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Analog of Planck’s formula and effective temperature in classical statistical mechanics
far from equilibrium
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We study the statistical mechanics very far from equilibrium for a classical system of harmonic oscillators
colliding with point particlegmimicking a heat reservoirfor negligible initial energies of the oscillators. It is
known that for high frequencies the times of relaxation to equilibrium are extremely long, so that one meets
with situations of quasiequilibrium very far from equilibrium similar to those of glassy systems. Using recent
results from the theory of dynamical systems, we deduce a functional relation between energy variance and
mean energy that was introduced by Einstein phenomenologically in connection with Planck’s formula. It is
then discussed how this leads to an analog of Planck’s formula. This requires using Einstein’s relation between
specific heat and energy variance to define an effective temperature in a context of quasiequilibrium far from
equilibrium, as is familiar for glassy systems.

PACS numbgs): 05.70.Ln, 05.20-y, 61.43.Fs, 82.20.Mj

[. INTRODUCTION while in Planck’s law one has=#% w (% being Planck’s con-
stan} and 81 is the temperature of the reservoir, here one

Classical statistical mechanics is confronted with a paras <oad hag=a* o with a suitable actiom* depending on

doxical S'“%a“on concerning the mean enetgy)f asystem ne initial data, whileg™ ! is an “effective” temperature,
of harmonic oscillators of angular frequenayin contact \yhich js different from that of the reservoir, and depends on
with a heat reservoir at absolute temperaflifg. Indeed, time in a practically imperceptible way, as is familiar in the
while the equilibrium Maxwell-Boltzmann distribution pre- aqing phenomena of glassesee especially Ref§12—15).
dicts equipartition of energy, i.e =T (With Boltzmann's  Thijs result is obtained by combining two ingredients, which
constant equal to)1it turns out that the times of relaxation we call “Einstein’s thermodynamic fluctuation formula”
to equilibrium depend exponentially on frequency and in-and “Einstein’s dynamical fluctuation formula,” respec-
verse temperature, so that for sufficiently high frequencies otively. The former is just the familiar formula relating spe-
low temperatures equilibrium will never be reached withincific heat to variance of enerdyL6], which is an identity in
the available times; this is very well known since the timesthe canonical ensemble and is here used far from equilibrium
of Boltzmann[1] and Jean§2] and of Landau and TellgB8]  as a tool for defining an effective temperature, in the sense
and was amply discussed in recent times in the frame of th&amiliar for glassy systems. The latter formula is instead a
theory of dynamical systemsee, for example, Reff4—8]  functional relation between energy variance and mean en-
and[9,10]). In a typical example one can have a frequencyergy which was conjectured by Einstgih7] to be possibly
w=10"Hz which relaxes to equilibrium in 1 s, while the true for some “mechanics.” To such a_formula_vv_e address
relaxation time is 108s and 18 years for the frequencies OUr attention in the present paper, proving that it is a conse-
@/2 and 2, respectively. Situations of such a type are ac-duénce of pure dynamics. The proof is obtained by consid-
tually met in plasma physics where the description is esserfliNd the exchange of energy between an oscillator and a
tially classical[9,10]. Thus, systems of oscillators of suffi- POINt particle under smooth collisions according to classical
ciently high frequencies are in general very far from dynamics, and by explomryg a simple formula which was
o . - recently prover{6] to describe the essence of the phenom-
equilibrium, and one is confronted with the problem of

. " . enon when the energy of the oscillator is negligible with
whether a thermodynamic description can be given for themyagnect 1 that of the particles mimicking the reservoir.

presenting some kind of universality. An analogy with the  gjystein's formulas concerning Planck’s law are recalled
themes discussed in the physics of glasses was pointed Ot he next section, while the proof of the functional relation
quite recently{11]. _ between energy variance and mean energy is given in Sec.
In the present paper we show that a quasithermodynamigy. |n this section the model is also described, and the rel-
formula for the mean energdy of a system of a large number evant dynamical facts presently available are summarized.
N of oscillators of the same frequeneyvery far from equi-  Some further considerations of a heuristic character concern-
librium indeed exists and has the analytical aspect ofng Einstein’s thermodynamic formula and its use for the
Planck’s formula, namely, definition of an effective temperature are given in the con-

clusive Sec. IV.
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IIl. ON PLANCK’'S FORMULA, AND ITS
INTERPRETATION BY EINSTEIN IN TERMS

with suitable parametersand 8. The main difference is that OF ENERGY FLUCTUATIONS

To explain the motivation of the present paper, it is con-
*Electronic address: carati@mat.unimi.it venient to recall how Planck’s formuld), without the zero-
"Electronic address: galgani@mat.unimi.it point energy terniNe/2, was deduced by Planck in his origi-
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nal first memoif{ 18] and how it was interpreted by Einstein To start, we consider a harmonic oscillator of frequeicy

in terms of energy fluctuations in his papl7]. In fact, suffering a smooth collision with a point particle on a line

Planck was working in terms of the entrofyas a function through a given interatomic potential, and recall some rel-

of the energyJ, while Einstein was working in terms of the evant facts. The energy exchangein a single collision, for

energyU as a function of temperatur€, we equivalently negligible initial energy of the oscillator and a significative

work in terms ofU(B), the energy as a function of inverse class of potentials, was recently proven to be given to a very

temperature. good approximatiof6] (see also Ref§22], [23] and[2]) by
Planck’s remark was that formuld), without the zero- what we call Benettin's formula, namely,

point energy terniNe/2, is obtained by integrating the differ-

ential equation Se= 72+ 27n\ey cospg. (5)
du Here g, is the oscillator’s initial energy and, the oscilla-
a5 —(eU+U?N) (2)  tors initial phase, while? is a quantity exponentially small

in the frequency, namely,

with a suitable choice for the integration constéstch that
in the limit e—0 the classical equipartition formuld&

=N/p is recoverefl As a matter of fact, Planck had re- \yherey is the velocity of the incoming particle, whilgand
marked that the differential equatiod&)/ds=—U?/N and g are positive parameters depending on the interaction poten-
dU/dB=— €U lead to the relationt) (8)=N/B andU(B) tial.
= C exp(—pe), C=const, namely, equipartition and Wien's  Opviously the first qualitative consequence of formulas
law, which are valid for low frequencies and high frequen-(5) and (6) is that, for sufficiently high frequencies or low
cies, respectively, and this suggested to him the interpolatiopeservoir temperatureg.e., for smallv), the oscillators are
formula(2). o . . almost frozen, i.e., essentially do not exchange energy at all;
The contribution of Einstein, of interest for the aims of this is indeed the reason for the need of a nonequilibrium
the present paper, consisted in an interpretation of formulgescription in the present model. Notice that, while formula
(2) in terms of energy fluctuations. Indeed, having remarkedg) exhibits a quite nonuniversal character, inasmuch as it

n?=Eexp —wv ™ ?), (6)

[19] that the relation contains parameter§ and a which depend on the specific
d interaction potential, formul&) presents instead in its ana-
_U - _ 0% , 3) lytic structure a great character of universality. To illustrate
dg this point, we recall that a formula of the analytical structure

5. ) ) o of Eq. (5) holds exactly for a harmonic oscillator subject to
Where.oE is the energy variance, hollds as an identity in theany given forcing, i.e., governed by the equation
canonical ensemble, and having given arguments to show

that such a relation should have a broader range of validity X+ w?x=f(t)
[20] (see also Ref16]), he was led to split relatiof2) into ) ) ) . o .
two relations, namely Eq3) and with any given functiorf. Indeed, in terms of= X+ i wX this

is immediately solved by
oZ=eU+U?IN, (4)

z(t)=zpgexgio(t—tg)]+g(t)
the second of which might have, in his opinion, a dynamical . . .
basis. In his very wordgL7], formulas(3) and (4) “exhaust Wit @ suitable complex valued functign Formula(5) th_ezn
the thermodynamic content of Planck’s” formula; and “a immediately follows by remarking that the ener@y= (X

mechanics compatible with the energy fluctuatidh must +w’x?)/2 is given byE=|z|?, if one obviously defines the
then necessarily lead to Planck’s” formula. exchanged energye by ée=E(+x=)—E(to) with to—

The original contribution of the present paper consists in~ % @nd» by 7= |9(2+ =)|. The validity of a formula of the
showing how the functional relatiod) between energy vari- YP& =7 [with »* of the form (6)] for the exchanged
ance and mean energy with a suitaklés deduced, with a  €N€rgy between an oscillator and a pqlnt particle, according
quite natural procedure of averaging, from the most adi© the exact solution of the corresponding coupled system of
vanced results of the theory of dynamical systems concerrNéwton equations, was proven by Jeans and by Landau and
ing energy exchanges in atomic collisiofsee Benettin’s Teller. Th_e- relevange of the fluctuating term proporponal to
formula recalled beloy This is shown in a simple model, 7 Was pointed out in Ref.22], and a complete Fourier ex-

describing a system of oscillators of the same frequency iR@nsion in the phase, was discussed in Ref23] and
interaction with a heat reservoir. proven in Ref[6]. From the results of the latter paper it can

be proven that Benettin's formul®) is a good approxima-
tion for the energy exchanged in a collision between a har-
monic oscillator and an atom interacting through a smooth
potential if the initial oscillator’'s energy is sufficiently small.
Our model is a minor variant of one already discussed by To define our model, we consider the energy exchatge
Poincare[21] in connection with the dynamical foundations in a single collision between a harmonic oscillator and a
of statistical mechanics, which was subsequently studied bpoint particle on a line, and assume it to be given exactly by
Jeans and Landau and then rather intensively discussed farmula(5), which, as recalled above, is physically meaning-
recent times in the spirit of the theory of dynamical systemsful if ey is sufficiently small. We then study a sequencek of

IIl. THE MODEL AND THE DEDUCTION OF EINSTEIN'S
FLUCTUATION FORMULA FROM DYNAMICS
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such collisions. For simplicity’s sake, we introduce in the ance at any “time”k, from Eq.(9) one gets betweea> and
present paper the further assumptigmgich could rather - E

easily be removedi) that the incoming particles have all the U @ functional relation which is independent of “timek,

same initial velocityv, and (i) that the time of flight be- namely,

tween two successive collisions is a constant. Consequently, 2 ~ o~

the quantity» in Eq. (6) appears as a constant, and the cur- oz=2a*wU+U?N, (10

rent timet is just proportional to the numbdrof collisions

suffered by the oscillator. Finally, the complete model iswhere a* denotes the initial action per oscillatog*:

defined by considering a global system Mfindependent =Eg(wN). Notice that the quantityy, which contains the

oscillators of the same frequeney, each sufferingk inde-  molecular parameter§ and a, has now completely disap-

pendent collisions with point particles as described abovepeared. Formuldl10) is our analog of Einstein’s functional

The energy exchanges of the global system of oscillators arkelation(4), and its proof constitutes the original contribution

thus trivially obtained from the energy exchanges of theof the present paper. In connection with Einstein’s sentence

single oscillators, simply by means of the central limit theo-recalled above(a mechanics compatible..); one might

rem. thus say that the energy fluctuation formy# is indeed
We show now how Eq(5) leads to Einstein’s dynamical consistent with a mechanics which is nothing but the familiar

fluctuation formula(4). Consider first the case of a single classical mechanics.

oscillator sufferingk successive collisions. Its energy after

k collisions is conveniently written as IV. BACK TO PLANCK’'S FORMULA, VIA THE

DEFINITION OF AN EFFECTIVE TEMPERATURE:

HEURISTIC CONSIDERATIONS

k
ex=eo+kn?+27>, e,_;c0Sp;_;. _ _ _ _
=1 We finally add some considerations which are mostly of a
heuristic character. If one uses Einstein’s thermodynamic re-

Given the initial energye,, this is a function of the phases | . . '
©0,--- @K1, Which are assumed to be independent and uni!atlOn (3), then obviously one finds for the mean enetdy

formly distributed; thus, averaging over the phases in the=Y +Eo exactly Planck’s formulal) with f:?f‘*w- How-
familiar way of random walk theory, one gets for the mean@Ver, it is clear that in such a way one h8s™# T, be-

energyu,:=(e,) afterk collisions the expression cause the mean energyyincreases linearly with the number
k of collisions(i.e., with time, and soB, which can be ob-
U=ep+ k7?2 (7)  tained by inverting the relatiod=U(B), depends on time
too.
Analogously, with((cose)?)=1/2 and Eq.(7), one finds Actually, such a fact is consistent with the present frame,

(ef)=uf+27?Sf_,u;_,. Using again Eq(7) with j—1 in  where one deals with a system in a state of quasiequilibrium
place ofk, the variancer; =(e)—ug then takes the form very far from equilibrium. Indeed, first of all, we notice that
g =2eokn’*+k(k—1)7" or also, in the approximation of the mean energy) depends linearly on timgsee Eq.(7)],

: . . but with a proportionality factom? which is exponentially
_ 2
largek so that we can identifk(k—1) with k%, small with the frequency, so that its increase with time can

ng: 2ok 72+ (k7). (8) be said to be practically !mperceptible. Thus qunck’s for-
mula (1) should be read, in the present context, in the fol-
lowing way: the second term at the right hand side is nothing
but the initial energyEy=Na* w, while the first term gives
the additional energy that the system acquires from the res-
) ervoir, and is actually increasing, extremely slowly, with
=2ep(Ux—€o) +(Ux—&o)". The analogy becomes even time (asptoo does. The essence of our result is that such an
stronger if one introduces the “exchanged energy” aker aqditional energy does not depend on the details of the inter-
collisions,&=ex—ey, because the corresponding expecta-gtomic potentialdentering throughy in Eq. (6)], but has

The relevant point is that in E¢8) the “time” k enters only
in the combinatiork»?, so that it can be eliminated through
Eq. (7); this leads to an analog of relatidd), namely,af‘,k

. _ . 2 . . .
tion T and variancerg are then related by instead a quasithermodynamic character.
The quantity3~* so introduced can be said to present the
a§k=2eoﬁk+tlﬁ. (9 character of an effective temperature, in the sense which is

by now rather common in the theory of aging phenomena of
A similar relation also holds for the global systemf glassy systems. To define it, one formally proceeds as fol-
independent identical oscillators. Indeed, the quantities ofows. One considers Einstein’s thermodynamic relatign
interest are the total ener@{;E{ileE) (wheree(ki) denotes  With the varianceoé given explicitly in terms of the mean
the energy of thdth oscillator afterk collisions and the €energy U through Einstein’s functional relatiofd). This
corresponding exchanged enefgy=E,— E,, whereE, is Ie_ads to the differential gquatio(r?) which _by integr_ation
o . ~ . gives Eq.(1) and by inversion a corresponding effective tem-
the |n|t|_al _energy. _By the ce~ntral limit ‘h?oreﬁg IS n_or- peratureB~ 1, depending extremely slowly on time. It can be
mally distributed with a meat), and a variance which  easily proven that the inverse of such an effective tempera-
are obtained by adding up the corresponding quantitzies foTrUfehiS andint(?%ragng factor for tf}e expression ththe Eeat
; ; NN 2 exchanged with the reservoir, a fact supporting the above
each oscillator, namel{, are gz|ven =Nt and 7E, interpretation. But we leave this interesting problem for pos-
= Naék. So, denoting byJ ando the expectation and vari-  sible future work.
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