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Ellipsometric determination of universal critical adsorption scaling functions
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In this paper we determine and compare a number of theoretical models which describe the universal scaling
functions for critical adsorption in the strong surface field limit. BHie andP3 models, which are continuous
up to and including the first and third derivatives, respectively, provide excellent descriptions of the ellipso-
metric data for four different critical binary liquid mixtures. The exponential-Raddel, initially proposed by
Liu and Fisher[Phys. Rev. A40, 7202 (1989], provides a reasonable but less accurate description of the
one-phase experimental data. This later model has the advantage, however, that it is continuous in all
derivatives.

PACS numbes): 68.35.Rh, 68.16-m, 64.60.Fr, 82.65.Dp

I. INTRODUCTION m(z,t)= @ (z,t)— @ (+2,0), 2

At the liquid/vapor or liquid/solid interface of a binary where ¢, (z,t) is the local volume fraction of the lower-
liquid mixture, the liquid component with the lowest surface density liquid componentlL) and ¢, (+«,0) represents the
free energy will adsorb at the surface, in preference to theorresponding critical volume fraction. The functional forms
other component. This preferential adsorption is found evefior G..(x,y) are not well understood, although some theo-
in the two-phase region of the liquid mixture provided aretical progress has been made recef@ly Only one experi-
wetting layer does not formil]. It is important to obtain a ment has examined the dependence of the adsorption upon
quantitative understanding of adsorption because it influthe surface fieldh, [9]. In this paper we are mainly interested
ences the interactions between colloidal parti¢@jsand is  in a limiting case of this function, fostrong h, fields, where
important in fluid flow through porous media]. sufficiently close tdT the first few layers at the liquid/vapor

Twenty years ago Fisher and de GenfigdG) [4] pre-  surface are completely saturated with the preferred compo-
dicted that this preferential adsorption would acquire verynent and Eq(1) simplifies to
interesting universal properties nearcatical point of the
binary liquid mixture. In their scaling theory, the adsorption m.(z,t)=M_tPP_[(z+Zo)/ £~ ], 3)
is governed by a surface fieldl;, and the adsorption struc-
ture in the vicinity of the surface is correlated over a distancevhereP . (x)=P . =G. (x,») is again auniversalfunction
of the order of the bulk correlation length,.=&,.t"",  which takes differing forms in the one- and two-phase re-
where the reduced temperature |T,—T|/T., v (=0.632 gions. In this simpler situation, which is believed to occur
[5]) is a bulk critical exponenté,. is a system-dependent most frequently in natureP.(x) is predicted to exhibit
amplitude, and throughout this publication the subsc#ipt power-law decayEq. (5) below] at small x(<1), which
(—) refers to the oneftwo-) phase region of the liquid mix- crosses over to an exponential de¢By. (7) below] at large
ture. The distance over which the adsorption structure is corx(>1). Various forms for the crossover from smallto
related obviously diverges as the critical temperaffites  largex have been proposed. Liu and Fish#0] suggested a
approached. Inf4], the local adsorption at a distange number of differentAnsaze which incorporate the appropri-
(=0) from the surfacgat z=0) is governed by the local ate asymptotic behavior. Diehl and Smofkl] have de-

order parametem(z,t), where duced renormalization-group theofRG) estimates forP .
to order e while Smock, Diehl, and Landall2] have ob-
M. (Z,) =M _tAG.[(z+ze)/ £+ ,hyt21], 1 tained estimates from Monte Carlo simulatididC).

A large variety of experimental techniques have been
A, (=0.5[6]) and B (=0.328[5]) are critical exponents, used to study critical adsorption including volumeida],
the termM _t# describes the shape of the coexistence curvevanescent-wave light scatterifiyd], optical reflectometry
for the binary liquid mixture, while the functio®. (x,y) is  [15], ellipsometry [16—18, and neutron reflectometry
predicted to bainiversalwith differing forms in the one- and [19,20. Unfortunately, none of these techniques directly
two-phase regions. The system-dependent extrapolatiomeasures the universal functidh. . Instead, various inte-
length z,, is discussed in more detail in Sec. IV. In critical grals overP. are measured and therefore it is much more
binary liquid mixtures, the order parameter in the bulkzat difficult to extract the precise functional forms fBr. from
=00, namelym(e,t), is frequently taken as the volume frac- experimental data. Two neutron reflectometry experiments
tion of one of the components because this usually providegl9,20 have confirmed the power-law behavior®f (x) at
the most symmetric coexistence cufvid. A reasonable as- smallx, while ellipsometry and optical reflectometry experi-
sumption, therefore, is that the volume fraction also serves aments have measured various integrals d¥e(x) [15,21],
the appropriate order parameter in the vicinity of a surface sobtained evidence for the/¢ dependence of.(x), and
that enabled the extraction of various universal parameters re-
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lated to the form ofP.(x) [10,22,23. The RG and MC analytic background with respect to the reduced temperature
estimates foP..(x) provide a reasonable qualitative descrip-t att=0, hence, from Eq(5) [11],
tion for a number of ellipsometric critical adsorption experi-
ments[22,24], while a novel comparison between theory and Cr_ (fo_+
experiment has even managed to determine estimates of c. \&-
P, (x) for several different liquid mixtureg23]; however, at ) ) )
intermediate values of(~1) these functional forms differ vyhere the correlation length amplitudes have a universal ra-
by more than 100% and therefore these experimental detefi® R¢=£o+ /€0 Whose value may depend upon whether the
minations ofP (x) cannot be claimed to fulfill the univer- ratio R, corresponds to the “true correlation length” or the
sality requirement oP, (x). This is an unsatisfactory situa- second moment of the bulk correlation lengt23]. For
tion becauseP. (x) are limiting functions for other more the true correlation length, Tarko and Fish2T] determined
complicated situations near the critical point of the liquid thatR:=1.92 while more recently Fter and Dietrich used
mixture. For example(j) the form ofG. (x,y) can obviously — an interpolation scheme to estimagg in thre_e dimensions
never be quantitatively understood until the simpler functionf0M exact results in two and four dimensions; they found
P..(x) is determined preciselyii) finite-size effects in criti- R¢=1.73+0.04[23]. For the second moment of the bulk
cal films [25] cannot readily be understood until the semi- correlat_lon Iengt_h, there is less uncertainty in this universal
infinite system, wherd . (x) is applicable, has been deter- 'atio; Liu and Fisher find thaR,=1.96+0.01[28], Monte
mined, and(iii) geometric effectse.g., adsorption around Carlo simulations yieldR,=2.06+0.01[29], while Flater
spherical colloidal particlef26]) cannot be understood until and Dietrich determined thaR.=1.93+0.05 [23]. The
p|anar surfaces are understood. The purpose of this paper%]alyﬂs of critical adsorptlon data in Sec. V will allow us to
therefore to accurately determine and compare various modfudy this ratio. We will consider two value®,=1.96,
els for the universal functionB..(x) with the ellipsometric ~Which agrees with many of the estimates abGmeependent
data of four different critical binary liquid mixtures. A pre- Of the definition for the correlation lengthand the alterna-
liminary account of this work has been previously publishedtive Rg=1.73 suggested by Hier and Dietrich[23] for the
in [24]. true correlation length.

This paper is set out as follows. The general theoretical At large x(>1), the P.. function obeys the following
behavior forP. (x) is discussed in Sec. Il. We are mainly asymptotic limit:
interested in the determination &f. (x) from ellipsometric . x
data, therefore in Sec. Il we provide a detailed discussion of P+(X)=Px(®)=P..e7% @)
What. precisely has been preyiously determined from e”ipso\'/vherert are universal numbers and the valuesor()
metric measurements of cr|t|gal adsorption. In Sec. -IV, Weqre given in Eq(4).
present a number of theoretical models for (x) which Equations(5) and (7) represent only the first terms in an
conform with the general theoretical behavior of Sec. Il a”dasymptotic expansion. For the—0 limit, Diehl and Smock

discuss the general methodology for determiniRg(x)  [11] proposed the following expansion for the scaling func-
from ellipsometric data. We apply this methodology for thejop-

determination ofP . (x) in Sec. V, where the specific details
are relegated to an Appendix. This paper concludes with a P.(X)=Cax P4 x Ay, x A
summary and discussion of our results in Sec. VI.

—Blv
: (6)

+C3ix37(,3/’/)+ ceey (8)

Il. THEORY wherec;. , C,. , etc. are additional universal numbers. This
small x expansion follows from the requirement that the or-
der parametem(z,t), immediately adjacent to the interface
(for fixed z< &), exhibit the correct reduced temperature de-
pendence as described [ibl]. The fourth term in Eq(8),
P.()=0 and P_(*)=1 @ namelyx3‘(ﬁfV), exhibits a differing ppwe_:r-lav_v dependence
compared with the preceding terms; this originates from a

According to our definition for the local order parameter
m(z,t) [Eqg. (2)], the universal surface scaling functions
P_.(x) [EQ. (3)] must take the limiting forms

27a _ . . . . . .
in the bulk liquid so that the order parameter is either zero om surface order-parameter singularity which is identical

describes the coexistence curve in, respectively, the one- 8 th"?lft. o::}cu:rmgfm tlhe bulk frete '?ner@?r(])], whelret_a_lts thl?th
two-phase regions. specific-heat critical exponent. From the analyticity of the

At criticality (t=0), we expect the adsorption to remain analytic background at=0 pairs of parameters;;, and

finite (and nonzerpso thatm(z,0) must lose its dependence C1- lare a;lscl)zrelgt.ed to i‘?‘cr:lmgir through the r&i¢11] in
upon the reduced temperaturehis requirement implies that 21209 10 q(6); specifically[31]
the smallx(<1) behavior for the surface scaling function Cis o | XA Coe [ &g | @AY
must be[4] T2z and ==&

o Co— | &o-

(I
For the x—o limit, Liu and Fisher[10] suggest that the

) N more general asymptotic expansion
wherec, andc_ are universal numbers. At the critical tem-

peratureT ., for second-order phase transitions, the local or- P, (x)=P.(®)+P,.e *+P;.e *+P,. e ¥+...
der parametem(z,t) is required to be continuous with an (10

. 9

Pt(x)zcrxiﬁh}v 5
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should be valid wher®, .., P,. , etc. are additional univer- vides only an~2% correction[38]. The volume fraction
sal numbers. Smock, Diehl, and Landd?] have deduced profile ¢, (z,t) is then related to the local order parameter
explicit RG expressions for the paramet&s.., P;,, and m(zt) and theoretical models faP.(x) through Egs.(2)
P,. accurate to ordee. and (3). Smith and Law[39] have used this approach to
demonstrate that the Drude equat{&y. (11)] reduces to

lll. ELLIPSOMETRIC MEASUREMENTS OF CRITICAL
ADSORPTION P~ [ TP =P (=)ot paolt) (1)
Ellipsometry is the most sensitive visible-wavelength op- 0
tical technique for studying critical adsorpti¢82]. Essen-
tially all of the ellipsometric measurements for critical ad-t0 @ good approximation for critical adsorption. The diver-
sorption have been conducted at the Brewster anglg ( 9gentt’~” term (originating from the critical portion of the
where the real component of the optical signalinterface for z=0) dominates the weakly temperature-

Re(rp/rs)|HB=O, while the imaginary component or elliptic- dependent background temag(t) which includes contribu-

ity is described by the Drude equatip85] tions from the variation of the volume fraction on the vapor
side of the interfac¢39] and from capillary wave fluctua-
p(t)= |m(rp/rs)|aB tions[21]. In [21], Eq. (14) was used to determine the uni-

versal integrals

_m V81+82J'°° [s(z,t)—sl][s(z,t)—sz]dz
Noermer ) e(z,1) f P+Ef P, (x)dx=1.97+0.08 (15)
(1) °

in the limit of thin-film thicknesses compared with the wave- and
length of light,\. [For our situation, Eq(11) typically holds
for §£<20 nm] In this equatiorr, andr are, respectively,
the complex reflection amplitudes for polarizations parallel
(p) and perpendiculafs) to the plane of incidence while
e(z,t) describes the variation of the optical dielectric con-
stant from a value of, in the incident medium at= —« to

a value ofg, in the substrate at= +. If the interface is

fP_Efm[P_(x)—l]dx=1.65iO.13 (16)
0

from a number of different critical binary liquid mixtures.

In a later papef22], Smith et al. considered the whole
. . . - > temperature range, including very close to the critical tem-
rough or anisotropic, then the equ.at|on for the eII|pF|C|ty perature, by numerically solving Maxwell's equations for a
n_eeds to be suppler_nented or modifig2-34. For suffi- particular model for the universal scaling functiéh. (x).
ciently large correlation length§, close toTc,_the Drude They demonstrated that both the RG] and MC[12] scal-
equation is no longer valid and the ellipticity must be  ing functions provide a reasonable qualitative description of
determined by numerically solving Maxwell's equations us'thep(t) data for four different critical binary liquid mixtures

ing a particular model foe(z,t) [36,37. with the MC scaling function providing the more accurate

n r]iny prior studc;e.; of hcnt(;c':ail ad'sorpct};on, it has fre- representation. In the same publication they demonstrated
quently been assumed that the dielectric prafile.t) serves o the ellipticity from critical adsorption can be reduced to

as the local order parameter. fdoand Dietric{ 23] discuss . . . - — — —
how to determine the universal number [Eq. (5)] and a universal curve if the normalized valy=(p—pgc)/(p

obtain estimates of the universal functidds(x) from these  ~ Psa)peakiS plotted against the correlation lenggh(rather
dielectric profiles. We have used an alternative approactthan the reduced temperature Here (p—pgg)peax IS the
The dielectricBrofiles(z,t), required in the determination of peak value OE_FBG in the one-phase region. They found

the ellipticity p, is related to the volume fraction profile that the peak ip, wherepy=1, occurred for &, /\ value
¢ (z,t) via the two-component Clausius-Mossoti equationof [40]

[38]
f(e)=Qleuf(e)+(1-g)f(ep)], (12 (£ /M )peaic=0.06410.000 10
where for four different liquid mixtures whereg /\) peaxis prima-
rily determined by the ratic, /P, . The RG, MC, and
X—1 Liu-Fisher “power-law-exponential” models enabled them
fX)=5x17% (13)  to deduce thaf40]
e (ey) is the optical dielectric constant for the lighter ¢, /P,,=0.750.17 (18

(heaviej liquid component, and) = (V5+Vg)/Va,g is the

volume ratio before mixing amAB liquid mixture (Vo  for (£, /\)peak given by Eq.(17). [Note that the value of
+Vg) compared with after mixing this mixtureV( , g). c. /P, . depends slightly upon the model us@sge the Ap-

Throughout this paper we assume that there is negligibl@endix and therefore Eq18) provides only a good estimate
volume change on mixing so th& =1; typically  pro- of this “universal” ratio.)
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IV. THEORETICAL MODELS FOR THE CRITICAL are constrained by eight constraints: finecessary con-
ADSORPTION SCALING FUNCTION straints described by Eqs(6), (23), and (24), which any

In this section we consider a number of surface scalin reaspnable model must obey, and thesgerimental con-
functions which closely mimick the theoretical predictions%tramts.descrIbEd by _Eqs(15),_ (16), and (18). The_ eight
constraints leave a single adjustable paramedgr,in the

given in Sec. Il, while in the following section we use ex- function P... The application of these eight constraints is
perimental measurements to determine the remaining params = pplica . €19 o
ther complicated and is described in more detail in the

eters in these functions. Before we describe various modellria . . .
for P..(x), we first discuss the “vapor” side of the interface ppendix. For a.spec'|f|o<0 yalue gnd vapor correlation
(z<0). This “noncritical” portion of the model fore(z,t) length g_"’ the optical dielectric proflle;(z_,t)_ '_S completely
does not depend upon the model that we useFo(Xx). determined for thé>1 model and the ellipticityop,(t) can
Following [39], we assume that the optical dielectric profile P& calculated by numerically integrating Maxwell's equa-

tions.
[e(0t)—1][1+e Z/év] The optimal values fox, and &, can be determined by
e(z,t)=1+ Tre G, » z<0, (19  minimizing the standard deviation
N 12
\év;gf)gi,a;iso':]hleeQgtr;]cntlcal vapor correlation length and the o,= ;1 [pi(t)—pp1i(1)]Z(N=D) | (25)
e (0t)— @ (+2,0)| ~VF whereE(t) represents the experimental daltq(=400) is
Ze™ So= M _c. : (200 the total number of experimental data points for the four

liquid mixtures measured by Smith and Lg®&1], and n
For complete saturation by thecomponentgp, (0t)=1 and  (=5) is the number of adjustable parameterg:and four
therefore the surface optical dielectric constaf@,t)=¢, in  values of¢,, one associated with each liquid mixture. In the
Eq. (19). For a given liquid and model foP. , the only  next section, where this optimization is done, the minimum
unknown parameter in Eq&L9) and(20) is the vapor corre-  value ofo, is denoted byrg“”. It is important to emphasize
lation length, . Smithet al.[22] used Eqs(19) and(20) in  thatshape changes pps(t) only enter through the universal
their discussions of the RG and MC models. parameterx,; the parameteg, merely moves a particular
(3)Fgrn(tjh(elzh)qusl((jzstl;jeuosfeg]?n"T[Leerf?r::tZ\érgt)iofr:o(r)? II\E/Ian;\Evng,I’s liquid mixture pp4(t) curve vertically by a constant amount.
C o A 9 o This computational scheme is efficient in separating critical
equations, is defined once a model Ror has been specified. and noncritical effects. It provides a useful measurg“"()
In [24] we provided a preliminary discussion of thel for comparing differenf models fop
model forP.., which is so designated because the function The P1 model can systematicall§ be improved by consid-
chosen forP . (x) is continuous up to and including the first ering additional terms in the asymptotic expansions Egjs
derivatiye with respect ta. In this model we assume that the and (10) and requiring a corresponding number of higher
expansion at smali(<x,) takes the form derivatives ofP.. to be continuous at,, so thatx, contin-
Per(X)=Cox Bl o, xA-AY (21)  ues to be the sole adjustable parameterHar. Improve-
ments in theP1 model may be important for physical phe-
in agreement with Eq(8), while the expansion at large =~ nomena which couple to higher-order derivative$of[41];

(=x,) takes the form for example, there is experimental evidence that the orienta-
tional order of dipolar molecules at surfaces may couple un-
Pio(X)=P.(0)+P..e *+Py.e > (22)  der certain circumstances to the second derivative of the lo-

) ) ) cal order parametem(z,t) [42,43. In the next section we
in agreement with Eq(10). These two expansions are consider theP3 model whereP.. is continuous up to and
matched in value and in the first derivativexat X, giving  incjuding the third derivative with respect to In the P3
rise to the four equations model the smalk expansion includes terms up to and includ-
ing thex?~#’” term in Eq.(8), while the largex expansion

—Blv
P,.= i_ Pm+exo< 1— o | _ p+(oo)} includes terms up to and including tee** term in Eq.(10).
- 1-p - 1-8 - The small and largec expansions are matched up to and
2%\ 1 including the third derivative at the poirt,. There are thir-
X @2%o| 1+ °> (23 teen parameters in the3 model, namelyc., c{+, Cyo+,
1-8 P,+, P+, Py+, and x,. Nine of these parameters are

determined by the necessafgontinuity) constraints, three
more parameters are determined by the experimental con-
Clizxgﬂfl)h/[ P,.e Yo+ Plie’z"O—ctx;B’V]. (24) str:_aints[Eqs: (15), (16)3 gnq (18)], while the last parameter
X, is determined by minimizing Eq25) as in theP1 model.
For simplicity the matching poink, is assumed to be the The final model that we consider in the next section is the
same in both the one- and two-phase regidfibis restric- €xponential-Padé (EP) profile
tion is examined later in this papgein this model forP . — B
1 +( c, )
1—67)( Pm+

and

Blv
e (26)

there are nine parameters which must be determined, specifi-

: P,(x)=c,
callyc., ¢i«, Pr+, P1~, andx,. These nine parameters
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suggested by Liu and Fishgt0O] to describe the crossover 8 T T
region between small and largeThis model is only valid in 2PN
the one-phase region and conforms with E@s, (5), and 7 ™ —
0 .wf
2%
6 P20 _
V. ANALYSIS OF VARIOUS CRITICAL ADSORPTION 'r*\\ one-phase
SCALING MODELS 10°p 5 Jsy —
Smithet al.[39,21,27 studied the four critical binary lig-
uid mixtures aniline-cyclohexan€AC), isobutyric acid- 4 ]
water (IW), nitrobenzene-hexanéNH), and 2,6-lutidine-
water (LW). The first three liquid mixtures possess upper 3= two-phase =
consolute points while the fourth mixture possesses a lower
consolute point. All of these mixtures obey the condition o X

o <oy, Whereg; is the surface tension of the lightér) or
heavier(H) liquid component; consequently the liquid/vapor 1 | | |
surface is saturated with the lighter component to a good 107 10 103 102 107"
approximation, in both the one- and two-phase reg{@4is. t

We are therefore in the c_ompletel_y saturated r_egime where 16 1 piot ofp versust for the P1 model with R,=1.96 in

the universal surface scaling functiéh. [Eq. (3)]is appro-  poth the one- and two-phase regions. The curves are for differing
priate in describing the adsorption structure. Smith and Law,a)yes ofx,=0.7 (dash-dotted ling 1.0 (dashed ling 1.2 (dotted
[21] demonstrated that capillary wave fluctuations essentiallyine), and 1.6(solid line).

add a constant amount to the ellipticipft); this contribu-

tion is effectively taken into account therefore by the vaporp1 model(dashed lingis compared with the experimental
correlation lengthg, [which appears in Eq19)] because,  data for the AC mixture. Comparisons with the other three
has an identical effect op(t). The experimentap(t) data  mixtures are given ifi24]. TheP1 model provides an excel-
for these four liquid mixtures is provided {i21]. In all of  lent description of all four mixtures in both the one- and

these measurements, the transverse thermal gradients weyg-phase regions. The experimental error}(ﬁ), typically

less than~1 mK/em and a sufficiently long tim@ypically A" 551075, does not take into account effects due to the
4 to 6 h was allowed for the system to come into thermal ;. osance of any transverse thermal gradients and uncertain-
and diffusive equilibrium at each temperature where at thgieg i the critical temperature, critical composition, correla-
end of this waiting period the thermal stability was typically tion length amplitude, , , and coexistence curve amplitude
*1 mK over 4 h, while at each reduced temperattire M otc. The real error associated with eaﬁh) point
twenty p(t) measurements were collected and averaged overh_ ,Id b. | thans. We bell thaty™n id
a period of 1 h. From this data set, Sméhal. measured the should be farger than p. VVe believe thav, p, provides a
universal integralg P.. [Eq. (15)], fP_ [Eq. (16)] [39,21], more accurate description of the true errorspift) for a
and the universal ratic, /P... [Eq. (18)] [22,24]. In this

section we compare thB1, P3, and EP scaling function 10
models, suggested in the preceding section, with the experi-
mental data set for the four liquid mixtures.

[ T TTTTI [ T TTTTI I

A. P1 model

We first consider the case where the ratio of the correla-
tion length amplitudgngzgm/§0,=1.96. In Fig. 1 we

show the variation opp,(t) calculated for the AC mixture
for different values ok, . The behavior at large=10"2 in P.(x)-1
both the one- and two-phase regions is insensitive to the
value ofx, and is determined by the universal numbers given
in Egs.(15) and(16), respectively. Additionally in the one-
phase region the peak position always occurs at the same
reduced temperature value, which is governed by (E@),
while Eq. (6) forces the one- and two-phase curves for each | |

X, to be continuous at=0. The shape opp(t) depends 000 o1 L |||(|).1 L ”1 —
significantly uponx, for small reduced temperatures

<10 3,'” both phases. When thel model is minimized FIG. 2. Plot of the universal critical adsorption scaling functions
according to the scheme described in Sec. IV, the minimunp _ (xy and P_(x)—1 versusx for different models:P1 (dashed
standard deviationo,'p; =1.3756x 10"* occurs for X, [ine), P3 (solid line), and EP modeldotted ling. In this figure the

=1.15. This optimaP1 model is displayed in Fig. @lashed P1 and P1la models are indistinguishable; similarly, tf8 and
line), while its parameters are listed in Table I. In Fig. 3, theP3a models are indistinguishable.
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TABLE I. Critical adsorption scaling function modeld\ote: theP1 model below corrects some minor

errors in[24].)

Model  Phase X,. c. Cye Cos P... P, P. 100"

P1 1 115 0.7883%% —0.245 0.963 03, 1.437 1.3756
2 115 11177993 0.169 0.572°937 0.533

Pla 1 115 0788 —0.245 0.963 1.437 1.3757
2 115 1.047 0.185 0.433 0.516

P3 1 160 0791 —0284 0.032 0.809 3.469 —4.852 1.4476
2 160 1122 0.170 —0.0091 0590 —0.109 1.661

P3a 1 157 0792 -0.286  0.033 0.826 3.266 —4.394 1.4481
2 08 1123 0.148  0.0051 0.659 —0.515 2.076

EP 1 0.817 1.035 1.5492

carefully prepared critical binary liquid mixture, assuming model compared with thB1 model and are listed in Table I,
that the P1 model is a good representation of the actualhowever the shape for tHeéla model can barely be distin-
scaling functions. 124, ogf'Sl was assumed to represent guished from theP1 model(Fig. 2, dashed lineand there-
fore it will provide a similar agreement with the experimen-

the true experimental error associated with ea¢t) data -E1

point; 95% confidence levels were determined from #8e tal p data. This indicates that the data cannot be used to
distribution. For convenience these 95% confidence leveldifferentiate between differing values fd®;. The ratios
are also listed in Table I; if they were displayed in Fig. 2,¢,, /¢, andc,, /c,_ [Eq.(9)], derived from the analyticity
they would barely be visible. The narrow region defined byof the analytic background &t=0, provide an additional
the 95% confidence levels suggests that the Brudunction  self-consistency test for the theoretical models. In Table I,
must lie within this narrow region in order to be able to we comparec,. /c,_ for the P1 andPla models together
explain the experimental data for the four liquid mixtures. With the theoretical expectations from E§). In both cases

The results in Fig. 1 suggest that perhaps a better fit coulfi+ /C1- IS negative, as predicted by E(®), however it is
be obtained between theory and experimental data if separa@®pProximately~20—30% lower than expectations.
crossover points, denoted,, andx,_, were used in, re-
spectively, the one- and two-phase regions. Such an exten-
sion will be considered later for the3 model.

If Re=¢&04/éo-=1.73 (rather thanR,=1.96), as sug-
gested by the calculations of T and Dietrich[23], we
find similar agreement between this moddénoted thé>1a
mode) and experimental data as indicated byod'p

,Pla
=1.3757x 10" *. The parameters differ slightly for thela

B. P3 model

We have repeated the calculation for tA8 model with
R,=1.96 (Fig. 2, solid ling. For this model we find that
o p3=1.4476< 10" for x,=1.60, where the parameters are
given in Table | and the comparison with experiment for the
AC mixture is shown in Fig. 3solid line). Figure 2 demon-
strates that there is very little difference between the optimal

shapes for th&1 andP3 models. Thé®?3 model will there-

8 I I I fore provide the same quantitative agreement as Rle
oo model(which was displayed if24]) with regards to the(t)
7= g X I data for the other three liquid mixtures. In Table Il we com-
_.—-"", pare the ratiog;, /c,_ andc,, /c,_ for the P3 model with
6 ¥,  one-phase — the predictions from Eq9).
In Fig. 1 (applicable for theP1 mode) the curves suggest
5 s _ that a better description of the experimental data might be
3 — obtained if separate matching pointg, andx,_ are used
107 p in, respectively, the one- and two-phase regions. We have
4 two-phase N modified theP3 model to allow for these two adjustable
parameters. We call this modifiét3 model theP3a model.
3 ] The use of two adjustable parameters involves considerably
AC more work than for a single adjustable parametgr be-
2 —L TABLE II. Critical adsorption amplitude ratios.
110-5 1c|>'4 1;.3 1(’)_2 e Model ¢y /c;.  —REA™ cyic,.  +RETA R,
t P1 ~145  -205 1.96
FIG. 3. Comparison of the various models with the experimentalP1a -132 -179 1.73
data (symbolg for the aniline-cyclohexane mixturePl (dashed P3 —-1.67 —2.05 —-3.5 +5.93 1.96
line), P3 (solid line), EP constrained modétlash-dotted line, see P3a —-1.93 —2.05 +6.5 +5.93 1.96

text), and EP mode(dotted ling.
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FIG. 4. Contour map of the variation in ‘Lﬁp for various val- 100_01 0.1 . 1

ues of Kk,_ , X, ) for the P3a model where the solid circles indi-
cate the specific points where calculations were conducted. The
global minimum ino, occurs at X3, xJ\")=(0.86,1.57), where
0} p3a=1.4481x 107",

FIG. 5. Graph ofdP.. /dx versusx for the modelsP1 (dashed
line), P3 (solid line), and EP(dotted ling.

and experiment. Good agreement is not obtained between
cause now a two-dimensional space must be searched for tti#s model and experimental datBig. 3, dash-dotted line
global minimum ino,. It is difficult to fully automate our especially at small reduced temperatures The ratio
computational procedure, hence this search is conducted I8 /P... has a rather large experimental error bar associated
selecting values for the paix{_ ,X,) in the vicinity of our ~ With it, therefore if we loosen the restriction that Hd.9)
previous optimal valuex,=1.60 and then calculating:, . must hold, then much better agreement is found between the
Figure 4 shows a plot of the functiom, (X, ,X,+) Where EP model and experimertFig. 3, dotted ling. The best fit

the global minimum foro, has a value o™, =1.4481 OCCUrs fora?igp=1.5492>< 104, where the parameters for
X : p a ) .
X 10~ *at (x)"" x7")=(0.86,1.57). We note that the function ™ .

N this model are given in Table I. The larger standard deviation
o— !

a,(Xo- ,Xo1) is extremely flat and relatively insensitive to UrpéE/Fi)(jfgreltgllai Ehlfl mb()e(igrlgilgc?rtie?ict)?]act)fﬂtﬁri 2>r:d§ri3mr2r?tdaellgata
the precise value ofx,_ X, ); this function exhibits a very P gntly P P '

shallow minimum wheres)'5;, is only one part in 1800

smaller than the value af, at (X, ,X,+)=(1.60,1.60). In
the P3a model,x]""=1.57 is still quite close to the value of ~ Molecules may orient at the liquid-vapor surface for many
x,=1.60 for theP3 model, howevexoml”zo.86 differs con-  differing reasons. If the molecules are amph|ph|I|c so that
siderably from this value. The parameters for B&a model ~ ©N€ ent_:i of th(_e molecule prefers to be oriented towards the
are listed in Table | while the shape for this model is essenY@POr side while the other end of the molecule prefers to be
tially indistinguishable from thé®3 model in Fig. 2(solid oriented towards the I|qU|q 5|d_e of the interface, then it has
line). [Note that in Table 1¢™2,_=1.4481x 10~* is slightly been. sugge;te@l] that this orientational order .couples to
I min p.P3a the first derivative of the order-parameter profile. If, how-
arger thano, p3=1.4476<10" " even though one has one th lecule is dioolar. then th ientational ord
additional adjustable parameter for tR8a model; this is ever, the molecule 18 dipolal, ten e orentationar order
because the number of degrees of freeddémn which oc- couples to the second derivatijs 41,45, or perhaps to the
) S first derivative square@45], of the order-parameter profile

curs in the formula foro, is slightly smaller for theP3a [46]. In [42,43 we have found experimental evidence that
model (N—n=394) than for thd?3 model N—n=395)] for highly polar molecules the orientational order couples to
In_ Table Il we compare the_ ratios, . /c; - and €, /C;- the second derivative of the order parameter, at least at the
with the theo.ret|cal expeciations from E@')' Of all of the ey liquid/liquid interface of critical binary liquid mix-
".‘Ode's considered, thé3a model provides the most con- tures. There seems to be no physical reason why such con-
. . i 8 epts should not also apply at the noncritical liquid/vapor
tios, however this agreement comes at a considerable cost fiye tace of critical binary liquid mixtures where the order
extra effort for only a marginal change in the shape Ofparameter is described by the universal functn(x) of
P(X). Eqg. (3). In Figs. 5 and 6 we therefore displdy/. (x) and
P (x), respectively, where the prime refers to differentiation
with respect tox. The derivatives for thé1 (dashed ling

For the EP mode{which can only be applied in the one- P3 (solid line), and EP(dotted ling models are similar in
phase regiop if we require that both of the experimental shape and value except that th@¢ model displays a discon-
constraints given in Eq¢15) and(18) hold, then the param- tinuity in its second derivative as expected. These similarities
etersc, and P., are determined and this model is com- between the various models suggest that they probably pro-
pletely constrained, thus providing no degree of freedonvide a reasonable estimate for the true derivatives ofthe
with which to improve the agreement between this modefunction.

D. Derivatives

C. EP model
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10* CTITm T T T T o' (Table ). We have also examined whether or not a
better description of the experimental data could be obtained
10* |- using differing matching points in the onex,(.) and two-
d2P+(X)1Oo | (X,—) phase regions, the3a model (with R;=1.96). This
ax? more complicated model requires considerably more effort to
102 — determine. It exhibits only a marginal change in shape for
10 P_.(x) compared with theP3 model (Fig. 2), however it
I I A A | e B WA provides very good consistendyfable 1) for the ratios
T U AL LU C,4/Cc1_ andc,, /c,_ compared with Eq(9) derived from
10 (b) B the analyticity of the analytic backgroundtat 0.
A The “universal” amplitudes which occur in each model
d—%x) 10° |- § — are listed in Table I. These amplitudes are relatively indepen-
ox » dent of the model considered with the exceptiorPef and
107 = N P,_, which differ significantly between th@1 and P3
10% - models. We believe that this effect is due to the strong cor-
0.01 L1 '”(')|1 L L1 ""1| L L ""10 relation between the parametey [=1.15(1.60 for the P1
' ' X (P3) model and the magnitudes of the parametBs. and

FIG. 6. Graph ofi?P.. /dx2 versusx for the model1 (dashed P,.. determined by the continuity co_ndition_s>q,t[Eqs.(23)
line), P3 (solid line), and EP(dotted ling in the (a) one- and(b) and (24)]. The P1 andP3 models differ primarily at large

two-phase regions. x=2 (Fig. 2), where the term®,. e~ > andP,. e ** which
appear in the largex expansion[Eq. (10)] will be much
VI. SUMMARY AND DISCUSSION smaller than the leading-order terif...e *; consequently,

the amplitudesP,.. and P,.. will be determined with less
certainty. Additionally, Fig. 4 indicates that our experimental

critical binary liquid mixtures in the limit of strong saturation measurements are not particularly sensitive to the precise

of one of the liquid components. Under such conditions the/ue forx,, hence changes ir, will only lead to a mar-
critical adsorption profile is described by a universal scalingdin@l change ino, but can generate significant changes in
function P.=P_ (x), which takes a differing form in the the magnitudes of the parametd?s.. andP,... To a very
one- (+) and two- (—) phase region where the dimension- 900d approximation, the optimaP.(x) function derived
less lengthk=2z/¢£. andé is the correlation lengthP. pos-  from the P1 andP3 models(including their variantsPla
sesses well-known asymptotic forms at small and laxge andP3a) generates theame universal shader the critical
[Egs. (8) and (10)]. By considering various experimental adsorption surface scaling functidfig. 2). The narrow 95%
constraints and continuity constraints in the dimensionlessonfidence region displayed by ti model, which would
lengthx and reduced temperatutiewe have constructed two barely be visible in Fig. 2, indicates that even small devia-
models,P1 andP3, which are continuous up to and includ- tions from this universal shape will lead to measurable dis-

ing, respectively, the first and the third derivativesxoP1 crepancies between a model and the experim&ﬂiaita. We
and P3 possess only one adjustable parametgr the believe that thenostimportant concept resulting from this
matching point where the smallbehavior is matched to the paper is theiniversal shapéor the P (x) function exhibited
largex behavior. The parametey, is adjusted to provide the in Fig. 2. This shape can be parametrized in various ways.
best agreement with the experimental ellipsometric measurerhe P1 and P3 models, in this paper, provide good ex-
ments p) from four different critical liquid mixtures. These amples of such a parametrization. Different parametrizations
models, which are listed in Table I, provide an excellentwill naturally lead to different amplitudes within each model;
description of the experimeni{&ig. 3) with an acceptably our contention is that although these amplitudes within indi-
small standard deviation”"" . In the analysis, each model is Vvidual models are important, they are of secondary impor-
compared with all four critical liquid mixtures, however for tance to the universal shape for tRe.(x) function. Theo-
simplicity the agreement for each model is only directly dis-retical determinations ofP.(x) should therefore be
played for the critical liquid mixture aniling- cyclohexane compared with this universal shape rather than with specific
(Fig. 3. The other three liquid mixtures exhibit a similar amplitudes, whose value will be somewhat model dependent.
level of agreement/disagreement with each model. A comlf theory is to be compared with specific amplitudes then the
parison between thB1 model and all four mixtures is pro- model most consistent with theoretical expectations is the
vided in[24]. P3a model, which provides agreement with H).

The ratio of the correlation length amplitudeR; We have also considered the exponential-PaE®)
=&, 1€, occurs within theP1 andP3 models. A number model of Liu and Fishef10], which asymptotically pos-
of differing values forR; have been proposed for the “true Sesses the predicted theoretical dependence at small and
correlation length” amplitude ratif23], however the shape largex. This model provides a reasona_ble but less accurate
that we deduce for th®.. function using our minimization description of the one-phase ellipsomepiciata, however it
scheme is relatively insensitive to the value assume®for  has the advantage that it is continuous in all derivatives. The
for example theP1 model (whereR,=1.96) and thePla P, (x) surface scaling function derived from this model is
model (where R,=1.73) have similar standard deviations quantitatively very similar to th®1 andP3 models(Fig. 2).

In this paper we have extended an earlier st{2¥] of
critical adsorption at the noncritical liquid/vapor surface of
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APPENDIX 0070

IIIIIIII

In this appendix, we describe how to apply both the nec-
essary and experimental constraints to BleandP3 mod- Rl N ~ NP S I
els. In theP1 model there are nine parameters. The five
necessary constraints, Ed6), (23), and(24), allow the pa- §_+ 0.060
rametersc;. , P, , andc_ to be expressed in terms of the \2
four parameter<,, P.., andX,. We initially select a
value ofx, (close to }, use Eq.(18) to determineP.,, in 0.055
terms ofc, in P,.(x), and finally an integration oP, (x)
determinesc, from Eg. (15). Similarly, an integration of

IIIIIIIIIlIIIIlIII

P_(x) determinesP.._ according to Eq(16). The value of 0.050 =g
X, Is incremented/decremented and the calculation is re- - .
peated until the standard deviatiory, as computed by Eq. ooas Lo Lo
(25), is a minimum. The noncritical correlation lengths, T 04 0.5 0.6 0.7 0.8 0.9 1
which appear in Eq(19), are also adjusted to minimize, . c,

This procedure, although long and tedious, would be rela- P..

tively straightforward if not for the fact that the ratio

c, /P, is somewhat model dependent, as previously noted FIG. 7. Example demonstrating how the ratip/P.. . is deter-

by Smithet al.[22], and therefore Eq18) only provides an mined for a particular model and value of the matching parameter
estimate for this ratio. This complicates the above calculatior. - The circles represent tiel model withx,= 1.0 (open circleg
because we have to redetermine the ratjdP... for each andx,=1.1 (solid circles, the RG modelsolid squares and the
value ofx,. This is accomplished by following the proce- MC model(solid triangle$ for the four liquid mixtures. The solid

dure in[22]. For a particular value ok, we select four lines are linear regression fits to the RG, MC, and eithgr 1.0
(light line) or x,= 1.1 (heavy ling data. The intersection between a

values O_fC+_/Pw_+ , compute the theoretical(t) curves for solid line and the horizontal dashed lifiEq. (17)] provides the
all four liquid mixtures, and then from each of these CUIVES; /p_. value for a giverx, value.

determine €, /N)pea. These €, /N\)qeq Values are then

plotted against thec, /P, ratios. A linear regression

through these theoretical data determines the value dfi9- 7. C+/P-.=0.78 forx,=1.0 andc, /P..=0.81 for

c. /P... (for this value ofx,) corresponding to the experi- Xo=1.1. Itis these values af, /P.... for givenx, which are
mental value of £, /\)peacgiven in Eq.(17). We show an used in theP1 procedure above, rather than the value given
example of this calculation in Fig. 7. The symbols corre-in Eq. (18).

spond to the theoretically computed (/\)qeqx Values for An identical procedure is used to determine tR&
various values ofc, /P, , for x,=1.0 (circles and X, model; however, in this case we have 13 parameters. The
=1.1(solid circles. The solid lines are linear regressions to eight linear equations associated with the continuity con-
these theoretical data, the RG d#salid squares and the  straints applied at,, together with Eq(6), enable the nine
MC data (solid triangle$ for x,=1.0 (light line) and x, parameterg,., C,+, P1+~, P,., andc_ to be determined
=1.1 (heavy ling. The intersections between the solid linesfrom values forc, , P..., andx,. After this step, the pro-
and the experimental valufEq. (17), Fig. 7, horizontal cedure for determining the3 model is identical to that used
dashed ling provide the optimal values far, /P.., . From  for the P1 model.
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