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Nonpotential effects in dynamics of fronts between convection patterns
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The dynamics of fronts between hexagonal convection patterns and a mechanical equilibrium state are
investigated in the cases where the hexagons are stable and the equilibrium is either stable or unstable. The
Newell-Whitehead-Segel, equations with additional nonpotential terms are used. The velocity of the domain
boundary between two competing convection patterns and the wave number selected in the presence of the
front are calculated.

PACS number~s!: 82.40.Ck, 47.7.Te, 47.54.1r
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I. INTRODUCTION

A typical feature of nonlinear pattern-forming systems
multistability, e.g., coexistence of different stable patterns
the same value of the overcriticality parametere. For in-
stance, hexagonal patterns may coexist with the unifo
state, rolls@1#, squares@2,3#, and quasiperiodic patterns@4#.
The multistability leads to formation offronts @5# between
different patterns which may move, ousting a ‘‘less favo
able’’ pattern. Near the onset of pattern formation, analy
of the pattern selection and propagation of fronts may
performed by means of amplitude equations@6,7#. In poten-
tial systems, which have a Lyapunov functional decreas
with time, the direction of the front motion is determined b
the condition of the Lyapunov functional decrease. The n
mal velocity of the front depends on the difference betwe
Lyapunov functional densities of the two patterns and on
orientation of the front with respect to the basic wave vect
of the patterns@5,8,9#.

Recently, it was realized that the amplitude equations
scribing hexagonal patterns generally contain some non
tential terms that do not vanish even near the threshold@10–
15#. In the leading order, these equations can be written
the following form:

]Al

]t
5gAl1

]2Al

]xl
2 2~ uAl u21luA@ l 21#u21luA@ l 11#u2!Al

1A@ l 21#
* A@ l 11#

* 1 iK̂ S A@ l 11#
*

]A@ l 21#
*

]y@ l 21#
2A@ l 21#

*
]A@ l 11#

*

]y@ l 11#
D

1 iB̂S A@ l 11#
*

]A@ l 21#
*

]x@ l 21#
1A@ l 21#

*
]A@ l 11#

*

]x@ l 11#
D , l 50,1,2,

~1!

where Al are complex envelope functions of the ‘‘slow
time variable t and space variabler which correspond to
basic wave vectorskcnl @6#, kc being the critical wave num
ber in the linear stability theory.xl[r•nl , yl[r•tl , where
nl and tl are pairs of mutually orthogonal unit vectors~the
rotation fromnl to tl is counterclockwise!, n01n11n250,
and @ l 61#[( l 61) ~mod3!.
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In convection problems, the coefficientK̂ is generally
nonzero if the boundary conditions on the upper and low
boundaries of the fluid layer are not identical@13#. The term

with B̂ has been derived in the case of Marangoni convec
@14,15# and non-Boussinesq Rayleigh-Be´nard convection
@10#. The appearance of nonpotential terms containingK̂ and
B̂ in equations for envelope functions is caused by the f
that the nonlinear coefficient describing the resonant inte
tion of three Fourier modes@16# is not a constant but de
pends on the wave vectors of these modes. The nonpote
terms produce some effects violating the well-known sim
larity between the nonequilibrium pattern formation a
equilibrium phase transitions@5#.

Because the nonpotential terms contain spatial derivat
of amplitudes, they do not appear in the case where the
plitudes do not depend on spatial coordinates~which corre-
sponds to perfect patterns with all wave numbers equa
kc); thus a Lyapunov functional can be constructed and c
culated for different kinds ofperfectpatterns. However, in
contradistinction to the potential case studied by Pomeau@5#,
the comparison of densities of the Lyapunov functional
different uniform patterns provides generally no informati
about the direction of the motion of the fronts between the
because the nonuniform system, which contains a front,
no functional that tends to decrease.

Another peculiarity of the pattern formation governed
the nonpotential system of equations~1! is a nontrivialwave
number selectionin the presence of a front. In the case of t
standard Newell-Whitehead-Segel equations, the crit
wave number kc providing the minimal value of the
Lyapunov functional is usually selected@8#. In the nonpoten-
tial case, there are no reasons for such a choice.

When the parameters of the system are changed, som
the competing patterns may become unstable, and instea
a front between two locally stable structures, one obtain
front between a stable state and an unstable state. The p
gation of a stable hexagonal pattern ousting an unstable
escent state and unstable roll patterns was formerly inve
gated in@17# in the framework of a potential model (K̂5B̂
50). Both ‘‘generic’’ and ‘‘nongeneric’’ fronts ~see
@18,19#! were found. Recently, Csaho´k and Misbah @20#
studied the same problem in the framework of a nonpoten
model connected with the damped Kuramoto-Sivashin
4835 ©2000 The American Physical Society
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equation, by means of direct numerical simulations of
latter equation. The most remarkable phenomenon obse
in these simulations was splitting of the front into two fron
moving with the same velocity.

In the present paper, a systematic investigation of the
fluence of nonpotential effects on the propagation of a h
agonal pattern into the quiescent state is given. In Sec. II,
consider the dynamics of a front between a stable hexag
pattern and a stable quiescent state. We discuss the nont
wave number selection for the hexagonal patterns and
change of the front velocity due to the nonpotential term
Section III is devoted to investigation of different kinds
fronts between stable hexagons and an unstable quies
state. We analyze the appearance of the roll strip and
nonuniqueness of front solutions, and suggest a criterion
the selection of the roll strip length. We suggest also
explanation of the synchronization of velocities of the r
strip boundaries. Section IV contains some concluding
marks.

II. FRONTS BETWEEN STABLE PATTERNS

In this section we study the competition between
stable hexagonal pattern and the stable quiescent state
coexist on an infinite plane2`,x,`, 2`,y,`. The
basic wave vectors of the hexagonal patterns are chose
follows:

n05~1,0!, n15S 2
1

2
,
)

2 D , n25S 2
1

2
,2
)

2 D . ~2!

A. Potential case

First, let us recall the main facts concerning the fronts
the potential case@5,8#. Consider a front that is plane an
parallel to the axisy, so that we can assume that the amp
tudesAl , l 50, 1, 2, do not depend ony. Recall that in the
absence of nonpotential terms (K̂5B̂50), the system of
amplitude equations can be written in the form

]Al

]t
52

dL
dAl*

, l 50,1,2, ~3!

where the Lyapunov functional is

L5E
2`

`

L~x,t !dx, ~4!

L5(
l 50

2
1

2 U]Al

]x U
2

nlx
2 2V, ~5!

and the potential

V5(
l 50

2

~ 1
2 guAl u22 1

4 uAl u4!2
l

2
~ uA0u2uA1u21uA1u2uA2u2

1uA2u2uA0u2!1A1* A2* A0* . ~6!

The equations forA1 andA2 are fully symmetric; thus there
exists the invariant manifoldA25A1 . Disregarding phase
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disturbances, we can assume thatAl are real. Finally, denot-
ing A05A, A15A25B, we obtain the following system o
equations:

]A

]t
5

]2A

]x2 1gA1B22A322lAB2,

~7!
]B

]t
5

1

4

]2B

]x2 1gB1AB2~11l!B32lA2B.

Both hexagonal patterns, which are described by the solu

A5B[Ah5
11A114g~112l!

2~112l!
, ~8!

and the quiescent state~mechanical equilibrium!

A5B50 ~9!

are linearly stable in the region

2
1

4~112l!
,g,0. ~10!

Note that the solutionA5Ah , B52Ah corresponds to a
spatially shifted hexagonal pattern, and it is unnecessar
separately consider the front between that pattern and
quiescent state.

A front between the hexagonal pattern~8! and the quies-
cent state~9!, which moves with the constant velocityc,

A~x,t !5Ā~j!, B~x,t !5B̄~j!, j5x2ct, ~11!

is governed by the following system of equations:

d2Ā

dj2 1c
dĀ

dj
1gĀ1B̄22Ā322lB̄2Ā50, ~12!

1

4

d2B̄

dj2 1c
dB̄

dj
1gB̄1ĀB̄2~11l!B̄32lĀ2B̄50,

~13!

with boundary conditions

Ā5B̄5Ah as j→2`,
~14!

Ā5B̄50 as j→`.

Both stationary pointsĀ5B̄5Ah and Ā5B̄50 correspond
to maxima of the potential,

V~Ā,B̄!5 1
2 g~Ā212B̄2!1ĀB̄2

2@ 1
4 Ā41lĀ2B̄21 1

2 ~11l!B̄4#. ~15!

For anyg satisfying the conditions~10!, there exists a unique
valuec(g) such that the problem~12!, ~13! with the bound-
ary conditions~14! has a solution. The typical dependen
c(g) is shown in Fig. 1~recall that we consider now only th
regiong,0). The front is motionless (c50) as
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g5g052
2

9~112l!
. ~16!

B. Nonpotential case

It is convenient to rewrite the system~1! in the form@14#

]An

]t
5gAn1~nn•“ !2An1Al* Am*

1 i (
m,lÞn

@Al* ~anl1bnm!•“Am* #2uAnu2An

2l~ uAl u21uAmu2!An , n50,1,2, l ,mÞn,

~17!

where

a52
2

)
K̂ and b5B̂2

1

)
K̂.

1. Wave number selection near the pointgÄg0

In the case of a stable-stable front, the nonpotential te
lead to two main effects:~1! nontrivial wave number selec
tion of the hexagonal pattern; and~2! change of the front
velocity. In order to elucidate the origin of those effects,
us analyze in more detail the influence ofweaknonpotential
terms on the behavior of the front near the pointg5g0 de-
fined by Eq. ~16!. We allow some deviation of the wav
vectors around the wave vectors given by Eq.~2!; thus we
assume

A05Â~x,t !exp~ ik0x!,

A15B̂~x,t !exp@2 ik0~ 1
2 x2wy!#, ~18!

A25B̂~x,t !exp@2 ik0~ 1
2 x1wy!#.

FIG. 1. The velocity of the hexagon-equilibrium frontc vs g in
the potential case. The light lines correspond to the velocitiesce and
cr given by the marginal stability criterion. The dark lines corr
spond to the velocities calculated from our numerical results.
the right, where the dark line is split, these are the velocities of
two separate fronts in regionC; the upper isce and the lower iscr .
These measured velocities coincide with the calculated ones
calculations were made forl52.
s

t

Substituting Eq.~18! into Eq. ~1!, we find

]Â

]t
5~g2k0

2!Â1
]2Â

]x2 12ik0

]Â

]x

1S 11
k0

2
~a1b!2)wk0~a2b! D ~B̂* !2

2 i ~a1b!
]B̂*

]x
B̂* 2uÂu2Â22luB̂u2Â, ~19!

]B̂

]t
5Fg2k0

2S 1

4
1
)

2
w D 2G B̂1

1

4

]2B̂

]x22 ik0S 1

4
1
)

2
w D ]B̂

]x

1S 12k0~a2 5
4 b!2

)

2
wk0bD Â* B̂*

1 i ~a2 1
2 b!

]B̂*

]x
Â* 1 i ~b2 1

2 a!
]Â*

]x
B̂*

2~11l!uB̂u2B̂2luÂu2B̂. ~20!

We will investigate a front moving with velocityc; there-
fore we assume

Â~x,t !5Ā~j!,
~21!

B̂~x,t !5B̄~j!,

wherej5x2ct. Note that the amplitudesAj (x,t), j 50,1,2,
are not functions ofj only, because the hexagonal patte
itself does not move. Substituting Eq.~21! into Eqs.~19! and
~20!, one finds

d2Ā

dj2 1~2ik01c!
dĀ

dj
1~g2k0

2!Ā

1S 11
k0

2
~a1b!2)wk0~a2b! D ~B̄* !2

2 i ~a1b!
dB̄*

dj
B̄* 2uĀu2Ā22luB̄u2Ā50,

~22!

1

4

d2B̄

dj2 1Fc2 ik0S 1

4
1
)

2
w D G dB̄

dj
1Fg2k0

2S 1

4
1
)

2
w D 2G B̄

1S 12k0~a2 5
4 b!2

)

2
wk0bD Ā* B̄*

1 i ~a2 1
2 b!

dB̄*

dj
Ā* 1 i ~b2 1

2 a!
dĀ*

dj
B̄*

2~11l!uB̄u2B̄2luĀu2B̄50. ~23!

Assume thata, b, and k0 are very small, of the order o
magnitude ofe, 0,e!1, and substituteg5g0522/@9(1
12l)#, a5eā, b5eb̄, k05e k̄0 , c5ec11e2c21o(e2), Ā
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5Ā01eĀ11o(e), andB̄5B̄01eB̄11o(e) into Eqs.~22! and
~23! (Ā0 and B̄0 can be chosen real!.

In the leading orderO(1), weobtain the equations

g0Ā01
d2Ā0

dj2 1B̄0
22Ā0

322lB̄0
2Ā050, ~24!

g0B̄01
1

4

d2B̄0

dj2 1Ā0B̄02~11l!B̄0
32lĀ0

2B̄050, ~25!

which coincide with those for the potential problem.
In the orderO(e) we find

g0Ā11
d2Ā1

dj2 12B̄0B̄1* 22Ā0
2Ā12Ā0

2Ā1*

22l~Ā0B̄0B̄11Ā0B̄0B̄1* 1B̄0
2Ā1!

52~2i k̄01c1!
dĀ0

dj
1 i ~ ā1b̄!

dB̄0

dj
B̄0 , ~26!

g0B̄11
1

4

d2B̄1

dj2 1Ā0B̄1* 1B̄0Ā1* 2~11l!~2B̄0
2B̄11B̄0

2B̄1* !

2l~Ā0B̄0Ā11Ā0B̄0Ā1* 1Ā0
2B̄1!

52Fc12 i k̄0S 1

4
1
)

2
w D G dB0

dj
2 i ~ ā2 1

2 b̄!

3Ā0

dB̄0

dj
2 i ~ b̄2 1

2 ā!B̄0

dĀ0

dj
. ~27!

Separating real and imaginary parts ofĀ1 and B̄1 :

Ā15Ā1,r1 iĀ1,i ,
~28!

B̄15B̄1,r1 iB̄1,i ,

and multiplying by 2 both sides of Eq.~27!, we obtain two
inhomogeneous linear problems, one for the real parts,

S d2

dj2 1g023Ā0
222lB̄0

2D Ā1,r1~2B̄024lĀ0B̄0!B̄1,r

52c1

dĀ0

dj
, ~29!

~2B̄024lĀ0B̄0!Ā1,r1S 1

2

d2

dj2 12g012Ā0

22lĀ0
226~11l!B̄0

2D B̄1,r522c1

dB̄0

dj
, ~30!

and another one for the imaginary parts of the functions,
S d2

dj2 1g02Ā0
222lB̄0

2D Ā1,i22B̄0B̄1,i

522k̄0

]Ā0

]j
1~ ā1b̄!

]B̄0

]j
B̄0 , ~31!

22B̄0Ā1,i1S 1

2

d2

dj2 12g022Ā022lĀ0
222~11l!B̄0

2D B̄1,i

5 k̄0~ 1
2 1)w!

dB̄0

dj
2~2ā2b̄!Ā0

dB̄0

dj

2~2b̄2ā!B̄0

dĀ0

dj
. ~32!

The solution of the homogeneous part of the linear eq
tion system~29! and ~30! is

Ā1,r
h 5

dĀ0

dj
,

~33!

B̄1,r
h 5

dB̄0

dj
.

Since the corresponding linear operator is self-adjoint,
solvability condition is

c1E
2`

` F S dĀ0

dj
D 2

12S dB̄0

dj
D 2Gdj50, ~34!

which yields the relation

c150. ~35!

The solution of the homogeneous part of the linear sys
of equations~31! and ~32! is

Ā1,i
h 5Ā0 ,

~36!
B̄1,i

h 52 1
2 B̄0 ,

and thus the solvability condition is

E
2`

`

Ā0S 22k̄0

dĀ0

dj
1~ ā1b̄!

dB̄0

dj
B0D dj

1E
2`

` S 2
B̄0

2
D S ~ 1

2 1)w!k̄0

dB̄0

]j
2~2ā2b̄!Ā0

dB̄0

dj

2~2b̄2ā!B̄0

dĀ0

dj
D dj50, ~37!

from which, after multiplying bye, follows the expression
for k0 :

k0~w!5
~b2 1

2 a!Ah
323~a2 1

2 b!*2`
` Ā0B̄0~dB̄0 /dj!dj

@ 9
8 1~)/4!w#Ah

2

1O~e2!. ~38!
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Thus we found that there exists a one-parametric fam
k0(w) of hexagonlike patterns selected by the coexistenc
those patterns with the quiescent state for everyw. In the
casew5A3/2, we obtain the usual hexagons with shift
wave number; the casewÞA3/2 corresponds to ‘‘nonequilat
eral’’ hexagons@21#.

Evaluation of the expression~38!, e.g., for l52, a5b
520.001,w50, yieldsk0521.18231024, where the ap-
proximated value of *2`

` A0B0(dB0 /dj)dj is
27.8631024. The corresponding hexagons are slightly d
formed and are a little ‘‘bigger’’ than in the pure potenti
case.

Note that the change of the front velocity caused by sm
nonpotential terms isO(e2). The expression forc2 can be
obtained from the solvability condition of the equations f
Ā2,r and B̄2,r in the next order ine.

2. Numerical simulation of the front motion

We have performed numerical simulations under the
sumption

A15A,
~39!

A25A35B,

with the choice~2! of basic wave vectors. In that case, w
obtain the following equations:

]A

]t
5gA1

]2A

]x2 1~B* !22 i ~a1b!
]B*

]x
B* 2uAu2A

22luBu2A, ~40!

]B

]t
5gB1

1

4

]2B

]x2 1A* B* 1 i S a2
b

2D ]B*

]x
A*

1 i S b2
a

2D ]A*

]x
B* 2~11l!uBu2B2luAu2B.

~41!

According to results of the analysis presented above,
solution of Eqs.~40! and ~41! doesnot have the formA
5A(x2ct), B5B(x2ct), because the hexagonal patte
with k0Þ0, which is formed behind the moving front,
stationary and does not move with the velocityc. Our nu-
merical simulations show, however, that the propagation
the moduli of the amplitudesuAu, uBu occurs with a certain
constant velocity.

Zero velocity, small a and b. We solved the problem Eqs
~40! and ~41! numerically for small a and b (a5b
520.001), andg522/@9(112l)# such thatv0'0, with
boundary conditions

]Ar

]x
5

]Ai

]x
5

]Br

]x
5

]Bi

]x
50, as x50 and x5L5600.

~42!

For simulations, we used a finite-difference numeri
scheme. The results for the absolute values of the amplitu
uAu and uBu and the phasesFA5argA and FB5argB are
shown in Fig. 2. In the central part of the region, a nonz
y
of

-

ll

s-

e

f

l
es

o

value of wave numbers equal to21.02531024 is generated,
which is close to the value calculated analytically. Becau
of Eq. ~42!, the wave numbers]FA /]x and]FB /]x tend to
zero asx→0.

Nonzero velocity, finite a and b. We solved the system
~40! and ~41! numerically, with21/@4(112l)#,g,0, l
52, where both the hexagons and the quiescent state
stable, anda5b521.0. We calculated the velocity of th
propagation ofuAu, uBu and found that it is slightly different
from the velocity obtained in the potential case. The co
parison of results obtained for potential and nonpotential s
tems can be seen in the left side of Fig. 3 (g,0).

FIG. 2. The envelope shape: the absolute valuesuAu and uBu and
the phasesfA andfB of the amplitude functions of the convectio
patterns obtained by numerical simulations of the nonpotential
tem, with a and b small (a5b520.001), g at the value of zero
velocity, g522/@9(112l)#, l52. The light lines are for the
functions uAu and fA , and the dark lines are for the functionsuBu
andfB . The straight line shown tangential tofA is the analytically
predicted value of the slope calculated in the text.

FIG. 3. The front velocity in the nonpotential system, calculat
numerically. The dashed lines correspond to the theoreticalce and
cr . The velocity cr was calculated in the potential case~light
dashed line! and in the nonpotential case~dark dashed line!. The
velocity ce is the same in both cases. The light continuous l
presents the velocity measured for the potential case~see Fig. 1!,
and the black continuous line presents the velocity in the nonpo
tial case. Herea5b521.0 andl52.
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III. ‘‘STABLE-UNSTABLE’’ FRONT

In this section we describe the behavior of the hexag
equilibrium transition front in the regiong.0, where the
hexagons are stable and the quiescent state~mechanical equi-
librium! is unstable.

A. Potential case

1. Formulation of the problem

First, let us discuss the potential case (B̂5K̂50) that was
formerly studied in@17#. Here we present some addition
results. Later on, we assumel.1. We should take into ac
count that atg.0, in addition to Eqs.~8! and~9!, there exist
two stationary spatially uniform solutions of Eq.~7! that cor-
respond to the roll pattern

A56Ag, B50. ~43!

We will consider the region 0,g,(l21)22 where the
hexagons are stable and the rolls and the quiescent stat
unstable@1#.

A front moving with the constant velocityc,

A~x,t !5Ā~j!, B~x,t !5B̄~j!, j5x2ct, ~44!

is governed by the system of equations~12! and ~13!. The
map of the potential~15! in the caseg.0 is shown in Fig. 4.

The fronts correspond to trajectories leading from one
tremum point to another. We can expect the existence
hexagon-equilibrium fronts~H-E!, roll-equilibrium fronts
~R-E!, and hexagon-roll fronts~H-R!.

FIG. 4. Isolines of the potentialV(Ā,B̄) at g in region B(g

50.03), l52. The horizontal axis isĀ and the vertical axis is

B̄. H and 2H are the hexagon stationary points,R and 2R are
the roll stationary points, andE is the equilibrium stationary point
-

are

-
of

2. Velocity calculations

In the case of a front propagating from a stable sta
~hexagons in our case! into an unstable~quiescent! state, the
front velocity is known to be not unique@22#. However, it
has been proved by Kolmogorovet al. @22#, for the one-
component nonlinear diffusion equation, that the syste
does prefer one velocity out of all possibilities~see also
@23#!. For a large class of multicomponent problems@which,
however, does not include the system~7!# a similar result
was established by Volpertet al. @24#.

One can calculate the preferred velocity of propagation
any pattern into the unstable quiescent state by means of
linear marginal stability principle@25#, which leads to the
following relation:

c2
dv~k!

dk U
k5k

*

50, ~45!

wherek* satisfies

Im@ck* 2v~k* !#50, ~46!

andv(k) is the dispersion relation for the disturbances of th
linearly unstable state. In the case of a front propagating in
the equilibrium~quiescent! state,

v5 i ~g2k2!; ~47!

hence one finds that

k* 5 ic/2, c5ce[2Ag. ~48!

This velocity was found first by Kolmogoroff, Petrovsky
and Piscounoff~KPP! @22# for the case of a one-dimensiona
system with one stable and one unstable stationary point

By the same method the velocity of propagation of th
front into an unstable roll pattern is calculated@17#: lineariz-
ing Eqs.~7! around the roll solutionA5Ag, B50, one ob-
tains

]B̃

]t
5gB̃1

1

4

]2B̃

]x2 1AgB̃2lgB̃. ~49!

Using the dispersion relation

v5 i S g2
k2

4
1Ag2lg D , ~50!

from Eq. ~45!, one findsc52 ik* /2, and from Eq.~46!,

c5cr[@Ag2~l21!g#1/2. ~51!

This speed exceedsce in the interval 0,(l13)22.
In some cases, however, the ‘‘generic’’ front with th

velocity calculated above is replaced by the ‘‘nongeneric
front @18,19# ~see below!.

3. Numerical results for the front dynamics

We solved the system~7! with boundary conditions

A5B5Ah at x50,
~52!



il
ea

. I
ed

hu

o
ro
ts

u
g.
s.
i

ts

ic

d

ts
t

n
t
ity

la
v

-

in

at-

t

c

ach
e
old.

PRE 61 4841NONPOTENTIAL EFFECTS IN DYNAMICS OF FRONTS . . .
A5B50 at x5600,

for different g’s in the region of 0,g,(l21)22[g2
where the hexagons are stable and the mechanical equ
rium state and rolls are unstable, and we measured the st
state velocity. We used two kinds of initial conditions:~1!
A5B5Ah , 0<x<L/2; A5B50, L/2,x<L; and ~2! A
5B5Ah , 0<x,(L2Li)/2; A5Ag, B50, (L2Li)/2,x
,(L1Li)/2; A5B50, (L1Li)/2,x<600. Different be-
havior of the fronts was observed in three main regions
region A, g.0 but close to zero, and the front is describ
by the nongeneric solution~see below!. In region B,g.0
and far from zero, and the KPP criterion may be used; t
the front moves with the velocityce52Ag. In this region an
intermediate layer of unstable rolls is observed. The lines
the rolls are parallel to the front. In the steady state, the
layer has a constant finite width, thus forming two fron
both moving with the same velocity. In region C,g.(3
1l)22, which is the point wherece becomes greater thancr
and each one of the fronts moves with its own velocity, th
forming an intermediate roll layer that grows in time. In Fi
1 we can see all the results for the velocities of the front

Let us discuss the behavior of the front in each region
more detail.

Region A: Nongeneric front. According to Eq.~48!, the
velocity ce50 asg50. However, in realityc(g) is continu-
ous in the pointg50. We will show that the system selec
the nongeneric solution.

The asymptotic behavior ofĀ, B̄ governed by Eqs.~12!
and ~13!, is

Ā;ekAj, B̄;ekBj as x→`, ~53!

where

kA
652

c

2
6 1

2 Ac224g,

~54!
kB

6522c62Ac22g.

For g,0, we havekA
2,0 andkA

1.0; thus the asymptotics
of the front tail for A is definitely determined bykA5kA

2 .
When g changes sign from negative to positive, bothkA’s
become negative. BecauseukA

1u,ukA
2u, typically the solution

tending to zero behaves like;exp(kA
1x) asx→`, but there

exists also a special trajectory with the asymptot
;exp(kA

2x). In our simulation, we measuredkA(g) in the tail
of the functionA at largex, and we found that the measure
kA agrees with thenongenericvalue kA

2 calculated accord-
ing to Eq.~54!, with c taken from the simulation. The resul
are shown in Fig. 5. Thus we see that the system prefers
nongeneric solution, withkA5kA

2 .
Region B: Roll strip between the synchronized R-E a

H-R fronts. For larger values ofg, the simulations show tha
the system selects a ‘‘generic’’ solution with the veloc
ce52Ag.

Before starting to discuss the results of numerical simu
tions, let us consider the set of front solutions. A front mo
ing with a prescribed velocityc is governed by the system
~12! and~13!, which has a certain ‘‘mechanical’’ interpreta
ib-
dy

n

s

f
ll
,

s

n

s

he

d

-
-

tion: a ‘‘particle’’ ~with anisotropic mass and friction! moves
in the potentialV(Ā,B̄) from H to E. Because the pointE,
which corresponds to a minimum of the potential, is stable
the framework of the system~12! and ~13!, it has a finite
~four-dimensional! basin of attraction, while the pointH has
a two-dimensional unstable manifold~see below!. The inter-
section of the latter manifold with the attraction basin ofE is
two dimensional; thus the front between the hexagonal p
tern H and the equilibrium~quiescent! stateE is not unique,
even for the selected value ofc5g&. Let us emphasize tha
the ‘‘stability’’ of a fixed point of the system~12! and~13! in
the sense of the ‘‘evolution’’ inj does not coincide with the
stability of the corresponding solution of Eq.~7! in the usual
sense.

We solved the system~12! and ~13! in order to find pos-
sible front solutions. Linearizing Eqs.~12! and ~13! in the
vicinity of a hexagon solutionĀ5B̄5Ah , and taking Ā

5Ah1Ã, B̄5Ah1B̃, whereÃ andB̃ are small perturbations
around the hexagon solution, we obtain

Ãjj1cÃj1~g23Ah
222lAh

2!Ã1~2Ah24lAh
2!B̃50,

~55!

1
4 B̃jj1cB̃j1~Ah22lAh

2!Ã1@g1Ah2~314l!Ah
2#B̃50.

~56!

Substituting (Ã,B̃)5(Â,B̂)emj, we obtain the characteristi
polynomial for the eigenvaluesm:

@m21cm1g2~312l!Ah
2#@ 1

4 m21cm1g1Ah

2~314l!Ah
2#2~224lAh!~122lAh!Ah

2

50. ~57!

Calculating m numerically by MATHEMATICA software,
we found two positive and two negative eigenvalues for e
g in region B; hence the fixed point corresponding to th
hexagons indeed has a two-dimensional unstable manif
Also, we found the eigenvectorsuW (1),uW (2) for the positive
eigenvalues.

Defining

y15Ā,

y25Ā8,
~58!

y35B̄,

y45B̄8,

we rewrote Eqs.~12! and ~13! in the form

y185y2 ,
~59!

y2852cy22gy12y3
21y1

312ly1y3
2,

y385y4 ,

y48524cy424gy324y1y314ly3y1
214~11l!y3

3,
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and solved the system~59! numerically with the initial con-
ditions

yW ~0!5S Ah

0
Ah

0
D 1euW ~1! cosu1euW ~2! sinu, e!1 ~60!

~as if we were pushing the particle from the top pointH in
Fig. 4 in the direction characterized by the angleu!.

Indeed, we found a rather narrow interval of angles~the
width of this interval is dependent on thee we choose! near
u52p/2, which leads to a hexagon-equilibrium front. A
other angles caused a divergent solution that went fromA
5B5Ah up to infinity. As we assumed, there was n
uniqueness of the front solution; even for the fixed value
c5ce , there exists a family of solutions characterized
different widthsLr of the intermediate roll belt. Later on w
define the width of the roll beltLr as the distance betwee

FIG. 5. Generic and nongeneric curveskA vs g calculated for
the value ofc obtained numerically. The light lines are generickA

1

~upper! and nongenerickA
2 ~lower!. The dark line iskA measured

from the numerical results. We see that close tog50 our system
prefers the nongenerickA

2 .
f

the point whereA reachesAh/2 and the point whereB
reachesAh/2. If we increase the angleu monotonically, for
the lowest values ofu no intermediate roll layer is observed
As u grows, the width of the roll layer grows as well, and f
a certain value ofu it tends to infinity. It should be noted tha
B(j) is positive everywhere only ifLr is less than a certain
value L* (g). If Lr.L* (g), we observe oscillations inB
aroundB50, i.e.,B is not positive anymore.

Let us discuss now the results of direct simulations of
system ~7! performed by means of a finite-differenc
method. As the initial conditions, we took some functio
A(x,0)>0, B(x,0)>0 that described a hexagon-equilibriu
front, with a certain intermediate roll layer of the widthLi
>0. At larget we obtained a steady front between the he
gons and the equilibrium with an intermediate layer of ro
~see Fig. 6!. The intermediate layer of rolls becomes wider
g grows. Obviously,B(x,t) is non-negative for anyt for the
initial conditions used; thus we can never get steady osci

FIG. 6. The shapes of the envelope functions in regionC, after
the hexagon-roll front is separated from the roll-equilibrium fro
and both fronts move with different velocities. The light line corr
sponds to the amplitudeA and the dark line corresponds to th
amplitudeB. On the left, whereA5B'Ah , there are the hexagons
on the right, whereA,B→0, there is the equilibrium, and in th
middle, whereA'Ar andB→0, there is the intermediate layer o
rolls parallel to the front.
l
nal
is

s

FIG. 7. The width of the intermediate rol
layer that develops between the stable hexago
pattern and unstable equilibrium. The dark line
L f , the finite roll layer width. The light line is
L* , the maximum length of the roll layer that i
possible withB>0, obtained in the ‘‘mechani-
cal’’ simulations @system~59!#. The small inset
shows the difference between the two lengthsd
5L* 2L f in the region 0.03<g,0.04.
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FIG. 8. The envelope shape for the nonpotential systema5b521.0 andg in regionA(g50.010),k being the phase gradient]F/]x.
We see a constant phase gradient throughout the area of the hexagons, another constant phase gradient in the equilibrium area
change of the phase gradient at the front. The light lines are the absolute value and phase gradient of the functionA, and the dark lines are
those of the functionB. The small inset shows the phase gradient ofA vs g. In the range of 0<g<0.02 the phase gradient changes linea
with g, and for higherg’s the phase gradient vanishes. In between there is a peculiarity discussed in the text.
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ing solutions withLr.L* (g), as t→`. Unexpectedly, we
found that the finite width of the roll stripL f was indepen-
dentof the initial valueLi , despite the nonuniqueness of th
front solutions discussed above. We observed that the
strip became wider asg grew.

We conjecture that the system prefers the largest widt
the roll intermediate layer that is permitted by the conditi
that B does not change sign, i.e., the width of the interme
ate layer, selected by our system, isL f(g)5L* (g).

In Fig. 7 one can see the comparison betweenL f , the
finite roll layer width, andL* , the width where the oscilla
tions start. There is a very good coincidence between the
quantities.

Region C: Front splitting. In the region B discussed
above, asg grows, the width of the intermediate region
rolls grows but is finite. This is true as long asce,cr . As g
reaches the point wherece5cr , i.e., g5(l13)22, this be-
ll

of

i-

o

havior changes. Whence.cr , the H-R front stars lagging
behind the R-E front and they separate, each of them mov
at its own velocity. Thus the width of the intermediate lay
becomes infinite in the long run, and there is no steady s
solution. The velocities we obtained numerically force and
cr are exactly those defined by Eqs.~48! and ~51!. The re-
sults are shown in Fig. 1, at the far right of the graph.

The solution itself looks as in Fig. 6. Both fronts move
the right while the R-E front moves faster than the H-R fro
thus widening the roll layer more and more.

We studied also the ‘‘mechanical’’ system Eq.~59! in
regionC with c5ce , and found a variety of front solution
with arbitrary widthsLr of the roll belt, up to infinity. No
oscillations ofB occurred in this region at any values of th
width Lr . Thus, in the regionC, as in the regionB, there
exists a family of front solutions that describe a synchroniz
motion of the R-E and H-R fronts with a finite distance b
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tween them. However, as the direct simulation of Eqs.~7!
shows, the system prefers the widestL f possible, which is
infinity in this case.

Noise influence in region C. We would like to emphasize
that because the roll pattern strip is unstable, the phen
enon of the front splitting is sensitive to noise. Indeed,
disturbance of the variableB generated by noise on the R-
front is amplified in the region of rolls and eventually ge
erates a hexagonal pattern at a certain distanceL f from the
R-E front which is determined by the spatial growth rateukB

r u
of the disturbance and its initial amplitud
e: e exp(ukB

r uLf);1, therefore

ukB
r uL f; ln

1

e
. ~61!

Thus, one will observe a noise-generated synchronized
tion of the R-E and H-R fronts~similar to that predicted in
regionB for a deterministic system! even in the regionC.

Because of the existence of anumerical inaccuracy, one
can expect that this phenomenon will also be observed
numerical simulations of a deterministic system. Inde
when using a less precise numerical scheme~based on the
finite elements method!, we observed that in the transitio

FIG. 9. The envelope shape for the nonpotential systema5b
521.0 andg in region B(g50.041). The beginning of a sma
intermediate roll layer can be seen here. The phase is constan
from the front and exhibits a large change at the front. The li
lines are the absolute value and phase of the functionA, and the
dark lines are those of the functionB.
-
e

o-

in
,

from regionB to regionC the roll layer widthL f grew but
remained finite. Both fronts R-E and H-R moved with th
common velocityce52Ag.

To justify our conjecture that the ‘‘synchronization’’ o
the motions of the R-E and H-R fronts in regionC was
caused by the spatial amplification of a numerical inaccur
generated on the R-E front, we calculated in that region
quantityukB

r u(g)L f(g). Recall thatukB
r u is the spatial growth

rate of a smallB disturbance in the background of the ro
patternA5Ag, B50 @i.e., B;exp(2ukB

r ux); the validity of
the latter relation in the region of rolls was checked nume
cally#. We found that the quantityukB

r (g)uL f(g) was con-
stant for any values ofg in regionC, in agreement with the
formula ~61!, while in regionB this quantity was smaller and
increased monotonically with growingg.

The phenomenon described of the front motion synch
nization was a result of an inaccuracy of the numeri
method, and was eliminated by its improvement~i.e., in the
principal simulations described above, the distance betw
fronts reached the size of the simulation regionL!. Note,
however, that systems with noise are much more realisti
the real world.

Also, let us note that Eq.~61! provides a quantitative de

far
t

FIG. 10. The envelope shapes for the nonpotential systema
5b521.0 andg in regionC(g50.053). We can see hexagons o
the left and equilibrium on the right and rolls in the intermedia
layer. The phase is constant far from the front and has a la
change at the front. The phase inside the roll layer is close to c
stant as well. The light lines are the absolute value and phase o
function A, and the dark lines are those of the functionB.
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scription of the mechanism of the front motion synchroniz
tion due to the intrinsic instability of the roll pattern su
gested in@20#.

B. Nonpotential case

1. Velocity calculations

We calculated the velocities of the front propagation
means of the marginal stability criterion.

Hexagon/roll-equilibrium front. Linearizing Eq.~40! in
the vicinity of the equilibrium solutionA50, B50, we ob-
tain the same velocity as in the potential case, because a
nonpotential terms disappear in the linearization. Thus

ce52Ag. ~62!

Hexagon-roll front. We linearize Eq.~41! in the vicinity
of the roll solution,

A5Ag1Ã,
~63!

B501B̃,

FIG. 11. The envelope shapes for the nonpotential systema
5b521.0 andg in regionC(g50.053). This is the same simula
tion as in Fig. 10 but after some time has passed. We see tha
intermediate roll layer is much larger now. The phase is constan
from the front and has a large change at the front. The phase in
the rolls is constant as well. The light lines are the absolute va
and phase of the functionA, and the dark lines are those of th
function B.
-

he

whereÃ and B̃ are small perturbations of the roll solution
and obtain

]B̃

]t
5g~12l!B̃1

1

4

]2B̃

]x2 1AgB̃* 1 i S a2
b

2DAg
]B*

]x
.

~64!

Then we separate the equation into its real and imagin
parts:

]B̃r

]t
5@g~12l!1Ag#B̃r1

1

4

]2B̃r

]x2 1S a2
b

2DAg
]B̃i

]x
,

~65!

]B̃i

]t
5@g~12l!2Ag#B̃i1

1

4

]2B̃i

]x2 1S a2
b

2DAg
]B̃r

]x
,

~66!

substitute

B̃r ,i5E exp$ i @kx2v~k!t#%B̃r ,i~k!dk, ~67!

and obtain the dispersion relation

the
ar
de
e

FIG. 12. The envelope shapes for the nonpotential systema
5b521.0 andg50.020,k being the phase gradient]F/]x. For
this value ofg the hexagons are suspected to be unstable for a
value of the phase gradient. The phase gradient is relatively high
both amplitude functions and the hexagon amplitude absolute v
is penetrated by sharp cuts at the points where the phase gradi
particularly high. As time increases, this shape moves to the r
and does not change.
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v5 i S 2
k2

4
1g~12l!7A@12k2~a2b/2!2#g D . ~68!

As in the potential case, we obtain an expression for
velocity cr ,

cr5
dv

dk
52 i

k

2
6 iAg

k~a2b/2!2

A12~a2b/2!2k2
, ~69!

and from the relation

Im@ck2v~k!#50

we find

S k2

4
1g~12l! DA12k2~a2b/2!256Ag, ~70!

where the6 sign is with respect to the6 sign in Eq.~69!.
Solving Eq. ~70! by MATHEMATICA software, we obtain

realk solutions for the equation with1Ag, and pure imagi-
nary k solutions for the equation with2Ag. As we expect
real values forc, it is clear from Eq.~69! that only the imagi-
nary k’s are the proper ones, and they should be substitu
into Eq. ~69! with the minus sign in the last term.

We calculatedcr for a whole range ofg>0, and the re-
sults are shown in Fig. 3.

2. Numerical results

We solved the system~40! and ~41! numerically, witha
5b521.0, as in the case of the stable-stable front. T
results for the front velocity are shown in Fig. 3, and tho
for the phase gradient are shown in the inset to Fig. 8. N
that our results are rather similar to those of@20#. As in the
potential case, there are three characteristic regions.

In region A the system selects the ‘‘nongeneric’’ solutio
so that the velocity is continuous when crossing the va
g50. We measuredkA at the tail of signalA and obtained a
value that is very close to the calculatedkA

2 from Eq. ~54!
that we obtained previously in the potential case~recall that
the nonpotential terms disappear by linearization!.

In region A, the phase gradientK5df/dx changes lin-
early with g, as can be seen in the inset to Fig. 8. A typic
envelope form in this region can be seen in Fig. 8.

In region B the front moves with velocityce . In this case,
as in the potential system, we observe an intermediate
layer between the hexagons and equilibrium. Both fron
n,

y,
e

d

e
e
te

,
e

l

ll
,

H-R and R-E, move with the same velocity in the stea
state, and thus the width of the roll layer is constant. T
envelope shape, including absolute value and phase for
of the g’s in this region, can be seen in Fig. 9.

The phase in this case becomes constant after a long t
apart from the front area, where it exhibits a large chang

In region C the two fronts separate and move with diffe
ent velocities,ce determined by the KPP criterion~62! andcr
given by Eq.~69!. In Figs. 10 and 11 we can see the env
lope shapes obtained from the numerical calculations on
nonpotential system witha5b521.0 andg in region C.
One can see that the roll layer becomes wider with time,
the phase in the roll layer settles to a constant value.

In the transition region between regionsA andB one can
observe some rather unusual shapes of the front~see Fig. 12!.
The phase gradient is very steep for both amplitude functi
near some three points inside the hexagon layer, and at t
points the absolute values of amplitudes have sharp mini
As time increases, this structure moves to the right as
whole and does not change its shape. We solved the s
problem with other numerical time and space steps, such
with the new steps the value ofDx2/Dt became larger, giv-
ing a better stability. We obtained the same results,
therefore we conclude that this phenomenon is not due
numerical instability. Probably in the case shown in Fig.
the phase gradient is so high that the hexagon wave num
selected by the front turns out to be outside the stabi
region.

IV. CONCLUSIONS

We found that nonpotential effects may greatly influen
the dynamics of fronts between convecting patterns. F
they determine the wave numbers of the selected patt
which in some cases may lead to the selection of an unst
pattern. Also, they influence the selected velocities of sim
fronts and shift the splitting point of the hexagon-equilibriu
front. In the case of a compound front between hexagons
the quiescent state, an additional selection criterion defin
the width of the roll pattern belt is suggested. The physi
nature of this selection should be the subject of a spe
investigation.
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