PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000

Nonpotential effects in dynamics of fronts between convection patterns
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The dynamics of fronts between hexagonal convection patterns and a mechanical equilibrium state are
investigated in the cases where the hexagons are stable and the equilibrium is either stable or unstable. The
Newell-Whitehead-Segel, equations with additional nonpotential terms are used. The velocity of the domain
boundary between two competing convection patterns and the wave number selected in the presence of the
front are calculated.

PACS numbes): 82.40.Ck, 47.7.Te, 47.54r

. INTRODUCTION In convection problems, the coefficieftt is generally
nonzero if the boundary conditions on the upper and lower

A typical feature of nonlinear pattern-forming systems ispoundaries of the fluid layer are not identi¢aB]. The term

multistability, e.g., coexistence of different stable patterns at .., = . . . .
the same value of the overcriticality parameterFor in- with B has been derived in the case of Marangoni convection

stance. hexa ) . . nL14,15| and non-Boussinesq Rayleigh+#Bed convection
, gonal patterns may coexist with the unifor i ~
state, rolls[1], squareg2,3], and quasiperiodic patterfg]. [}O]. The appearance of nonpotential terms contaihirend
The multistability leads to formation dfonts [5] between B in equations for envelope functions is caused by the fact
different patterns which may move, ousting a “less favor-that the nonlinear coefficient describing the resonant interac-
able” pattern. Near the onset of pattern formation, analysigion of three Fourier modegl6] is not a constant but de-
of the pattern selection and propagation of fronts may bgends on the wave vectors of these modes. The nonpotential
performed by means of amplitude equati¢s’]. In poten-  terms produce some effects violating the well-known simi-
tial systems, which have a Lyapunov functional decreasindarity between the nonequilibrium pattern formation and
with time, the direction of the front motion is determined by equilibrium phase transitior$].
the condition of the Lyapunov functional decrease. The nor- Because the nonpotential terms contain spatial derivatives
mal velocity of the front depends on the difference betweerof amplitudes, they do not appear in the case where the am-
Lyapunov functional densities of the two patterns and on thelitudes do not depend on spatial coordinatehich corre-
orientation of the front with respect to the basic wave vectorsponds to perfect patterns with all wave numbers equal to
of the pattern$5,8,9. k¢); thus a Lyapunov functional can be constructed and cal-
Recently, it was realized that the amplitude equations deculated for different kinds operfectpatterns. However, in
scribing hexagonal patterns generally contain some nonpgontradistinction to the potential case studied by Ponihu
tential terms that do not vanish even near the thresfifld  the comparison of densities of the Lyapunov functional for
15]. In the leading order, these equations can be written iglifferent uniform patterns provides generally no information
the following form: about the direction of the motion of the fronts between them,
because the nonuniform system, which contains a front, has
IA 2A no functional tha_t te_nds to decrease. _
a_tlz YA+ &_2|_(|AI|2+7\|A[I—1]|2+7\|A[I+1]|2)A| Another pepullarlty of the pattc_arn f(_)rmat|on gqverned by
X the nonpotential system of equatiofis is a nontrivialwave
. . number selectioim the presence of a front. In the case of the
. 5A[|—1]_A* A 11 standard Newell-Whitehead-Segel equations, the critical
oy _qy U Hoyp. g wave numberk. providing the minimal value of the
Lyapunov functional is usually selectggl]. In the nonpoten-
tial case, there are no reasons for such a choice.
When the parameters of the system are changed, some of
the competing patterns may become unstable, and instead of
@) a front between two locally stable structures, one obtains a
front between a stable state and an unstable state. The propa-
where A, are complex envelope functions of the “slow” gation of a stable hexagonal pattern ousting an unstable qui-
time variablet and space variable which correspond to €scent state and unstable roll patterns was formerly investi-
basic wave vectork:n, [6], k. being the critical wave num- gated in[17] in the framework of a potential modek(z B
ber in the linear stability theory.x,=r-n;, y=r-7, where  =0). Both “generic’ and “nongeneric” fronts (see
n; and 7 are pairs of mutually orthogonal unit vectaithe  [18,19) were found. Recently, Csakoand Misbah[20]
rotation fromn, to 7 is counterclockwisg ny+n;+n,=0, studied the same problem in the framework of a nonpotential
and[I£1]=(%=1) (mod3. model connected with the damped Kuramoto-Sivashinsky
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equation, by means of direct numerical simulations of thedisturbances, we can assume tAatre real. Finally, denot-
latter equation. The most remarkable phenomenon observedg A,=A, A;=A,=B, we obtain the following system of
in these simulations was splitting of the front into two fronts equations:

moving with the same velocity.

In the present paper, a systematic investigation of the in- oA IPA 2 a3 2
fluence of nonpotential effects on the propagation of a hex- ot o2 + YA+ B -AT-2NABS,
agonal pattern into the quiescent state is given. In Sec. Il, we @)
consider the dynamics of a front between a stable hexagonal JB 1 4%B

pattern and a stable quiescent state. We discuss the nontrivial —+yB+AB—(1+\)B3-\A%B.
wave number selection for the hexagonal patterns and the
change of the front velocity due to the nonpotential terms

Section Il is devoted to investigation of different kinds of

E 4 gx

Both hexagonal patterns, which are described by the solution

fronts between stable hexagons and an unstabk_a quiescent 1+1+4y(1+2N)
state. We analyze the appearance of the roll strip and the A=B=A,= , (8)
nonuniqueness of front solutions, and suggest a criterion for 2(1+2)n)
the selection of the roll strip length. We suggest also an
explanation of the synchronization of velocities of the roll and the quiescent stafmechanical equilibriugn
strip boundaries. Section IV contains some concluding re- A=B=0 9)
marks.
are linearly stable in the region
Il. FRONTS BETWEEN STABLE PATTERNS
In this section we study the competition between the <y<O0. (10

stable hexagonal pattern and the stable quiescent state that 4(1+2)n)

coexist on an infinite plane-co<x<ow, —oo<y<ow, The B
basic wave vectors of the hexagonal patterns are chosen gso te that the solutiom=A,, B=—A, corresponds to a
follows: Spatially shifted hexagonal pattern, and it is unnecessary to

separately consider the front between that pattern and the

quiescent state.
no=(1,0, n;= ( - l ﬁ) n2=( - E,— ﬁ) 2 A front between the hexagonal pattei8) and the quies-
272 2 cent statg9), which moves with the constant velocity
A. Potential case A(x,t)=K(§), B(X,t)=§(§), E=x—ct, (11

First, let us recall the main facts concerning the fronts in
the potential cas§5,8]. Consider a front that is plane and
parallel to the axig, so that we can assume that the ampli- d2A  dA
tudesA,, 1=0, 1, 2, do not depend on Recall that in the —5 +C—> az

absence of nonpotential term& € B=0), the system of dg
amplitude equations can be written in the form

is governed by the following system of equations:

+yA+B2-A3-2\B?A=0, (12

1dB dB — B
IA, SL ZEZ+Cd_§+yB+AB_(1+)\)B —\NA“B=0,
—=—-—=, =012, €©)]
ot oA (13
where the Lyapunov functional is with boundary conditions

. =B=A — — o,
‘::f,wux,t)dx, (@) n ot (14)

A=B=0 as{—o,

z v~V (5) Both stationary point§=§= A, and A=B=0 correspond

‘(?A,
to maxima of the potential,

1
L= 5

I=0

and the potential V(A,B) =% y(A2+2B?) + AB?
2 A
=2 (%y|A||2—%|A||4)—§(|A0|2|A1|2+|A1|2|A2|2

—[LA%4+NAZBZ+1(1+0N)BY. (15

For anyvy satisfying the condition&l0), there exists a unique
+|A,12|Aol?) + ATAS AL (6)  valuec(y) such that the problerti2), (13) with the bound-
ary conditions(14) has a solution. The typical dependence
The equations foA; andA, are fully symmetric; thus there c(vy) is shown in Fig. I(recall that we consider now only the
exists the invariant manifold\,=A,. Disregarding phase regiony<0). The front is motionlessc=0) as
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Substituting Eq(18) into Eq. (1), we find

0.
0. oA k3 A+(92A+2k o
it =(y—kp) 2 I 07X
0.
k N
0. + 1+E°(a+b)—x/§<pk0(a—b))(8*)2
0.10¢ B
Y - © —i(atb)— B~ |APA-2)\[BIPA, (19
/0.04 -0.02 0.02 0.04 0.06 Y X
-0.1 . . .
B ,(1 V3 2A1a2|3 1 V3 \B
: S . —=|v kol gzt 5@ _|ko TSl
FIG. 1. The velocity of the hexagon-equilibrium front/s y in ot 4 2 4 ax? 2 X
the potential case. The light lines correspond to the velogitiesd V3
¢, given by the marginal stability criterion. The dark lines corre- +l1=ko(a—5b)— — ok-b | A*B*
spond to the velocities calculated from our numerical results. On o(a=3b) 2 ¢kob
the right, where the dark line is split, these are the velocities of the . .
two separate fronts in regidd; the upper i<, and the lower i, . . 1 * . 1 * .
These measured velocities coincide with the calculated ones. All +i(a=zb) — A" +i(b—za) —
calculations were made for=2.
—(1+\)|B|?B—\|A|%B. (20
2
YZYT T9aran) (16) We will investigate a front moving with velocity; there-
fore we assume
B. Nonpotential case A ~
| | j | AxH=A(),
It is convenient to rewrite the systeft) in the form[14] (21)
A B(x,t)=B(),

"= yAn+ (g V)2A, +AF A%

N whereé=x—ct. Note that the amplitude&;(x,t), j=0,1,2,
) are not functions of only, because the hexagonal pattern
+i E [AF (an+bny) - VART— A A, itself does not move. Substituting E@1) into Egs.(19) and
(20), one finds
—NAP+|ALHA,, n=0,1,2, I,m#n, - -
(17 d?A y—
@ +(2|k0+c) dz +(y—k0)A
where K
5 L +(1+5°(a+b>—v3<pko<a—b>)<§*>2
a=——K andb=B- —K. _
V3 V3 o [= _
—i(a+b) dE —|A]2A—2)\|B|?A=0,
1. Wave number selection near the poipt= 1y, (22
In the case of a stable-stable front, the nonpotential terms
lead to two main effects(1) nontrivial wave number selec- d2§ 1 4B 1 v3 \2
tion of the hexagonal pattern; ani@) change of the front = c—iko —+—<P”—+ y— kg(_+_¢) }g
velocity. In order to elucidate the origin of those effects, let 4 df 4 d¢ 4 2
us analyze in more detail the influenceveéaknonpotential V3
terms on the behavior of the front near the pojnt y, de- + ( 1—ko(a—3b)— — okob A*B*
fined by Eq.(16). We allow some deviation of the wave 2
vectors around the wave vectors given by E2); thus we = —
assume _1 A* L1 R*
i(a—3b) dgA +i(b—3a) ng
Ag=A(x,t)explikox), —(1+)\)|B|2B—\|A|?B=0. (23
A;=B(x,h)exd —iko(3x—ey)], (18)  Assume thata, b, andk, are very small, of the order of

magnitude ofe, 0<e<1, and substitutey= yo=—2/[9(1
A,=B(x,t)exd —iko(3x+ @y)]. +2\)], a=€a, b=eb, ko= e€ky, c=eCy+ e2c,+0(€?), A
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=Ag+ €A, +0(€), andB=B,+ B, +0(€) into Egs.(22) and
(23) (Ap and B, can be chosen real
In the leading orde©(1), we obtain the equations

d?A, _
YoPo+ — & +B2—A3-2)\B2A,=0, (24)
_ 1d%B,
v0Bot 3 Gz —— +AgBo— (1+\)B3—\A2B,=0, (25

which coincide with those for the potential problem.
In the orderO(e) we find

d?A,
N '+ 2ByB* —2AZA, - AZA}

- 2 )\ (Kogogl + KOE()gI + ch)Kl)

YoAL+

—(2ikg+Cy) —— %, +i(a+b) dng By,

dz (26)

_ 1d%B,
7’051+4d—§2—+AOB*+BOA*—(1+)\)(ZB 2B, +B2BY)

—N(AoBoA;+AgBoAT +AZB;)

1 V3
=—|Cy I|(04+2<p

}dBo o

—dB,  — ,_ — dA
XAOd_g_I(b_Ea)BOd_g' (27
Separating real and imaginary partsAf andB; :

Klle,r"_ iKl,i y
(28)
§1:§1’r+ igl,i y

and multiplying by 2 both sides of E@27), we obtain two
inhomogeneous linear problems, one for the real parts,

Ay, +(2Bo—4NAgBo)B;,

d2
(@4— 70—3Kg—2)\gg

dA
= —crgg (29)
_ d?
(ZBO 4)\AoB )Alr (2d§2+2’)/o+2A0
A2 r2| R dBy
—2NA§—6(1+N\)B§| By, = —2c;—— dE (30)

and another one for the imaginary parts of the functions,
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d? —
(Ez‘l")/o AO ZABO)AII ZBOBl,i

= —2k0 °+(@a+b) '9(9 (31)

05 f

2

__ (1d _ _
—2BoAy+ Ed—ngrZyO—ZAO—Z)\Kg—Z(lH\)g% By,

o +vie SB_ B, A
=ko(2 ®) ra (2a—b) dE
— _ _dA
—(2b—5)Bod—§. (32)
The solution of the homogeneous part of the linear equa-
tion system(29) and(30) is
an _ 9%
1r— df ’
_ (33
dBy
Erl]’r:d_f'

Since the corresponding linear operator is self-adjoint, the
solvability condition is

= [[dAg\® [dB,
Clﬁw (d_e) +2( df)

which yields the relation

dé=o0, (34

C1=0. (35)

The solution of the homogeneous part of the linear system
of equationg31) and (32) is

K?,iZKOa
36
Bl = — LBy, %
1 2

and thus the solvability condition is
= _ [ _dA, _ —dBy
focAO( — 2k0d_§ +(at+h) d_nf BO) dé
e
dAg

—(2E—®§od—§) dé=0,

(2+‘/_<P)k0

dB,
g —(2a-b)Ag—— T

(37

from which, after multiplying bye, follows the expression
for ko

(b— 3 a)Ai—3(a— 3 b)[”..A¢B
[3 +(V3I4)p]A?

o(dBy/dé)d¢

Ko(p)=

+0(€?). (39)
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Thus we found that there exists a one-parametric family
ko(¢) of hexagonlike patterns selected by the coexistence of
those patterns with the quiescent state for evernyn the
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|2l |B]

0.1

case<p=\/§/2, we obtain the usual hexagons with shifted
wave number; the casg+ /3/2 corresponds to “nonequilat-
eral” hexagond 21].

Evaluation of the expressio(88), e.g., forA=2, a=b
=—0.001, =0, yieldsk,=—1.182< 10" 4, where the ap-

0.08
0.06
0.04
0.02

100 200 300 400 500 600"

proximated value of [¥_AyBy(dBy/dé)dé s
—7.86x10 *. The corresponding hexagons are slightly de-
formed and are a little “bigger” than in the pure potential o
case. 0.005
Note that the change of the front velocity caused by small 0.0025
nonpotential terms i©(€?). The expression foc, can be ~T55 200 360 405 500 G05°
obtained from the solvability condition of the equations for -0.0025 L
A, andB,, in the next order ire. -0.005
-0.0075
2. Numerical simulation of the front motion -0.01

We have performed numerical simulations under the as-

) FIG. 2. The envelope shape: the absolute valagand|B| and
sumption

the phasegp, and ¢g of the amplitude functions of the convection
patterns obtained by numerical simulations of the nonpotential sys-

A=A, tem, witha andb small @=b=-0.001), y at the value of zero
(39  velocity, y=—2[9(1+2\)], A=2. The light lines are for the
A;=A3=B, functions|A| and ¢, , and the dark lines are for the functiofB}

and ¢g . The straight line shown tangential #), is the analytically

with the choice(2) of basic wave vectors. In that case, we predicted value of the slope calculated in the text.

obtain the following equations:
value of wave numbers equal t61.025x< 10~ is generated,

IA A , JB* ) oo .
—=vyA+ —5 +(B*)?—i(a+b) B* —|A|2A which is close to the value calculated analytically. Because
at 24 2 of Eq. (42), the wave numbera® ,/dx andddg/dx tend to
—2\|BJ2A, (40) zero asx—0. _ N
Nonzero velocity, finite a and. We solved the system
JB 1 0°B _ IB* (40) and (41) numerically, with —1[4(1+2)\)]<y<0, A
EZYB+ ZW+A* B* +i a= 5| A* =2, where both the hexagons and the quiescent state are
stable, anda=b=—1.0. We calculated the velocity of the
a\ 9A* propagation ofA|, |B| and found that it is slightly different
H * 2 2 . . . .
tijb—5|——B —(1+\)|B[*B—\[A|”B. from the velocity obtained in the potential case. The com-

parison of results obtained for potential and nonpotential sys-

(41)  tems can be seen in the left side of Fig.3<(0).

According to results of the analysis presented above, the
solution of Eqgs.(40) and (41) doesnot have the formA
=A(x—ct), B=B(x—ct), because the hexagonal pattern
with kq# 0, which is formed behind the moving front, is
stationary and does not move with the veloaityOur nu-
merical simulations show, however, that the propagation of
the moduli of the amplitude®|, |B| occurs with a certain
constant velocity.

Zero velocity, small a and.tWe solved the problem Eqgs.
(40) and (41) numerically for smalla and b (a=b
=-0.001), andy=—2[9(1+2\)] such thatvy~0, with
boundary conditions

oA, oA, B, B,

XX o ax o

FIG. 3. The front velocity in the nonpotential system, calculated
numerically. The dashed lines correspond to the theoraticahd
¢,. The velocity ¢, was calculated in the potential cagéght
dashed ling and in the nonpotential cagdark dashed line The
For simulations, we used a finite-difference numericalvelocity c, is the same in both cases. The light continuous line
scheme. The results for the absolute values of the amplitudgsesents the velocity measured for the potential ¢ase Fig. 1,
|A| and |B| and the phase®,=argA and ®g=argB are  and the black continuous line presents the velocity in the nonpoten-
shown in Fig. 2. In the central part of the region, a nonzerdial case. Hera=b=—1.0 and\ = 2.

as x=0 and x=L=600.
(42)
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2. Velocity calculations

o]l

In the case of a front propagating from a stable state
(hexagons in our cas@to an unstabléquiescentstate, the
front velocity is known to be not uniqug2]. However, it
has been proved by Kolmogoraet al. [22], for the one-
component nonlinear diffusion equation, that the system
does prefer one velocity out of all possibiliti€see also
[23]). For a large class of multicomponent problemaich,
however, does not include the systdif)] a similar result
was established by Volpeet al. [24].

One can calculate the preferred velocity of propagation of
any pattern into the unstable quiescent state by means of the
linear marginal stability principlé25], which leads to the
following relation:

0.4

dw(k) 0 (45)
4 Ak e
ak |,y
20.2 0 0.2 0.d — Wherek* satisfies
A
Im[ck, —w(k,)]=0, (46)

FIG. 4. Isolines of the potentiaV(K,g) at y in region B(y
=0.03), A\=2. The horizontal axis i$A and the vertical axis is ande(k) is the dispersion relation for the disturbances of the

linearly unstable state. In the case of a front propagating into
the equilibrium(quiescent state,

w=i(y=Kk?); (47)

hence one finds that

B. H and—H are the hexagon stationary poinBand —R are
the roll stationary points, anfl is the equilibrium stationary point.

Il. “STABLE-UNSTABLE” FRONT

In this section we describe the behavior of the hexagon
equilibrium transition front in the regiory>0, where the
hexagons are stable and the quiescent $tagehanical equi-
librium) is unstable.

k,=ic/2, c=c,=2\y. (48)

This velocity was found first by Kolmogoroff, Petrovsky,
and PiscounoffKPP) [22] for the case of a one-dimensional
A. Potential case system with one stable and one unstable stationary points.
By the same method the velocity of propagation of the
front into an unstable roll pattern is calculafgd]: lineariz-

First, let us discuss the potential cadie(K = 0) thatwas ~ ing Egs.(7) around the roll solutiorA= 'y, B=0, one ob-
formerly studied in[17]. Here we present some additional tains
results. Later on, we assume>1. We should take into ac- ~ .
count that aty>0, in addition to Eqs(8) and(9), there exist B - 1B = =
two stationary spatially uniform solutions of E) that cor- ARtz V7B-19B. (49)
respond to the roll pattern

1. Formulation of the problem

Using the dispersion relation

A==y, B=0. (43 K2
w=i('y—z+\/;—)vy>, (50)
We will consider the region € y<(\—1) 2 where the
hexagons are stable and the rolls and the quiescent state drem Eq. (45), one findsc= —ik, /2, and from Eq(46),
unstable[1].
A front moving with the constant velocity, c=c,=[Vy-(A—1)y]*2 (51)

_ _ This speed exceeds, in the interval 6<(\+3) 2.
Ax,1)=A(§), B(xt)=B(§), é=x—ct, (44 In some cases, however, the “generic” front with the
velocity calculated above is replaced by the “nongeneric”

is governed by the system of equatiofi®) and (13). The front [18,19 (see below.

map of the potentiall5) in the casey>0 is shown in Fig. 4.
The fronts correspond to trajectories leading from one ex-

tremum point to another. We can expect the existence of We solved the systerf¥) with boundary conditions

hexagon-equilibrium fronts(H-E), roll-equilibrium fronts

(R-E), and hexagon-roll frontgH-R). A=B=A, atx=0,

3. Numerical results for the front dynamics

(52
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A=B=0 at x=600, tion: a “particle” (with anisotropic mass and frictipmoves

in the potenual\/(A B) from H to E. Because the poirt,
for different y's in the region of 6B<y<(\—1)"=y,  which corresponds to a minimum of the potential, is stable in
where the hexagons are stable and the mechanical equililthe framework of the systerfl2) and (13), it has a finite
rium state and rolls are unstable, and we measured the steagpur-dimensiongl basin of attraction, while the poitd has
state velocity. We used two kinds of initial condition(d) a two-dimensional unstable manifolsee below The inter-
A=B=A;, 0sxs<L/2; A=B=0, L/2<x<L; and (2) A section of the latter manifold with the attraction basirEdt
=B=A,, 0=x<(L—Lj)/2; A=\y, B=0, (L—L;)/2<x  two dimensional; thus the front between the hexagonal pat-
<(L+L;)/2; A=B=0, (L+L;)/2<x=600. Different be- ternH and the equilibriun{quiescent stateE is not unique,
havior of the fronts was observed in three main regions. Ireven for the selected value of yv2. Let us emphasize that
region A, y>0 but close to zero, and the front is describedthe “stability” of a fixed point of the systeni12) and(13) in
by the nongeneric solutiofsee below In region B,y>0  the sense of the “evolution” irf does not coincide with the
and far from zero, and the KPP criterion may be used; thustability of the corresponding solution of E) in the usual
the front moves with the velocitg,=2/y. In this region an  sense.
intermediate layer of unstable rolls is observed. The lines of We solved the systertl2) and(13) in order to find pos-
the rolls are parallel to the front. In the steady state, the rolsible front solutions. Linearizing Eq$12) and (13) in the
layer has a constant finite width, thus forming two fronts, vicinity of a hexagon solutiolA=B= A,, and takmgA

both moving with the same velocity. In region @>(3  _a +A B=A,+B, whereA andB are small perturbations
+\) 2, which is the point where, becomes greater than around the hexagon solution, we obtain
and each one of the fronts moves with its own velocity, thus

forming an intermediate roll layer that grows in time. In Fig. 3 9 _ap2_ 2\ R _ 2B
1 we can see all the results for the velocities of the fronts, ¢+ CA¢T (Y7 3= 2MANAT(2A,—4NARB 0&55)

Let us discuss the behavior of the front in each region in
more detail.

Region A: Nongeneric frontAccording to Eq.(48), the
velocity c,=0 asy=0. However, in realityc(y) is continu-
ous in the pointy=0. We will show that the system selects
the nongeneric solution.

The asymptotic behavior o, B governed by Eqs(12)

IBeet CBo+ (A — 2 ADA+[ y+A,—(3+4N)AZIB=0.
(56)

Substituting &,B) = (A,B)e*¢, we obtain the characteristic
polynomial for the eigenvalueg:

and(13), is [u?+cep+y—(3+2N)A2][ 2 u2+cu+ y+A,
A~eraé B~eref as x—o, (53 —(3+4N)AZ]— (2—4NAL) (1— 27 A) A2
where =0. (57)
c Calculating . numerically by MATHEMATICA software,
Kpy=— 5% +1.\c?—4y, we found two positive and two negative eigenvalues for each

v in region B; hence the fixed point corresponding to the

_ PN (54) hexagons indeed has a two-dimensional unstable manifold.
Kg=—2CE2\C"~7. Also, we found the eigenvectord®,i(?) for the positive
. eigenvalues.
For y<0, we havex, <0 andx, >0; thus the asymptotics gDefining

of the front tail for A is definitely determined bya= «, .
When y changes sign from negative to positive, batfj's
become negative. Because, |<|«, |, typically the solution
tending to zero behaves like exp(k,X) asx— e, but there —A
exists also a special trajectory with the asymptotics

~exp(k,X). In our simulation, we measured,(y) in the tail = (58)
of the functionA at largex, and we found that the measured Ys=B,
Kk agrees with thenongenericvalue «, calculated accord- _
ing to Eq.(54), with ¢ taken from the simulation. The results ys=B’,
are shown in Fig. 5. Thus we see that the system prefers the
nongeneric solution, Wit ,= i . we rewrote Eqs(12) and(13) in the form
Region B: Roll strip between the synchronized R-E and r_
H-R fronts For larger values of, the simulations show that Yi=Ye
the system selects a ‘“‘generic” solution with the velocity , 2 3 2 (59
—2\y. Y2=~CY2— ¥Y1~ Y3t Y1t 2hYaYs,
Before starting to discuss the results of numerical simula-
tions, let us consider the set of front solutions. A front mov- Y3=VYa,

ing with a prescribed velocitg is governed by the system ) ) 3
(12) and(13), which has a certain “mechanical” interpreta- Y4=—4cys—4yy3—4y1yzt4Nysyi+4(1+N)y3,
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FIG. 6. The shapes of the envelope functions in regiomfter
FIG. 5. Generic and nongeneric curveg vs vy calculated for  the hexagon-roll front is separated from the roll-equilibrium front
the value ofc obtained numerically. The light lines are genexit and both fronts move with different velocities. The light line corre-
(upped and nongenerie, (lower). The dark line iskx, measured sponds to the amplitudé and the dark line corresponds to the
from the numerical results. We see that closeyte0 our system amplitudeB. On the left, wherA=B~A,,, there are the hexagons;
prefers the nongenerie, . on the right, whereA,B—0, there is the equilibrium, and in the
middle, whereA=A, andB—0, there is the intermediate layer of

and solved the syste®9) numerically with the initial con-  rolls parallel to the front.

ditions the point whereA reachesA,/2 and the point whereB
A reachesA/2. If we increase the anglé monotonically, for
h the lowest values ofl no intermediate roll layer is observed.
y(0)= A(\) + etV cosf+eli@sing, e<l1 (60) As 0grows, the width of the roll layer grows as well, and for
h a certain value ob it tends to infinity. It should be noted that
0 B(¢) is positive everywhere only if, is less than a certain

valueL, (y). If L,>L,(y), we observe oscillations iB

(as if we were pushing the particle from the top pdihin aroundB=0, i.e.,B is not positive anymore.
Fig. 4 in the direction characterized by the angle Let us discuss now the results of direct simulations of the

Indeed, we found a rather narrow interval of angld®  system (7) performed by means of a finite-difference
width of this interval is dependent on tleeve choosgnear method. As the initial conditions, we took some functions
0= —m/2, which leads to a hexagon-equilibrium front. All A(x,0)=0, B(x,0)=0 that described a hexagon-equilibrium
other angles caused a divergent solution that went ffom front, with a certain intermediate roll layer of the width
=B=A, up to infinity. As we assumed, there was no =0. At larget we obtained a steady front between the hexa-
uniqueness of the front solution; even for the fixed value ofgons and the equilibrium with an intermediate layer of rolls
c=cC,, there exists a family of solutions characterized by(see Fig. 6. The intermediate layer of rolls becomes wider as
different widthsL, of the intermediate roll belt. Later on we v grows. ObviouslyB(x,t) is non-negative for anyfor the
define the width of the roll belt, as the distance between initial conditions used; thus we can never get steady oscillat-

d

3.

2. FIG. 7. The width of the intermediate roll
60 | layer that develops between the stable hexagonal

B pattern and unstable equilibrium. The dark line is

e —osw oow oom | L, the finite roll layer width. The light line is
L, , the maximum length of the roll layer that is
40 | possible withB=0, obtained in the “mechani-
cal” simulations[system(59)]. The small inset
shows the difference between the two lengths
=L, —L¢ in the region 0.0 y<0.04.

20

-0.04 -0.02 0.02 0.04 Y
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FIG. 8. The envelope shape for the nonpotential sysienv= —1.0 andy in regionA(y=0.010), k being the phase gradiea®/ox.
We see a constant phase gradient throughout the area of the hexagons, another constant phase gradient in the equilibrium area, and a larg
change of the phase gradient at the front. The light lines are the absolute value and phase gradient of thé\famztitime dark lines are
those of the functioB. The small inset shows the phase gradierdaf y. In the range of €< y=<0.02 the phase gradient changes linearly
with vy, and for highery's the phase gradient vanishes. In between there is a peculiarity discussed in the text.

ing solutions withL,>L, (y), ast—o. Unexpectedly, we havior changes. When,>c,, the H-R front stars lagging
found that the finite width of the roll strip; wasindepen-  behind the R-E front and they separate, each of them moving
dentof the initial valueL;, despite the nonuniqueness of the at its own velocity. Thus the width of the intermediate layer
front solutions discussed above. We observed that the rolbecomes infinite in the long run, and there is no steady state
strip became wider ag grew. solution. The velocities we obtained numerically frand

We conjecture that the system prefers the largest width of, are exactly those defined by Eq48) and (51). The re-
the roll intermediate layer that is permitted by the conditionsults are shown in Fig. 1, at the far right of the graph.
that B does not change sign, i.e., the width of the intermedi- The solution itself looks as in Fig. 6. Both fronts move to

ate layer, selected by our systemLigy)=L, (). the right while the R-E front moves faster than the H-R front,
In Fig. 7 one can see the comparison betwéen the  thus widening the roll layer more and more.

finite roll layer width, andL, , the width where the oscilla- We studied also the “mechanical” system E®9) in

tions start. There is a very good coincidence between the twregionC with c=c,, and found a variety of front solutions

guantities. with arbitrary widthsL, of the roll belt, up to infinity. No

Region C: Front splitting In the regionB discussed oscillations ofB occurred in this region at any values of the
above, asy grows, the width of the intermediate region of width L,. Thus, in the regiorC, as in the regiorB, there
rolls grows but is finite. This is true as long es<c,. Asy  exists a family of front solutions that describe a synchronized
reaches the point whe=c, , i.e., y=(\+3) 2, this be- motion of the R-E and H-R fronts with a finite distance be-
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FIG. 9. The envelope shape for the nonpotential systent .
b b P y FIG. 10. The envelope shapes for the nonpotential system

=—1.0 andy in region B(y=0.041). The beginning of a small "~ . . =
intermediate roll layer can be seen here. The phase is constant f_rb_ ~10 a“dy_'ﬂ r_eglonC(y—O_.OSS). we can see h'exagons_on
the left and equilibrium on the right and rolls in the intermediate

from the front and exhibits a large change at the front. The light .
9 9 9 layer. The phase is constant far from the front and has a large

lines are the absolute value and phase of the functipand the h he f The ph inside th I is cl

dark lines are those of the functid change at the ront_. e phase insi e the roll layer is close to con-
stant as well. The light lines are the absolute value and phase of the
function A, and the dark lines are those of the functi®n

tween them. However, as the direct simulation of EJ3.
shows, the system prefers the widestpossible, which is from regionB to regionC the roll layer widthL; grew but

infig“}/ i”,ﬂ}:s case. on G d like t hasize "€Mained finite. Both fronts R-E and H-R moved with the
oise influence in region.GVe would like to emphasize 0 oo Ty

that because the roll pattern strip is unstable, the phenom- To justify our conjecture that the “synchronization” of

enon of the front splitting is sensitive to noise. Indeed, thethe motions of the R-E and H-R fronts in regidh was
disturbance of the variable generated by noise on the R-E caused by the spatial amplification of a numerical inaccuracy

ferg:;saa?é))gegng thaett;erglz? :fcreorltlgir?r;?ste;necr;gﬂh{hgeen' generated on the R-E front, we calculated in that region the
9 P quantity| xg|(y)L:(y). Recall thaf «g| is the spatial growth

R-E front which is determined by the spatial growth rat| rate of a smalB disturbance in the background of the roll

c: :(ZiqurcTLSt)LftiaTﬁsrefO?Qd its initial - amplitude patternA=\/y, B=0 [i.e., B~exp(—|«5x); the validity of
' Bli=t the latter relation in the region of rolls was checked numeri-
1 cally]. We found that the quantityxé(y)hf(y) was con-
|kL|Li~In=. (61) stantfor any val_ue_s ofy in region C, in agreement with the
€ formula(61), while in regionB this quantity was smaller and
increased monotonically with growing
Thus, one will observe a noise-generated synchronized mo- The phenomenon described of the front motion synchro-
tion of the R-E and H-R frontg¢similar to that predicted in nization was a result of an inaccuracy of the numerical
regionB for a deterministic systejreven in the regiorC. method, and was eliminated by its improvemérg., in the
Because of the existence ofnamerical inaccuracyone  principal simulations described above, the distance between
can expect that this phenomenon will also be observed ifronts reached the size of the simulation region Note,
numerical simulations of a deterministic system. Indeedhowever, that systems with noise are much more realistic in
when using a less precise numerical schdivesed on the the real world.
finite elements methgdwe observed that in the transition  Also, let us note that Eq61) provides a quantitative de-
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FIG. 12. The envelope shapes for the nonpotential system
FIG. 11. The envelope shapes for the nonpotential system =b=—1.0 andy=0.020,k being the phase gradieatP/Jx. For

=b=—1.0 andy in regionC(y=0.053). This is the same simula- this value ofy the hexagons are suspected to be unstable for a high
tion as in Fig. 10 but after some time has passed. We see that tilue of the phase gradient. The phase gradient is relatively high for
intermediate roll layer is much larger now. The phase is constant fapoth amplitude functions and the hexagon amplitude absolute value
from the front and has a large change at the front. The phase insidé penetrated by sharp cuts at the points where the phase gradient is
the rolls is constant as well. The light lines are the absolute valu@articularly high. As time increases, this shape moves to the right
and phase of the functios, and the dark lines are those of the and does not change.
function B. _ 5

whereA and B are small perturbations of the roll solution,
scription of the mechanism of the front motion synchroniza-and obtain
tion due to the intrinsic instability of the roll pattern sug-

gested in20]. B - 14°B __ b\ —oB*
E—’y(l )\)B+Z(9_XZ+\/;B +1| a E \/;(9)( .
B. Nonpotential case (64)
1. Velocity calculations Then we separate the equation into its real and imaginary
We calculated the velocities of the front propagation byParts:
means of the marginal stability criterion. ~ o= b ~
Hexagon/roll-equilibrium front Linearizing Eq.(40) in (?_Bf:[y(l_)\) +y]B, + 1d E;f + ( a— _) \/;(?_B'
the vicinity of the equilibrium solutio’A=0, B=0, we ob- at 4 9 2 IX
tain the same velocity as in the potential case, because all the (65)
nonpotential terms disappear in the linearization. Thus - -
9B N 1 #°B; b \/_ﬁBr
ce=217. 6 Tt LATNTB g G lam g g
(66)
Hexagon-roll front We linearize Eq(41) in the vicinity .
of the roll solution, substitute
A=y+A, Er,izf expli[kx— w(k)t]}Er,i(k)dk, (67)
(63)

B=0+B, and obtain the dispersion relation
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H-R and R-E, move with the same velocity in the steady
state, and thus the width of the roll layer is constant. The
envelope shape, including absolute value and phase for one

As in the potential case, we obtain an expression for th@f the y's in this region, can be seen in Fig. 9.

velocity ¢, ,
dw k k(a—b/2)?
C=—p=—l5XiVy , 69
fodk 2 \/_Y\/l—(a—b/Z)Zkz (9

and from the relation
Im[ck—w(k)]=0

we find

2

kz+y(1—)\))\/1—k2(a—b/2)2=i v, (70

where thex sign is with respect to the: sign in Eq.(69).
Solving Eg.(70) by MATHEMATICA software, we obtain
realk solutions for the equation with \/y, and pure imagi-
nary k solutions for the equation with- \/y. As we expect
real values foc, it is clear from Eq(69) that only the imagi-

The phase in this case becomes constant after a long time,
apart from the front area, where it exhibits a large change.

In region C the two fronts separate and move with differ-
ent velocitiesg, determined by the KPP criterid62) andc,
given by Eq.(69). In Figs. 10 and 11 we can see the enve-
lope shapes obtained from the numerical calculations on the
nonpotential system witla=b=—1.0 andy in region C.
One can see that the roll layer becomes wider with time, and
the phase in the roll layer settles to a constant value.

In the transition region between regioAsand B one can
observe some rather unusual shapes of the fea# Fig. 12
The phase gradient is very steep for both amplitude functions
near some three points inside the hexagon layer, and at these
points the absolute values of amplitudes have sharp minima.
As time increases, this structure moves to the right as the
whole and does not change its shape. We solved the same
problem with other numerical time and space steps, such that
with the new steps the value afx?/At became larger, giv-
ing a better stability. We obtained the same results, and

nary K's are the proper ones, and they should be substitutegherefore we conclude that this phenomenon is not due to

into Eq. (69) with the minus sign in the last term.
We calculatect, for a whole range ofy=0, and the re-
sults are shown in Fig. 3.
2. Numerical results

We solved the syster®0) and(41) numerically, witha

numerical instability. Probably in the case shown in Fig. 12
the phase gradient is so high that the hexagon wave number
selected by the front turns out to be outside the stability
region.

IV. CONCLUSIONS

=pb=-1.0, as in the case of the stable-stable front. The
results for the front velocity are shown in Fig. 3, and those We found that nonpotential effects may greatly influence
for the phase gradient are shown in the inset to Fig. 8. Not¢he dynamics of fronts between convecting patterns. First,
that our results are rather similar to those[20]. As in the they determine the wave numbers of the selected pattern,
potential case, there are three characteristic regions. which in some cases may lead to the selection of an unstable
In region A the system selects the “nongeneric” solution, pattern. Also, they influence the selected velocities of simple
so that the velocity is continuous when crossing the valudronts and shift the splitting point of the hexagon-equilibrium
vy=0. We measured, at the tail of signalA and obtained a front. In the case of a compound front between hexagons and
value that is very close to the calculateg from Eq.(54)  the quiescent state, an additional selection criterion defining
that we obtained previously in the potential casecall that ~ the width of the roll pattern belt is suggested. The physical
the nonpotential terms disappear by linearization nature of this selection should be the subject of a special
In region A, the phase gradiert =d¢/dx changes lin- investigation.
early with y, as can be seen in the inset to Fig. 8. A typical
envelope form in this region can be seen in Fig. 8.
In region B the front moves with velocity, . In this case,
as in the potential system, we observe an intermediate roll The authors are indebted to B. A. Malomed for valuable
layer between the hexagons and equilibrium. Both frontsdiscussions.
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