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Three coupled oscillators as a universal probe of synchronization stability
in coupled oscillator arrays
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Columbia University, New York, New York 10027
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We show that the stability surface that governs the synchronization of a large class of arrays of identical
oscillators can be probed with a simple array of just three identical oscillators. Experimentally this implies that
it may be possible to probe the synchronization conditions of many arrays all at the same time. In the process
of developing a theory of the three-oscillator probe, we also show that several regimes of asymptotic coupling
can be derived for the array classes, including the case of large imaginary coupling, which apparently has not
been explored.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

In this paper we show a special form of coupling betwe
three identical oscillators which allows us to probe a gene
stability function that determines the stability of the synch
nous state of a very large class of arrays of identical osc
tors. The three-coupled system is, in that sense, a unive
probe of the stability of synchronization in practically an
array of similar oscillators connected by a wide range
couplings. We show the development of this three-oscilla
system by first reviewing the derivation of the master sta
ity function for general arrays of identical oscillators.

The increasing interest in synchronization in dynami
systems, whether chaotic or periodic, has led many peop
consider the phenomenon of synchronization in large arr
or networks of coupled oscillators@1–16#. A central dynami-
cal question is, when is such synchronous behavior sta
especially in regard to coupling strengths and connectivity
the network?

Many approaches have been tried in solving the synch
nization problem, often with emphasis on a particular co
pling scheme, but ocassionally with a view to understand
general patterns of synchronization criteria that could be
plied to whole classes of oscillator networks~see, for ex-
ample, Refs.@1#, @5#, @17–25#!. Most of the networks can be
classified as a collection of identical nodes~oscillators! in
which the same component is taken from each node
applied to other nodes in the network with various weig
which depend on the node pairs that are coupled. The us
node components can be relaxed, more generally, usin
function of the node dynamical variables as the output
each node to be fed to the other nodes. The weights
applied to each output as a whole and are often kept cons
for simplicity.

We have shown that we can solve a very general form
the problem of the stability of the synchronized state in
cillators coupled as described above@26#. We have solved
this problem once and for all for any set of coupling weigh
and connections and any number of coupled oscillat
given the particular oscillator type at each node and the fu
PRE 611063-651X/2000/61~5!/5080~11!/$15.00
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tional form through which the nodes are coupled. Note:
assume nothing about the motion off the synchronizat
manifold, since that will not affect the linear stability anal
sis. Although the above description of the system is rat
wordy, the equations of motion and, most importantly, t
variational equations used in the stability analysis, hav
compact form that leads quickly to a general solution of
stability problem. We call the general solution themaster
stability function@26#. It is this master stability function tha
our three-oscillator system will probe.

We note that several other works by Hu, Yang, and L
@25# and Gade and co-workers@23,24# used some of the tech
niques we present here, especially in the application of
genvalues of the connectivity matrix to random and star c
pling configuration. Our work independently developed t
master stability function for the general case, and her
shows how it can be used to predict many of the phenom
and characteristics of dynamics near the synchronous st

In the following sections we derive the variational pro
lem leading to the master stability function~MSF!. We also
show how the asymptotic~large real and imaginary cou
pling! form of the MSF can be derived. Then we show tha
properly constructed three-oscillator system can probe
MSF by a simple variation of the couplings. This allows t
MSF to be explored experimentally as well as numerica
We go on to show an experimental investigation of the M
for Rössler-like circuits, which discloses the stable regions
the MSF and brings into question the appropriate stabi
criterion to use in real systems. We show that many ot
synchronization stability criteria have an associated MS
Finally, in the Appendix, we show that there is also a MS
for coupled map lattices.

II. STABILITY ANALYSIS

We assume the following:~1! The coupled oscillators
~nodes! are all identical.~2! The same function of the com
ponents from each oscillator is used as an output to coup
other oscillators.~3! The synchronization manifold is an in
variant manifold.~4! The nodes are coupled in an arbitra
5080 ©2000 The American Physical Society
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PRE 61 5081THREE COUPLED OSCILLATORS AS A UNIVERSAL . . .
fashion which is well approximated near the synchrono
state by a linear operator. Assumptions~1! and~3! guarantee
the existence of a synchronization hyperplane in phase sp
and assumption~2! makes the stability function~MSF! spe-
cific to our choice of oscillators and the output functio
Assumption~4! is the choice of many studies of couple
systems, but note that the linear coupling form is necess
only near the synchronization manifold. It can be arbitra
elsewhere.

In determining the stability of the synchronous state, va
ous criteria are possible. The weakest is that the maxim
Lyapunov exponent or Floquet exponent be negative. Th
a universal stability standard, but it does not guarantee
there are not unstable invariant sets in the synchronous
@7# or areas on the attractor that are locally unsta
@10,27,28#, both of which can cause attractor bubbling a
bursting of the system away from synchronization wh
there is noise or parameter mismatch. The theory we dev
below will apply to almost any criterion that depends on t
variational equation of the system. Each stability criteri
will lead to its own master stability function. For that reas
we develop the theory in the context of Lyapunov expone
as a stability criterion and show in the conclusions how
other criteria can be used.

Let there be N nodes ~oscillators!. Let xi be the
m-dimensional vector of dynamical variables of thei th node.
Let the dynamics for each node be

ẋi5Fi
„xi ,H~x!…. ~1!

H:Rm→Rm is an arbitrary output function of each node
variables that is used in the coupling. We collect node
namical variables inx5(x1,x2, . . . ,xN), and write H(x)
5„H(x1), H(x2), . . . ,H(xN)…, i.e., H is the same for all
nodes. For example, we may have ‘‘y coupling’’ of three-
dimensional oscillator nodes by choosingH as a matrix such
that H2251 and all otherHi j 50. In this way they compo-
nent for each node is fed into the vector field for thei th
node. At this point the actual functional dependence ofF on
the components„H(x)… is left unspecified. It is this latte
functional dependence that defines the connectivity and c
pling strengths of the network.

The N21 constraintsx15x25¯5xN define thesyn-
chronization manifold. To test the stability of the motion in
the synchronous state, we must evaluate the Lyapunov e
nents of directions transverse to the synchronization m
fold. We want perturbations in the transverse directions
damp out~have negative Lyapunov exponents!. This requires
sorting out the transverse directions from the synchroniza
manifold directions in the variational equation. We sho
how this comes about naturally in our development of a m
ter stability function.

The variational equations for the coupled system are

j̇ i5J•j i1(
j 51

N

D jF
i
•DHj j , ~2!

where j j are the~m-dimensional! perturbations of thej th
node;J is the usual Jacobian of any node~the derivative with
respect to the first argument ofFi , which is the same for al
nodes in the synchronous state!; D jF

i is the derivative~an
s
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m3m matrix! with respect to thej th perturbation in the
coupling termH(x) in Fi ; and DH is the Jacobian of the
coupling function evaluated at each node~which is the same
for all nodes in the synchronous state!.

At this stage we constrain the dependence ofFi on H(x)
to be as follows. Near the synchronization manifold we wa
this dependence to be dominated by linear terms; thus,
synchronization, eachD jF

i should approach the form
S jGi j DHj j , whereGi j is a constantm3m matrix. We also
want the coupling to give equal weighting to all compone
of DH, that is,DHj j is added in Eq.~2! to the sum using a
scalar weight. The latter constraint requires thatGi j be a
multiple of them3m unit matrix: Gi j 5Gi j 1m . These con-
straints are quite general, and cover many of the coup
schemes found in the literature.

With the above constraints we can write Eq.~2! in a com-
pact form using direct products of matrices,

j̇5@1N ^ J1G ^ DH#j, ~3!

wherej5(j1 ,j2 , . . . ,jN) is the collection of perturbations
of all the coupled oscillators,G is the matrix of scalar
weights,Gi j , and1N is theN3N identity matrix. Recall that
the direct product of two matricesA andB is given in block
form by

A ^ B5S A11B A12B ¯ A1NB

A21B A22B ¯ A2NB

] ] ] ]

AN1B AN2B ¯ ANNB
D . ~4!

Note that manifold invariance@requirement~3! above# re-
quiresS jGi j 50.

From the above assumptions theG matrix is constant on
the synchronization manifold. This is true for any linear co
pling scheme, and will be true for many other couplin
schemes considered in the literature. This means the matS
that diagonalizesG is a constant, and can be applied direc
to the variational equation@Eq. ~3!# at all points in the syn-
chronization manifold. To applyS we recall the rules for
block matrix manipulations using direct products@29#: ~1!
A ^ B•C ^ D5A•C ^ B•D and ~2! (A ^ B)215A21

^ B21. Thus the matrixS ^ 1m block diagonalizes the sec
ond term in Eq.~3!, and leaves the first term untouched~it is
already block diagonal withJ in eachm3m diagonal block!.
The block diagonalization uncouples the variational eq
tions into blocks~analogous to a mode analysis! and we are
left with variational equations

j̇k5@J1gkDH#jk . ~5!

where gk is the eigenvalue ofG for the kth block, andk
50,1,2, . . . ,N21. For k50 we have the variational equa
tion for the synchronization manifold (g050), which is re-
quired by synchronization manifold invariance (S jGi j 50).
All other k’s correspond to transverse eigenvectors, so
have succeeded in separating the synchronization man
from the other, transverse directions. We can think of th
as transversemodes, and we will refer to them as such.
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We now make an important observation: For eachk the
form of each block@Eq. ~6!# is the same, with only the scala
multiplier gk differing for each. This leads us to the follow
ing formulation of themaster stability equationand the as-
sociatedmaster stability function~MSF!: we calculate the
maximum Floquet or Lyapunov exponentlmax for the ge-
neric variational equation

ż5@J1~a1 ib!DH#z ~6!

as a function ofa andb ~a point in the complex plane!. This
yields the master stability functionlmax as a surface over th
complex plane~see Fig. 1 as an example!. Complex numbers
are used sinceG may have complex eigenvalues. The
given a coupling or connection matrixG, we locate the point
gk in the complex plane. The sign oflmax at that point will
reveal the stability of that eigenmode—hence we hav
MSF. If all the eigenmodes are stable, then the synchron
state is stable for that coupling scheme.

Interpretation of the complex coupling constant (a1 ib)
may seem difficult at first, but it is easy to associate a c
pling scheme each with the real and imaginary part of
MSF coupling constant. If we have real coupling (b50 and
a,0), the connection matrixG must be symmetric. Fo
example, given two coupled oscillators

dx1

dt
5F~x1!1c~x22x1!,

~7!

dx2

dt
5F~x2!1c~x12x2!,

wherec is a scalar, we haveH51m and

G5S 2c c

c 2cD . ~8!

The eigenvalues ofG are 0 ~on the synchronization mani
fold! and22c. This is just what we get when we ‘‘rotate’
by 45° to a new coordinate system (xi andx') parallel and
orthogonal to the synchronization manifold:xi5x11x2 and
x'5x22x1 @10,30#. Hence, symmetric coupling~G! results
in real eigenvalues, like22c, which are interpreted a
damping.

FIG. 1. Master stability function schematic. Here the stable
gion is the central valley, with the dotted lines separating the
gions of stable and unstable synchronized behavior.
,
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To understand the origin of imaginary eigenvalues,
first note we need three oscillators if there is an imagin
eigenvalue. This is because we still must have 0 as an ei
value and any complex eigenvalue must also have the c
plex conjugate present. Thus we should expect a diago
ized G matrix like

Gdiag5S 0 0 0

0 i 0

0 0 2 i
D . ~9!

A simple similarity transformation on the 232 subblock in
Gdiag gives a matrix with real components:

Gdiag8 5S 0 0 0

0 0 21

0 1 0
D . ~10!

Thus we see that imaginary coupling or imaginary eigenv
ues ofG come from antisymmetric connections, and the
terpretation of such couplings is that they cause not a da
ing, but arotation between two eigenmodes. TheG matrix
that associates with Eqs.~9! and ~10! is

G5S 0 21/) 1/)

1/) 0 21/)

21/) 1/) 0
D . ~11!

Note that thisG is fully antisymmetric, and has zero row
sums as required. We will return to these simple connec
matrices later when we develop our three-oscillator unive
probe.

III. ASYMPTOTIC COUPLING RESULTS

Obviously one way to determine the MSFlmax(a1ib) is
to use traditional numerical techniques for finding Lyapun
exponents and apply them to the generic, master variatio
equation~6!. This was done in Ref.@26#, and will be done
below for our special case, but here we introduce techniq
that can lead to determination of the asymptotic form oflmax
for large ~negative! real ~a! and large imaginary~b! values.

Large and negative real coupling values in Eq.~6! can
sometimes be treated as follows~we setb50 for now!. As-
sume the case of a constantDH matrix. Then we can diag-
onalize DH everywhere on the synchronization manifol
and we end up with the variational equation,

dc

dt
5@K1a diag$h1 , . . . ,hm%#•c, ~12!

whereK is the original JacobianJ after the similarity trans-
formation that diagonalizedDH and c is the transformed
perturbation vectorz. The matrix diag$h1,...,hm% is the diag-
onal form ofDH, and we assume the eigenvaluesh i of DH
are arranged in descending order (h1.h2.¯). Obviously
we demand that since we are considering large, negativa

-
-
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PRE 61 5083THREE COUPLED OSCILLATORS AS A UNIVERSAL . . .
we must have allh i>0. If all h i are strictly greater than
zero, then we automatically have the results, that for la
negativea, the variarional rate must decrease linearly ina as
ahm . Hence, for large real coupling there would always
stable behavior.

The case whenh j5h j 115h j 125...5hm50 for some
value ofj is more interesting. Then we have the situation t
the first j 21 perturbation components (c1 ,c2 , . . . ,c j 21)
damp out quickly to zero values, but the stability of the la
m2 j 11 components is determined by a subblock of
transformed JacobianK . That subblock is given by the ma
trix,

S K j j ¯ K jm

] ] ]

Km j ¯ Kmm

D . ~13!

This form of the stability equation obtains because the z
values of (c1 ,c2 , . . . ,c j 21) mean the components ofK
with either index less thanj will not contribute to the vector
field of the remaining (c j ,c j 11 , . . . ,cm) components, and
the zeros of the eigenvalues will eliminate the coupli
terms. Now the question of the asymptotic form of the M
along the real axis is answered. It is a constant for sma
moderateb values and its value is the largest ‘‘Lyapuno
exponent’’ of the subblock ofK @Eq. ~13!#.

We often refer to the subblock Lyapunov exponents
conditional Lyapunov exponentsfollowing our original work
@31–33#. A simple example shows how this works. Assum
we want to calculate the MSF for arrays of coupled Ro¨ssler
systems. The equations of motion for the Ro¨ssler system are

dx

dt
52~y1z!,

dy

dt
5x1ay, ~14!

dz

dt
5b1z~x2c!,

where we choosea5b50.2 andc57.0, a chaotic regime o
behavior. Suppose we choose to couple our nodes usingx
component. Then

H5DH5S 1 0 0

0 0 0

0 0 0
D ~15!

and we immediately see that the ‘‘x component’’ of the per-
turbationz will damp to zero for large, negativea, and we
will be left with theyzsubblock of the Jacobian of Eq.~15!:

S a 0

0 x2cD . ~16!

It is easy to show that the value ofx is usually less thanc and
e

t

t
e

o

to

s

e

therefore the maximum conditional exponent isa which is
positive. Thus the MSF for the Ro¨ssler must asymptote to a
unstable level equal toa, as we also showed in previou
work on diffusively coupled systems@5,34#.

The case of large imaginary coupling is apparently a to
that has not been touched in the literature. We show how
regime can be approached for the MSF. First note that
simply wantb large in either a positive or negative sens
since the MSF must be symmetric about the real axis.
now set a50. As we noted above, imaginary couplin
amounts to a rotation. Then largeb can be associated with
rapid oscillations. This association will allow us to obtain
general asymptotic result.

As for the large real coupling, we assumeDH is a con-
stant matrix with the same eigenvalue-eigenvector nota
as above. We again diagonalize the JacobianJ, and obtain a
variational equation:

dc

dt
5@K1 ib diag$h1 , . . . ,hm%#•c. ~17!

We assume that for somej h j5h j 115h j 125¯5hm50,
whereash iÞ0 for i , j . This condition on theh j ’s simply
means the lastm2 j 11 modes of each oscillator are no
coupled to any other oscillator; only the first modes a
physically coupled in the array. Since we can interpretib as
causing rapid oscillation, we assume a solution in the follo
ing forms:

c i5f ie
ibh i t when i , j ,

~18!

c i5f i when i> j .

Substitution into Eq.~17! gives the following two forms of
the variational equations:

ḟ i5(
l 51

m

Kil f le
ib~h l2h i !t when i , j , ~19!

ḟ i5(
l 51

m

Kil f le
ibh l t when i> j . ~20!

Recall thatb is arbitrarily large. This means the exponent
terms involvingb and nonzero eigenvalue combinations w
oscillate arbitrarily fast on the time scale of the variation
system. We invoke the technique of the method of averag
for differential equations@35#, in which we can ‘‘average’’ in
time over rapidly oscillating terms. In this case since t
oscillations are so rapid the other factors are practically c
stant during any averaging time window, and the averag
will cause any terms with nonzero exponentials to vani
For Equation~19! this means the only terms to survive in th
sums are those for whichi 5 l ~we are assuming no degen
eracy of eigenvalues for now!. For Eq.~20! this means only
terms for whichl> j survive since, for those, by assumptio
h l50. If we now allowa to be nonzero, but not large we ar
left with the asymptotic block form for the variational equ
tions:
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ḟ5S K111a
0
]

0

0
K221a

]

0

¯

¯

]

¯

0
0
]

K j 21 j 211a

0

0
K j j

]

Km j

¯

]

¯

K jm

]

Kmm

D f, ~21!
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wheref5(f1 ,f2 , . . . ,fm). The upper-left block is diago
nal so the exponents of that block are associated withj 21
one-dimensional variational equations. Those exponents
pend ona ~which is negative!. The lower-right block is the
same as for the large real coupling case above. In fact
a→2`, Eq. ~21! approaches the same form as for the r
case above, since the exponents associated with the u
left block will all become large and negative and only t
conditional exponents of the lower-right block will matte
Thus the imaginary asymptotic case transforms smoo
into the real asymptotic case.

As an example of large imaginary coupling, we again u
the Rössler system witha, b, and c as above as our nod
system, but this time we couple through they components:

H5S 0 0 0

0 1 0

0 0 0
D •xj⇒DH5S 0 0 0

0 1 0

0 0 0
D , ~22!

which gives the block formulation for large imaginary co
pling,

ż5S 0 0 1

0 a1a 0

z 0 x2c
D z, ~23!

where they component is the diagonal block and the con
tional block is thexz subsystem. Iflxz is the maximum
Lyapunov exponent of thexz subsystem then the asymptot
MSF is given as

lmax5max$a1a,lxz%. ~24!

The conditional value oflxz is 20.022. Thus the MSF mus
look like Fig. 2. It starts out positive ata50 with a value of
0.2, then decreases linearly witha until it comes to thelxz
value and levels out. Because we have chosen the maxim
Lyapunov exponent, we are actually viewing a cross sec
of two Lyapunov exponent surfaces over the complex pla
one associated with they diagonal and one associated wi
the xz subsystem. In general, the entire complex plane
covered by three surfaces, since the Lyapunov expon
spectrum has three values for eachab pair. We have chosen
the MSF to be the maximum of those values for each co
plex point.
e-
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IV. THREE-OSCILLATOR UNIVERSAL PROBE

We can calculate the MSF numerically for a great ma
systems, so long as we have a good model for the dynam
However, it is sometimes easier or faster to vary experim
tal parameters than numerical ones, and in some case
numerical model may not be accurate. In the cases where
can construct a network of the nodes we are interested
and we can control the coupling weights to each node,
now show that there is a simple configuration of three no
that will allow us to completely probe the MSF over th
entire complex plane. This special configuration works b
cause the three-oscillator array is the simplest array confi
ration which allows complex eigenvalues in the block stru
ture of the system’s variational equations. In the thre
oscillator case the coupling is simultaneously near
neighbor, all to all, and shift invariant~periodic boundary
conditions!.

Consider the following setup of three, coupled oscillato
~we consider only additive coupling for now for simplicity!:

dxi

dt
5F~xi !1

«

3
@H~xi 11!1H~xi 21!22H~xi !#

1
d

)
@H~xi 11!2H~xi 21!#,

~25!

i 51,2,3 cyclically,

where we have added factors of 3 and) to simplify later
equations. See Fig. 3 for a schematic of this configurati
The first term is a symmetric coupling and the second te
an antisymmetric coupling. The variational equation is

dj

dt
5S J 0 0

0 J 0

0 0 J
D j1S 22

«

3

«

3
1

d

)

«

3
2

d

)

«

3
2

d

)
22

«

3

«

3
1

d

)

«

3
1

d

)

«

3
2

d

)
22

«

3

D
^ DH•j. ~26!

Diagonalizing the second term connection matrix~G! gives
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PRE 61 5085THREE COUPLED OSCILLATORS AS A UNIVERSAL . . .
dc

dt
5S J 0 0

0 J 0

0 0 J
D c

1S 0 0 0

0 ~«1 id!DH 0

0 0 ~«2 id!DH
D c, ~27!

wherec is j transformed to the eigencoordinates.
For the MSF we are only interested in the lower-right

32 block. Because of the symmetry of the MSF about
real axis, we only need one subblock, say for the«1 id
block, to obtain the stability of the system. But we see t
by varying« andd we can cover the entire complex plan
Hence we can probe the entire MSF using only a thr

FIG. 2. Asymptotic form of the master stability function fo
small values of real coupling~a! when imaginary coupling~b! is
large. The inset shows, schematically, how the surfaces assoc
with each Lyapunov exponent cross to give the form of the M
shown.

FIG. 3. Schematic of three oscillator system where each os
lator is connected to the two neighbors through theH function
~lines with arrows! with combinations that are symmetric~1, with
weight «/3! and antisymmetric~2, with weightd/)).
e

t

-

oscillator system. For that reason we call our coupli
scheme involving the three oscillators auniversal probe of
the master stability function. This means that, given the nod
~the vector fieldF! and the coupling function~H! to apply to
each node, the three-oscillator system above can probe
stability of any other configuration~G! of those oscillators.
In Sec. V we apply the universal, three-oscillator probe t
circuit version of the Ro¨ssler system comparing the expe
mental probe of the MSF with the numerical results.

V. APPLICATION TO CIRCUIT-RO ¨ SSLER SYSTEM

To rigorously demonstrate the practical usefulness of
three-oscillator universal probe of the MSF, we apply t
above concepts to a physical system, a system complete
inherent parameter mismatch and noise. We have develo
a fairly minimal electronic circuit which will be our testbed

As our chaotic oscillators, we chose to use circuits mo
eled after the Ro¨ssler equations@36#, where the quadratic
nonlinearity is replaced by a piecewise linear function;
have also added an additional damping term to the ‘‘x’’
equation for electronic stability@5#. Figure 4 shows a sche
matic of this circuit. The oscillator circuits are described
@5#

dx

dt
52k~ax1by1cz!,

dy

dt
52k~x1 f y!, ~28!

dz

dt
52k~2g~x!1z!,

with

ted
F

il-

FIG. 4. Circuit schematic.
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5086 PRE 61FINK, JOHNSON, CARROLL, MAR, AND PECORA
g~x!5H 0, x<3

h, x.3J .

For easy availability of componentry, the circuit was d
signed with the following parameters:a50.05, b50.5, c
51.0, f 50.133, andh515. The constantk is simply a time-
scaling factor, which for our circuit is 104 s21 Figure 5 shows
anx2y plot of the circuit oscillator generated from voltag
of a running circuit. Numeric simulation of the equatio
above give an attractor that is very similar to Fig. 5.

On the complex plane for the MSF, the requirement
synchronization, the greatest Lyapunov exponent less
zero, defines a line or border. What we need now is a met
to examine the stability and performance of synchroniz
systems on both sides of the ‘‘threshold of synchronizatio
The chaotic nature of these systems makes demonstratio
a synchronization threshold in a noisy physical system a
ticularly important step in the development of a robu
theory, and yields an interesting deviation from that theo
which will be discussed later.

We construct a ring of three oscillators. In the electro
implementation of the universal system of Sec. IV, volta
coupling is accomplished by a series of operational amp
ers. First, the signal from each oscillator’sx output is routed
to an operational amplifier buffer; this assures that our c
pling tap does not affect the operation of the running os
lators. Then each signal is routed to three of six operatio
amplifier adding arrays. The first three of the six generate
(xj 111xj 2122xj ) component, while the latter three su
tract (xj 112xj 21). A similar scheme is used fory coupling,
with yj replacingxj . Finally, each signal is then multiplie
by d or « respectively, by using an analog multiplierIC. The
time delay caused by this process is negligibly short in re
tion to the time scale of our oscillators.

Thus we have our fully coupled circuit equations

dxj

dt
5F~xj !1A~xj 111xj 2122xj !1B~xj 112xj 21!,

~29!

along with their respective variational equations

FIG. 5. x-y voltage plot of circuit attractor from time series.
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dj j

dt
5J~xj !•j j1A~j j 111j j 2122j j !1B~j j 112j j 21!,

~30!

whereF is the vector field given by Eq.~28!, andJ is the
Jacobian of Eq.~28!. The matricesA andB are the symmet-
ric and antisymmetric parts of the coupling, respectively, a
are analogous to the« and d contributions, respectively, to
Eq. ~28!. For x coupling the matricesA andB become

A5S « 0 0

0 0 0

0 0 0
D , B5S d 0 0

0 0 0

0 0 0
D , ~31!

and, fory coupling,

A5S 0 0 0

0 « 0

0 0 0
D , B5S 0 0 0

0 d 0

0 0 0
D . ~32!

which, except for the factors of 3, is equivalent to theG
matrix of Eq.~26! when

DH5S 1 0 0

0 0 0

0 0 0
D ~33!

for x coupling, and

DH5S 0 0 0

0 1 0

0 0 0
D ~34!

for y coupling.
Observing the stability of the circuits in the component

which we are coupling would not give a true picture of wh
is happening, so data must be taken from a component o
than the one by which the circuits are coupled. This allo
us to see any pronounced bursting or other desynchron
tion effects which would be surpressed from observation
the coupled component, since the coupling tends to slav
components to each other, regardless of what the uncou
components are doing. Thus, if the uncoupled compon
appears to be synchronized, we can be certain that the re
the circuit is stably synchronized as well. We will obser
the behavior of just they component when couplingx, and
observe justx when couplingy.

Observations, both in numeric simulation and in physi
experiment, are made in orthogonal bases perpendicula
the plane of synchronization. We have shown that the tra
verse directions can be given by complex numbers as in
~27!; however, for experiment we need real numbers, so
choose two directions in real phase space that are transv
to the synchronization manifold. These are easy to find.
components are equal on the synchronization manif
which can be treated as a ‘‘vector’’ along the ‘‘diagonal’’ i
phase space, namely,@1, 1, 1#. Two vectors orthogonal to
this diagonal, and, therefore, spanning the transverse d
tions, are@2, 21, 21# and@0, 21, 1#. Thus in numeric simu-
lation for x coupling, we recorded the separationS
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STheoretical5A~2y12y22y3!21~y32y2!2. ~35!

In the experiment, the separation between circuits w
found by capturing only two streams of data, recording (x1
2x2) as channel 1C1 and (x12x3) as channel 2 (C2).
Substituting the expressions for the two channels into
~35! gives,

SExperimental5A~C11C2!21~C12C2!2 ~36!

Similar results obtain fory coupling withxj replacingyj .
The experiment was controlled and automated by a L

Windows based computer program, and proceeded as
lows: An eight-bit digital to analog converter, controlled b
the computer, supplied dc voltages to the two sets of mu
plier chips: one for«, and one ford. An optimal « and d,
determined in advance, were switched on and held for
sec~approximantely 100 cycles! insuring initial synchroniza-
tion of the three oscillators. At the completion of this cyc
the voltages were simultaneously changed to new«’s and
d ’s. A few cycles later, (1022 s), a 12-bit analog to digita
converter began to record the separation of the oscillators
described in the paragraph above, for approximately
cycles. The results were then averaged, yielding a sin
value for the separation of the oscillators at that particu
combination ofd ’s and«’s.

FIG. 6. The master stability function forx coupling, as per Eq.
~33!, in the Rössler circuit. The dashed lines show contours in
unstable region. The solid lines are contours in the stable regio
s
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A. x coupling

Coupling the oscillators by theirx components, we ob-
served the output of they components. Figure 6 shows a ma
of the maximum Lyapunov exponents as predicted by co
puter simulation. It suggests an elliptical shape for the sta
region, always with increased stability along the real li
where there is no antisymmetry. The shape of the MSF al
the real line corresponds closely to earlier one-dimensio
studies of Lyapunov exponents at varying coupling consta
for symmetric diffusive coupling@5,34#. Figure 7 shows a
one-dimensional plot of the theoretically predicted great
Lyapunov exponent values.

Figure 8 presents the experimental version of the prob
the MSF using Eq.~36!, with the same coupling scheme~x!
as used in the circuits. There is no empirical link between
voltage scaling in theory and experiment, so that the sc
of each may differ greatly. Within reasonable magnitud
the shape and topology of the theory and experiment ma
well. Thus we have experimentally verified the shape of
stable region of the MSF.

B. y coupling

The above process was repeated, coupling the circuits
their y components, observing the outputs of the respectivx
components. Figures 9 and 10 show theory and experim
respectively. As in the case ofx coupling case, the topologie
and shapes generally agree with each other, but here
curvature in the synchronization threshold reveals a we
ness in using the Lyapunov exponents as a measure of
chronization stability.

The theoretical~Lyapunov exponent! threshold in the
MSF runs almost vertically, parallel to the imaginary ax
The experimental threshold follows a parabolic shape. In
theoretical MSF such parabolic shapes occur in the conto
at lmax values that are negative. This would imply that in t
experiment they-coupling arrangement needs greater sta
ity to cause robust synchronization. We take up this sub
in the conclusions.

.

FIG. 7. One-dimensional plot oflmax along the real axis~x
coupling!.
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VI. CONCLUSIONS

The stability of many types of coupled systems can n
be investigated at the same time. The only requiremen
that the variational equation~not necessarily the origina
evolution equations! be of the form of a Jacobian of a nod
plus a weighted linear combination of Jacobians of the c

FIG. 8. Contour plot of experimental probe of the MSF~x cou-
pling! using the synchronization distance measurement of Eq.~36!.
In the stable region the distances were below the threshold for
chronization. In the unstable region the distances were beyond
threshold for synchronization.

FIG. 9. The master stability function fory coupling, as per Eq.
~34!, in the Rössler circuit. The dashed lines show contours in
unstable region. The solid lines are contours in the stable regio
is

-

pling functions to other nodes.
We have shown that the form of the variational equat

also allows one to probe the master stability function with
simple three-oscillator array whose coupling is linear, a
can be varied as to its symmetric and antisymmetric weig
This allows for experimental probes of the MSF, giving d
rect contact with what would otherwise be an abstract ma
ematical entity.

In the experimental study when we usedy coupling we
saw a discrepancy between theory and experiment. In
plaining that difference here, we open up possibilities
other master stability functions, each depending on the s
chronization criterion one chooses. Several other criteria
synchronization thresholds have been suggested. Thes
~1! the maximum Lyapunov exponent or Floquet multipli
for the least stable invariant set@7,28#, e.g., an unstable pe
riodic orbit in a chaotic attractor;~2! the average of the non
constant part of the Jacobian and coupling compared to
linear parts@37#; ~3! the maximum~supremum! of the real
part of the eigenvalues of the~instantaneous! Jacobian~in-
cluding the coupling terms! at all points or some representa
tive set of points on the attractor@27,38# ~e.g., when negative
this function guarantees ultimate transverse-direction c
traction everywhere on the attractor!; and ~4! the maximum
eigenvalue of the~instantaneous! symmetrized Jacobian~in-
cluding the coupling terms! at all points or some representa
tive set of points on the attractor@10# ~e.g., this guarantee
monotone damping of transverse perturbations@39#!.

All criteria ~1!–~4! require calculation of quantities from
the same variational equation as that used here for the m
mum Lyapunov exponent criterion. Hence the same te

n-
he

.

FIG. 10. Experimental probe of the MSF~y coupling! using the
synchronization distance measurement of Eq.~36!. In the stable
region the distances were below the threshold for synchronizat
In the unstable region the distances were beyond the threshol
synchronization.
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niques that led to the block structure of the Jacobian
coupling components that we developed here will work w
~1!–~4!. Thus, for each criterion there is a master stabi
function, and coupling changes will manifest themselves
motion of the eigenvalues on the complex plane just
above. Furthermore, for each criterion the analysis using
three-oscillator universal probe also holds. In this way
three-oscillator probe can be a good test for which criteria
best applicable to a particular system, by comparing the
periment with the master stability function for each criterio

APPENDIX: MAP VERSION OF MASTER STABILITY
FUNCTION

In this appendix we show that many forms of coupl
map lattices studied in the literature also can generate a m
ter stability function for the stability of the synchronize
state. Several types of coupling are used to study coup
map lattices. These are~1! coupling through added functions

xn11
i 5F~xn

i !1( gi j H~xn
j !; ~A1!

~2! coupling through added arguments,

xn11
i 5FS xn

i 1( gi j H~xn
j ! D , ~A2!

and ~3! general, nonlinear functional coupling,

xn11
i 5Fi~xn

i ,$H~xn
j !%!, ~A3!

where the term in brackets stands for the output functionH
acting individually on each node in the array. In gener
each node’s map will be different in how it couples to oth
nodes, but the dynamics will be the same in the synchron
state. The form of the variational equations will be simi
for all three coupled-map models. Lettingxj5s, the syn-
d

s
s
e

e
is
x-
.

s-

d-

l,
r
us
r

chronized value of the dynamical variables, these variatio
equations are, respectively, (18) coupling through added
functions,

jn11
i 5FJ~sn!1( gi j DH~sn!Gjn

i , ~A4!

whereJ is the Jacobian of the first term,F(xn
i ); (28) cou-

pling through added arguments,

jn11
i 5FJ~sn!1( gi j J~sn!•DH~sn!Gjn

i , ~A5!

where we have made use of the usual chain rule for dif
entiation and the facts thatH(xn

j )5H(sn) for all j in the
synchronous state andS jgi j 50; and (38) general, nonlinear
functional coupling,

jn11
i 5FJ~sn!1( gi j DH~sn!Gjn

i , ~A6!

where we assume that the individual functionsFi at each
node have the same Jacobian with respect to the first a
ment ~evaluated on the synchronization manifold!, and that
the derivatives~Jacobians! of F with respect to the othe
arguments~evaluated on the synchronization manifold! are
all just multiples of them3m unit matrix, i.e., they are the
weightsgij.

Thus all three forms, with suitable assumptions, are
same when the variational equations are evaluated on
synchronization manifold. That form is suitable for rewritin
using direct products as in the ordinary differential equat
~ODE! cases with a constant coupling matrixG5$gi j %, and
we can again carry through the diagonalization ofG and
extract the master variational equation leading to the ma
stability function for the coupled-map lattices. As in th
ODE case, our choice of synchronization criterion will di
tate which MSF we are calculating.
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