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Three coupled oscillators as a universal probe of synchronization stability
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We show that the stability surface that governs the synchronization of a large class of arrays of identical
oscillators can be probed with a simple array of just three identical oscillators. Experimentally this implies that
it may be possible to probe the synchronization conditions of many arrays all at the same time. In the process
of developing a theory of the three-oscillator probe, we also show that several regimes of asymptotic coupling
can be derived for the array classes, including the case of large imaginary coupling, which apparently has not
been explored.

PACS numbdps): 05.45-a

I. INTRODUCTION tional form through which the nodes are coupled. Note: we
assume nothing about the motion off the synchronization

In this paper we show a special form of coupling betweenmanifold, since that will not affect the linear stability analy-
three identical oscillators which allows us to probe a generasis. Although the above description of the system is rather
stability function that determines the stability of the synchro-wordy, the equations of motion and, most importantly, the
nous state of a very large class of arrays of identical oscillavariational equations used in the stability analysis, have a
tors. The three-coupled system is, in that sense, a universabmpact form that leads quickly to a general solution of the
probe of the stability of synchronization in practically any stability problem. We call the general solution theaster
array of similar oscillators connected by a wide range ofstability function[26]. It is this master stability function that
couplings. We show the development of this three-oscillatoour three-oscillator system will probe.
system by first reviewing the derivation of the master stabil- We note that several other works by Hu, Yang, and Liu
ity function for general arrays of identical oscillators. [25] and Gade and co-workel23,24] used some of the tech-

The increasing interest in synchronization in dynamicalniques we present here, especially in the application of ei-
systems, whether chaotic or periodic, has led many people t@envalues of the connectivity matrix to random and star cou-
consider the phenomenon of synchronization in large arraypling configuration. Our work independently developed the
or networks of coupled oscillatof¢—16]. A central dynami- master stability function for the general case, and herein
cal question is, when is such synchronous behavior stablshows how it can be used to predict many of the phenomena
especially in regard to coupling strengths and connectivity irand characteristics of dynamics near the synchronous state.
the network? In the following sections we derive the variational prob-

Many approaches have been tried in solving the synchrolem leading to the master stability functiégMSF). We also
nization problem, often with emphasis on a particular coushow how the asymptoti¢large real and imaginary cou-
pling scheme, but ocassionally with a view to understandingpling) form of the MSF can be derived. Then we show that a
general patterns of synchronization criteria that could be approperly constructed three-oscillator system can probe the
plied to whole classes of oscillator networksee, for ex- MSF by a simple variation of the couplings. This allows the
ample, Refs[1], [5], [17—25). Most of the networks can be MSF to be explored experimentally as well as numerically.
classified as a collection of identical nod@sscillators in ~ We go on to show an experimental investigation of the MSF
which the same component is taken from each node antbr Rossler-like circuits, which discloses the stable regions of
applied to other nodes in the network with various weightsthe MSF and brings into question the appropriate stability
which depend on the node pairs that are coupled. The use ofiterion to use in real systems. We show that many other
node components can be relaxed, more generally, using synchronization stability criteria have an associated MSF.
function of the node dynamical variables as the output ofFinally, in the Appendix, we show that there is also a MSF
each node to be fed to the other nodes. The weights afer coupled map lattices.
applied to each output as a whole and are often kept constant
for simplicity.

We have shown that we can solve a very general form of
the problem of the stability of the synchronized state in os- We assume the following(l) The coupled oscillators
cillators coupled as described abo\6]. We have solved (node$ are all identical(2) The same function of the com-
this problem once and for all for any set of coupling weightsponents from each oscillator is used as an output to couple to
and connections and any number of coupled oscillatorspther oscillators(3) The synchronization manifold is an in-
given the particular oscillator type at each node and the funcvariant manifold.(4) The nodes are coupled in an arbitrary
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fashion which is well approximated near the synchronousnxm matrix) with respect to thejth perturbation in the
state py a linear operator. Assgmptidﬂ$and(3) guarantee  coypling termH(x) in F'; and DH is the Jacobian of the
the existence of a synchronization hyperplane in phase SPaC&upling function evaluated at each ndgehich is the same
and assumptior2) makes the stability functio@ISF) spe- o all nodes in the synchronous state
cific to our choice of oscillators and the output function. A this stage we constrain the dependencéiodn H(x)
Assumption(4) is the choice of many studies of coupled (g pe as follows. Near the synchronization manifold we want
systems, but note that the linear coupling form is necessany,is dependence to be dominated by linear terms; thus, near
only near the synchronization manifold. It can be arbitrarysynchronization, eachD;F' should approach the form
elsewhere. . . 2G;;DH¢;, whereGj; is a constantmx m matrix. We also

In determining the stability of the synchronous state, variyyant the coupling to give equal weighting to all components

ous criteria are possible. The weakest is that the maximurBf DH, that is,DH¢ is added in Eq(2) to the sum using a
Lyapunov exponent or Floquet exponent be negative. This i§.5 4y weight. The] latter constraint requires tat be a

a universal stability standard, but it does not guarantee th%ultiple of themx m unit matrix: G =G..1... These con-
there are not unstable invariant sets in the synchronous sta{§ints are quite general, and cover rrlljarTy of the coupling
[7] or areas on the attractor that are locally “nStableschemes found in the Iiter’ature.

[10,27,28, both of which can cause attractor bubbling and With the above constraints we can write E2).in a com-

burstlng of the system away from synchronization Whe”pact form using direct products of matrices,
there is noise or parameter mismatch. The theory we develop

below will apply to almost any criterion that depends on the .

variational equation of the system. Each stability criterion §=[1y® J+G® DHJ¢, ©)
will lead to its own master stability function. For that reason
we develop the theory in the context of Lyapunov exponent

as a stability criterion and show in the conclusions how the®f @ll the coupled oscillatorsG is the matrix of scalar
other criteria can be used. weights,G;; , and1y is theN XN identity matrix. Recall that

Let there be N nodes (oscillators. Let x be the the direct product of two matrices andB is given in block

gvheregz(gl,gz, .. .,&\) Iis the collection of perturbations

m-dimensional vector of dynamical variables of itle node. form by
Let the dynamics for each node be
AuB  ApB - AiB
XI = FI(XIiH(X)) (1) A21B AzzB e A2NB
. . . A®B= . . . . (4)
H:R™—R™ is an arbitrary output function of each node’s : : : :
variables that is used in the coupling. We collect node dy- AyB AwB - AuB
H H vy — (vl 2 N H
namical variables inx=(x",x, ... x"), and write H(x)
=(H(xY), H(X?), ... HXN)), i.e., H is the same for all Note that manifold invariancgrequirement(3) abovd re-
nodes. For example, we may haveg toupling” of three-  quires;G;;=0.
dimensional oscillator nodes by choosiAgas a matrix such From the above assumptions tBematrix is constant on

thatH,,=1 and all otheH;;=0. In this way they compo-  the synchronization manifold. This is true for any linear cou-
nent for each node is fed into the vector field for tlik  pling scheme, and will be true for many other coupling
node. At this point the actual functional dependenc& oh  schemes considered in the literature. This means the n&trix
the componentgH(x)) is left unspecified. It is this latter that diagonalize§ is a constant, and can be applied directly
functional dependence that defines the connectivity and coue the variational equatiofEq. (3)] at all points in the syn-
pling strengths of the network. chronization manifold. To applb we recall the rules for
The N—1 constraintsx!=x?=---=xN define thesyn-  block matrix manipulations using direct produ¢29]: (1)
chronization manifoldTo test the stability of the motionin A® B-C® D=A-C®B-D and (2) (A®B) '=A"1
the synchronous state, we must evaluate the Lyapunov expa® B~ . Thus the matrixS® 1, block diagonalizes the sec-
nents of directions transverse to the synchronization maniend term in Eq(3), and leaves the first term untouch@ds
fold. We want perturbations in the transverse directions talready block diagonal with in eachm< m diagonal block
damp out(have negative Lyapunov exponentEhis requires The block diagonalization uncouples the variational equa-
sorting out the transverse directions from the synchronizatiotions into blocks(analogous to a mode analysand we are
manifold directions in the variational equation. We showleft with variational equations
how this comes about naturally in our development of a mas-
ter stability function.

The variational equations for the coupled system are &= nDHI& ®)

where y, is the eigenvalue ofs for the kth block, andk

. i =0,1,2... N—1. Fork=0 we have the variational equa-
fi:J'§i+j21 DjF-DH¢;, 2 tion for the synchronization manifoldyg=0), which is re-

quired by synchronization manifold invariancgG;;=0).

where ¢; are the(m-dimensional perturbations of thgth  All other k’s correspond to transverse eigenvectors, so we

node;J is the usual Jacobian of any nodke derivative with  have succeeded in separating the synchronization manifold

respect to the first argument Bf, which is the same for all from the other, transverse directions. We can think of these

nodes in the synchronous stat®;F' is the derivative(an  as transversenodes and we will refer to them as such.

N
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To understand the origin of imaginary eigenvalues, we
first note we need three oscillators if there is an imaginary
eigenvalue. This is because we still must have 0 as an eigen-
value and any complex eigenvalue must also have the com-
plex conjugate present. Thus we should expect a diagonal-
ized G matrix like

0 0 O
Giag= o i 0. (9
FIG. 1. Master stability function schematic. Here the stable re- 0O 0 —i
gion is the central valley, with the dotted lines separating the re-
gions of stable and unstable synchronized behavior. A simple similarity transformation on the>2 subblock in

Guiag gives a matrix with real components:
We now make an important observation: For e&cine

form of each blocKEg. (6)] is the same, with only the scalar 00 O
multiplier y, differing for each. This leads us to the follow-
ing formulation of themaster stability equatioand the as- G[,iagz 0 0 —-1]. (10

sociatedmaster stability functionMSF): we calculate the
maximum Floquet or Lyapunov exponeng,,, for the ge-
neric variational equation

0 1 0

Thus we see that imaginary coupling or imaginary eigenval-
ues of G come from antisymmetric connections, and the in-
Z=[J+(a+iB)DH]L (6) terpretation of such couplings is that they cause not a damp-
ing, but arotation between two eigenmodes. Ti& matrix
as a function ofx and 8 (a point in the complex planeThis  that associates with Eqe9) and(10) is
yields the master stability functian,,,, as a surface over the

complex plandsee Fig. 1 as an exampl€omplex numbers 0 —-1V3 1NV3

are used sincés may have complex eigenvalues. Then,

given a coupling or connection matr@, we locate the point G=| 1v3 0 —1V3 . (11)
vk In the complex plane. The sign af,,,, at that point will —1V3  1N3 0

reveal the stability of that eigenmode—hence we have a

MSF. If all the eigenmodes are stable, then the synchronousote that thisG is fully antisymmetric, and has zero row

state is stable for that coupling scheme. sums as required. We will return to these simple connection
Interpretation of the complex coupling constanti ) matrices later when we develop our three-oscillator universal

may seem difficult at first, but it is easy to associate a couprobe.

pling scheme each with the real and imaginary part of the

MSF coupling constant. If we have real coupling=€0 and . ASYMPTOTIC COUPLING RESULTS
a<0), the connection matribG must be symmetric. For ) ) o
example, given two coupled oscillators Obviously one way to determine the MSE,(a+ip) is
to use traditional numerical techniques for finding Lyapunov
1 exponents and apply them to the generic, master variational
dl=F(Xl)+C(X2—X1) equation(6). This was done in Ref.26], and will be done
dt ' below for our special case, but here we introduce techniques
(7)  thatcan lead to determination of the asymptotic form gf,
dx2 for large (negative real (@) and large imaginaryg) values.
W=F(x2)+c(xl—x2), Large and negative real coupling values in E@). can

sometimes be treated as followse set3=0 for now). As-
sume the case of a constddH matrix. Then we can diag-
onalize DH everywhere on the synchronization manifold,
and we end up with the variational equation,

wherec is a scalar, we havel=1,, and

—C C
o[ %) ®

— d

¢ d—'tl'z[madiag{nl,...,nm}]-lp, (12)
The eigenvalues o6 are 0(on the synchronization mani-

fold) and —2c. This is just what we get when we “rotate” whereK is the original Jacobiad after the similarity trans-
by 45° to a new coordinate system, @ndx,) parallel and formation that diagonalize®H and ¢ is the transformed
orthogonal to the synchronization manifolkj=x*+x2? and  perturbation vectof. The matrix diagm, ...,z is the diag-
x, =x*—x* [10,30. Hence, symmetric couplin¢G) results  onal form ofDH, and we assume the eigenvalugsof DH

in real eigenvalues, like-2c, which are interpreted as are arranged in descending orden & 7,>---). Obviously
damping we demand that since we are considering large, negative
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we must have allp;=0. If all »; are strictly greater than therefore the maximum conditional exponentaisvhich is
zero, then we automatically have the results, that for larggositive. Thus the MSF for the Rsler must asymptote to an

negativea, the variarional rate must decrease linearlyrias

unstable level equal ta, as we also showed in previous

any,. Hence, for large real coupling there would always bework on diffusively coupled systeni$,34].

stable behavior.
The case whemy;=7;,1=7j42=...= 7n=0 for some

The case of large imaginary coupling is apparently a topic
that has not been touched in the literature. We show how this

value ofj is more interesting. Then we have the situation thatregime can be approached for the MSF. First note that we

the firstj—1 perturbation components/(, i, ... .¢j-1)

simply want g large in either a positive or negative sense,

damp out quickly to zero values, but the stability of the lastsince the MSF must be symmetric about the real axis. For
m—j+1 components is determined by a subblock of thenow set «=0. As we noted above, imaginary coupling
transformed Jacobiaki. That subblock is given by the ma- amounts to a rotation. Then largican be associated with

trix,
Kim
: (13)

ij Kmm

rapid oscillations. This association will allow us to obtain a
general asymptotic result.

As for the large real coupling, we assurdé¢d is a con-
stant matrix with the same eigenvalue-eigenvector notation
as above. We again diagonalize the JacoBiaand obtain a
variational equation:

This form of the stability equation obtains because the zero

values of 1,5, ... .4;-1) mean the components & dyp -
with either index less thapwill not contribute to the vector E_[KH'Bd'ag{ M1yl (17)
field of the remaining ¢;,4;41, . . . ;) components, and _
the zeros of the eigenvalues will eliminate the couplingWe assume that for somen;= 7;,1= 7j+2=""= 71,=0,

terms. Now the question of the asymptotic form of the MSFwhereass; #0 for i<j. This condition on thep;’s simply
along the real axis is answered. It is a constant for small téneans the last—j+1 modes of each oscillator are not
moderates values and its value is the largest “Lyapunov coupled to any other oscillator; only the first modes are

exponent” of the subblock oK [Eq. (13)].

physically coupled in the array. Since we can interpgas

We often refer to the subblock Lyapunov exponents agausing rapid oscillation, we assume a solution in the follow-

conditional Lyapunov exponenfsliowing our original work

[31-33. A simple example shows how this works. Assume

we want to calculate the MSF for arrays of coupleds&ler

systems. The equations of motion for thesRler system are

dx

dy
E—X'f‘ ay,

(14
dz

m=b+z(x—c),

where we choosa=b=0.2 andc=7.0, a chaotic regime of

ing forms:

= ¢e Pt wheni<j,
(18)
bi= o
Substitution into Eq(17) gives the following two forms of
the variational equations:

when i=j.

m
b= Ky €Pm=mt wheni<j, (19
<1
m
bi=2, Kige"t when i=j. (20
=

behavior. Suppose we choose to couple our nodes using therecall thatg is arbitrarily large. This means the exponential

component. Then

(19

o O O
o O O

1
H=DH=| 0
0

and we immediately see that thex tomponent” of the per-
turbation ¢ will damp to zero for large, negative, and we
will be left with the yz subblock of the Jacobian of E¢L5):

a 0
0 x—c

. (16)

It is easy to show that the value »fs usually less than and

terms involvingB and nonzero eigenvalue combinations will
oscillate arbitrarily fast on the time scale of the variational
system. We invoke the technique of the method of averaging
for differential equation§35], in which we can “average” in
time over rapidly oscillating terms. In this case since the
oscillations are so rapid the other factors are practically con-
stant during any averaging time window, and the averaging
will cause any terms with nonzero exponentials to vanish.
For Equation(19) this means the only terms to survive in the
sums are those for which=1 (we are assuming no degen-
eracy of eigenvalues for ngwior Eq.(20) this means only
terms for whichl =] survive since, for those, by assumption,
7,=0. If we now allowa to be nonzero, but not large we are
left with the asymptotic block form for the variational equa-
tions:
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K11+ (44 O te 0
0 K22+ o te 0 0
. 0 0 e K4+
b= e ¢, (21)
0 Kii = Kjm
Kmj = Kmm
|
wherep=(¢q,¢5, ..., ¢m). The upper-left block is diago- IV. THREE-OSCILLATOR UNIVERSAL PROBE

nal SO the exponents O.f that bloclg are assoclated il We can calculate the MSF numerically for a great many
one-dimensional variational equations. Those exponents de- .
pend ona (which is negative The lower-right block is the systems, s_o_long as we have a good model for the dyn._amlcs.
same as for the large real counling case above. In fact However, it is sometimes easier or faster to vary experimen-
9 piing ' F &) parameters than numerical ones, and in some cases the

a— =, Eq. (2.1) approaches the same form as_for the realnumerical model may not be accurate. In the cases where we
case above_, since the exponents assoua;ed with the UPP&5n construct a network of the nodes we are interested in

left plqck will all become large and pegatwe anq only theand we can control the coupling weights to each node, we

cond|t|onal_ exponents of the Ic_Jwer-rlght block will matter. now show that there is a simple configuration of three nodes
Thus the imaginary asymptotic case transforms smoothI)(hat will allow us to completely probe the MSF over the

into the real asymptotic case. . . entire complex plane. This special configuration works be-
As an example of large imaginary coupling, we again use

the Rissler system withs, b, and ¢ as above as our node cause the three-oscillator array is the simplest array configu-

system, but this time we couple through eomponents: ration which allows complex eigenvalues in the block struc-
y ' P 9 P " ture of the system’s variational equations. In the three-

oscillator case the coupling is simultaneously nearest
0 0O 0 0O neighbor, all to all, and shift invariar(periodic boundary
H=(0 1 0|.x=DH=|0 1 0}, 29 conditions.
22 Consider the following setup of three, coupled oscillators
0 00 0 00 (we consider only additive coupling for now for simplicjty

which gives the block formulation for large imaginary cou- dxi s _ _ _
pling, EZF(X'H— §[H(x'+1)+H(x"l)—ZH(x')]
0 0 1 4 i+1 i—1
. +—[H —HX'"%)],
=0 ate 0 |g 23) S —HED)]
z 0 x—c (25

i=1,2,3 cyclically,
where they component is the diagonal block and the condi-
tional block is thexz subsystem. If\,, is the maximum
Lyapunov exponent of thez subsystem then the asymptotic
MSF is given as

where we have added factors of 3 avféito simplify later
equations. See Fig. 3 for a schematic of this configuration.
The first term is a symmetric coupling and the second term
an antisymmetric coupling. The variational equation is

Nmax= Maxa+ a, Ny} (29

o ] e €& o6 & O
The conditional value ok,; is —0.022. Thus the MSF must —2§ 3 +— 37
look like Fig. 2. It starts out positive at=0 with a value of 0 v3 v3
0.2, then decreases linearly withuntil it comes to the\,, e & e & &
value and levels out. Because we have chosen the maximum —==( 0 J O |&+| =—— —-2- S+—
Lyapunov exponent, we are actually viewing a cross section dt 0 0 3 V3 3 3 3
of two Lyapunov exponent surfaces over the complex plane, e 5 & & e
one associated with thg diagonal and one associated with =t— -—— -2z
the xz subsystem. In general, the entire complex plane is 3 v3 3 w3 3
covered by three surfaces, since the Lyapunov exponent % DH- £ 26)

spectrum has three values for eagh pair. We have chosen
the MSF to be the maximum of those values for each com-
plex point. Diagonalizing the second term connection mat® gives
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FIG. 2. Asymptotic form of the master stability function for
small values of real couplinga) when imaginary couplingb) is
large. The inset shows, schematically, how the surfaces associated
with each Lyapunov exponent cross to give the form of the MSF
shown. FIG. 4. Circuit schematic.

oscillator system. For that reason we call our coupling
scheme involving the three oscillatorsuaiversal probe of
the master stability functiorThis means that, given the node
(the vector fieldF) and the coupling functiofH) to apply to
0 0 0 each node, the three-oscillator system above can probe the
stability of any other configurationG) of those oscillators.
+| 0 (e+id)DH 0 ¥ (27 In Sec. V we apply the universal, three-oscillator probe to a
0 0 (s—i8)DH circuit version of the F?ssler_ system comparing the experi-
mental probe of the MSF with the numerical results.

dy

J

—=|0
dt

0

o & O

0
0l
J

where is & transformed to the eigencoordinates. )

For the MSF we are only interested in the lower-right 2 V. APPLICATION TO CIRCUIT-RO SSLER SYSTEM
2 block. Because of the symmetry of the MSF about the To rigorously demonstrate the practical usefulness of the
real axis, we only need one subblock, say for theid hree- 9 illat y g€ | b ?th MSE v th
block, to obtain the stability of the system. But we see thatt bree oscliiator unlveraa _pr? € of the , WE ap||3y e‘h
by varying e and § we can cover the entire complex plane. a hove concepts to a physical system, a system complete wit
Hence we can probe the entire MSF using only a three!NeTéNt parameter mismatch and noise. We have developed
a fairly minimal electronic circuit which will be our testbed.

As our chaotic oscillators, we chose to use circuits mod-
eled after the Rssler equation$36], where the quadratic
nonlinearity is replaced by a piecewise linear function; we
have also added an additional damping term to th& *
equation for electronic stabilit{s]. Figure 4 shows a sche-
matic of this circuit. The oscillator circuits are described by

(5]
X k(ax+by+
——=—k(ax cz
gt~ Klax+by+ca),
dy k(x+f 28
_ = X
gt = KOy, (28)
) . _ dz
FIG. 3. Schematic of three oscillator system where each oscil- —=—k(—g(x)+2),
lator is connected to the two neighbors through Hhefunction dt

(lines with arrow$ with combinations that are symmetiie-, with
weight £/3) and antisymmetri¢—, with weight 6/v3). with



5086 FINK, JOHNSON, CARROLL, MAR, AND PECORA PRE 61

e = 300)- g+ A8 L g1 2g1) 1B 1Y)

dt
(30

whereF is the vector field given by Eq28), andJ is the
Jacobian of Eq(28). The matriceA andB are the symmet-
ric and antisymmetric parts of the coupling, respectively, and
are analogous to the and & contributions, respectively, to
Eq. (28). For x coupling the matrice& andB become

e O 6 0 O
A= 0 0 0], B=|0 0 0], (31

0 0 O 0 0 O

and, fory coupling,

FIG. 5. x-y voltage plot of circuit attractor from time series. 0 00 0 00
A=l 0 ¢ 0], B=|0 6 O (32

(X):O, x<3 000 000

g h, x>3|

which, except for the factors of 3, is equivalent to tGe

— L matrix of Eq.(26) when
For easy availability of componentry, the circuit was de-

signed with the following parametersi=0.05, b=0.5, c 1

=1.0,f=0.133, anch=15. The constark is simply a time- DH=|0 0 0 (33)
scaling factor, which for our circuit is & * Figure 5 shows
anx—y plot of the circuit oscillator generated from voltages 0
of a running circuit. Numeric simulation of the equations

above give an attractor that is very similar to Fig. 5. for x coupling, and

On the complex plane for the MSF, the requirement for 0 0 0
synchronization, the greatest Lyapunov exponent less than
zero, defines a line or border. What we need now is a method DH=|0 1 0 (34

to examine the stability and performance of synchronized
systems on both sides of the “threshold of synchronization.”
The chaotic nature of these systems makes demonstration fafr y coupling.
a synchronization threshold in a noisy physical system a par- Observing the stability of the circuits in the component in
ticularly important step in the development of a robustwhich we are coupling would not give a true picture of what
theory, and yields an interesting deviation from that theoryjs happening, so data must be taken from a component other
which will be discussed later. than the one by which the circuits are coupled. This allows
We construct a ring of three oscillators. In the electronicus to see any pronounced bursting or other desynchroniza-
implementation of the universal system of Sec. IV, voltagetion effects which would be surpressed from observation in
coupling is accomplished by a series of operational amplifithe coupled component, since the coupling tends to slave its
ers. First, the signal from each oscillatok®utput is routed components to each other, regardless of what the uncoupled
to an operational amplifier buffer; this assures that our coucomponents are doing. Thus, if the uncoupled component
pling tap does not affect the operation of the running oscil-appears to be synchronized, we can be certain that the rest of
lators. Then each signal is routed to three of six operationahe circuit is stably synchronized as well. We will observe
amplifier adding arrays. The first three of the six generate théhe behavior of just thg component when coupling, and
(xX1*1+xI71—2xJ) component, while the latter three sub- observe jusk when couplingy.
tract (x) *1—xI"1). A similar scheme is used forcoupling, Observations, both in numeric simulation and in physical
with y/ replacingx). Finally, each signal is then multiplied experiment, are made in orthogonal bases perpendicular to
by & or € respectively, by using an analog multipli€. The  the plane of synchronization. We have shown that the trans-
time delay caused by this process is negligibly short in relaverse directions can be given by complex numbers as in Eq.
tion to the time scale of our oscillators. (27); however, for experiment we need real numbers, so we
Thus we have our fully coupled circuit equations choose two directions in real phase space that are transverse
to the synchronization manifold. These are easy to find. All
dxd components are equal on the synchronization manifold
—=F(x)+AX T+ x " 1-2x) + B(x T 1= x 1), which can be treated as a “vector” along the “diagonal” in
dt phase space, nameljl, 1, 1. Two vectors orthogonal to
29 this diagonal, and, therefore, spanning the transverse direc-
tions, ard2, —1, —1] and[0, —1, 1]. Thus in numeric simu-
along with their respective variational equations lation for x coupling, we recorded the separatisn

o
o
o
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747 09‘9'/ FIG. 7. One-dimensional plot ok, along the real axigx
-1.6 - N s coupling.
| I ]_-- I ] | l
00 05 1.0 1.5 20 25 -3.0 A. x coupling
1 Coupling the oscillators by theix components, we ob-
94 (SGC_ ) served the output of thecomponents. Figure 6 shows a map

of the maximum Lyapunov exponents as predicted by com-

FIG. 6. The master stability function forcoupling, as per Eq.  puter simulation. It suggests an elliptical shape for the stable
(33), in the Rsler circuit. The dashed lines show contours in theregion, always with increased stability along the real line
unstable region. The solid lines are contours in the stable region. Where there is no antisymmetry. The shape of the MSF along
the real line corresponds closely to earlier one-dimensional
studies of Lyapunov exponents at varying coupling constants

Stheoretica™ V(2y*—y*—y*) 2+ (y3—y?)2. (85  for symmetric diffusive coupling5,34]. Figure 7 shows a
one-dimensional plot of the theoretically predicted greatest
Lyapunov exponent values.

In the experiment, the separation between circuits was Figure 8 presents the experimental version of the probe of
found by capturing only two streams of data, recording ( the MSF using Eq(36), with the same coupling schenfe)
—X,) as channel 1C; and (x;—x3) as channel 2 G,). as used in the ci_rcuns. There is no e_mpmcal link between the
Substituting the expressions for the two channels into Eqvoltage scaling in theory and experiment, so that the scales
(35) gives, of each may differ greatly. Within reasonable magnitudes,

the shape and topology of the theory and experiment match
well. Thus we have experimentally verified the shape of the

SExperimental: \/(C1+ C2)2+ (Cl_ CZ)Z (36) stable region of the MSF.
B. y coupling
Similar results obtain foy coupling withx! replacingy’. The above process was repeated, coupling the circuits via

The experiment was controlled and automated by a Labtheiry components, observing the outputs of the respeative
Windows based computer program, and proceeded as fotomponents. Figures 9 and 10 show theory and experiment,
lows: An eight-bit digital to analog converter, controlled by respectively. As in the case rfcoupling case, the topologies
the computer, supplied dc voltages to the two sets of multiand shapes generally agree with each other, but here the
plier chips: one fore, and one fors. An optimal ¢ and 6, curvature in the synchronization threshold reveals a weak-
determined in advance, were switched on and held for 0.hess in using the Lyapunov exponents as a measure of syn-
sec(approximantely 100 cyclgsnsuring initial synchroniza- chronization stability.
tion of the three oscillators. At the completion of this cycle, The theoretical(Lyapunov exponentthreshold in the
the voltages were simultaneously changed to mésvand  MSF runs almost vertically, parallel to the imaginary axis.
8’s. A few cycles later, (10?s), a 12-bit analog to digital The experimental threshold follows a parabolic shape. In the
converter began to record the separation of the oscillators, akeoretical MSF such parabolic shapes occur in the contours
described in the paragraph above, for approximately 40@tA\ ., Vvalues that are negative. This would imply that in the
cycles. The results were then averaged, yielding a singlexperiment the/-coupling arrangement needs greater stabil-

value for the separation of the oscillators at that particulaity to cause robust synchronization. We take up this subject
combination ofé’s ande’s. in the conclusions.
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FIG. 8. Contour plot of experimental probe of the M8Fcou-
pling) using the synchronization distance measurement of Z&). FIG. 10. Experimental probe of the MS# coupling using the
In the stable region the distances were below the threshold for syrsynchronization distance measurement of E§). In the stable
chronization. In the unstable region the distances were beyond thegion the distances were below the threshold for synchronization.
threshold for synchronization. In the unstable region the distances were beyond the threshold for

synchronization.
VI. CONCLUSIONS

The stability of many types of coupled systems can nowpling functions to other nodes.
be investigated at the same time. The only requirement is We have shown that the form of the variational equation
that the variational equatiofnot necessarily the original also allows one to probe the master stability function with a
evolution equationsbe of the form of a Jacobian of a node simple three-oscillator array whose coupling is linear, and
plus a weighted linear combination of Jacobians of the coucan be varied as to its symmetric and antisymmetric weights.
This allows for experimental probes of the MSF, giving di-

6.0 T — rect contact with what would otherwise be an abstract math-
unstable /O—)EE ( o1 ematical entity.
region Ts b In the experimental study when we usgaoupling we
4.0 ﬂ'é $ saw a discrepancy between theory and experiment. In ex-
30“: plaining that difference here, we open up possibilities for
T -0.15 other master stability functions, each depending on the syn-
2.0 s . chronization criterion one chooses. Several other criteria for
B stable region synchronization thresholds have been suggested. These are
10 Y (1) the maximum Lyapunov exponent or Floquet multiplier
:;\ 0.0 ! 2 = for the least stable invariant sgt,28], e.g., an unstable pe-
3 104 K riodic orbit in a chaotic attracto(?2) the average of the non-
2 \ stable regio constant part of the Jacobian and coupling compared to the
Q. 104 linear parts[37]; (3) the maximum(supremun of the real
30 015 part of the eigenvalues of th@nstantaneoysJacobian(in-
1S cluding the coupling termsat all points or some representa-
-4.0 tive set of points on the attractfi27,38 (e.g., when negative
unstable —:

’ 5o n this function guarantees ultimate transverse-direction con-
region. s, traction everywhere on the attractoand (4) the maximum

-0.1 .
6.0 i i i \I —_— eigenvalue of the€instantaneoyssymmetrized Jacobiafin-
0.0 20 4.0 6.0 8.0 cluding the coupling termsat all points or some representa-
-1 tive set of points on the attractptO] (e.g., this guarantees
o (sec-1) > .
monotone damping of transverse perturbati38).
FIG. 9. The master stability function forcoupling, as per Eq. All criteria (1)—(4) require calculation of quantities from

(34), in the Rassler circuit. The dashed lines show contours in thethe same variational equation as that used here for the maxi-
unstable region. The solid lines are contours in the stable region.mum Lyapunov exponent criterion. Hence the same tech-



PRE 61 THREE COUPLED OSCILLATORS AS A UNIVERSA. .. 5089

nigues that led to the block structure of the Jacobian andhronized value of the dynamical variables, these variational
coupling components that we developed here will work withequations are, respectively, ‘()1 coupling through added
(1)—(4). Thus, for each criterion there is a master stabilityfunctions,

function, and coupling changes will manifest themselves as
motion of the eigenvalues on the complex plane just as
above. Furthermore, for each criterion the analysis using the
three-oscillator universal probe also holds. In this way the . . ) iN. rm;
three-oscillator probe can be a good test for which criteria i hereJ is the Jacobian of the first terf,(x,); (2') cou-
best applicable to a particular system, by comparing the ex2/IN9 through added arguments,

periment with the master stability function for each criterion.

& 1=[d(sn)+ X g;;DH(sy) |&h, (A%)

€ns1=|I(s0)+ 2 0d(s0) DH(sy) | &, (AS)
APPENDIX: MAP VERSION OF MASTER STABILITY

FUNCTION where we have made use of the usual chain rule for differ-
entiation and the facts that(x},)=H(s,) for all j in the

n th|§ appen@x we Sh(?W that many forms of COUpIGdsynchronous state arljg; =0; and (3) general, nonlinear
map lattices studied in the literature also can generate a mag tional coupling

ter stability function for the stability of the synchronized
state. Several types of coupling are used to study coupled-

map lattices. These at&) coupling through added functions, €ni1=|J(s)+ > 0;;DH(sy) | &, (AB)
iy NTYNIY where we assume that the individual functidfsat each
X1 =F o0 +2 9ijHOm): (A1) node have the same Jacobian with respect to the first argu-
) ment (evaluated on the synchronization manifigldnd that
(2) coupling through added arguments, the derivatives(Jacobians of F with respect to the other
arguments(evaluated on the synchronization manifolate
Xy =F [ xh+ 2 giHOX) |, (A2)  all just multiples of themx m unit matrix, i.e., they are the
weightsgij.

Thus all three forms, with suitable assumptions, are the
same when the variational equations are evaluated on the
Xir1+1: Fi(XL ,{H(XL)})y (A3) synchronization manifold. That form is suitable for rewriting
using direct products as in the ordinary differential equation
where the term in brackets stands for the output funckion (ODE) cases with a constant coupling maté={gij}, and
acting individually on each node in the array. In generalwe can again carry through the diagonalization@fand
each node’s map will be different in how it couples to otherextract the master variational equation leading to the master
nodes, but the dynamics will be the same in the synchronoustability function for the coupled-map lattices. As in the
state. The form of the variational equations will be similar ODE case, our choice of synchronization criterion will dic-
for all three coupled-map models. Letting=s, the syn- tate which MSF we are calculating.

and (3) general, nonlinear functional coupling,
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