N (
i 51

N F dZ

dhi~ t !G
h50

. ~A3!

Z can be obtained from the usual Martin-Siggia-Rose~MSR!

formalism, and the average over the random variableJ̃
gives the extra term

ke2

4Nk21 (
i , j 1 ,•••, j k21

E dtdt8

3@sj 1
~ t !sj 1

~ t8!•••sj k21
~ t !sj k21

~ t8!#

3@ i ŝi~ t !i ŝi~ t8!1hi~ t !ṡi~ t ! ~A4!
ds

M

.

ch

an
-

a
rn
in the effective MSR Lagrangian. Finally, we obtain forP:

P~ t !5E DsDŝ exp~L !
ke2

4Nk

3 (
i , j 1 ,•••, j k21

E dt8

3@sj 1
~ t !sj 1

~ t8!•••sj k21
~ t !sj k21

~ t8!#

3@2i ŝi~ t8!ṡi~ t !#, ~A5!

whereL is the usual MSR Lagrangian for thep-spin model.
The integral is estimated at its saddle point, yielding,

P~ t !5
ke2

2 E
2`

t

dt8C~ t,t8!k21
]R~ t,t8!

]t
, ~A6!

which reduces for time-translation-invariant systems to

P5
ke2

2 E
0

1`

dtC~t!k21
dR~t!

dt
. ~A7!
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