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Ellipsometric determination of universal critical adsorption scaling functions

J. H. Carpenter, J.-H. J. Cho, and B. M. Law
Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601

~Received 10 May 1999!

In this paper we determine and compare a number of theoretical models which describe the universal scaling
functions for critical adsorption in the strong surface field limit. TheP1 andP3 models, which are continuous
up to and including the first and third derivatives, respectively, provide excellent descriptions of the ellipso-
metric data for four different critical binary liquid mixtures. The exponential-Pade´ model, initially proposed by
Liu and Fisher@Phys. Rev. A40, 7202 ~1989!#, provides a reasonable but less accurate description of the
one-phase experimental data. This later model has the advantage, however, that it is continuous in all
derivatives.

PACS number~s!: 68.35.Rh, 68.10.2m, 64.60.Fr, 82.65.Dp
y
ce
th
ve
a

flu

er

on
-
c

t

-
co

l

,
rv

ti
al
t
c-
ide
-
s
s

-

s
o-

pon
d

r
po-

re-
ur

-

en

tly

re

nts

ri-

re-
I. INTRODUCTION

At the liquid/vapor or liquid/solid interface of a binar
liquid mixture, the liquid component with the lowest surfa
free energy will adsorb at the surface, in preference to
other component. This preferential adsorption is found e
in the two-phase region of the liquid mixture provided
wetting layer does not form@1#. It is important to obtain a
quantitative understanding of adsorption because it in
ences the interactions between colloidal particles@2# and is
important in fluid flow through porous media@3#.

Twenty years ago Fisher and de Gennes~FdG! @4# pre-
dicted that this preferential adsorption would acquire v
interesting universal properties near acritical point of the
binary liquid mixture. In their scaling theory, the adsorpti
is governed by a surface field,h1, and the adsorption struc
ture in the vicinity of the surface is correlated over a distan
of the order of the bulk correlation length,j65jo6t2n,
where the reduced temperaturet5uTc2Tu/Tc , n ~50.632
@5#! is a bulk critical exponent,jo6 is a system-dependen
amplitude, and throughout this publication the subscript1
(2) refers to the one-~two-! phase region of the liquid mix
ture. The distance over which the adsorption structure is
related obviously diverges as the critical temperatureTc is
approached. In@4#, the local adsorption at a distancez
(>0) from the surface~at z50) is governed by the loca
order parameterm(z,t), where

m6~z,t !5M 2tbG6@~z1ze!/j6 ,h1t2D1#, ~1!

D1 ('0.5 @6#! and b (50.328 @5#! are critical exponents
the termM 2tb describes the shape of the coexistence cu
for the binary liquid mixture, while the functionG6(x,y) is
predicted to beuniversalwith differing forms in the one- and
two-phase regions. The system-dependent extrapola
length ze is discussed in more detail in Sec. IV. In critic
binary liquid mixtures, the order parameter in the bulk az
5`, namelym(`,t), is frequently taken as the volume fra
tion of one of the components because this usually prov
the most symmetric coexistence curve@7#. A reasonable as
sumption, therefore, is that the volume fraction also serve
the appropriate order parameter in the vicinity of a surface
that
PRE 611063-651X/2000/61~1!/532~10!/$15.00
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m~z,t !5wL~z,t !2wL~1`,0!, ~2!

where wL(z,t) is the local volume fraction of the lower
density liquid component~L! and wL(1`,0) represents the
corresponding critical volume fraction. The functional form
for G6(x,y) are not well understood, although some the
retical progress has been made recently@8#. Only one experi-
ment has examined the dependence of the adsorption u
the surface fieldh1 @9#. In this paper we are mainly intereste
in a limiting case of this function, forstrong h1 fields, where
sufficiently close toTc the first few layers at the liquid/vapo
surface are completely saturated with the preferred com
nent and Eq.~1! simplifies to

m6~z,t !5M 2tbP6@~z1ze!/j6#, ~3!

whereP6(x)[P65G6(x,`) is again auniversalfunction
which takes differing forms in the one- and two-phase
gions. In this simpler situation, which is believed to occ
most frequently in nature,P6(x) is predicted to exhibit
power-law decay@Eq. ~5! below# at small x(!1), which
crosses over to an exponential decay@Eq. ~7! below# at large
x(@1). Various forms for the crossover from smallx to
largex have been proposed. Liu and Fisher@10# suggested a
number of differentAnsätzewhich incorporate the appropri
ate asymptotic behavior. Diehl and Smock@11# have de-
duced renormalization-group theory~RG! estimates forP6

to ordere while Smock, Diehl, and Landau@12# have ob-
tained estimates from Monte Carlo simulations~MC!.

A large variety of experimental techniques have be
used to study critical adsorption including volumetry@13#,
evanescent-wave light scattering@14#, optical reflectometry
@15#, ellipsometry @16–18#, and neutron reflectometry
@19,20#. Unfortunately, none of these techniques direc
measures the universal functionP6 . Instead, various inte-
grals overP6 are measured and therefore it is much mo
difficult to extract the precise functional forms forP6 from
experimental data. Two neutron reflectometry experime
@19,20# have confirmed the power-law behavior ofP1(x) at
small x, while ellipsometry and optical reflectometry expe
ments have measured various integrals overP6(x) @15,21#,
obtained evidence for thez/j dependence ofP6(x), and
enabled the extraction of various universal parameters
532 ©2000 The American Physical Society
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lated to the form ofP6(x) @10,22,23#. The RG and MC
estimates forP6(x) provide a reasonable qualitative descr
tion for a number of ellipsometric critical adsorption expe
ments@22,24#, while a novel comparison between theory a
experiment has even managed to determine estimate
P1(x) for several different liquid mixtures@23#; however, at
intermediate values ofx(;1) these functional forms diffe
by more than 100% and therefore these experimental de
minations ofP1(x) cannot be claimed to fulfill the univer
sality requirement ofP1(x). This is an unsatisfactory situa
tion becauseP6(x) are limiting functions for other more
complicated situations near the critical point of the liqu
mixture. For example,~i! the form ofG6(x,y) can obviously
never be quantitatively understood until the simpler funct
P6(x) is determined precisely,~ii ! finite-size effects in criti-
cal films @25# cannot readily be understood until the sem
infinite system, whereP6(x) is applicable, has been dete
mined, and~iii ! geometric effects~e.g., adsorption around
spherical colloidal particles@26#! cannot be understood unt
planar surfaces are understood. The purpose of this pap
therefore to accurately determine and compare various m
els for the universal functionsP6(x) with the ellipsometric
data of four different critical binary liquid mixtures. A pre
liminary account of this work has been previously publish
in @24#.

This paper is set out as follows. The general theoret
behavior forP6(x) is discussed in Sec. II. We are main
interested in the determination ofP6(x) from ellipsometric
data, therefore in Sec. III we provide a detailed discussion
what precisely has been previously determined from ellip
metric measurements of critical adsorption. In Sec. IV,
present a number of theoretical models forP6(x) which
conform with the general theoretical behavior of Sec. II a
discuss the general methodology for determiningP6(x)
from ellipsometric data. We apply this methodology for t
determination ofP6(x) in Sec. V, where the specific detai
are relegated to an Appendix. This paper concludes wit
summary and discussion of our results in Sec. VI.

II. THEORY

According to our definition for the local order paramet
m(z,t) @Eq. ~2!#, the universal surface scaling function
P6(x) @Eq. ~3!# must take the limiting forms

P1~`!50 and P2~`!51 ~4!

in the bulk liquid so that the order parameter is either zero
describes the coexistence curve in, respectively, the one
two-phase regions.

At criticality ( t50), we expect the adsorption to rema
finite ~and nonzero! so thatm(z,0) must lose its dependenc
upon the reduced temperaturet; this requirement implies tha
the smallx(!1) behavior for the surface scaling functio
must be@4#

P6~x!>c6x2b/n, ~5!

wherec1 andc2 are universal numbers. At the critical tem
peratureTc , for second-order phase transitions, the local
der parameterm(z,t) is required to be continuous with a
of
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analytic background with respect to the reduced tempera
t at t50, hence, from Eq.~5! @11#,

c1

c2
5S j01

j02
D 2b/n

, ~6!

where the correlation length amplitudes have a universal
tio Rj5j01 /j02 whose value may depend upon whether t
ratio Rj corresponds to the ‘‘true correlation length’’ or th
‘‘second moment of the bulk correlation length’’@23#. For
the true correlation length, Tarko and Fisher@27# determined
that Rj51.92 while more recently Flo¨ter and Dietrich used
an interpolation scheme to estimateRj in three dimensions
from exact results in two and four dimensions; they fou
Rj51.7360.04 @23#. For the second moment of the bu
correlation length, there is less uncertainty in this univer
ratio; Liu and Fisher find thatRj51.9660.01 @28#, Monte
Carlo simulations yieldRj52.0660.01 @29#, while Flöter
and Dietrich determined thatRj51.9360.05 @23#. The
analysis of critical adsorption data in Sec. V will allow us
study this ratio. We will consider two values:Rj51.96,
which agrees with many of the estimates above~independent
of the definition for the correlation length!, and the alterna-
tive Rj51.73 suggested by Flo¨ter and Dietrich@23# for the
true correlation length.

At large x(@1), the P6 function obeys the following
asymptotic limit:

P6~x!2P6~`!>P`6e2x, ~7!

whereP`6 are universal numbers and the values forP6(`)
are given in Eq.~4!.

Equations~5! and ~7! represent only the first terms in a
asymptotic expansion. For thex→0 limit, Diehl and Smock
@11# proposed the following expansion for the scaling fun
tion:

P6~x!5c6x2b/n1c16x(12b)/n1c26x(22b)/n

1c36x32(b/n)1•••, ~8!

wherec16 , c26 , etc. are additional universal numbers. Th
small x expansion follows from the requirement that the o
der parameterm(z,t), immediately adjacent to the interfac
~for fixed z!j), exhibit the correct reduced temperature d
pendence as described in@11#. The fourth term in Eq.~8!,
namelyx32(b/n), exhibits a differing power-law dependenc
compared with the preceding terms; this originates from
utu22a surface order-parameter singularity which is identic
to that occurring in the bulk free energy@30#, wherea is the
specific-heat critical exponent. From the analyticity of t
analytic background att50 pairs of parameters,c11 and
c12 are also related to each other through the ratioRj @11# in
analogy to Eq.~6!; specifically@31#

c11

c12
52S j01

j02
D (12b)/n

and
c21

c22
5S j01

j02
D (22b)/n

. ~9!

For the x→` limit, Liu and Fisher @10# suggest that the
more general asymptotic expansion

P6~x!5P6~`!1P`6e2x1P16e22x1P26e23x1•••

~10!
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should be valid whereP16 , P26 , etc. are additional univer
sal numbers. Smock, Diehl, and Landau@12# have deduced
explicit RG expressions for the parametersP`6 , P11 , and
P21 accurate to ordere.

III. ELLIPSOMETRIC MEASUREMENTS OF CRITICAL
ADSORPTION

Ellipsometry is the most sensitive visible-wavelength o
tical technique for studying critical adsorption@32#. Essen-
tially all of the ellipsometric measurements for critical a
sorption have been conducted at the Brewster angle (uB)
where the real component of the optical sign
Re(r p /r s)uuB

50, while the imaginary component or elliptic
ity is described by the Drude equation@35#

r̄~ t !5Im~r p /r s!uuB

5
p

l

A«11«2

«12«2
E

2`

` @«~z,t !2«1#@«~z,t !2«2#

«~z,t !
dz

~11!

in the limit of thin-film thicknesses compared with the wav
length of light,l. @For our situation, Eq.~11! typically holds
for j,20 nm.# In this equationr p and r s are, respectively,
the complex reflection amplitudes for polarizations para
~p! and perpendicular~s! to the plane of incidence while
«(z,t) describes the variation of the optical dielectric co
stant from a value of«1 in the incident medium atz52` to
a value of«2 in the substrate atz51`. If the interface is
rough or anisotropic, then the equation for the elliptic
needs to be supplemented or modified@32–34#. For suffi-
ciently large correlation lengthsj, close toTc , the Drude
equation is no longer valid and the ellipticityr̄ must be
determined by numerically solving Maxwell’s equations u
ing a particular model for«(z,t) @36,37#.

In many prior studies of critical adsorption, it has fr
quently been assumed that the dielectric profile«(z,t) serves
as the local order parameter. Flo¨ter and Dietrich@23# discuss
how to determine the universal numberc1 @Eq. ~5!# and
obtain estimates of the universal functionsP6(x) from these
dielectric profiles. We have used an alternative approa
The dielectric profile«(z,t), required in the determination o
the ellipticity r̄, is related to the volume fraction profil
wL(z,t) via the two-component Clausius-Mossoti equati
@38#

f ~«!5V@wL f ~«L!1~12wL! f ~«H!#, ~12!

where

f ~X!5
X21

X12
, ~13!

«L («H) is the optical dielectric constant for the lighte
~heavier! liquid component, andV5(VA1VB)/VA1B is the
volume ratio before mixing anAB liquid mixture (VA
1VB) compared with after mixing this mixture (VA1B).
Throughout this paper we assume that there is neglig
volume change on mixing so thatV51; typically V pro-
-

l

l

-

-

h.

le

vides only an;2% correction@38#. The volume fraction
profile wL(z,t) is then related to the local order parame
m(z,t) and theoretical models forP6(x) through Eqs.~2!
and ~3!. Smith and Law@39# have used this approach t
demonstrate that the Drude equation@Eq. ~11!# reduces to

r̄~ t !;tb2nE
0

`

@P6~x!2P6~`!#dx1 r̄BG~ t ! ~14!

to a good approximation for critical adsorption. The dive
gent tb2n term ~originating from the critical portion of the
interface for z>0) dominates the weakly temperatur
dependent background termr̄BG(t) which includes contribu-
tions from the variation of the volume fraction on the vap
side of the interface@39# and from capillary wave fluctua
tions @21#. In @21#, Eq. ~14! was used to determine the un
versal integrals

E P1[E
0

`

P1~x!dx51.9760.08 ~15!

and

E P2[E
0

`

@P2~x!21#dx51.6560.13 ~16!

from a number of different critical binary liquid mixtures.
In a later paper@22#, Smith et al. considered the whole

temperature range, including very close to the critical te
perature, by numerically solving Maxwell’s equations for
particular model for the universal scaling functionP6(x).
They demonstrated that both the RG@11# and MC@12# scal-
ing functions provide a reasonable qualitative description
the r̄(t) data for four different critical binary liquid mixtures
with the MC scaling function providing the more accura
representation. In the same publication they demonstra
that the ellipticity from critical adsorption can be reduced
a universal curve if the normalized valuer̄N5( r̄2 r̄BG)/( r̄
2 r̄BG)peak is plotted against the correlation lengthj ~rather
than the reduced temperaturet). Here (r̄2 r̄BG)peak is the
peak value ofr̄2 r̄BG in the one-phase region. They foun
that the peak inr̄, wherer̄N51, occurred for aj1 /l value
of @40#

~j1 /l!peak50.06460.006 ~17!

for four different liquid mixtures where (j1 /l)peakis prima-
rily determined by the ratioc1 /P`1 . The RG, MC, and
Liu-Fisher ‘‘power-law-exponential’’ models enabled the
to deduce that@40#

c1 /P`150.7560.17 ~18!

for (j1 /l)peak given by Eq.~17!. @Note that the value of
c1 /P`1 depends slightly upon the model used~see the Ap-
pendix! and therefore Eq.~18! provides only a good estimat
of this ‘‘universal’’ ratio.!
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IV. THEORETICAL MODELS FOR THE CRITICAL
ADSORPTION SCALING FUNCTION

In this section we consider a number of surface sca
functions which closely mimick the theoretical predictio
given in Sec. II, while in the following section we use e
perimental measurements to determine the remaining pa
eters in these functions. Before we describe various mo
for P6(x), we first discuss the ‘‘vapor’’ side of the interfac
(z,0). This ‘‘noncritical’’ portion of the model for«(z,t)
does not depend upon the model that we use forP6(x).
Following @39#, we assume that the optical dielectric profi

«~z,t !511
@«~0,t !21#@11e2ze /jv#

11e2(z1ze)/jv
, z<0, ~19!

wherejv is the noncritical vapor correlation length and t
extrapolation length

ze5j06S wL~0,t !2wL~1`,0!

M 2c6
D 2n/b

. ~20!

For complete saturation by theL component,wL(0,t)51 and
therefore the surface optical dielectric constant«(0,t)5«L in
Eq. ~19!. For a given liquid and model forP6 , the only
unknown parameter in Eqs.~19! and~20! is the vapor corre-
lation lengthjv . Smithet al. @22# used Eqs.~19! and~20! in
their discussions of the RG and MC models.

For the liquid side of the interface (z>0) from Eqs.~2!,
~3!, and ~12!, «(z,t), used in the integration of Maxwell’s
equations, is defined once a model forP6 has been specified
In @24# we provided a preliminary discussion of theP1
model for P6 , which is so designated because the funct
chosen forP6(x) is continuous up to and including the fir
derivative with respect tox. In this model we assume that th
expansion at smallx(,xo) takes the form

Ps6~x!5c6x2b/n1c16x(12b)/n ~21!

in agreement with Eq.~8!, while the expansion at largex
(>xo) takes the form

Pl 6~x!5P6~`!1P`6e2x1P16e22x ~22!

in agreement with Eq.~10!. These two expansions ar
matched in value and in the first derivative atx5xo giving
rise to the four equations

P165Fc6xo
2b/n

12b
2P`6e2xoS 12

nxo

12b D2P6~`!G
3e2xoS 11

2nxo

12b D 21

~23!

and

c165xo
(b21)/n@P`6e2xo1P16e22xo2c6xo

2b/n#. ~24!

For simplicity the matching pointxo is assumed to be th
same in both the one- and two-phase regions.~This restric-
tion is examined later in this paper.! In this model forP6

there are nine parameters which must be determined, spe
cally c6 , c16 , P`6 , P16 , andxo . These nine parameter
g

m-
ls

n

ifi-

are constrained by eight constraints: fivenecessary con-
straints described by Eqs.~6!, ~23!, and ~24!, which any
reasonable model must obey, and threeexperimental con-
straints described by Eqs.~15!, ~16!, and ~18!. The eight
constraints leave a single adjustable parameter,xo , in the
function P6 . The application of these eight constraints
rather complicated and is described in more detail in
Appendix. For a specificxo value and vapor correlation
lengthjv , the optical dielectric profile«(z,t) is completely
determined for theP1 model and the ellipticityr̄P1(t) can
be calculated by numerically integrating Maxwell’s equ
tions.

The optimal values forxo and jv can be determined by
minimizing the standard deviation

sr5S (
i 51

N

@ r̄ i~ t !2 r̄P1~ t !#2/~N2n!D 1/2

, ~25!

where r̄ i(t) represents the experimental data,N (5400) is
the total number of experimental data points for the fo
liquid mixtures measured by Smith and Law@21#, and n
(55) is the number of adjustable parameters:xo and four
values ofjv , one associated with each liquid mixture. In th
next section, where this optimization is done, the minimu
value ofsr is denoted bysr

min . It is important to emphasize

thatshape changesin r̄P1(t) only enter through the universa
parameterxo ; the parameterjv merely moves a particula
liquid mixture r̄P1(t) curve vertically by a constant amoun
This computational scheme is efficient in separating criti
and noncritical effects. It provides a useful measure (sr

min)
for comparing different models forP6 .

TheP1 model can systematically be improved by cons
ering additional terms in the asymptotic expansions Eqs.~8!
and ~10! and requiring a corresponding number of high
derivatives ofP6 to be continuous atxo , so thatxo contin-
ues to be the sole adjustable parameter forP6 . Improve-
ments in theP1 model may be important for physical phe
nomena which couple to higher-order derivatives ofP6 @41#;
for example, there is experimental evidence that the orie
tional order of dipolar molecules at surfaces may couple
der certain circumstances to the second derivative of the
cal order parameterm(z,t) @42,43#. In the next section we
consider theP3 model whereP6 is continuous up to and
including the third derivative with respect tox. In the P3
model the smallx expansion includes terms up to and inclu
ing thex(22b)/n term in Eq.~8!, while the largex expansion
includes terms up to and including thee23x term in Eq.~10!.
The small and largex expansions are matched up to a
including the third derivative at the pointxo . There are thir-
teen parameters in theP3 model, namelyc6 , c16 , c26 ,
P`6 , P16 , P26 , and xo . Nine of these parameters ar
determined by the necessary~continuity! constraints, three
more parameters are determined by the experimental
straints@Eqs. ~15!, ~16!, and ~18!#, while the last paramete
xo is determined by minimizing Eq.~25! as in theP1 model.

The final model that we consider in the next section is
‘‘exponential-Pade´’’ ~EP! profile

P1~x!5c1F 1

12e2x
1S c1

P`1
D 2n/bGb/n

e2x ~26!
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suggested by Liu and Fisher@10# to describe the crossove
region between small and largex. This model is only valid in
the one-phase region and conforms with Eqs.~4!, ~5!, and
~7!.

V. ANALYSIS OF VARIOUS CRITICAL ADSORPTION
SCALING MODELS

Smithet al. @39,21,22# studied the four critical binary liq-
uid mixtures aniline-cyclohexane~AC!, isobutyric acid-
water ~IW!, nitrobenzene-hexane~NH!, and 2,6-lutidine-
water ~LW!. The first three liquid mixtures possess upp
consolute points while the fourth mixture possesses a lo
consolute point. All of these mixtures obey the conditi
sL!sH , wheres i is the surface tension of the lighter~L! or
heavier~H! liquid component; consequently the liquid/vap
surface is saturated with the lighter component to a g
approximation, in both the one- and two-phase regions@21#.
We are therefore in the completely saturated regime wh
the universal surface scaling functionP6 @Eq. ~3!# is appro-
priate in describing the adsorption structure. Smith and L
@21# demonstrated that capillary wave fluctuations essenti
add a constant amount to the ellipticityr̄(t); this contribu-
tion is effectively taken into account therefore by the vap
correlation lengthjv @which appears in Eq.~19!# becausejv

has an identical effect onr̄(t). The experimentalr̄(t) data
for these four liquid mixtures is provided in@21#. In all of
these measurements, the transverse thermal gradients
less than;1 mK/cm and a sufficiently long time~typically
4 to 6 h! was allowed for the system to come into therm
and diffusive equilibrium at each temperature where at
end of this waiting period the thermal stability was typica
61 mK over 4 h, while at each reduced temperaturt

twenty r̄(t) measurements were collected and averaged o
a period of 1 h. From this data set, Smithet al. measured the
universal integrals*P1 @Eq. ~15!#, *P2 @Eq. ~16!# @39,21#,
and the universal ratioc1 /P`1 @Eq. ~18!# @22,24#. In this
section we compare theP1, P3, and EP scaling function
models, suggested in the preceding section, with the exp
mental data set for the four liquid mixtures.

A. P1 model

We first consider the case where the ratio of the corre
tion length amplitudesRj5j01 /j0251.96. In Fig. 1 we
show the variation ofr̄P1(t) calculated for the AC mixture
for different values ofxo . The behavior at larget>1023 in
both the one- and two-phase regions is insensitive to
value ofxo and is determined by the universal numbers giv
in Eqs.~15! and ~16!, respectively. Additionally in the one
phase region the peak position always occurs at the s
reduced temperature value, which is governed by Eq.~17!,
while Eq. ~6! forces the one- and two-phase curves for ea
xo to be continuous att50. The shape ofr̄P1(t) depends
significantly upon xo for small reduced temperaturest
<1023 in both phases. When theP1 model is minimized
according to the scheme described in Sec. IV, the minim
standard deviationsr,P1

min 51.375631024 occurs for xo

51.15. This optimalP1 model is displayed in Fig. 2~dashed
line!, while its parameters are listed in Table I. In Fig. 3, t
r
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P1 model~dashed line! is compared with the experimenta
data for the AC mixture. Comparisons with the other thr
mixtures are given in@24#. TheP1 model provides an excel
lent description of all four mixtures in both the one- an
two-phase regions. The experimental error forr̄(t), typically
Dr̄;531025, does not take into account effects due to t
presence of any transverse thermal gradients and uncer
ties in the critical temperature, critical composition, corre
tion length amplitudejo1 , and coexistence curve amplitud
M 2 , etc. The real error associated with eachr̄(t) point
should be larger thanDr̄. We believe thatsr,P1

min provides a

more accurate description of the true errors inr̄(t) for a

FIG. 1. Plot of r̄ versust for the P1 model withRj51.96 in
both the one- and two-phase regions. The curves are for diffe
values ofxo50.7 ~dash-dotted line!, 1.0 ~dashed line!, 1.2 ~dotted
line!, and 1.6~solid line!.

FIG. 2. Plot of the universal critical adsorption scaling functio
P1(x) and P2(x)21 versusx for different models:P1 ~dashed
line!, P3 ~solid line!, and EP model~dotted line!. In this figure the
P1 and P1a models are indistinguishable; similarly, theP3 and
P3a models are indistinguishable.
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TABLE I. Critical adsorption scaling function models.~Note: theP1 model below corrects some mino
errors in@24#.!

Model Phase xo6 c6 c16 c26 P`6 P16 P26 104sr
min

P1 1 1.15 0.78820.015
10.009 20.245 0.96320.201

10.117 1.437 1.3756
2 1.15 1.11720.021

10.013 0.169 0.57220.152
10.357 0.533

P1a 1 1.15 0.788 20.245 0.963 1.437 1.3757
2 1.15 1.047 0.185 0.433 0.516

P3 1 1.60 0.791 20.284 0.032 0.809 3.469 24.852 1.4476
2 1.60 1.122 0.170 20.0091 0.590 20.109 1.661

P3a 1 1.57 0.792 20.286 0.033 0.826 3.266 24.394 1.4481
2 0.86 1.123 0.148 0.0051 0.659 20.515 2.076

EP 1 0.817 1.035 1.5492
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carefully prepared critical binary liquid mixture, assumin
that the P1 model is a good representation of the act
scaling functions. In@24#, sr,P1

min was assumed to represe

the true experimental error associated with eachr̄(t) data
point; 95% confidence levels were determined from thex2

distribution. For convenience these 95% confidence lev
are also listed in Table I; if they were displayed in Fig.
they would barely be visible. The narrow region defined
the 95% confidence levels suggests that the trueP6 function
must lie within this narrow region in order to be able
explain the experimentalr̄ data for the four liquid mixtures

The results in Fig. 1 suggest that perhaps a better fit co
be obtained between theory and experimental data if sepa
crossover points, denotedxo1 and xo2 , were used in, re-
spectively, the one- and two-phase regions. Such an ex
sion will be considered later for theP3 model.

If Rj5j01 /j0251.73 ~rather thanRj51.96), as sug-
gested by the calculations of Flo¨ter and Dietrich@23#, we
find similar agreement between this model~denoted theP1a
model! and experimental data as indicated by asr,P1a

min

51.375731024. The parameters differ slightly for theP1a

FIG. 3. Comparison of the various models with the experimen
data ~symbols! for the aniline-cyclohexane mixture:P1 ~dashed
line!, P3 ~solid line!, EP constrained model~dash-dotted line, see
text!, and EP model~dotted line!.
l
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,
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n-

model compared with theP1 model and are listed in Table I
however the shape for theP1a model can barely be distin
guished from theP1 model~Fig. 2, dashed line! and there-
fore it will provide a similar agreement with the experime
tal r̄ data. This indicates that ther̄ data cannot be used t
differentiate between differing values forRj . The ratios
c11 /c12 andc21 /c22 @Eq. ~9!#, derived from the analyticity
of the analytic background att50, provide an additional
self-consistency test for the theoretical models. In Table
we comparec11 /c12 for the P1 andP1a models together
with the theoretical expectations from Eq.~9!. In both cases
c11 /c12 is negative, as predicted by Eq.~9!, however it is
approximately;20230 % lower than expectations.

B. P3 model

We have repeated the calculation for theP3 model with
Rj51.96 ~Fig. 2, solid line!. For this model we find that
sr,P3

min 51.447631024 for xo51.60, where the parameters a
given in Table I and the comparison with experiment for t
AC mixture is shown in Fig. 3~solid line!. Figure 2 demon-
strates that there is very little difference between the optim
shapes for theP1 andP3 models. TheP3 model will there-
fore provide the same quantitative agreement as theP1
model~which was displayed in@24#! with regards to ther̄(t)
data for the other three liquid mixtures. In Table II we com
pare the ratiosc11 /c12 andc21 /c22 for theP3 model with
the predictions from Eq.~9!.

In Fig. 1 ~applicable for theP1 model! the curves sugges
that a better description of the experimental data might
obtained if separate matching pointsxo1 and xo2 are used
in, respectively, the one- and two-phase regions. We h
modified theP3 model to allow for these two adjustab
parameters. We call this modifiedP3 model theP3a model.
The use of two adjustable parameters involves consider
more work than for a single adjustable parameterxo , be-

l

TABLE II. Critical adsorption amplitude ratios.

Model c11 /c12 2Rj
(12b)/n c21 /c22 1Rj

(22b)/n Rj

P1 21.45 22.05 1.96
P1a 21.32 21.79 1.73
P3 21.67 22.05 23.5 15.93 1.96
P3a 21.93 22.05 16.5 15.93 1.96
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cause now a two-dimensional space must be searched fo
global minimum insr . It is difficult to fully automate our
computational procedure, hence this search is conducte
selecting values for the pair (xo2 ,xo1) in the vicinity of our
previous optimal valuexo51.60 and then calculatingsr .
Figure 4 shows a plot of the functionsr(xo2 ,xo1) where
the global minimum forsr has a value ofsr,P3a

min 51.4481
31024 at (xo2

min ,xo1
min)5(0.86,1.57). We note that the functio

sr(xo2 ,xo1) is extremely flat and relatively insensitive t
the precise value of (xo2 ,xo1); this function exhibits a very
shallow minimum wheresr,P3a

min is only one part in 1800
smaller than the value ofsr at (xo2 ,xo1)5(1.60,1.60). In
the P3a model,xo1

min51.57 is still quite close to the value o
xo51.60 for theP3 model, howeverxo2

min50.86 differs con-
siderably from this value. The parameters for theP3a model
are listed in Table I while the shape for this model is ess
tially indistinguishable from theP3 model in Fig. 2~solid
line!. @Note that in Table I,sr,P3a

min 51.448131024 is slightly
larger thansr,P3

min 51.447631024 even though one has on
additional adjustable parameter for theP3a model; this is
because the number of degrees of freedomN2n which oc-
curs in the formula forsr is slightly smaller for theP3a
model (N2n5394) than for theP3 model (N2n5395).#
In Table II we compare the ratiosc11 /c12 and c21 /c22

with the theoretical expectations from Eq.~9!. Of all of the
models considered, theP3a model provides the most con
sistent agreement with theoretical predictions for these
tios, however this agreement comes at a considerable co
extra effort for only a marginal change in the shape
P6(x).

C. EP model

For the EP model~which can only be applied in the one
phase region!, if we require that both of the experiment
constraints given in Eqs.~15! and~18! hold, then the param
etersc1 and P`1 are determined and this model is com
pletely constrained, thus providing no degree of freed
with which to improve the agreement between this mo

FIG. 4. Contour map of the variation in 104sr for various val-
ues of (xo2 , xo1) for the P3a model where the solid circles indi
cate the specific points where calculations were conducted.
global minimum in sr occurs at (xo2

min, xo1
min)5(0.86,1.57), where

sr,P3a
min 51.448131024.
the

by

-

a-
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and experiment. Good agreement is not obtained betw
this model and experimental data~Fig. 3, dash-dotted line!,
especially at small reduced temperaturest. The ratio
c1 /P`1 has a rather large experimental error bar associa
with it, therefore if we loosen the restriction that Eq.~18!
must hold, then much better agreement is found between
EP model and experiment~Fig. 3, dotted line!. The best fit
occurs forsr,EP

min 51.549231024, where the parameters fo
this model are given in Table I. The larger standard deviat
sr,EP

min for the EP model indicates that theP1 andP3 models
provide a slightly better description of the experimental da

D. Derivatives

Molecules may orient at the liquid-vapor surface for ma
differing reasons. If the molecules are amphiphilic so th
one end of the molecule prefers to be oriented towards
vapor side while the other end of the molecule prefers to
oriented towards the liquid side of the interface, then it h
been suggested@41# that this orientational order couples t
the first derivative of the order-parameter profile. If, ho
ever, the molecule is dipolar, then the orientational or
couples to the second derivative@44,41,45#, or perhaps to the
first derivative squared@45#, of the order-parameter profile
@46#. In @42,43# we have found experimental evidence th
for highly polar molecules the orientational order couples
the second derivative of the order parameter, at least at
critical liquid/liquid interface of critical binary liquid mix-
tures. There seems to be no physical reason why such
cepts should not also apply at the noncritical liquid/vap
interface of critical binary liquid mixtures where the ord
parameter is described by the universal functionP6(x) of
Eq. ~3!. In Figs. 5 and 6 we therefore displayP68 (x) and
P69 (x), respectively, where the prime refers to differentiati
with respect tox. The derivatives for theP1 ~dashed line!,
P3 ~solid line!, and EP~dotted line! models are similar in
shape and value except that theP1 model displays a discon
tinuity in its second derivative as expected. These similari
between the various models suggest that they probably
vide a reasonable estimate for the true derivatives of theP6

function.

he FIG. 5. Graph ofdP6 /dx versusx for the modelsP1 ~dashed
line!, P3 ~solid line!, and EP~dotted line!.
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VI. SUMMARY AND DISCUSSION

In this paper we have extended an earlier study@24# of
critical adsorption at the noncritical liquid/vapor surface
critical binary liquid mixtures in the limit of strong saturatio
of one of the liquid components. Under such conditions
critical adsorption profile is described by a universal scal
function P6[P6(x), which takes a differing form in the
one- (1) and two- (2) phase region where the dimensio
less lengthx5z/j6 andj is the correlation length.P6 pos-
sesses well-known asymptotic forms at small and largx
@Eqs. ~8! and ~10!#. By considering various experimenta
constraints and continuity constraints in the dimensionl
lengthx and reduced temperaturet, we have constructed two
models,P1 andP3, which are continuous up to and includ
ing, respectively, the first and the third derivatives ofx. P1
and P3 possess only one adjustable parameterxo , the
matching point where the smallx behavior is matched to th
largex behavior. The parameterxo is adjusted to provide the
best agreement with the experimental ellipsometric meas
ments (r̄) from four different critical liquid mixtures. These
models, which are listed in Table I, provide an excelle
description of the experiments~Fig. 3! with an acceptably
small standard deviationsr

min . In the analysis, each model
compared with all four critical liquid mixtures, however fo
simplicity the agreement for each model is only directly d
played for the critical liquid mixture aniline1 cyclohexane
~Fig. 3!. The other three liquid mixtures exhibit a simila
level of agreement/disagreement with each model. A co
parison between theP1 model and all four mixtures is pro
vided in @24#.

The ratio of the correlation length amplitudesRj

5jo1 /jo2 occurs within theP1 andP3 models. A number
of differing values forRj have been proposed for the ‘‘tru
correlation length’’ amplitude ratio@23#, however the shape
that we deduce for theP6 function using our minimization
scheme is relatively insensitive to the value assumed forRj ,
for example theP1 model ~whereRj51.96) and theP1a
model ~where Rj51.73) have similar standard deviation

FIG. 6. Graph ofd2P6 /dx2 versusx for the modelsP1 ~dashed
line!, P3 ~solid line!, and EP~dotted line! in the ~a! one- and~b!
two-phase regions.
f
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min ~Table I!. We have also examined whether or not

better description of the experimental data could be obtai
using differing matching points in the one- (xo1) and two-
(xo2) phase regions, theP3a model ~with Rj51.96). This
more complicated model requires considerably more effor
determine. It exhibits only a marginal change in shape
P6(x) compared with theP3 model ~Fig. 2!, however it
provides very good consistency~Table II! for the ratios
c11 /c12 andc21 /c22 compared with Eq.~9! derived from
the analyticity of the analytic background att50.

The ‘‘universal’’ amplitudes which occur in each mod
are listed in Table I. These amplitudes are relatively indep
dent of the model considered with the exception ofP11 and
P12 , which differ significantly between theP1 and P3
models. We believe that this effect is due to the strong c
relation between the parameterxo @51.15 ~1.60! for the P1
(P3) model# and the magnitudes of the parametersP16 and
P26 determined by the continuity conditions atxo @Eqs.~23!
and ~24!#. The P1 andP3 models differ primarily at large
x.2 ~Fig. 2!, where the termsP16e22x andP26e23x which
appear in the largex expansion@Eq. ~10!# will be much
smaller than the leading-order termP`6e2x; consequently,
the amplitudesP16 and P26 will be determined with less
certainty. Additionally, Fig. 4 indicates that our experimen
measurements are not particularly sensitive to the pre
value for xo , hence changes inxo will only lead to a mar-
ginal change insr but can generate significant changes
the magnitudes of the parametersP16 and P26 . To a very
good approximation, the optimalP6(x) function derived
from the P1 andP3 models~including their variantsP1a
andP3a) generates thesame universal shapefor the critical
adsorption surface scaling function~Fig. 2!. The narrow 95%
confidence region displayed by theP1 model, which would
barely be visible in Fig. 2, indicates that even small dev
tions from this universal shape will lead to measurable d
crepancies between a model and the experimentalr̄ data. We
believe that themost important concept resulting from thi
paper is theuniversal shapefor theP6(x) function exhibited
in Fig. 2. This shape can be parametrized in various wa
The P1 and P3 models, in this paper, provide good e
amples of such a parametrization. Different parametrizati
will naturally lead to different amplitudes within each mode
our contention is that although these amplitudes within in
vidual models are important, they are of secondary imp
tance to the universal shape for theP6(x) function. Theo-
retical determinations of P6(x) should therefore be
compared with this universal shape rather than with spec
amplitudes, whose value will be somewhat model depend
If theory is to be compared with specific amplitudes then
model most consistent with theoretical expectations is
P3a model, which provides agreement with Eq.~9!.

We have also considered the exponential-Pade´ ~EP!
model of Liu and Fisher@10#, which asymptotically pos-
sesses the predicted theoretical dependence at small
large x. This model provides a reasonable but less accu
description of the one-phase ellipsometricr̄ data, however it
has the advantage that it is continuous in all derivatives. T
P1(x) surface scaling function derived from this model
quantitatively very similar to theP1 andP3 models~Fig. 2!.
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APPENDIX

In this appendix, we describe how to apply both the n
essary and experimental constraints to theP1 andP3 mod-
els. In theP1 model there are nine parameters. The fi
necessary constraints, Eqs.~6!, ~23!, and~24!, allow the pa-
rametersc16 , P16 , andc2 to be expressed in terms of th
four parametersc1 , P`6 , and xo . We initially select a
value of xo ~close to 1!, use Eq.~18! to determineP`1 in
terms ofc1 in P1(x), and finally an integration ofP1(x)
determinesc1 from Eq. ~15!. Similarly, an integration of
P2(x) determinesP`2 according to Eq.~16!. The value of
xo is incremented/decremented and the calculation is
peated until the standard deviationsr , as computed by Eq
~25!, is a minimum. The noncritical correlation lengthsjv ,
which appear in Eq.~19!, are also adjusted to minimizesr .

This procedure, although long and tedious, would be re
tively straightforward if not for the fact that the rati
c1 /P`1 is somewhat model dependent, as previously no
by Smithet al. @22#, and therefore Eq.~18! only provides an
estimate for this ratio. This complicates the above calcula
because we have to redetermine the ratioc1 /P`1 for each
value of xo . This is accomplished by following the proce
dure in @22#. For a particular value ofxo we select four
values ofc1 /P`1 , compute the theoreticalr̄(t) curves for
all four liquid mixtures, and then from each of these curv
determine (j1 /l)peak. These (j1 /l)peak values are then
plotted against thec1 /P`1 ratios. A linear regression
through these theoretical data determines the value
c1 /P`1 ~for this value ofxo) corresponding to the exper
mental value of (j1 /l)peak given in Eq.~17!. We show an
example of this calculation in Fig. 7. The symbols cor
spond to the theoretically computed (j1 /l)peak values for
various values ofc1 /P`1 for xo51.0 ~circles! and xo
51.1 ~solid circles!. The solid lines are linear regressions
these theoretical data, the RG data~solid squares!, and the
MC data ~solid triangles! for xo51.0 ~light line! and xo
51.1 ~heavy line!. The intersections between the solid lin
and the experimental value@Eq. ~17!, Fig. 7, horizontal
dashed line# provide the optimal values forc1 /P`1 . From
ce
,
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Fig. 7, c1 /P`150.78 for xo51.0 andc1 /P`150.81 for
xo51.1. It is these values ofc1 /P`1 for givenxo which are
used in theP1 procedure above, rather than the value giv
in Eq. ~18!.

An identical procedure is used to determine theP3
model; however, in this case we have 13 parameters.
eight linear equations associated with the continuity c
straints applied atxo , together with Eq.~6!, enable the nine
parametersc16 , c26 , P16 , P26 , andc2 to be determined
from values forc1 , P`6 , andxo . After this step, the pro-
cedure for determining theP3 model is identical to that use
for the P1 model.

FIG. 7. Example demonstrating how the ratioc1 /P`1 is deter-
mined for a particular model and value of the matching param
xo . The circles represent theP1 model withxo51.0 ~open circles!
and xo51.1 ~solid circles!, the RG model~solid squares!, and the
MC model ~solid triangles! for the four liquid mixtures. The solid
lines are linear regression fits to the RG, MC, and eitherxo51.0
~light line! or xo51.1 ~heavy line! data. The intersection between
solid line and the horizontal dashed line@Eq. ~17!# provides the
c1 /P`1 value for a givenxo value.
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@13# S. Blümel and G. H. Findenegg, Phys. Rev. Lett.54, 447

~1985!.
@14# D. Beysens and S. Leibler, J. Phys.~France! Lett. 43, L133

~1982!.



k,

G

I.

u,

. E

tte

.

les
hilic
ref-
ol-
os-
lled

PRE 61 541ELLIPSOMETRIC DETERMINATION OF UNIVERSAL . . .
@15# C. Franck and S. E. Schnatterly, Phys. Rev. Lett.48, 763
~1982!; J. A. Dixon, M. Schlossman, X.-L. Wu, and C. Franc
Phys. Rev. B31, 1509~1985!; M. Schlossman, X. L. Wu, and
C. Franck,ibid. 31, 1478~1985!.

@16# D. Beaglehole, J. Chem. Phys.73, 3366 ~1980!; 75, 1544
~1981!; Phys. Lett.91A, 237 ~1982!; J. Phys. Chem.87, 4749
~1983!.

@17# B. Heidel and G. H. Findenegg, J. Phys. Chem.88, 6575
~1984!; J. Chem. Phys.87, 706 ~1987!.

@18# J. W. Schmidt and M. R. Moldover, J. Chem. Phys.83, 1829
~1985!; J. W. Schmidt,ibid. 85, 3631~1986!.

@19# H. Zhao, A. Penninckx-Sans, L.-T. Lee, D. Beysens, and
Jannink, Phys. Rev. Lett.75, 1977~1995!.

@20# J. R. Howse, J. Bowers, E. Manzanares-Papayanopoulos,
McLure, and R. Steitz, Phys. Rev. E59, 5577~1999!.

@21# D. S. P. Smith and B. M. Law, Phys. Rev. E54, 2727~1996!.
@22# D. S. P. Smith, B. M. Law, M. Smock, and D. P. Landa

Phys. Rev. E55, 620 ~1997!.
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