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We investigate a general scenario for “glassy” or “jammed” systems driven by an external, nonconserva-
tive force, analogous to a shear force in a fluid. In this scenario, the drive results in the suppression of the usual
aging process, and the correlation and response functions become time translation invariant. The relaxation
time and the response functions are then dependent on the intensity of the drive and on temperature. We
investigate this dependence within the framework of a dynamical closure approximation that becomes exact for
disordered, fully connected models. The relaxation time is shown to be a decreasing function of the drive
(“shear thinning” effec). The correlation functions below the glass transition temperattigg display a
two-time-scaleelaxation pattern, similar to that observed at equilibrium slightly abigveWe also study the
violation of the fluctuation-dissipation relationship in the driven system. This violation is very reminiscent of
the one that takes place in a systaging below T at zero drive. It involves, in particular the appearance of
a two-temperatureegime, in the sense of an effective fluctuation-dissipation temperdtufe Cugliandolo,

J. Kurchan, and L. Peliti, Phys. Rev.35, 3898(1997]. Although our results are, in principle, limited to the
closure relations that hold for mean-field models, we argue that a number of the salient features are not inherent
to the approximation scheme, and may be tested in experiments and simulations.

PACS numbds): 05.70.Ln, 64.70.Pf, 83.50.Gd

I. INTRODUCTION drive and the relaxation of the system, it is natural to extend
the approaches that have been successful for describing t_he
The behavior of complex systems subject to an externglynamical behavior of glassy systems, as reviewed, e.g., in
drive is a very complex field of research. The generic situal5]. One possible and quite promising route, followed by
tion we may think of is the case of a fluid undergoing steady>°!lich and co-wo:jkehrgforha review, Ise;{G]l and r,(?ferec?cles
shear flow, in which case the study of its response pertains t _erelr) Is to extend the phenomenological “trap™ models to
the field of rheology. Rheological experiments on complex riven systems, giving rise to the so-called soft glassy rheol-
fluids are known to dis lay a rich phenomenology, as illus23Y (SGR model. Such a model was shown to account well
; piay P - 9, a for a number of the generic features found in soft glassy
trated in the recent book by Larsg®]. Nontrivial behaviors, materials

however, are not restricteo! to_comple_x _quids, since it is a_llso Another possible, and complementary, approach s to ex-
found that supercooled liquids exhibit a non-Newtoniannq the mode-coupling approach used in the study of glassy
“shear thinning” behavior 3]. , _ _ systems to the driven case. This approach relies on a closure
From a fundamental and theoretical point of view, thereation for the dynamical equations that is known to be ex-
most interesting features emerge when the intrinsic relaxact for “mean-field-like systems, and to provide a reason-
ation time scale of the system become of macroscopic ordegbly good description of the dynamics of real glass forming
so that there is a direct interplay between the “shearing”liquids [7]. This theoretical framework has the advantage of
time scale and the relaxation time scale. This means that weimultaneously giving insight into the macroscofgitieo-
will be interested in systems whose dynamical evolution exiogical) and the microscopi¢nonequilibrium statistical me-
hibits atwo-time-scalepattern. This is the case, e.g., in su- chanic$ aspects of the problem, since the mode-coupling
percooled liquids, in which the particles have a fast “rat-equations can be derived from specific microscopic models.
tling” motion inside the *“cage” constituted by their Such microscopic models with driving forces have been
neighbors, followed by a slow “structural” rearrangement of studied in the context of neural network8,9], the drive
these cages. The two time scales become more and mobeing a tool to destroy the glassy phase. More closely related
different on approaching the glass transition. Below the glasso our approach are the studies of HorfiE®] and Thalmann
transition the same behavior subsists, but now the time scald 1] who investigated the dynamics of a particle in a random
of the structural relaxatiofthe «-relaxation timet,) is not  potential in the presence of a driving force. Our focus in this
constant and grows with the waiting time elapsed after theaper will be a bit different, since we are interested in trans-
quench to low temperatures: this gradual arrest is called adating the results into the language of nonlinear rheology.
ing. More generally, the same situation is realized in all sys- The paper is organized as follows. In the next section we
tems that are “jammed,” like granular materials or foamsexplain the general spirit of the closure approximations that
[4]. In all these cases, it is known that a driving force has agive rise to the mode-coupling equations. An explicit ex-
particularly strong influence, for it may be able to stop theample for a simple system is worked out, and the numerical
aging in an out of equilibrium system and to restore timemethods used in solving the equations are presented. Section
translation invariance. Il contains the results obtained for the correlation and re-
In order to study theoretically this interplay between thesponse functions in a stationary driven state. We discuss our
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results in Sec. IV, and conclude by considering some pos- =[—w(t)8(k")+ A JR(k—K',t,t")+ 8(t—t")
sible extensions of this work in Sec. V.

t
+f,dt”E(k’,t,t”)R(k—k’,t”,t’), (5)
Il. DYNAMICAL EQUATIONS !
where the summation ovéd is implied. The operaton
acts now in the Fourier space. The functiché,t,t’) and
We start by briefly describingl2] the perturbative resum- D(k,t,t’) can be obtainefil5] asfunctionalsof the correla-
mation schemeof which the mode-coupling approximation tions and responses by adding all the two-line-irreducible
is a special exampJehat allow us to obtain closed equations diagrams of the perturbative expansiongrof Eq. (1) but
for the time-dependent correlation and response functions afubstituting the propagators with the dressed propagators
an interacting system. We then specialize to the simpler casg(k,t,t’) andR(k,t,t"). Now, if we stay at the level of the
of a single mode, and study the resulting equations numerisimplest diagramsghaving only two verticels we obtain the

A. The general framework

cally. . o _ simplification’ that3. (k,t,t") andD(k,t,t") become ordinary
Let' us conslder a system Whosg dynam_lcs is described @finctionsof C(k,t,t’) and R(k,t,t') (with no integrations
the microscopic level by a Langevin equation over the times This type of ansatz constitutes the basis of

the mode-coupling approximation.

Naively, one could expect that the mode-coupling strategy
could be improved to any desired accuracy by including dia-
grams with higher-order vertices. Unfortunately, it seems
+ (X, 1) +h(x,t), (1) that the phenomena usually described as “activated pro-

cesses” are of a nonperturbative nature, and hence will be

where¢(x,t) is a vector fieldF () is a nonlinearpossibly ~ Missed even if higher-order vertices are taken into account.
nonloca) coupling term andy's a Gaussian white noise. The 1his is an intrinsic limitation of the mode-coupling or mean-
term containingu(t) is a restoring force and may contain field approaches when applied to realistic systems, and has to

spatial derivatives or convolutiorias one would obtain, for P€ taken into account when interpreting the results. We shall
instance, if¢ is a coarse-grained density and the evolution isdiSCuss this point in a more detailed way at the end of Sec.
driven by the Ramakrishnan-Youssouf density functional,“D'
see, e.g.[13]). The coupling constang serves as a book-
keeping parameter to set up a perturbative expansion.

Making a spatial Fourier transform, we obtain the fields Staying within this approximation, we furthermore make

#(k,t) and the Gaussian noise such thaf(k,t)7(k',t’))  the considerable simplification of considering a single
=2TS(k+k')8(t—t’). In terms of those Fourier- mMode. This of course means that we give up all spatial in-

transformed variables, the correlation and response functiorf§rmation. The basic elements we find, however, can be
are defined as readily generalized to the case of makynodes, and, fur-
thermore, to approximations that include diagrams with more
. . and more vertices. The spirit is similar to the study of “sche-
S(k+K)C(kt,t")=(d(k,t) p(K' 1)), (2)  matic models” for the theory of supercooled liquids by
Gotze and co-worker$7]. These models are also closely

PP(x,t)  IP(x.t)
m o2 * ot

=[-u()+A]d(x,1)—gF(¢h)

B. A single-mode driven model

S(K.1) related to spin-glass ones, as explained in the next section.
S(k+KHR(Kt,t")={ ———— ). (3)  No attempt is made to describe inquantitativeway the
sh(k’,t") rheology of glassy systems, but still it is hoped tganeric

and nontrivial behaviors can be predicted at a qualitative
level.

If we restrict Egs.(4) and (5) to a single “important”
mode, and furthermore absofwhich is now irrelevant in
u, and neglect the inertial term which is inessential for the

The dynamical equatiofil) implies a Dyson equation fa€
andR of the form

?C(k,t,t")  aC(k,t,t") slow dynamics, we obtain
m > + at
’ A CL t)C(t,t")+ 2TR(t' t
= [~ () 8(K) + A JC(k—K', t,t') + 2TR(K,t',1) a UG F2TRILY
’ t!
+ft dt’D(k’,t,t")R(k—k’,t",t") +f dt"D(C(t,t")R(t’,t")
t t
+f dt"S (k' t,t")C(k— k' t",t"), (4) +f dt’S (t,t")C(t",t'),

#*R(k,t,t")  IR(K,t,t’ . . . .
m ( ) + ( ) This is a resummation and is not the same as expanding only to

at? ot orderg?, since the propagator themselves depend alsg. on
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IR(t,t") D(x)=pxP~ /2 corresponds to a disordered model given by
- HORELE)+ (-t continuous variabless; (i=1,...N) evolving with the
Langevin equation
t
+ [ drseree) ®) 750 H e
t o _’u(t)si(t)_ési(t) +H (O + (), (10
If in addition, we imposeC(t,t)=1 we have
where
t
,u(t):T+f dt"[D(C(t,t")R(t,t") + = (t,t")C(t,t")].

When the force in the Langevin equation derives from ajs the Hamiltonian of the-spin model and
potential,so that detailed balance is verifiedne hag12]

3(t,t')=D"(C(t,t')R(L,t'), (8) five— ety >, Il g (12

with D’ (x)=dD(x)/dx. Conversely, a set of equations with
3(t,t")—D’(C(t,t"))R(t,t")#0 can only describe a driven With
system, in which detailed balance is violated. Mode-coupling
equations that describe a driven system can therefore be ok:

tained by introducing a modified version of equati®). 4= _. _Zq. - <i<j2'<j HE <Z, o
Cugliandoloet al.[16] chose, for instance, Pooient et ! Pt
N oy , , The parametey(t) ensures a spherical constrabys®= N,
=aD R . . M .
2(tt)=aD (CL))REL), © and#;(t) (i=1,... N) are random Gaussian variables with

the parameter 4 a being then a measure of tieonconser- mean 0 and varianceT2 The couplings] in H are random
vative) driving forces. They showed numerically that the Gaussian variables, symmetrical about the permlutat|ons of
presence of the drive was sufficient to stop aging in thell1, - - ’JE)! Wlth‘mean zero and variang®/2NP~*. The
glassy phase, so that time translation invariance was recoouplingsd in %™ are random Gaussian variables, sym-
ered at all temperatures. metrical about the permutations ofi,( ... ,x—1), with

It may be important at this point to distinguish betweenmean zero and such that
two ways of driving a system:

(i) “Shearlike™ driving: the system is subjected to forces —M—— k! —_—
that do not derive from a global potential, as when a poten- J;* 13}t i= —— Jfl'”'k’lel'“'mJ"*:O-
tial difference is applied at the ends of a conductor and the 2N '
circuit is closed. They can be time-dependent or constant,
and generate currents in both cases.

(i) “Tappinglike” driving: the forces are time dependent
but do derive from a global potential. This is for example the
case of an ac magnetic field in spin models, or oscillating
acceleration of a container with frictionless wallan ac
gravity field). These forces do not do work if they are con-
stant in time, independently of their strength.

In this paper we concentrate on the case of continuou
drive, and hence only the “shearinglike” forces are relevant.
We discuss below how the analogy with a rheological ex-
periment can be developed further. The case of an oscillatin
drive will be discussed elsewhere.

(13

The resulting force cannot be written as the derivative of a
potential.
Equations(6) are then the exact equations satisfied by

C(LU)=S(si(D)si(t"))/N
gnd
R(t,t")=3(8s5(t)/ 87,(t'))/IN

% the limit N— oo and withC(t,t) imposed. The model stud-
ied in Ref.[16] corresponds t&=p.
The important point is that, on averagmly the noncon-
servative part of the force gives energy to the systegnce
the name “driving force.” The amplitude of the drive is
Many years ago, Kraichndid7] noted that one could find controlled by the parametes(t). If we now want to push
a disordered model such that the approximate closed equéirther the analogy with the dynamics of a fluid system un-
tions for the two-point correlations and responses of thalergoing shear flow, we have to identify the equivalent of the
original model areexactfor it. Although this hidden model shear rate and stress variables. Obviously, the schematic
behind the closure approximation is not otherwise directlycharacter of the model makes it difficult to carry out such an
related to the original one, it allows to view the dynamicalidentification at a microscopic level. A way of bypassing this
equations from a different, instructive perspective. difficulty is to estimate the power input into the system due
We now specify the model we concentrate on in the resto the existence of the nonconservative forces, which can be
of the paper. The case of the single mode equations witkdefined as

C. The associated disordered model,
and the rheological analogy



PRE 61 A TWO-TIME-SCALE, TWO-TEMPERATURE SCENARIO . .. 5467

.

The calculation of this quantity is given in detail in the
appendix, and assuming stationarigee below yields

N the system overcome the barriers. If instead a strong drive is
> fid”"e'si>_ (14)  applied, the system escapes the low-lying valley and it sur-
=1 faces above the threshold, where the drive will suffice to
keep it forever(recall that in the rheological analogy, by
“drive,” we really mean a stregs An interesting analogy
can be drawn with the Reynolds dilatancy effedtin granu-

Z|l -

Ke2 [+ dR(7) lar materials, or with the yield stress in a Bingham fl{d.
pP= _J drC(r)k 1 ——=. (15) Note that the actual value of valley depths and threshold
2 Jo dr level can be calculated from first principles within the same

. L _ scheme of approximation we have used for the dynamics,
If we assume that the fluctuation-dissipation theorem is ”°§tarting from the original microscopic model.

violated too strongly, as will be the case in the following  \we are now in a position to see what is the main short-

examples,R is roughly proportional tadC/dt. Hence the  ¢oming of the mode-coupling kind of approach. In any real-
power dissipated in the system will scaled#t,,, wheret,  igic system the structure of threshold and valleys may re-
is the relaxation time of the system. Comparing to a standarg,3in essentially the same, but now activated
shear flow, this indicates thatshould in that case be inter- (nonperturbative processes allow to jump barriers that are
preted as playing the role of a stress, while, is analogous  jmpenetrable at the perturbative level. Hence, for a real sys-
to a shear rate. _ tem the relaxatior{aging process will allow the system to
Although Eq.(15) can be used to define the analogous ofpenetrate slowly below the threshold, and after long times to
shear rate and shear stress in our model, the response fungscess deeper valley. In order to keep the system with acti-
tion R does not have a direct analog in rheological measureyated processes from sinking, we now need driving forces
ments, since it is not the response associated to a shear stregfin finite strength(the “yield stress” effect. This effect
Experimentally, one should think étandC as the response can he expected to take place whenever the system has fallen
and correlation functions associated with an observablgt of equilibrium, and is undergoing an aging process. Ag-
which is not rheologically relevanfas measured, e.g., in a jng dynamics leads the system to be trappeu the experi-
dielectric measurementThis observable would be measured mental time scalein some deep lying valley. A strong

in a system made stationary by imposing an external sheafnough drive can force to leave the valley, and a small extra

rate. drive is sufficient to keep the system above the threshold.
D. Reynolds effect and yield stress ll. RESULTS FOR A STEADY DRIVE
Having access to a microscopic model behind the dynami- A. Dynamical equations in the stationary state

cal equations allows us to understand the evolution from the

geometry of the corresponding phase space. At zero external YWhen the system is submitted to a steady drive, it even-
drive, this connection has been studied in much déti- tually reaches a stationary state, whatever the temperature.

21], and the main results can be summarized as follows. 1his allows to replace in Eqg$6) the two-times functions
At a given temperature, the free-energy landscape of th&(t:t") by A(7) with 7=t—t’. The following equations cor-
purely conservative model with energtl) can be con- respondlng_ to the simple model described in Sec. Il C are

structed. Above a dynamical transition temperaflige the ~ ©asily obtained:

available phase space is dominated by one large basin in thed C(7)
free energy, corresponding to the paramagreti¢liquid” )
state. AtT,, athreshold levein free energy appears, below dr
which the free-energy surface is split into exponentially e
many disconnected regions. + f dr'[S(r+7)C(7)+D(r+7)R(7")],

The aging dynamics beloil, can be understod@2] as a 0
gradual descent to the threshold level, starting from high-
energy configurations. The slowing down is then the conse- dR(7)
guence of the decreasing connectivity of the visited land- dr
scape. The system never really reaches the deepest, very
disconnected parts of phase space below the threshold. On +oo
the other hand, if the system is somehow prepared in one of M=T+J dr'[D(r)R(7")+Z(7")C(7")],
these deep regions, it remains trapped there for all times. 0

When the system is quenched from a high temperature, K
but at the same time driven by nonconservative forces, it D(7)= EC(T)p_1+62—C(T)k_1,
remains drifting above the free-energy threshold, constantly 2 2
receiving energy from the drive. In a mean-field system, such
a situation will hold for arbitrarily weak drive, since the un-
driven system itself never falls below this energy level.

If, on the contrary the system is prepared in an energy
state below the threshold, we expect that a weak drivindNote that these equations are “noncausal” in the time dif-
force will have essentially no effedbeyond an “elastic”  ferencer. They are, of course, still causal in the original two
response of the systgnmas it is not strong enough to make times, but the parity o€(7) has now been used.

=—uC(7)+ fOTdT'E(T— 7)C(7")

=—uR(7)+ fOTdT’E(T— T HR(7"),

_pp-1)

(="

()P ?R(7). (16)



5468 BERTHIER, BARRAT, AND KURCHAN PRE 61

I T k=p=3. The casek=2, p=3 andk=p=4 have also been
i studied numerically, with very similar results. We discuss in
08 two different subsections the results fbr-T, andT<T,.
o6 -
=
© sk - B. Above the glass transition temperature,T>T,
oL i The correlation function decay above the glass transition
0 temperature is a two-step process, as shown in Fig. 1. The
ol o N NN N N length of the platealthe a-relaxation timet,) increases as

0 107 10° 10 10* 108 the glass transition temperature is approached. At fixed tem-
7 perature, for stronger driving forces the plateau region be-
FIG. 1. Correlation function vs time at=0.613> T, for differ- comes shorter, and for a sufficiently strong drive the process
ent driving forces. From left to righte=5, 0.333, 0.143, 0.05, has no longer two distinct time scales. In what follows, we
0.0158, 0.00447 and 0. The longest plateau corresponds then to tfiecus on the not too strong drive regime in which two steps
undriven case. are still discernible.
The full lines in Figs. 2a) show the variations of,, as a
The system(16) can only be solved analytically in the function of the amplitude of the driving force aboveT,.
limit of small drive, for all temperatures, following the steps The relaxation time is defined here as,(€,T)
of Ref. [22]. The solution shows that the correlation and= [;*dzC(7). In the rheological analogy,, is expected to
response functions can be split into two parts associated witblay the role of a viscositywhich, generally speaking, scales
the two time scales discussed in the Introduction. One thegs the structural relaxation timeHence, these curves are
writes C(7) =Cg(7) + C¢(7) andR(7)=Rs(7) +R¢(7), f (S  somewhat analogous to the “flow curves” measured in non-
labeling the fas(slow) time scale. In that small drive limit, Newtonian fluids, and they give the behavior of the viscosity
the two time scales are well separated and the fluctuatioras a function of the shear stress. The translation to the more

dissipation theoren{FDT) does not hold. More precisely, ommon ploto (for us €) as a function ofy (for us e/t,) is
one can prove a generalization of the FDT, in the form done in Fig. 2b).

Above the glass transitionT¢-T,), t, levels off at a fi-
Ri(7)=— E dCi(7) R.(7)=— i dCy( T)_ 17) nite valuety(T) when the drive vanishes, except at exactly
f T dr ’ s Te dr T. where it diverges likee # (the value ofg is discussed
below). The mode-coupling theoiy’] gives the scaling off,
An interpretation is that the short time scale is thermalized awhen approachind@ . and, for the model studied here, im-
the bath temperatuf® while the longer one is thermalized at plies to(T)~(T—T,) 1% which is very well verified nu-
an effective temperatur€. [1]. This effective temperature merically. AboveT., the curves of Fig. @ exhibit a pla-
is determined analytically by the matching of the solutionsteau for small driving forces whose height divergesTas
between the two time scales. It is interesting to remark that-T.. This plateau corresponds to a Newtonian regime in
the values of the effective temperatures for a stationary, verthe language of rheology, sometimes also called the “linear
weakly driven system coincides with the effective temperategime.” By this we mean that the relaxation time in this
ture of its undriven, aging counterpart. region (small values ofe) is essentially independent of the
In order to study the preasymptotie£0) behavior of drive, implying that the drive does not substantially alter the
the system, we solved numerically the systgli), combin-  dynamics of the system.
ing the numerical methods of Ref23,24. In the next sec- For stronger driving forces, the relaxation time decreases,
tion, we discuss the numerical results obtained for the casa shear thinningeffect. The expression

10° . : : 10’

107 /
107 10 1073 107! 10'
ety

FIG. 2. (a) a-relaxation time as a function of drive for temperatufé®m bottom to top T=0.9, 0.8, 0.7, 0.64, 0.62, 0.613
=0.61237, 0.6115, 0.58, 0.45, 0.3, 0.01. Full lines are for temperatures dhowbe dashed line i¥§=T,, and the dotted lines are for
T<T.. (b) Flow curves analogous to the usualvs y for the same temperatures in the same order.
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FIG. 3. Scaling plot ot versus drive for several temperatures
above the transitiom=0.9, 0.8, 0.7, 0.64, 0.62, and 0.613. The

dashed line is the fit 1/(£x?).

to—1tp

ty(eT)=tg+ ———
(eT)=te 1+ (el €p)P

(18)

fits the relatiort (e, T>T_) very well as can be seen in Fig.
3. The fit is obtained(following Ref. [25]), by defining
tg(T)=lim__.t,, and the second fitting paramete§ as
t,(€0)=0.8,. Numerically, we find3=2. Interestingly, the
same g is found for the other case&orresponding tok
=2, p=3 andk=p=4) we have considered. We note that

such an exponent is clearly nontrivial, in the sense that i
could not be predicted from a simple dimensional argument;

$

The shear thinning effect is well documented in system
as different as gels, polymers or supercooled liquid

represented by expressions similar to E§8). It is then
tempting to interpret our results in terms of shear rate an
stress, using the analogy developed at the end of Sec. Il C.

is easily seen that for high “shear rategdefined asy
=¢lt,), Eq. (18) with B=2 implies the relatiort,,~y~ 2.
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[2,3,25,26, and shear thinning curves are known to be well
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(1-X)/(1 - Xs)

0.2 0.4 0.6 0.8

o

FIG. 5. Normalized fluctuation-dissipation rat¥ versus the
correlationC for €=0.00141, 0.0141, 0.0448, 0.143, 0.333, 1, 5
(from bottom to top atC=0.8). The temperature i5=0.62.

duced units and depends only slightly on temperatuie
system being Newtonian again.

We now turn to the study of the fluctuation-dissipation
relation in the driven system. In the absence of drive, the
FDT holds forT>T.. Hence a plot of the integrated re-
sponsey(7)=[gR(7')d7" as a function ofC gives a straight
line with slope —1/T. In Fig. 4 we show such a plot for
several strengths of the drive We immediately note that
the x vs C curve is, for nonzero drive, well approximated by
broken line, with a first piece having a slopel/T (corre-
ponding to the fast relaxatipand a second piece that dis-
lays a smaller slope, denoted in the following-by/T o« by
analogy with the analytical results of the above section.
To make the assumption of a “two-temperature regime”
very clear, we plot in Fig. 5 the normalized fluctuation-

éiissipation ratio) FDR)

It

TR(7)

X=dcnidr

(19

Remarkably, this is very similar to the shear thinning rela-

tionship observed in polymeric systertfer other systems a

variety of similar relationships can be observed, with shea

thinning exponents that are usually betweef/2 and—1).
Note finally that at very strong drive, the relaxation time
becomes of the order of the microscopic timig~1 in re-

1.8 . —
16 I 08 -
LA = 06 ]
L2 T~ TSI —

. RN N 0.4

> TSIIN0001 001 01 1 10
08} NN . .
0.6 L i
04 i
0.2k i

0 1 1 1 I
0 0.2 0.4 0.6 0.8 1
c

FIG. 4. Integrated response vs correlation curvesTfer0.613
>T.. Full line: asymptotic €&=0) analytical curve. Dashed lines
(from bottom to top €=0.333, 0.143, 0.05, 0. Inset: behavior of the
fluctuation-dissipation ratigFDR) as a function of the drive for
T=0.613.

Ethe normalized derivative of the curvesfér several values
of the drive. The numerical solution shows clearly that, al-
though the effective temperatufie is unambiguously de-
fined only in the asymptotic limit{—T.,e—0), the “two-
straight-line” approximation is very good even at finite driv-
ing forces and of course improves as-0.

The violation of the FDT in a driven system is an impor-
tant concept, since it quantifies the deviation from the Bolt-
zmann weight in the phase-space distribution of the system.
The inset of Fig. 4 shows how the raflo="T«/T that char-
acterizes this violation changes with the driving force. For
small drives, the deviation from one is very small, which
allows us to define a zone in the plane,T) where the
“linear response” (in the sense of irreversible thermody-
namic theory holds. This zone happens to coincide with the
“linear regime” defined from the rheological point of view.
This suggests that there is a direct link between a nonlinear
response in rheological measurements and a nonequilibrium
behavior from the statistical mechanics point of view. Note
also that one still might study the linear rheolddypically
the behavior ofG* (w)] of an aging(and hence out of equi-
librium) system, se¢27].



5470 BERTHIER, BARRAT, AND KURCHAN PRE 61

1.4 I T J T

L2 T -

0.8 - AN i
0.6 N 4
0.4} 4

0.2 B

0 ] ] I !
0 0.2 0.4 0.6 0.8 1

c

FIG. 6. Integrated response vs correlation curvesTer0.45 FIG. 7. 2D view of the glass transition. Curves bent to the left
<T.. Full line: asymptotic £=0) analytical curve. Dashed lines 2are the isdy, curves bent to the right are the iXo(see text. The

(from bottom to top e=0.333, 0.143, 0.0442. critical temperature is indicated by the arrow. Timestare5, 10,
25, 50, ...5000 (from top to bottom, and X=0.4, 0.5, 0.6, 0.7,
C. Below the glass transition temperature, T<T. 0.8, 0.9, 0.99from left to right.

Below T., an undriven system never equilibrates, the
a-relaxation time grows with the waiting time elapsed afterglassy phase extends far beyond the horizontal axis, in the
the quench into the glassy phase, and the system never bgense that systems with valuesXo€haracteristic of the glass
comes stationary. If we now quench the system with drivingare found at high temperatures for finite drives. The effect of
forces acting on it, it turns out that the-relaxation time shear is in a sense paradoxical, because at the same time it
becomes finite, and the system eventually becomes statiofirakes a glass “liquidlike”(by fluidifying it), and it brings
ary[4,9,10. For a vanishingly small drive, howevar, will ~ about typical glass featurgséwo temperaturgsto a super-
again diverge. The dotted lines in Figa2show this diver- cooled liquid which otherwise would be at equilibrium.
gence oft, with decreasing drive. For temperatures just be- Our two-dimensional phase diagram is obviously closely
low T., the times at first diverge like2: the same regime related to thelload, temperatupephase diagram proposed by
was a|ready noted abov'EC_ Still decreasinge, they then Liu and Nagel in an attempt to rationalize the similarities in
cross over to another, faster divergence. Numerically, wé&ehavior between glasses and granular mg#8}. In prac-
find thatt,(e<1T<T.) ~e *™, with (T) slowly (if at  tice, the glass transition temperature is defined as the tem-

obtain a=3.19. To summarize, beloi,, the system does predefined thre_shqld. Hence the surface dravv_n by Liu and
not have a “Newtonian” or linear-response region, and ex-Nagel to delimit “jammed” (or glassy and “unjammed”
hibits shear thinning,,~ e~ “. This power-law divergence is (_or liquid) states would correspond in our graph to antiso-
also found numerically and in a rather involved analytical“”e- o ] ]
treatment by Horner in the case of the forced particle in a 1he “near equilibrium” region of our phase diagram can
random potential, where it is called a “creep” behaviag]. ~ be defined for example as the zone wh¥re0.99[note the
Turning now to the FDT, the situation is quite different initially flat behavior ofX(e) in the inset of Fig. 4 In this
from the one aff >T, (Fig. 6). The “two-temperature sce- region, the usual near t_aqumbrlum concepts are applicable.
nario” persists even for vanishingly small drives, giving a AS the glass transition is approached, this region becomes
clear demonstration of the difference between a glass drivef@stricted to weaker and weaker driving forces, and the two-
to stationarity and an equilibrium system. It is very reminis-t@mperature behavior typical of the glassy phase is observed.

already noted that the limiting effective temperatures werdnany casesdriving strengths, when the relaxation time scale
the same in both situations. becomes of the order of the microscopic time, the concept of

T becomes of course badly defined.

As mentioned above, the prediction of a sharp, purely
dynamic glass transition is an unrealistic feature of any
theory not taking into account activated processes. It seems

A convenient synthetic representation of the main resulthiealthy at this point to discuss in some detail what kind of
obtained in this paper is given in Fig. 7, which represents aew features are to be expected in real situations, when the
“phase diagram” of the system in the plane T). In such a effect of activated processes is present. In Fig. 8 we sketch
two-dimensional representation, the usual glass phase is réie modifications that can be expected in a realistic system in
stricted to the segmei<T_ of the horizontal axis. Other which the dynamic transition is smeared by activated pro-
points in the plane corresponds to states which respect timeesses. To begin with, at zero drive there is a finite equili-
translation invariance, and can be characterized by their résration time at all temperatures aboVe (T,<T,), the (so-
laxation timet, and their fluctuation-dissipation ratio. The defined Kauzmann temperature, which may or may not be
two families of curves drawn in Fig. 7 correspond indeed tozero. Given a system abovig, there will, in principle, al-
constant values df, (“iso-t,”) and constant values of the ways be a sufficiently small driving force such that FDT still
long-time FDR(“iso-X""). From these curves, it is manifest holds. However, not all of the drive-temperature plane is
that when the drive is taken into account, the influence of theccessible in stationarynonaging conditions. Given an ex-

IV. DISCUSSION: THE TEMPERATURE-DRIVEN
“PHASE DIAGRAM”
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structural relaxations are accelerat@thear thinning This
acceleration is accompanied by the appearance of an effec-
tive temperature for the slow structural degrees of freedom,
while the fast degrees of freedofphonons, etg.are still at

the bath temperature. Each temperature is associated with
fluctuations at each time scale, and is well defined if the
drive is gentle enough that the time scales still remain sepa-
rated [30]. When the two temperatures differ very little,
“near equilibrium” assumptions becomes justified: this re-
gime was shown to coincide with the usual “linear regime”
of steady-state rheology. For stronger drive, a power-law de-
cay of the relaxation time with increasing drive is observed,
as is the case in many complex fluids. Interestingly, the as-
sociated “shear thinning” exponent is found to b&/3, and
seems to be quite robust with respect to variations in the
FIG. 8. Same as Fig. 7, but with the activated processes takefodel. This could be an indication of why so many shear

Drive

Near Equilibrium

Tk Tg Tc T

into account(schematig thinning exponents in real systems are found in the range
[—1/2,-1].
perimental situation, there is a levghe thick line in Fig. 8 The obvious weakness of the approach, which is intrinsic

below which the system does not have the time to becom the perturbative scheme adopted, is that the effect of acti-
stationary. This is the “glass transition{in fact, a cross- vated processes can only be described at a qualitative level.
oven as it happens in practice, and the zero-drive intercept ofience a number of interesting phenomena observed at weak
this line is usually denoted the “glass transition tempera-driving forces(e.qg., yield stress, dilatancy, hystergsiannot
ture” T.. be addressed analytically.

From what we have learned from the idealized case, we N principle, the present study could be extended to equa-
might expect that abovd,, in conditions such that the tions with many coupled spatial modes. One can even go
a-relaxation time and therefore the viscosity are alreadyUrther and consider richer resummation schemes, for ex-
large, there will be a well established two-temperature re@Mmple, the self-consistent screening approximatiag].
gime as soon as a moderately weak driving is turned on. ThMoreover, other resummations, such as applying to the
consequence is that in the supercooled liquid regime for indriven case a dynamical version of the hypernetted-chain
stance, a small shear rate will be sufficient to give at theéguation(in the spirit of the work on glasses of ard and
same time a nonlinear rheological behavias seen in the Parisi[31]), can be envisaged. In this way, one could study a
MD simulations of Ref[3]), andan effective temperature {rue shear applied to the largest spatial mode, and calculate
different from that of the thermostauch an effect would how the energy cascades to the shorter wavelengths. The
also be accessible in an experiment. We stress that an effef¥0-temperature ansatz can be shown to c[dsg indepen-
tive temperature could be measured in that ¢asestation- ~ dently the resummation scheme, with the important property

ary statemaking the measurements far easier than in an aghat there are still in the small drive limit only two tempera-
ing experimen{29]. tures shared by all spatial modes. The implementation of

Below the “glass transition” line, on the contrary, we theseimprovements may then allow us to extract actual num-

expect that, as discussed in Sec. Il D, history-dependent eRers starting from a realistic microscopic theory. However, it
fects will become predominant, with effects like yield stressShould be born in mind that the nonperturbative activated
or hysteresis that cannot be accounted for within mean-fieldProcesses would still remain unaccessible to these more so-
like theoretical schemes. phisticated computational schemes.

Having pointed out all these differences, the basic sugges-
tion of a two-step, two-temperature relaxation behavior re-

mains, and is open for numerical and experimental checks. ACKNOWLEDGMENT
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tion. Hence we have constantly tried to interpret the results APPENDIX: CALCULATION OF THE POWER INPUT
within the context of a rheological experiment on a system
with anomalous rheology, although such an interpretation re-
mains of course rather tentative.
In this language, we can summarize our results as follows. m

The quantity to estimate is

If a fluid having, in equilibrium, two well-separated relax- p= .

I fdrive's_ Al
ation time scales is gently drivefe.g., shearedthe slow N E P (AL
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To compute this quantity, we introduce a curréntand a in the effective MSR Lagrangian. Finally, we obtain fer
generating functionaZ such that

2
-~ €
- P(t)= | DsDsexpL)—:
zz<eprdt2 hi(t)fid”"esi>>. (A2) J 4NK
Then by definition Xi‘jl;‘jk_l J dt’
108 6z X[si (s (1) -5 (D)s; ()]
P(t)=— >, _} i (A3) 118770 S A S
N i=1 5h|(t) h=0

X[ 2is(t")si(t)], (A5)
Z can be obtained from the usual Martin-Siggia-RA4SR)

formalism, and the average over the random variables
gives the extra term

wherelL is the usual MSR Lagrangian for thgespin model.
The integral is estimated at its saddle point, yielding,

2 P(t —kezf dt’C(t,t’ 1 R A6
ke > fdtdt’ (=] drct) at (AB)
ANML00, e

X[s, (Os),(t") -5, (Ds) _ (1)]

which reduces for time-translation-invariant systems to

dR(7)

Tdr (A7)

P—k—ezﬁmd C(n)*?
X [18(1)iS;(t") +hi(1)S() (Ad) R
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