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Density-functional theory for vacancies in hard-sphere crystals
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The equilibrium vacancy concentration in solids can be computed from density-functional {B&ory if
allowance is made for density profiles with less than one particle per lattice site. For the fundamental-measure
theory (FMT), this approach predicts reasonably small vacancy concentrations in hard sphere crystals, in
contrast to earlier DFTs. Using an asymptotic analysis of the FMT functional, it is shown that the number of
vacancies depends exponentially on the distance to the close packing density, as expected from heuristic
arguments. The prefactor of the exponential is calculated for three recently suggested variants of the theory,
using density profiles obtained from a quasifree minimization. Extrapolation of the asymptotic behavior to the
melting density yields good agreement with other estimates and computer simulation results.

PACS numbgs): 61.20.Gy, 61.50.Ah, 61.72y

. INTRODUCTION basic idea is to insert a density profilér) with a vacancy at
a fixed lattice site into the functional and to account for the

In the last two decades density-functional the@DFT)  configurational entropy of the vacancy by an additional term.
has been established as a unified description of the liquid anéor the Lennard-Jones fluid the results seemed indeed quite
solid phases of simple model systems like the hard-sphemeasonable, while the hard-sphere vacancy concentration
fluid. Although based on results of liquid state theory such asomes out about five orders of magnitude too small. A simi-
correlation functions, DFT predicts the location of the freez-lar approach has been applied to films of hard disks in a
ing transition as well as the solid structure with satisfactoryperiodic potential modeling absorbed monolayérg. How-
accuracy. Among the large number of DFT versions develever, in our opinion this method is not well justified. The
oped for hard spherd4d], the newest and most successful isvalue of the functional at a nonequilibrium density distribu-
the fundamental-measure thedBMT) of Rosenfeld and co- tion with a localized vacancy has no physical meaning and it
workers[2,3]. While the general structure of the FMT func- is not necessarily related to the free energy of vacancy for-
tional has deep connections to scaled particle theory anthation.
Percus-Yevick theory, its detailed form has recently been It has been claimefi18,19 that FMT is capable of pre-
rederived and slightly modified by enforcing the correct be-dicting the correct vacancy concentration if non-normalized
havior in the limit of zero-dimensional cavities that can holdpeaks are used. But the corresponding short paragraph in
only one particlg4,5]. Thus it is not too surprising that FMT Ref.[19] is, in our opinion, rather obscure and incorrect. In
performs extremely well in describing the hard-sphere crysthe present paper we therefore carefully study the vacancy
tal in which particles essentially move in small cages formedoroblem within FMT. We find that indeed it yields the cor-
by their neighbors. We recently showed that FMT repro-rect order of magnitude for the number of vacancies as well
duces such subtleties as the deviation of the density pealas the correct density dependence in the close packing limit.
from a Gaussian shape and the next-to-leading term of the
free energy in the close packing limit in fair agreement with II. FUNDAMENTAL MEASURE THEORY
computer simulation§6]. The latest FMT versiofi5] actu- ] ) _ )
ally gives more accurate free energies for the solid than for We first recapitulate the basic equations of the
the liquid, for which it reduces to the Percus-Yevick result. fundamental-measure functional for a one-component hard-

In this work we address another subtle effect, which maysPhere system. One defines a set of weighted densities
be important for the determination of elastic constdtsg] ~ Which follow from the density profile(r) as
and high precision free energy measuremefi§,11],
namc_aly, _the small but finite equilibrium_ concentration of va- na(r):J d3r'w,(r—r")p(r’) 1)
cancies in the hard-sphere crystal. This means that on aver-
age there is less than one particle per lattice site. This situa-. . . . . .
tion is included in the DFT formalism in a natural way by with we|ght fun'ct'|onswa.whose range is the particle radius
taking into account non-normalized density peaks. Howevel‘,ﬁz' Their explicit form is
when applied to the Ramakrishnan-Yussouff DFAR,13,

which represents the first and simplest successful theory of Ws(r)=0(al2=r), @

freezing, the relaxation of the normalization condition pro- Wo(r)= 8(al2—1) 3

duces unphysically high vacancy concentratip©g]. But 2 '

also more sophisticated variants which employ weighted -

densities suffer from the same shortcomji]. Wyo(F)=ré8(al2—r), 4
Motivated by this failure, a different approach to the va- o

cancy problem within DFT has been suggesf&é]. The Wro(r)=ri®r;8(al2—r), (5)
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Ill. CALCULATION OF THE VACANCY

wherer is a unit vector® the Heaviside step function, and
CONCENTRATION

Wy, andwq, give rise to vector and tensor weighted densi-

ties, respectively. The excess part of the free energy func- \hile in a perfect crystal the individual peaks are normal-
tional is expressed as ized to 1, the existence of vacancies can be incorporated into
the DFT by allowing for a different normalization:

3
BFalpD1= [ @S, 6i(0,(r) ®)

N
f dsrPA(r):N—:%:l_Xu: (14)
where the free energy densities, are functions of the s

weighted densities only and are given as ) ) )
whereN andN; are the number of particles and lattice sites,

n, ng— n\2,2 710 IS the average occupancy of the sites, &pdhe vacancy
$1=———In(1-ny), b= T concentration. Note that in this approach the vacancies are
TO mo(1—ng) . . o
spread over the whole system in thermodynamic equilibrium
and not localized at specific sites. The vacancy concentration
_ fa(n,) @ also enters the functional via the lattice constant, since for
_ ixed bulk densityp,= e nearest neighbor distance is
(1—ng)?’ fixed bulk densityp,=N/V th t hbor dist
R=Ry7¢”, whereR, is the nearest neighbor distance in the
The best choice for the functidiny has been subject to some corresponding perfect crystaR,= (1/2/pp) * for the fcc lat-
discussion recently. We will consider three variants here. Anice assumed heteBy minimizing with respect to alp,(r)
empirical correction to the original FM[12], irrespective of their normalization, but under the constraint
2 2.3 of fixed p,, the equilibrium vacancy concentration can be
fFMTl:M ) determined.
3 24703 Under the assumption of Gaussian density peaks

3

32 ,
e ", (15

suggested by Rosenfedd al.[19], enabled the first success- a
ful description of the solid phase. A new derivation of FMT pa(r)=no
based on the requirement of correctly describing the zero-

dimensional limit yielded 4]

m

this has been carried out befor¢l4] using the
9 Ramakrishnan-Yussouff DFT, which historically was the
fEMT2=_—detny, (9) first to describe successfully the freezing of hard spheres
8w [12,13. However, within this approximation, which corre-

as an approximation to a more complicated result Whicﬁponds_to a second-order expansion of the functional arqund
he fluid state, a far too high vacancy concentration

could not be expressed in terms of weighted densities. Irﬁ 00 found h itina densi h
Ref. [6] we showed that FMT2 is superior to FMT1 when .Nl %) was found at the melting density. We ave con-
firmed this result and extended the calculations to higher

applied to high density crystals. A third version, densities. It is found that the occupaney increases and
3 crosses unity app = ppo=1.405, implyingmore than one
ngTe’:E[nVZnTZ-nvz—nzn\z,z—tr(niz)Jrnztr(n$2)], particle per site on average. Even worse, the close packing
(10) limit of the Ramakrishnan-Yussouff theory is lost if this ad-
ditional freedom is taken into account. That means that the
has recently been found by Tarazona after reexamination gfeak widthA = 1/\Ja still decreases with increasing, but
the mentioned derivatiofi5]. Finally, the complete func- no longer goes to zero when the maximum possible density
tional is obtained by adding the ideal gas contribution, pi =12 is approached6]. In Ref.[15] a number of other
DFT versions have been subjected to the same procedure.

_ _ 3 3 None of them yielded a reasonably small order of magnitude
BFialp(n)] f d*rp(n)lin p(rA==1], (11 for the vacancy concentration at its respective melting den-
_ _ sity.
where is the thermal de Broglie wavelength. _ On the other hand, it has been claimed that FMT is ca-
In a solid the density profile consists of identical densitypable of predicting the correct value ®f [18,19. We at-
peaksp,(r) centered at the lattice sité& tempted to confirm this by numerical calculationxgf. Un-
fortunately this was prevented by its smallness, which leads
p(r)zz pA(r—R), (12) to numerical problems during the m-|n|m|zat|.on bec_ause the
R very weak dependence of the functional xonin the inter-

S _ N esting region is lost in numerical noise due to rounding er-
which implies a corresponding decomposition of therors. But in the following we present an asymptotic analysis

weighted densities: of the problem near the close packing limit, along the lines
of our earlier investigation of the perfect crystéll, which
n,(r=> n@r-R). (13)  Shows that the FMT result fog, is indeed in agreement with
R the physical expectation.
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We assume a general, spherical symmetric density profile,

with the scaling form

;
PA(r):gPO(a) with fd3Spo(S)=1, (16)

where a=R— o is the free distance between sites, which
tends to zero in the close packing limit. Its relation to the free
distancea, of a defect-free crystal with the same bulk den-

sSity is

a=(o+agp) 7](1)/3— o=ay—3X,(o+ag) + O(Xi(r).

17
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n o 0
nf@=| 0 nfP o0 (26)
0 n3
with
700
n{(t) = —2= =nay(t)+ -, (27)
(1) =nP(t)—2n{P1). (28)

Contributions from different lattice sites must be transformed
to a common reference frame before they are added to the

We now adopt the strategy of minimizing first with respecttotal vector and tensor weighted densities.

to x, for fixed p, (i.e., fixedagy) and fixed profilepy(s),
assuming thad, /o, alo, andx, are small quantities. After-
ward the optimum profile shapey(s) follows by a second

minimization. The leading contribution to the ideal free en-

ergy is
ﬁFid/N=47wadS £po(s)[In po(s)—1]—3 In(ag/\)
0

+Xx,0/ay+ - -. (19
The dots denote terms of ordex,¢/a,)? that will turn out
to be neglegible. As shown in detail in Rg6], the weighted
densitiesn(A“)(r) have nontrivial values only in a small range
of width proportional toa aroundr=g¢/2 and can be ex-
panded in powers d for fixed t=(r —a/2)/a. For the two
scalar weighted densities one find$<a/ o)

n®(t) = mo[ Nao(t) + Ngg(t) 5+ - - -, (19

NP0 = 2lnaO) 05+ 1, (20

with

—t o0
nso(t)=47r(®(—t)f0 ds Spo(s)+ des 500(8)(s—t)),

21
i) =27 f Tds $0(8) (12— 2), 22
t
nzo(t)=27rjxds 90(9), (23
[t]
n21(t) = — 2tn20(t) (24)

In any coordinate system with isaxis aligned withr the
vector weighted density is

D)= Rl t) F (4] (25)

and the tensor weighted density

The spatial integration in Eq6) over the Wigner-Seitz
cell of the lattice is now split into two partsee Fig. 6 in
Ref. [6]): region A where the total weighted densities are
dominated by the contributions from one site, and redson
around the midpoints between two neighboring sites, where
both sites contribute to the weighted densities. Power laws
for the 6 dependence of the individual contributiods;
=N*1fjd3r ¢; with i=1,2,3 andj=A,B are given in Ref.
[6]. Here we are interested in thg dependence of the domi-
nant terms.

Let us first consider

N n@(r
K E SO NE
A mTo

Extending the integration region to a full spherical shell in-
troduces no error in the leading term, so that one has

Dip=— f:dt Noo( 1) IN[1— 7gN3e(t) ]+ O(6)

XU

1—-Xx

1+

Inx,, (30)

v

where (?ngo/(?t =Ny and ngo(t—>oo) = 0, ngo(t—> - m) =1

have been used. Thus the leading term is independent of the
profile and nonanalytical at,=0. It can be shown that the
O(6) term fromd 5 exactly cancels with the corresponding
term from®d,, for all x, when the integration region is a full
sphere. However, the missing caps in the directions to the 12
nearest neighbors give rise to an additio®4l5) correction
®{4P. Taking into account all contributions up @(5) we
have in FMT3

F
BNex: 14X, Inx, +®W+x,d
8 Xv| £00. 510 400
e 3 (bip+Pop+Pap+PI°)  (3D)
where
n+m
= &a—nﬁxm(DiJ'a:OvXU:O (32

v
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and terms of the ordera3, agx,, x?Inx, have been ne-
glected [Neglected terms o®(6%) will be important if they
behave ag;+ c,x,(Inx,)? for small x,. There are indica-
tions that this is indeed the case for the reglmrontribu-
tions when Gaussian profiles are used, but not for the actua 10+
minimum profile which ultimately decays faster than a .z
Gaussiarl. The only change in FMT2 is thab33 drops out
becauseb 5~ 5% in this version[6]. In FMT1 &5~ 6 tis

the dominant term. As shown in R¢6] it is minimized for
profiles po(s) with a cutoff ats=1/2, for which regionB

-6
(and the missing caps of regioh) do not exist. For such 10
profiles only the first two terms in E¢32) remain.
Minimization of the total free energy with respect g 7 8 9 10 " 12 13 14

for fixed ay results in o/a,

o FIG. 1. Vacancy concentration as function of the free distance
Xu:eXF{ K— _) (33 ag. The lines for the three FMT versions are extrapolations of the

ao asymptotic behavior foay— 0, the diamond$20] and the full line

[21] are simulation results, and the triangle is a theoretical estimate
with KFMT1= _ 1, KFMT2 - —1—<bgé+(q>(1’g+ @%g by Schaaf and Reisg23]. The vertical line denotes the melting
+®52P)/3, and KFMTe=KFMT2+ $39/3. Equation (33) is density; crystals on the left of this line are metastable.

our central result.

The exponential decay of the vacancy concentration is irdl- [16], in FMT2 and FMT3 the leading contribution to the
agreement with the following estimate. The free energy offfee energy difference between the crystal with and without
vacancy formation is approximately the wqui/N required  the vacancy is the ideal free energy per partield Inag/x
to enlarge the crystal by one lattice site against the externavhich, together with the configurational entropyx, Inx, ,
pressure, which leads t®,=exp(—Bp/p,) [20]. Together leads to the wrong predictiax, (ap— 0)~a3, corresponding
with the asymptotic formap/py,=c/ag+- - - for the equa- to a much too slow decay of, .
tion of state, predicted by cell theory as well as FMT, Eq.
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x 1074, all in reasonable agreement with the molecular dy- APPENDIX: CALCULATION OF THE CONSTANT K
namics resulf20], but in contrast to the previous FMT1
estimate 3.% 108 [19] which in our opinion is wrong. Fig-
ure 1 compares the vacancy concentration according to E
(33) for all three versions with simulation dafa0,21]. We
emphasize that the lines are extrapolations of the asymptotic SPSaP= — 24m ” dr rz( 1— 5
behavior and differ from the results of the full DFT, which 1A Ri2 2r
could not be determined for the reasons given above. There-
fore we _hesitate to c_iraw conclusions on the relative qualityBy using the substitution=(r — o/2)/a and Eqgs.(19) and
of the different versions of the theory. The almost perfect(zo) we get
FMT3 value at melting is probably fortuitous. Bowles and
Speedy{21] have measured the volume and surface area of "
cavities in simulated crystals Wit_h or(aonequ?l?br!unj va- DSaP= 12J dt (t—1/2) nyg(t)IN[1—ngy(t)],  (A2)
cancy. From these data they derived the equilibrium vacancy 172
concentrations shown in Fig. 1. If one uses their formulas
with the asymptotic equation of state of Aldetral.[22] one  where 7y has been set to 1 because only the leading term is
recovers Eq(33) for ag— 0 with the valueK=0.33, which  needed.
is quite close to the FMT2 result. For the integration over regio® scaled variablesp

We remark that if the functional is evaluated for a density=p’?/(ac) andz=z'/a are used wherep(,z’,¢') is a cy-
profile with a localized vacancy, as suggested by McBiae lindrical coordinate system centered at the midpoint between

The integral over the missing spherical caps of reglon
aljat have been included in E(9) is

$1(n{(r)). (A1)
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two sites and with its polar axis directed toward one of themExpanding theD(s°) term to first order inx, one obtains
For spherical density distributions all integrands are indepen-
dent of ¢’. One easily finds

R N20M20
0 % = L L d>2§:—24f dzf dp———. (A7)
<I>1B=—12J0 dzJ0 dp[ (Nyp+ Ny IN(1—nge—nNgg) 0 0 (1-ng—Ng

—NyIn(1-ng)] (A3)  TheO(s) term forx,=0 is

with n, =n,(t-)=n,(1/2+ p*z). The second term is sub-

tracted because it was already includedbig, . _ _ o % — NN 50(U_ Nyt U Nyg)+ N3 +Ngp
For @, the vectorsr .. pointing to the neighboring sites P2s=24| dz L —po?

are written as (1=N3p=Ng)

+ = —n! Tt
’ ’ Nygn u_+n u
p'cos¢ 4 M2020 - 20[‘20 +> A8)
r.=| p'sing’ |. (A4) 1-n3— N3
z'+*R/2

where na(t) = dnyo(t)/dt=—2mtpy(t) and all weighted

The angley between the directions to the two sites is deter-yo oo are evaluated @t = 12+ pFz

mined by cogy=r..r_=—1+8ps+0(s% so that[see Finally, after more lengthy algebra involving the transfor-
Egs.(20) and(25)] mation between the reference frames attached tandr _,
5 we find in FMT3

n%—niff{nzo(znnzo(sz M Nao( 2 )Nos(z)

nzonzo n31+ N3y)
+N20(Z-)N1(24 ) — AN 2, )Nl 2-) T} =36 J dz f dp Uonionge B9
(A5)
with Using the asymptotic profile determined in RE] numeri-

cal evaluation of Eqs(A2), (A3), (A8), and (A9) gives the
results for the constarK quoted in the main text. For com-
parison, one findKgy1>,=0.55 andKgy13=1.08 for a
(A6) Gaussian profile with optimized width.

Z.=———=t.—p(l+p*x22)6+---=t.+U. 6+ .
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