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Analog of Planck’s formula and effective temperature in classical statistical mechanics
far from equilibrium

Andrea Carati* and Luigi Galgani†

Dipartimento di Matematica, Universita` di Milano, Via Saldini 50, 20133 Milano, Italy
~Received 27 July 1999!

We study the statistical mechanics very far from equilibrium for a classical system of harmonic oscillators
colliding with point particles~mimicking a heat reservoir!, for negligible initial energies of the oscillators. It is
known that for high frequencies the times of relaxation to equilibrium are extremely long, so that one meets
with situations of quasiequilibrium very far from equilibrium similar to those of glassy systems. Using recent
results from the theory of dynamical systems, we deduce a functional relation between energy variance and
mean energy that was introduced by Einstein phenomenologically in connection with Planck’s formula. It is
then discussed how this leads to an analog of Planck’s formula. This requires using Einstein’s relation between
specific heat and energy variance to define an effective temperature in a context of quasiequilibrium far from
equilibrium, as is familiar for glassy systems.

PACS number~s!: 05.70.Ln, 05.20.2y, 61.43.Fs, 82.20.Mj
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I. INTRODUCTION

Classical statistical mechanics is confronted with a pa
doxical situation concerning the mean energyU of a system
of harmonic oscillators of angular frequencyv in contact
with a heat reservoir at absolute temperatureTres. Indeed,
while the equilibrium Maxwell-Boltzmann distribution pre
dicts equipartition of energy, i.e.,U5Tres ~with Boltzmann’s
constant equal to 1!, it turns out that the times of relaxatio
to equilibrium depend exponentially on frequency and
verse temperature, so that for sufficiently high frequencie
low temperatures equilibrium will never be reached with
the available times; this is very well known since the tim
of Boltzmann@1# and Jeans@2# and of Landau and Teller@3#
and was amply discussed in recent times in the frame of
theory of dynamical systems~see, for example, Refs.@4–8#
and @9,10#!. In a typical example one can have a frequen
v̄.1014Hz which relaxes to equilibrium in 1 s, while th
relaxation time is 1028 s and 105 years for the frequencie
v̄/2 and 2v̄, respectively. Situations of such a type are a
tually met in plasma physics where the description is ess
tially classical@9,10#. Thus, systems of oscillators of suffi
ciently high frequencies are in general very far fro
equilibrium, and one is confronted with the problem
whether a thermodynamic description can be given for th
presenting some kind of universality. An analogy with t
themes discussed in the physics of glasses was pointed
quite recently@11#.

In the present paper we show that a quasithermodyna
formula for the mean energyU of a system of a large numbe
N of oscillators of the same frequencyv very far from equi-
librium indeed exists and has the analytical aspect
Planck’s formula, namely,

U5NS e

ebe21
1

e

2D , ~1!

with suitable parameterse andb. The main difference is tha
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while in Planck’s law one hase5\v ~\ being Planck’s con-
stant! andb21 is the temperature of the reservoir, here o
instead hase5a* v with a suitable actiona* depending on
the initial data, whileb21 is an ‘‘effective’’ temperature,
which is different from that of the reservoir, and depends
time in a practically imperceptible way, as is familiar in th
aging phenomena of glasses~see especially Refs.@12–15#!.
This result is obtained by combining two ingredients, whi
we call ‘‘Einstein’s thermodynamic fluctuation formula
and ‘‘Einstein’s dynamical fluctuation formula,’’ respec
tively. The former is just the familiar formula relating spe
cific heat to variance of energy@16#, which is an identity in
the canonical ensemble and is here used far from equilibr
as a tool for defining an effective temperature, in the se
familiar for glassy systems. The latter formula is instead
functional relation between energy variance and mean
ergy which was conjectured by Einstein@17# to be possibly
true for some ‘‘mechanics.’’ To such a formula we addre
our attention in the present paper, proving that it is a con
quence of pure dynamics. The proof is obtained by cons
ering the exchange of energy between an oscillator an
point particle under smooth collisions according to classi
dynamics, and by exploiting a simple formula which w
recently proven@6# to describe the essence of the pheno
enon when the energy of the oscillator is negligible w
respect to that of the particles mimicking the reservoir.

Einstein’s formulas concerning Planck’s law are recal
in the next section, while the proof of the functional relatio
between energy variance and mean energy is given in
III. In this section the model is also described, and the r
evant dynamical facts presently available are summariz
Some further considerations of a heuristic character conc
ing Einstein’s thermodynamic formula and its use for t
definition of an effective temperature are given in the co
clusive Sec. IV.

II. ON PLANCK’S FORMULA, AND ITS
INTERPRETATION BY EINSTEIN IN TERMS

OF ENERGY FLUCTUATIONS

To explain the motivation of the present paper, it is co
venient to recall how Planck’s formula~1!, without the zero-
point energy termNe/2, was deduced by Planck in his orig
4791 ©2000 The American Physical Society
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nal first memoir@18# and how it was interpreted by Einste
in terms of energy fluctuations in his paper@17#. In fact,
Planck was working in terms of the entropyS as a function
of the energyU, while Einstein was working in terms of th
energyU as a function of temperatureT; we equivalently
work in terms ofU(b), the energy as a function of invers
temperature.

Planck’s remark was that formula~1!, without the zero-
point energy termNe/2, is obtained by integrating the differ
ential equation

dU

db
52~eU1U2/N! ~2!

with a suitable choice for the integration constant~such that
in the limit e→0 the classical equipartition formulaU
5N/b is recovered!. As a matter of fact, Planck had re
marked that the differential equationsdU/db52U2/N and
dU/db52eU lead to the relationsU(b)5N/b andU(b)
5C exp(2be), C5const, namely, equipartition and Wien
law, which are valid for low frequencies and high freque
cies, respectively, and this suggested to him the interpola
formula ~2!.

The contribution of Einstein, of interest for the aims
the present paper, consisted in an interpretation of form
~2! in terms of energy fluctuations. Indeed, having remark
@19# that the relation

dU

db
52sE

2, ~3!

wheresE
2 is the energy variance, holds as an identity in t

canonical ensemble, and having given arguments to s
that such a relation should have a broader range of vali
@20# ~see also Ref.@16#!, he was led to split relation~2! into
two relations, namely Eq.~3! and

sE
25eU1U2/N, ~4!

the second of which might have, in his opinion, a dynami
basis. In his very words@17#, formulas~3! and~4! ‘‘exhaust
the thermodynamic content of Planck’s’’ formula; and ‘
mechanics compatible with the energy fluctuation~4! must
then necessarily lead to Planck’s’’ formula.

The original contribution of the present paper consists
showing how the functional relation~4! between energy vari
ance and mean energy with a suitablee is deduced, with a
quite natural procedure of averaging, from the most
vanced results of the theory of dynamical systems conc
ing energy exchanges in atomic collisions~see Benettin’s
formula recalled below!. This is shown in a simple mode
describing a system of oscillators of the same frequenc
interaction with a heat reservoir.

III. THE MODEL AND THE DEDUCTION OF EINSTEIN’S
FLUCTUATION FORMULA FROM DYNAMICS

Our model is a minor variant of one already discussed
Poincare´ @21# in connection with the dynamical foundation
of statistical mechanics, which was subsequently studied
Jeans and Landau and then rather intensively discusse
recent times in the spirit of the theory of dynamical system
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To start, we consider a harmonic oscillator of frequencyv
suffering a smooth collision with a point particle on a lin
through a given interatomic potential, and recall some r
evant facts. The energy exchangede in a single collision, for
negligible initial energy of the oscillator and a significativ
class of potentials, was recently proven to be given to a v
good approximation@6# ~see also Refs.@22#, @23# and@2#! by
what we call Benettin’s formula, namely,

de5h212hAe0 cosw0 . ~5!

Heree0 is the oscillator’s initial energy andw0 the oscilla-
tor’s initial phase, whileh2 is a quantity exponentially smal
in the frequency, namely,

h25E exp~2vv2a!, ~6!

wherev is the velocity of the incoming particle, whileE and
a are positive parameters depending on the interaction po
tial.

Obviously the first qualitative consequence of formu
~5! and ~6! is that, for sufficiently high frequencies or low
reservoir temperatures~i.e., for smallv!, the oscillators are
almost frozen, i.e., essentially do not exchange energy at
this is indeed the reason for the need of a nonequilibri
description in the present model. Notice that, while formu
~6! exhibits a quite nonuniversal character, inasmuch a
contains parametersE and a which depend on the specifi
interaction potential, formula~5! presents instead in its ana
lytic structure a great character of universality. To illustra
this point, we recall that a formula of the analytical structu
of Eq. ~5! holds exactly for a harmonic oscillator subject
any given forcing, i.e., governed by the equation

ẍ1v2x5 f ~ t !

with any given functionf. Indeed, in terms ofz5 ẋ1 ivx this
is immediately solved by

z~ t !5z0exp@ iv~ t2t0!#1g~ t !

with a suitable complex valued functiong. Formula~5! then
immediately follows by remarking that the energyE5( ẋ2

1v2x2)/2 is given byE5uzu2, if one obviously defines the
exchanged energyde by de5E(1`)2E(t0) with t0→
2`, andh by h5ug(1`)u. The validity of a formula of the
type de.h @with h2 of the form ~6!# for the exchanged
energy between an oscillator and a point particle, accord
to the exact solution of the corresponding coupled system
Newton equations, was proven by Jeans and by Landau
Teller. The relevance of the fluctuating term proportional
h was pointed out in Ref.@22#, and a complete Fourier ex
pansion in the phasew0 was discussed in Ref.@23# and
proven in Ref.@6#. From the results of the latter paper it ca
be proven that Benettin’s formula~5! is a good approxima-
tion for the energy exchanged in a collision between a h
monic oscillator and an atom interacting through a smo
potential if the initial oscillator’s energy is sufficiently smal

To define our model, we consider the energy exchangede
in a single collision between a harmonic oscillator and
point particle on a line, and assume it to be given exactly
formula~5!, which, as recalled above, is physically meanin
ful if e0 is sufficiently small. We then study a sequence ok
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such collisions. For simplicity’s sake, we introduce in t
present paper the further assumptions~which could rather
easily be removed! ~i! that the incoming particles have all th
same initial velocityv, and ~ii ! that the time of flight be-
tween two successive collisions is a constant. Conseque
the quantityh in Eq. ~6! appears as a constant, and the c
rent timet is just proportional to the numberk of collisions
suffered by the oscillator. Finally, the complete model
defined by considering a global system ofN independent
oscillators of the same frequencyv, each sufferingk inde-
pendent collisions with point particles as described abo
The energy exchanges of the global system of oscillators
thus trivially obtained from the energy exchanges of
single oscillators, simply by means of the central limit the
rem.

We show now how Eq.~5! leads to Einstein’s dynamica
fluctuation formula~4!. Consider first the case of a sing
oscillator sufferingk successive collisions. Its energyek after
k collisions is conveniently written as

ek5e01kh212h(
j 51

k

Aej 21 cosw j 21 .

Given the initial energye0 , this is a function of the phase
w0 ,...,wk21 , which are assumed to be independent and u
formly distributed; thus, averaging over the phases in
familiar way of random walk theory, one gets for the me
energyukª^ek& after k collisions the expression

uk5e01kh2. ~7!

Analogously, with ^(coswj)
2&51/2 and Eq.~7!, one finds

^ek
2&5uk

212h2S j 51
k uj 21 . Using again Eq.~7! with j 21 in

place ofk, the variancesek

2
ª^ek

2&2uk
2 then takes the form

sek

2 52e0kh21k(k21)h4 or also, in the approximation o

largek so that we can identifyk(k21) with k2,

sek

2 52e0kh21~kh2!2. ~8!

The relevant point is that in Eq.~8! the ‘‘time’’ k enters only
in the combinationkh2, so that it can be eliminated throug
Eq. ~7!; this leads to an analog of relation~4!, namely,sek

2

52e0(uk2e0)1(uk2e0)2. The analogy becomes eve
stronger if one introduces the ‘‘exchanged energy’’ aftek
collisions, ẽk5ek2e0 , because the corresponding expec
tion ũk and variances ẽk

2 are then related by

s ẽk

2 52e0ũk1ũk
2. ~9!

A similar relation also holds for the global system ofN
independent identical oscillators. Indeed, the quantities
interest are the total energyEk5S i 51

N ek
( i ) ~whereek

( i ) denotes
the energy of thei th oscillator afterk collisions! and the
corresponding exchanged energyẼk5Ek2E0 , whereE0 is
the initial energy. By the central limit theoremẼk is nor-
mally distributed with a meanŨk and a variances

Ẽk

2
which

are obtained by adding up the corresponding quantities
each oscillator, namely, are given byŨk5Nũk and s

Ẽk

2

5Ns ẽk

2 . So, denoting byŨ ands
Ẽ

2
the expectation and vari
ly,
-
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ance at any ‘‘time’’k, from Eq.~9! one gets betweens
Ẽ

2
and

Ũ a functional relation which is independent of ‘‘time’’k,
namely,

s
Ẽ

2
52a* vŨ1Ũ2/N, ~10!

where a* denotes the initial action per oscillator,a* :
5E0(vN). Notice that the quantityh, which contains the
molecular parametersE and a, has now completely disap
peared. Formula~10! is our analog of Einstein’s functiona
relation~4!, and its proof constitutes the original contributio
of the present paper. In connection with Einstein’s sente
recalled above~‘‘a mechanics compatible...’’!, one might
thus say that the energy fluctuation formula~4! is indeed
consistent with a mechanics which is nothing but the fami
classical mechanics.

IV. BACK TO PLANCK’S FORMULA, VIA THE
DEFINITION OF AN EFFECTIVE TEMPERATURE:

HEURISTIC CONSIDERATIONS

We finally add some considerations which are mostly o
heuristic character. If one uses Einstein’s thermodynamic
lation ~3!, then obviously one finds for the mean energyU

5Ũ1E0 exactly Planck’s formula~1! with e52a* v. How-
ever, it is clear that in such a way one hasb21ÞTres, be-
cause the mean energyU increases linearly with the numbe
k of collisions ~i.e., with time!, and sob, which can be ob-
tained by inverting the relationU5U(b), depends on time
too.

Actually, such a fact is consistent with the present fram
where one deals with a system in a state of quasiequilibr
very far from equilibrium. Indeed, first of all, we notice tha
the mean energyU depends linearly on time@see Eq.~7!#,
but with a proportionality factorh2 which is exponentially
small with the frequency, so that its increase with time c
be said to be practically imperceptible. Thus Planck’s f
mula ~1! should be read, in the present context, in the f
lowing way: the second term at the right hand side is noth
but the initial energyE05Na* v, while the first term gives
the additional energy that the system acquires from the
ervoir, and is actually increasing, extremely slowly, wi
time ~asb too does!. The essence of our result is that such
additional energy does not depend on the details of the in
atomic potentials@entering throughh in Eq. ~6!#, but has
instead a quasithermodynamic character.

The quantityb21 so introduced can be said to present t
character of an effective temperature, in the sense whic
by now rather common in the theory of aging phenomena
glassy systems. To define it, one formally proceeds as
lows. One considers Einstein’s thermodynamic relation~3!
with the variancesE

2 given explicitly in terms of the mean
energy U through Einstein’s functional relation~4!. This
leads to the differential equation~2! which by integration
gives Eq.~1! and by inversion a corresponding effective tem
peratureb21, depending extremely slowly on time. It can b
easily proven that the inverse of such an effective tempe
ture is an integrating factor for the expression of the h
exchanged with the reservoir, a fact supporting the ab
interpretation. But we leave this interesting problem for po
sible future work.
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