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Performance of discrete heat engines and heat pumps in finite time

Tova Feldmann and Ronnie Kosloff
Department of Physical Chemistry, The Hebrew University, Jerusalem 91904, Israel

~Received 14 April 1999!

The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid
of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by
changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The
power output of the engine is optimized with respect to time allocation between the contact time with the hot
and cold baths as well as the adiabats. The engine’s performance is also optimized with respect to the external
fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat
pump is also optimized. By varying the time allocation between the adiabats and the contact time with the
reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is
approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when
the temperature approaches absolute zero.

PACS number~s!: 05.70.2a, 07.20.Mc, 44.90.1c
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I. INTRODUCTION

Analysis of heat engines has been a major source of t
modynamic insight. The second law of thermodynamics
sulted from Carnot’s study of the reversible heat engine@1#.
Study of the endoreversible Newtonian engine@2# began the
field of finite time thermodynamics@3–6#. Analysis of a vir-
tual heat engine by Szilard led to the connection betw
thermodynamics and information theory@7,8#. Recently this
connection has been extended to the regime of quan
computation@9#.

Quantum models of heat engines show a remarkable s
larity to engines obeying macroscopic dynamics. The Car
efficiency is a well established limit for the efficiency o
lasers as well as other quantum engines@10–14#. Moreover,
even the irreversible operation of quantum engines with
nite power output has many similarities to macroscopic
doreversible engines@15–19#.

It is this line of thought that serves as a motivation fo
detailed analysis of a discrete four stroke quantum engine
a previous study@20#, the same model served to find th
limits of the finite time performance of such an engine b
with the emphasis on power optimization. In that study
working medium was composed of discrete level syste
with the dynamics governed by a master equation. The p
pose was to gain insight into the optimal engine’s perf
mance with respect to time allocation when external para
eters such as the applied fields, the bath temperatures
the relaxation rates were fixed.

The present analysis emphasizes the reverse operatio
the heat engine as a heat pump. For an adequate descr
of this mode of operation inner friction has to be a cons
eration. Without it the model is deficient with respect to o
timizing the cooling power. Another addition is the optim
zation of the external fields. This is a common practice wh
cold temperatures are approached. With the addition of th
two attributes, the four stroke quantum model is analyz
both as a heat engine and as a refrigerator.

Inner friction is found to have a profound influence o
performance of the refrigerator. A direct consequence of
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friction is a lower bound on the cycle time. This lower boun
excludes the nonrealistic global optimization solutions fou
for frictionless cases@20# where the cooling power can b
optimized beyond bounds. This observation has led to
suggestion of replacing the optimization of the cooli
power by the optimization of the cooling efficiency per un
time @21–24#. Including friction is therefore essential fo
more realistic models of heat engines and refrigerators wh
the natural optimization goal becomes either the power o
put or the cooling power. The source of friction is not co
sidered explicitly in the present model. Physically, friction
the result of nonadiabatic phenomena which are the resu
the rapid change in the energy level structure of the syst
For example, friction can be caused by the misalignmen
the external fields with the internal polarization of the wor
ing medium. For a more explicit description of the frictio
the interactions between the individual particles compos
the working fluid have to be considered. The present mo
is a microscopic analog of the Ericsson refrigeration cy
@25#, where the working fluid consists of magnetic salts. T
advantage of the microscopic model is that the use of p
nomenological heat transfer laws can be avoided@16#. The
results of the present model are compared to a recent ana
of macroscopic chillers@27#. In that study, a universal mod
eling was demonstrated. It is found that the discrete quan
version of heat pumps has behavior similar to that of mac
scopic chillers.

There is a growing interest in the topic of cooling atom
and molecules to temperatures very close to absolute
@28#. Most of the analyses of the cooling schemes emplo
are based on quantum dynamical models. New insight ca
gained by employing a thermodynamic perspective. In p
ticular, the temperatures achieved are so low that the t
law of thermodynamics has to be considered. The disc
level heat pump can serve as a model to study the third
limitations. The finite time perspective of the third law is
statement about the asymptotic rate of cooling as the a
lute temperature is approached. These restrictions are
posed on the optimal cooling rate. The behavior of the o
mal cooling rate as the absolute temperature is approach
4774 ©2000 The American Physical Society
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a third law upper bound on the cooling rate. The main fin
ing of this paper is that the optimal cooling rate converges
zero linearly with temperature, and the entropy product
reaches a constant when the cold bath temperature
proaches absolute zero.

II. BASIC ASSUMPTIONS AND FORMAL BACKGROUND
FOR THE HEAT ENGINE AND THE HEAT PUMP

Heat engines and heat pumps are characterized by t
attributes: the working medium, the cycle of operation, a
the dynamics that govern the cycle. Heat baths by defini
are large enough so that their temperature is constant du
the cycle of operation. The heat engine and the heat pu
are constructed from the same components and differ on
their cycle of operation.

A. The working medium

The working medium consists of an ideal ensemble
many noninteracting discrete level systems. Specifically,
analysis is carried out on two level systems~TLS’s! but an
ensemble of harmonic oscillators@20# would lead to equiva-
lent results.

The TLS’s are envisioned as spin-1/2 systems. The l
of spin-spin interactions allows a description of the ene
exchange between the working medium and the surround
in terms of a single TLS. The state of the system is th
defined by the average occupation probabilitiesP1 and P2

corresponding to the energies1
2 v and2 1

2 v, wherev is the
energy gap between the two levels. The average energy
spin is given by

E5P1~ 1
2 v!1P2~2 1

2 v!. ~2.1!

The polarizationS is defined by

S5 1
2 ~P12P2!, ~2.2!

and thus the energy can be written asE5vS. Energy change
of the working medium can occur either by population tra
fer from one level to the other~changingS) or by changing
the energy gap between the two levels~changingv). Hence

dE5S dv1v dS. ~2.3!

Population transfer is the microscopic realization of heat
change. The energy change due to external field variatio
associated with work. Equation~2.3! is therefore the first law
of thermodynamics:

DW[S dv; DQ[v dS. ~2.4!

Finally, for a TLS the internal temperatureT8 is always de-
fined via the relation

S52
1

2
tanhS v

2kBT8D . ~2.5!

Note that the polarizationS is negative as long as the tem
perature is positive.
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B. The cycle of operation

1. Heat-engine cycle

The cycle of operation is analyzed in terms of the pol
ization and frequency (S,v). A schematic display is shown
in Fig. 1 for a constant total cycle timet. The present engine
is an irreversible four stroke engine@20# resembling the
Stirling cycle, with the addition of internal friction. The di
rection of motion along the cycle is chosen such that
positive work is produced.

The four branches of the engine will now be briefly d
scribed.

On the first branchA→B, the working medium is coupled
to the hot bath of temperatureTh for period th , while the
energy gap is kept fixed at the valuevb . The conditions are
such that the internal temperature of the medium is low
thanTh . In this branch, the polarization is changing from t
initial polarizationS2 to the polarizationS1. The inequality
to be fulfilled is therefore

S1,2
1

2
tanhS vb

2kBTh
D . ~2.6!

Sincev is kept fixed, no work is done and the only ener
transfer is the heatvb(S12S2) absorbed by the working
medium.

In the second branchB→C, the working medium is de-
coupled from the hot bath for a periodta , and the energy
gap is varied linearly in time, fromvb to va . In this branch
work is done to overcome the inner friction which develo
heat, causing the polarization to increase fromS1 to S3 ~cf.
Fig. 1!. The change of the internal temperature is the res
of two opposite contributions. First, lowering the energy g
leads to a lower inner temperature for constant polariza
S. Second, the increase in polarization due to friction lead
an increase of the inner temperature for fixedv. The inner
temperatureT8 at pointC might therefore be lower or highe
than the initial temperature at pointB.

FIG. 1. The heat engine with friction in the (v,S) plane.Th is
the hot bath temperature.th is the time allocation when in contac
with the hot bath.Tc and tc represent the temperature and tim
allocation for the cold bath.ta represents the time allocation fo
compression~field change fromvb to va) and tb for expansion.
The areaA,B,C1,D1 is the positive work done by the system, whi
the areasC,C1,S1 ,S3, andD1,D,S4 ,S2 represent the negative wor
done by the system.
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TABLE I. Work and heat exchange along the branches of the heat engine with friction.

Branch Work1 ~work against friction! Heat

A→B 0 vb(S12S2)
B→C (va2vb)@S11s2/(2ta)# 1 @s2(va1vb)/(2ta)# 0
C→D 0 va@(S22S1)2s2(1/ta11/tb)#

D→A (vb2va)@S22s2/(2tb)# 1 @s2(va1vb)/(2tb)# 0
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The third branchC→D is similar to the first. The work-
ing medium is now coupled to a cold bath at temperatureTc
for time tc . The polarization changes on this branch fromS3
to the polarizationS4. For the cycle to close,S4 should be
lower thanS2. At the end of the cycle the internal temper
ture of the working medium should be higher than the c
bath temperature,T8.Tc , leading to

S4.2
1

2
tanhS va

2kBTc
D . ~2.7!

SinceS4,S1 ~Fig. 1!, it follows from Eq.~2.6! and Eq.~2.7!
that

S va

Tc
D.S vb

Th
D . ~2.8!

Inequality~2.8! is equivalent to the Carnot efficiency boun
from Eq. ~2.8! one gets

12S va

vb
D,12S Tc

Th
D5hCarnot . ~2.9!

The present model is a quantum analog of the Stirling eng
which also has Carnot’s efficiency as an upper bound.

The polarizationS changes unidirectionally along th
‘‘adiabats’’ due to the increase of the excited level popu
tion as a result of the heat developed in the working fl
when work is done against friction, irrespective of the dire
tion of the field change.

The fourth branchD→A closes the cycle and is similar t
the second. The working medium is decoupled from the c
d

e

-

-
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bath. In a periodtb the energy gap is changing back to i
original valuevb . The polarization increases fromS4 to the
original valueS2.

These results are summarized in Table I.

2. Refrigerator cycle

The purpose of a heat pump is to remove heat from
cold reservoir by employing external work. The cycles
operation in the (S,v) plane are schematically shown in Fig
2,

The cycle of operation resembles the Ericsson refrige
tion cycle @25#. The differences are in the dynamics of th
microscopic working fluid which are described in Sec. II
The work and heat transfer for the heat pump are sum
rized in Table II.

The four branches for the heat pump are now describ
In the first branchD→C, the working medium is coupled to
the cold bath of temperatureTc for time tc , while the energy
gap is kept fixed at the valueva . The conditions are such
that the internal temperature of the medium is lower thanTc
during tc . Along this branch, the polarization changes fro
the initial polarizationS1 to the polarizationS2. Sincev is
kept fixed, no work is done and the only energy transfe
the heatva(S22S1) absorbed by the working medium. O
this branch,

S2,2
1

2
tanhS va

2kBTc
D . ~2.10!

In the second branchC→B, the working medium is de-
coupled from the cold bath, and the energy gap is varied
the frictionless case the polarizationS2 is constant~left of
Fig. 2!. The only energy exchange is the work done on
tem
FIG. 2. The cycle of operation of the heat pump. Left: without friction.S1
eq is the hot bath equilibrium polarization.S2

eq is the cold bath
equilibrium polarization. The area enclosed byD,C,S2 ,S1 is the heat absorbed from the cold bath. The area enclosed byDCBA is the work
done on the system. Right: with friction. The area enclosed byD,C,S2 ,S1 is the heat absorbed from the cold bath. The work on the sys
is the area defined by the rectanglesB,B1,S2 ,S3 andB1,A1,D,C andA1,A,S4 ,S1.
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TABLE II. Work and heat exchange along the branches of the heat pump without/with friction

Branch Frictionless work/work1 ~work against friction! Heat

D→C 0 va(S22S1)
(vb2va)S2

C→B (vb2va)@S21s2/(2ta)#1@s2(va1vb)/(2ta)# 0
vb(S12S2)

B→A 0 vb@(S12S2)2s2(1/ta11/tb)#

(va2vb)S1

A→D (va2vb)@S12s2/(2tb)#1@s2(va1vb)/(2tb)# 0
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system~Table II!. When friction is added the polarization
changing fromS2 to S3 in a period ta . The energy gap
changes fromva to vb ~right of Fig. 2!, according to a linear
law. In addition to work, heat is developing as a result of
inner friction ~Table II!.

The third branchB→A is similar to the first. The working
medium is coupled to the hot bath at temperatureTh , for
time th , keeping the energy gapvb fixed. In this branch the
polarization changes fromS2 to S1 in the frictionless case
and fromS3 to S4 when friction is added. The constraint
that the internal temperature of the working medium sho
be higher than the hot bath temperature during the timeth ,
T8.Th , leading to the inequality~Fig. 2!,

S1.S4.2
1

2
tanhS vb

2kBTh
D . ~2.11!

ThereforeS2.S1. From Eqs.~2.10! and~2.11!, the condition
for the interrelation between the bath temperatures and
field values becomes

S va

Tc
D,S vb

Th
D , ~2.12!

which is just the opposite inequality of that of the heat e
gine @Eq. ~2.8!#. In the heat pump work is doneon the work-
ing fluid and since no useful work is done Carnot’s bound
not violated.

The fourth branchA→D closes the cycle and is similar t
the second. The working medium is decoupled from the c
bath, and the energy gap changes back during a periodtb to
its original valuevb . These results are summarized in Tab
II.

C. Dynamics of the working medium

The dynamics of the system along the heat excha
branches is represented by changes in the level populatio
the two level system. This is a reduced description in wh
the dynamical response of the bath is cast in kinetic te
@18#. Since the dynamics has been described previously@20#,
only a brief summary of the main points is presented he
emphasizing the differences in the energy exchanges on
adiabats.

1. The dynamics of the heat exchange branches

The dynamics of the population at the two levels,P1 and
P2 , are described via a master equation
e
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h
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he

dP1

dt
52k↓P11k↑P2

~2.13!
dP2

dt
5k↓P12k↑P2 ,

wherek↓ andk↑ are the transition rates from the upper to t
lower level, and vice versa. The explicit form of these co
ficients depends on the nature of the bath and the sys
bath coupling interactions. The thermodynamics partition
tween system and bath is consistent with a weak coup
assumption@18#. Temperature enters through detailed b
ance. The equation of motion for the polarizationSobtained
from Eq. ~2.13! becomes

dS

dt
52G~S2Seq!, ~2.14!

where

G5k↓1k↑ ~2.15!

and

Seq52
1

2

k↓2k↑
k↓1k↑

52
1

2
tanhS v

2kBTD , ~2.16!

whereSeq is the corresponding equilibrium polarization.
should be noticed that in a TLS there is a one to one co
spondence between temperature and polarization; thus i
nal temperature is well defined even for nonequilibrium si
ations.

The general solution of Eq.~2.14! is

S~ t !5Seq1@S~0!2Seq#e2Gt, ~2.17!

whereS(0) is the polarization at the beginning of the branc
From Eqs.~2.14! and~2.16! the rate of heat change becom

Q̇5vṠ. ~2.18!

See also@16#.
For convenience, new time variables are defined:

x5e2Gctc, y5e2Ghth. ~2.19!

These expressions represent a nonlinear mapping of the
allocated to the hot and cold branches by the heat condu
ity G. As a result, the time allocation and the heat cond
tivity parameter become dependent on each other.
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Figures 1 and 2 show that the friction induces an asy
metry between the time allocated to the hot and c
branches since more heat has to be dissipated on the
branch.

2. The dynamics on the adiabats

The external fieldv and its rate of changev̇ are control
parameters of the engine. For simplicity it is assumed t
the field changes linearly with time:

v~ t !5v̇t1v~0!. ~2.20!

Rapid change in the field causes nonadiabatic beha
which to lowest order is proportional to the rate of changev̇.
In this context ‘‘nonadiabatic’’ is understood in its quantu
mechanical meaning. Any realistic assumption beyond
ideal noninteracting TLS will lead to such nonadiabatic b
havior. It is therefore assumed that the phenomenon ca
described by a friction coefficients which forces a constan
speed polarization changeṠ:

Ṡ5S s

t8D
2

, ~2.21!

wheret8 is the time allocated to the corresponding adiab
Therefore, the polarization as a function of time become

S~ t !5S~0!1S s

t8D
2

t, ~2.22!

wheret>0, t<t8. A modeling assumption of internally dis
sipative friction, similar to Eq.~2.21!, was also made by
Gordon and Huleihil@26#. Friction does not operate on th
heat exchange branches; there is no nonadiabatic effect
the fieldsva andvb are constant in time. The irreversibil
ties on those branches are due to the transition rates (G) of
the master equation.

From Fig. 1, Eq.~2.4!, and Eq.~2.22! the polarization for
the B→C branch of the heat engine becomes

SC5S35S11S s2

ta
D . ~2.23!

The work done on this branch is

WBC5E
0

ta
DW5E

0

ta
Sv̇ dt5~va2vb!FS11

1

2 S s2

ta
D G .
~2.24!

The heat generated on this branch in the working flu
which is the work against the friction, becomes

QBC5E
0

ta
DQ5E

0

ta
v Ṡdt5

s2~va1vb!

2ta
. ~2.25!

This work is dependent on the friction coefficient and
versely on the time allocated to the adiabats. The comp
tion for the other branches of the heat engine and heat p
is similar.
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3. Explicit expressions for the polarizations imposed
by the closing of the cycle

By forcing the cycle to close, the four corners of the cyc
observed in Fig. 1 are linked. Applying Eq.~2.17! leads to
the equations

S15S2y1Sh
eq~12y!,

S35S11
s2

ta
, ~2.26!

S45S3x1Sc
eq~12x!,

S25S41
s2

tb
.

The solutions forS1 , S2, andS12S2 are

S15Sc
eq1

DSeq~12y!1s2yG~x!

~12xy!

5Sh
eq2

DSeqy~12x!2s2yG~x!

~12xy!
,

~2.27!

S25Sc
eq1

DSeqx~12y!1s2G~x!

~12xy!

5Sh
eq2

DSeq~12x!2s2G~x!

~12xy!
,

and

S12S25~DSeq!F~x,y!2
s2~12y!G~x!

~12xy!
, ~2.28!

where

F~x,y!5
~12x!~12y!

~12xy!
, DSeq5~Sh

eq2Sc
eq!,

G~x!5~x/ta11/tb!.

The constraint that the cycle must close leads to conditi
on the polarizationsS1 and S2 and on the minimum cycle
time tc,min . Equations~2.27! show that bothS1 andS2 are
bounded bySh

eq and Sc
eq . The minimum cycle time is ob-

tained when the polarizations coincide with the hot bath
larization: S15S25Sh

eq . In this case,th50, and from Eqs.
~2.19! and ~2.28! the minimum time allocation on the col
bathtc,min is computed,

xmax5
~Sh

eq2Sc
eq!2s2/tb

~Sh
eq2Sc

eq!1s2/ta

~2.29!

or

tc,min521/Gc ln
~Sh

eq2Sc
eq!2s2/tb

~Sh
eq2Sc

eq!1s2/ta
. ~2.30!

From this expression fortc,min the lower bound for the over
all cycle time is obtained~the left of Fig. 3!:
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FIG. 3. Left: Minimal cycle timetmin as a function of the inner friction parameters for the heat engine. The vertical line represents
upper bound ofs. Dimensionless units are used in whichkb51 and\51. The parameters used areva51794, vb54238, Tc5500, Th

52500, Gc51, andGh52. Right: Comparison betweentmin andt0, the minimum cycle time for power production.
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t>tmin5tc,min1ta1tb . ~2.31!

When the minimum cycle time Eq.~2.30! diverges, the cycle
cannot be closed. This condition imposes an upper boun
the friction coefficients,

s<sup5Atb~Sh
eq2Sc

eq! ~2.32!

or

tb.tb,min5
s2

~Sh
eq2Sc

eq!
. ~2.33!

Closing of the cycle imposes similar constraints on
minimal cycle time under friction for the heat pump. Th
value of the polarization differenceS22S1 using the notation
of Fig. 2 becomes

S22S15~S2
eq2S1

eq!F~x,y!2
s2~12x!~y/ta11/tb!

~12xy!
.

~2.34!

The minimum cycle time is calculated in the limit whentc

50, leading toS25S15S2
eq . From Eqs.~2.19! and ~2.34!

the minimum time allocation on the hot branchth,min is
computed:

ymax5
~S2

eq2S1
eq!2s2/tb

~S2
eq2S1

eq!1s2/ta

, ~2.35!

th,min521/Gh ln
~S2

eq2S1
eq!2s2/tb

~S2
eq2S1

eq!1s2/ta
, ~2.36!

where S2
eq is point F and S1

eq is point E on Fig. 2. Using
th,min the lower bound for the overall cycle time is comput

t>tmin5th,min1ta1tb . ~2.37!

Closing the cycle imposes a minimum cycle time for bo
the heat engine and the heat pump, which is a monotonic
on

e

lly

increasing function of the friction coefficients. The diver-
gence oftmin imposes a maximum value for the frictio
coefficients.

D. Finite time analysis

1. Quantities to be optimized

The primary variables to be optimized are the power
the heat engine and the heat flow extracted from the c
reservoir of the heat pump. For a preset cycle time, opti
zation of the power is equivalent to optimization of the to
work, while optimization of heat flow is equivalent to opt
mization of the heat absorbed. The entropy production w
also be analyzed.

a. The total work done on the environment per cycle of
heat engine.The total work of the engine is the sum of th
work on each branch~cf. Table I and Fig. 1!:

Wcycle15 R DW52~WAB1WBC1WCD1WDA!,

~2.38!

which becomes

Wcycle15~vb2va!~S12S2!2s2va~1/ta11/tb!.
~2.39!

The negative sign is due to the convention of positiveW
when work is done on the system.

Analyzing Eq. ~2.39!, the work is partitioned into three
positive and negative areas. The positive area~left rotation!

Wp5~vb2va!~S12S2! ~2.40!

is defined by the pointsA,B,C1,D1 in Fig. 1. The two nega-
tive areas~right rotation!

Wn5s2va~1/ta!1s2va~1/tb! ~2.41!

are defined by the pointsC,C1,S1 ,S3 and D1,D,S4 ,S2 in
Fig. 1.

The cycle which achieves the minimum cycle timet
5tc,min produces zero positive workWp50. The cornersA
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FIG. 4. Left: Power as a function of the time allocation on the cold branch corresponding to the friction coefficients50.005 with
changing cycle times. The cycle time values are for curve 1,t5tmin50.059, for curve 2,t50.1 ~the first two plots overlap!, and for curve
3, t50.5. Other parameters are the same as in Fig. 3. The dashed horizontal line is the line of zero power. Right: The cycles corre
to the power plots. Negative work is in blue and positive work is in red. Note that for cycles 1 and 2, the total area is negative and, t
the power output is negative.
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andB coincide atE, andC1 coincides withD1. The negative
work of Eq.~2.41!, is defined by the cornersC,D,S4 ,S3 and
is ‘‘cut’’ by the Sh

eq line ~cf. the right of Fig. 4!. The cycle
has negative total work, meaning that work is doneon the
working fluid against friction. Whent increases beyond
tc,min , S1 diverts fromS2, becoming lower thanSh

eq @Cf. Eq.
~2.27!#. At a certain point, the work done against friction
exactly balanced by the useful work of the engine. The m
mum time in which this balance is achieved is designatedt0.
Its value, which can be deduced from Eq.~2.39!, is worked
out in Appendix B.

The minimum cycle timetmin is compared tot0, the
minimum time needed to obtain positive power, shown in
right of Fig. 3 as a function of the frictions. Both functions
increase with friction, butt0 diverges at a much lower fric
tion parameter. Above this friction parameter no useful wo
can be obtained from the engine. The divergence oftmin
corresponds to a larger friction value where the cycle can
be closed.

When the total time allocation is sufficient, i.e.,t.t0,
i-

e

k

ot

work is done on the environment, andS1 starts to increase
For long cycle timesS1 will approachSh

eq , while S2 will
approachSc

eq . The constant negative area will become ne
ligible in comparison to the positive area~Fig. 5!.

To study the influence of friction on the work output th
polarization difference from Eq.~2.28! S12S2 is inserted
into the work expression Eq.~2.39!, leading to

Wcycle15~vb2va!~Sh
eq2Sc

eq!F~x,y!2Ws1 , ~2.42!

where

Ws15s2S vb~12y!~x/ta11/tb!

12xy

1
va~12x!~1/ta1y/tb!

12xy D . ~2.43!

Ws1 is the additional ‘‘cost’’ due to friction and is alway
positive.
s

FIG. 5. Left: Power as a function of the time allocation on the cold branch corresponding to the friction coefficients50.005 with

changing cycle times. The cycle time values are for curve 4,t51, for curve 5,t52, and for curve 6,t55. The dashed horizontal line i
the line of zero power. Right: The cycles corresponding to the power plots. All the constant parameters are as in Fig. 4



nt
a

e

en
a

n

n-
s

g
n

ith
in
ea
Th
tio
-

io

y is
th

eat

nd
-
r

nt
-

e-

l

:

de-

ths

PRE 61 4781PERFORMANCE OF DISCRETE HEAT ENGINES AND . . .
The emergence of positive powerP is shown in Fig. 4.
For a fixed cycle time the optimization of work is equivale
to the optimization of power. The first two cycles have
cycle time shorter thant0, and therefore do not produc
useful work. For cycle 3,t.t0 and positive work is ob-
tained when the time allocation on the cold bath is suffici
tc>0.08. For longer total cycle times, the ratio of the neg
tive area to the positive area decreases as can be seen i
5.

The position of the cycles in theS,v coordinates relative
to Sh

eq and Sc
eq changes as a function of the cycle time. I

sight into the origin of the behavior of the ‘‘moving’’ cycle
is presented below in Fig. 11 of Appendix A.

The calculation of the total work done on the workin
fluid per cycle,W cycle3

on , for the heat pump is described i
appendix D. See also Table II and Fig. 2.

b. The heat flow(QF). The heat flowQF extracted from
the cold reservoir is

QF5va~S22S1!/t. ~2.44!

Due to the dependence ofQF only on S22S1, the cycle is
similar to the cycle of the heat engine.

c. The entropy production(DS u). The entropy production
of the universe,DS u, is concentrated on the boundaries w
the baths since, for a closed cycle, the entropy of the work
fluid is constant. The computational details for both the h
engine and the heat pump are shown in appendix C.
entropy production and the power have a reciprocal rela
~see Fig. 12 in Appendix C!. For example, the entropy pro
duction increases withs, while the power decreases.

d. EfficiencyThe efficiency of the heat engine is the rat
of useful work to the heat extracted from the hot bath:

hH.E.5
Wcycle

Qabsorbed
5hH.E.

f r ictionless2S s2va~1/ta11/tb!

vb~S12S2! D ,

~2.45!

wherehH.E.
f r ictionless5(12va /vb).

When the cycle time approaches its minimumt→tmin ,
the efficiency diverges:hH.E.→2`. The efficiency becomes
positive only whent>t0. Using Eq.~2.45! a bound for the
efficiency is obtained:

0,hH.E.<hH.E.
f r ictionless2

Tc

Th
S s2~1/ta11/tb!

~S12S2! D .

~2.46!

The cooling efficiency of the refrigerator will be

hR f5
QDC

W cycle
on

5
va~S22S1!

~vb2va!~S22S1!1s2vb~1/ta11/tb!

~2.47!

or
t
-
Fig.

g
t
e
n

1

hR f
115

1

COP
11

5
vb

va
S 11

s2~1/ta11/tb!

~S22S1! D
.

Th

Tc
S 11

s2~1/ta11/tb!

~S22S1! D , ~2.48!

~whereCOP is the coefficient of performance! leading to the
expression for the efficiency

hR f5
va

vb

1

hH.E.
f r ictionless1 s2~1/ta11/tb!/~S22S1!

,
Tc

Th

1

hH.E.
f r ictionless1s2~1/ta11/tb!/~S22S1!

~2.49!

For both the heat engine and the heat pump, the efficienc
explicitly dependent on time allocation, cycle time, and ba
temperatures.

2. Optimization

The performance of both the heat engine and the h
pump can be optimized with respect to~a! the overall time
periodt of the cycle, and its allocation between the hot a
cold branches;~b! the overall optimal time allocation be
tween all branches~this optimization is performed only fo
the heat pump!; and ~c! the external fields (va ,vb!.

a. Optimization with respect to time allocation.The opti-
mization of time allocation is carried out with the consta
fields va and vb . The Lagrangian for the work output be
comes

L~x,y,l!5Wcycle1lS t1
1

Gc
ln~x!1

1

Gh
ln~y!2ta2tbD ,

~2.50!

wherel is a Lagrange multiplier. Equating the partial d
rivatives of L(x,y,l) with respect tox and y to zero, the
condition for the optimal time allocation becomes

Gcx@~12y!2~Sh
eq2Sc

eq!1s2~12y!~1/ta1y/tb!#

5Ghy@~12x!2~Sh
eq2Sc

eq!2s2~12x!~x/ta11/tb!#.

~2.51!

Whens50, the previous frictionless result is retrieved.@Op-
timizing the entropy productionDSu leads to an identica
time allocation to Eq.~2.51!.#

Equation~2.51! can also be written in the following way

Gcx@~12y!~12yxmax!#5Ghy@~12x!~xmax2x!#,
~2.52!

wherexmax was defined in Eq.~2.29!. The result is depen-
dent on the time allocations of the adiabats, through the
pendence ofxmax.

For the special case whenGc5Gh , the relation between
the time allocations in contact with the hot and cold ba
becomes
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FIG. 6. Left: The optimal power with respect to time allocation as a function oft, for different values of friction. Middle: The
corresponding heat flow (QF). The parameter values for both left and middle panels are for plot 1,ta5tb5s50, for all the other plots
ta5tb50.01. Thes values for the curves from plot 2 to plot 6 are 0.002, 0.005, 0.007, 0.0135, 0.02, respectively. Right: The e
production rate corresponding to the optimal power on the left part of the figure. The additional curve is curve 1, which correspos
50, andta5tb50.01. The parameter values for the other plots are for plot 2,ta5tb5s50, for all the other plotsta5tb50.01. Thes
for the curves from plot 3 to plot 7 are 0.002, 0.005, 0.007 0.0135, 0.02, respectively.
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x5xmaxy. ~2.53!

For the frictionless case, this result coincides with the form
frictionless onex5y, meaning that equal time is allocated
contact with the cold and hot reservoirs. When friction
added this symmetry is broken, Eq.~2.53!. To compensate
for the additional heat generated by friction, the time al
cated to the cold branch becomes larger than the time on
hot branch.

The Lagrangian for the heat flowQF extracted from the
cold reservoir is defined in parallel to the Lagrangian for
total work. SubstitutingGh for Gc , x for y, and vice versa,
and alsoymax for xmax, where ymax was defined in Eq.
~2.35!, one gets the optimal time allocation for the he
pump.

Optimization of power with respect to time allocation as
function of the cycle timet for different friction coefficients
is shown in Fig. 6~left!, together with the correspondin
heat-flow ~middle! and entropy production~right!. The left
part shows that in the frictionless case the power obtains
maximum at zero cycle time with a value consistent with E
r

-
he

e

t

ts
.

~2.58!. When friction is introduced, the maximum power d
creases and is shifted to longer cycle times. The figure a
shows that for short times the work done by the system
negative, and as the friction coefficients increases, the
boundary between positive and negative power shifts
longer cycle times. In the middle of Fig. 6, the heat flo
corresponding to the optimal power on the left is shown. T
shapes of the power and heat flow curves are similar.
heat flow values are always positive and larger than the
responding power values. The entropy production~right!
shows that unlike for the power curves the friction signi
cantly changes the shape of the curves. The entropy pro
tion rate for the case with friction sharply decreases. T
parallel graphs for the heat pump are similar.

b. Time allocation optimization between all branches
the refrigerator. Further optimization of the performance o
the heat pump is possible by relaxing the assumption of c
stant time on the adiabats. First, the time allocation betw
the two adiabats is optimized, whenta1tb5d, whered is a
constant. Finally, the time allocation between the adiab
and the heat exchange branches is optimized. These re
are compared to the recent analysis of Gordonet al. @27#.
mal cycle

flow time

et
FIG. 7. The relation between efficiency and cooling power for the heat pump. The parameters are as follows. The constant opti
time t50.78; Tc551.49,Th5257.45,va547.699,vb5600, Gc51, Gh52, s50.005. Left: Comparison between 1/QF ~plot 1! and 1/h
~plot 2! as a function of the allocated time transfer from the heat exchange branches to the adiabats. Zero time is the optimal heat
allocation. Right: The universal plot for the heat pump. The starting optimal point in the plane of (1/QF,1/h), was~0.342 96,12.202!, while
the maximum efficiency pointB is ~0.6322,11.6379! and time allocation (tc ,th ,ta ,tb)5(0.227 21,0.163 28,0.1636,0.2259). The ins
shows the neighborhood of pointA.
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From Eqs.~2.44! and ~2.34! with constant time alloca-
tions along the heat exchange branches one gets for the
ing power

QF5A02A1S y

ta
1

1

~d2ta! D , ~2.54!

whereA0 andA1 are constant functions of the parameters
the system. Ond a double inequality is imposed,t.d. the
larger of @(t2th,min);tb,min#; see Eq.~2.33!.

The optimalta depends only ony and ond. The optimal
value ofta,opt becomes

ta,opt5d
2y1Ay

12y
. ~2.55!

Further optimization by changing the the value ofd changes
the cycle timet. This optimization step is done by numeric
iteration. Typically the sum of the final optimal values ofta
and tb is about twice their value before, and their ratio
about 0.7 of the value that was chosen initially.

The next step is to study the time allocation between
adiabats and the heat exchange branches when all other
trols of the heat pump have optimal values. These cont
include also the external fields of optimization which a
described later.

For comparison with Gordonet al. @27#, the results of the
optimization are plotted in the (1/QF ,1/h) plane for a fixed
cycle time t. The following example demonstrates th
method followed: First an optimal starting value forQF is
found which determines the time allocation control para
eters tc50.442 21, th50.317 79, ta50.0084, and tb
50.0116 with a total cycle time oft50.78. Under such
conditionsQF,max52.9158 (1/QF,max50.342 96).

Changing the time allocation between the adiabats and
heat exchange branches changes the balance between
mal cooling power and efficiency. Denoting the sumtc
1th by tch , the ratioth /tc by r hc , the sumta1tb by tab ,
and the ratiota /tb by r ab , time is transferred fromtch by
small steps totab , while keeping the ratiosr hc andr ab con-
stant. For each step the corresponding 1/QF and 1/h are
calculated as in Fig. 7. The relation between the recipro
efficiency and the reciprocal cooling power shows t
tradeoff between losses due to friction and losses due to
transfer. Following the curve in Fig. 7, starting from pointA
where the cooling power is optimal, resources represente
time allocation are transferred from the heat excha
branches to the adiabats, reducing the friction losses.
point B an optimum is reached for the efficiency. This po
has been found by Gordonet al. to be the universal operatin
choice for commercial chillers. PointB represents the opti
mal compromise between maximum efficiency and cool
power.

PointA is located at the maximum cooling power. If mo
time is allocated to the heat exchange branches both 1QF
and 1/h will continue to increase as seen in the inset of F
7.

c. Optimization with respect to the fields.The values of
the fieldsva andvb are control parameters of the engine.
a spin system these fields are equivalent to the value of
external magnetic field applied on the system. They dire
ol-
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influence the energy spacing of the TLS. The work functi
Wcycle, or equivalently the power (P) is optimized with
respect to the fields, subject to the Carnot constraint:

va

Tc
>

vb

Th
. ~2.56!

Optimal power is obtained by equating independently to z
the partial derivatives ofWcycle or of P5Wcycle/t by vary-
ing va and vb . In addition, the optimal solutions have t
fulfill the inequality constraints in Eq.~2.56!. As a result,
two transcendental equations inva and vb are obtained,
which are solved numerically.

The two equations are

~12yxmax!

~vb2va!
~DSeq1s2/ta!cosh2S va

2kBTc
D5

12y

~4kBTc!
,

~2.57!
~xmax2x!

~vb2va!
~DSeq1s2/ta!cosh2S vb

2kBTh
D5

12x

~4kBTh!
,

whereDSeq5Sh
eq2Sc

eq as defined in Eq.~2.28!. Examining
Eq. ~2.57!, and fixing the frictions, it is found thatDSeq is
an extensive function of order zero~intensive! with respect
to the quartet of variablesva ,Tc ,vb ,Th . This means that
scaling these parameters simultaneously will not cha
DSeq. Also, xmax and cosh2(v/2kBT) are extensive~order
zero!. The work function, however, is extensive with ord
@Eqs. ~2.42! and ~2.43!#. This property will be exploited in
Sec. III.

The optimization of power with respect to the fields
shown in Fig. 8 for the frictionless engine, as a function
the fields with fixed time allocation. A global maximum ca
be identified.

The heat pump optimization ofQF with respect to the
fields is different and therefore will be presented in Sec.
The analysis for optimization with respect to the fields f
the entropy productionDS u is presented in Appendix C. Th
optimal solution without friction (s50) leads toDS min

u

50. WhensÞ0, the minimum value ofDS u is different
from zero and is achieved on the boundary of the region

E. Global optimization of the heat engine

Global optimization of the power means searching for
optimum with respect to the control parameters cycle tim
time allocation, and the fields. An iterative procedure is us

FIG. 8. Power for the frictionless engine as a function of t
fields (va ,vb! for constant bath temperatures, and constant ti
allocations. The maximum power is achieved atva51794 andvb

54239 where the bath temperatures areTc5500,Th52500.
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TABLE III. Global optimization of power. The notationP max(va ,vb) stands for fixed time allocations
and the notationP max(ta ,tb) stands for fixed field values. The other parameters areTc5500, Th52500,
ta5tb50.01, Gc51, andGh52.

s t P max(va ,vb) P max(tc ,th) va vb tc /t

0.005 2 84.46 1794 4239 0.5999
0.005 1.367 87.18 1794 4239 0.5891
0.005 1.367 88.68 1719.1 4036.31 0.5891
0.005 1.347 87.47 1719.1 4036.31 0.588 56
0.005 1.347 88.704 1718.16 4033.67 0.588 56
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The procedure is initiated by setting the optimal time
location from the corresponding Lagrangian, withs50. The
power becomes a product of two functions, one depend
only on time and the other only on the fields, and theref
the fields can be changed independently of time. The opti
fields for the above time allocation are then sought. For
frictionless case, the overall time on the adiabats tend
zero. The optimal field values become independent of ti
The valueP5107.501 is the short time limit in accordanc
with the equation

P→~vb2va!~Sh
eq2Sc

eq!~GcGh!/~AGc1AGh!2.
~2.58!

These fields are inserted into the expression with frict
sÞ0, and the new optimal times and fields are comput
The iteration converges after two to three steps, as indic
in Table III for s50.005. Notice that the location of th
optimum is not very sensitive to the friction parameter.

In Table IV, the extensive properties Eq.~2.57! are exam-
ined for k52 andk510 with respect to Table III. The tem
perature values will change toTc51000, Th55000 for k
52 andTc55000, Th525 000 fork510. The results con-
firm the analysis.

III. ASYMPTOTIC PROPERTIES OF THE HEAT PUMP
WHEN THE COLD BATH TEMPERATURE

APPROACHES ABSOLUTE ZERO

The goal is to obtain an asymptotic upper bound on
cooling power when the heat pump is operating close
absolute zero temperature. This requires optimizing the
formance of the heat pump with respect to all control para
eters.
-

g
e
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e
to
e.

n
.
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e
o
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-

A. Optimization of the heat flow QF with respect to the fields
and to the cooling power upper bound

The heat flow,QF extracted from the cold reservoir now
becomes the subject of interest:

QF5va~S22S1!/t, ~3.1!

or from Eq.~2.34!,

QF5~va /t!S ~S2
eq2S1

eq!F~x,y!2
s2~12x!~y/ta11/tb!

~12xy! D .

~3.2!

No global maximum forQF with respect to the fields is
found. The derivative ofQF with respect tovb becomes

]QF

]vb
5

F~x,y!va

t

1

4kBTh cosh2~vb /2kBTh!
>0, ~3.3!

leading to the result thatQF is monotonic invb . Under such
conditions,vb is set, and the optimum with respect tova is
sought for. The derivative ofQF with respect tova becomes

]QF

]va
5~S2

eq2S1
eq!2

s2

~12y!
~y/ta11/tb!

2va

1

4kBTc cosh2~va /2kBTc!
50. ~3.4!

Introducing from Eq.~3.4! the optimal value of (S2
eq2S1

eq)
2@s2/(12y)#(y/ta11/tb) into Eq. ~3.2! leads to the opti-
mal cooling rate:
6

TABLE IV. Global optimization of power, by multiplying the four valuesTc ,Th ,va ,vb by k and
searching first for optimal time allocation, then multiplying only the temperature values byk and searching
for the optimal fields. All the notations and other parameters as in Table III.

s k t P max(va ,vb) P max(tc ,th) va vb tc /t

0.005 2 1.367 174.9 3438.2 8072.6 0.588 52
0.005 2 1.367 174.9 3436.7 8070.3 0.588 52
0.005 2 1.347 174.94 3436.7 8070.3 0.588 56
0.005 2 1.347 179.8 3437.7 8069.4 0.588 56
0.005 10 1.347 887.04 17 181.6 40 336.7 0.588 5
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TABLE V. First step. Starting from an optimal quartet, the procedure creates for a given decreasing
vb’s, a decreasing set of ofva’s for fixed bath temperatures. Numbers in brackets denote powers of 1

Tc Th vb va
optimal va

optimal/Tc vb /Th R QF

0.0025 50 60 1.370@-3# 0.5392 1.2 2.226 5.812@-5#

0.0025 50 55 1.273@-3# 0.5090 1.1 2.161 5.013@-5#

0.0025 50 50 1.164@-3# 0.4653 1 2.149 4.241@-5#

0.0025 50 45 1.051@-3# 0.4205 0.9 2.140 3.505 49@-5#

0.0025 50 40 9.320@-4# 0.3728 0.8 2.146 2.826@-5#

0.0025 50 35 8.250@-4# 0.3300 0.7 2.121 2.182@-5#

0.0025 50 30 6.985@-4# 0.2794 0.6 2.147 1.613@-5#
t,
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Q F
optimum5

F~x,y!va
2

t

1

4kBTc cosh2~va /2kBTc!

5
F~x,y!

4kBt S va

Tc
D 2 Tc

cosh2~va /2kBTc!
. ~3.5!

Due to its extensivity, the ratiova /Tc becomes a constan
while bothva andTc can approach zero.

From Eq.~3.5!, an upper bound for the cooling rateQF is
obtained:

Q F
optimum<

F~x,y!

4kBt S va

Tc
D 2

Tc . ~3.6!

From Eq.~3.6!, when Tc approaches zero, the cooling ra
vanishes at least linearly with temperature. This is a third
statement which shows that absolute zero cannot be rea
since the rate of cooling vanishes as absolute zero is
proached.

B. The asymptotic relation between the internal and external
temperatures on the cold branch

When the bath temperature tends to zero, the inte
working fluid temperature has to follow. This becomes
linear relationship betweenT8 andTc asTc tends to zero.

Calculating the polarization at the end of the contact w
the cold bathS2,

S25S2
eq2

~S2
eq2S1

eq!x~12y!2s2x~1/tb1y/ta!

~12xy!
.

~3.7!
w
ed
p-

al

Assuming the relationTh5rTc asTc tends to zero, the ex
ponents can be expanded to the first order to give

S25
Tc

va

12xymax1~va /vb!rx~ymax2y!

~12xy!

11/22
x~s2/ta!~ymax2y!

~12xy!
, ~3.8!

Also, S2 defines the internal temperatureT8 through the re-

lation: S252 1
2 tanh(va/2kBT8). Expanding the hyperbolic

tangent, one gets:

T85Tc

12xymax1r~va /vb!x~ymax2y!

~12xy!

2
xva~s2/ta!~ymax2y!

~12xy!
~3.9!

proving thatTc and T8 both tend asymptotically to zero. I
should be noted that the term independent ofTc depends on
va , which also tends to zero asTc tends to zero@Eq. ~3.6!#.
Equation ~3.6! also shows thatQ F

optimumTc is a quadratic
function of va ~cf. Fig. 9!.

Equation~3.6! represents an upper bound to the rate
cooling. In order to determine how closely this limit can b
approached, a strategy of cooling must be devised wh
reoptimizes the cooling power during the changing con
tions whenTc approaches zero.
TABLE VI. A procedure to get an optimal set of pairs ofva ,Tc where their ratio tends to zero.Th

550 for every cold bath temperatureTc . The indexf l stands for the frictionless case, andQF
up denotes the

upper bound forQF . Numbers in brackets denote powers of 10.

Tc vb va
optimal DSu DSu, f l QF Q F

up

0.0025 60 1.370@-3# 0.033 3353 0.0285 5.812@-5# 6.084~-5!

0.001 25 55 6.365@-4# 0.028 5075 0.024 06 2.457@-5# 2.626~-5!

0.000 625 50 2.91@-4# 0.024 2662 0.020 21 1.039@-5# 1.098~-5!

0.000 3125 45 1.3138@-4# 0.020 338 0.016 69 4.2939@-6# 4.467~-6!

0.000 15625 40 5.825@-5# 0.016 788 0.013 54 1.7239@-6# 1.759~-6!

0.000 0781 35 2.578@-5# 0.013 210 0.010 357 6.6772@-7# 6.888~-7!

0.000 0391 30 1.0914@-5# 0.010 356 0.007 915 2.4673@-7# 2.468~-7!
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FIG. 9. Left: Solid line is the optimal heat flowQ F
optimum for the heat pump as a function ofTc . The fixed parameter values of the pa

(vb and Th! are Th564.359, 51.49, 42.9082, 30.035 55, 23.599, 17.153, 4.291, 0.8582, 0.1717, 0.017 17 and accordinvb

5150,120,100,70,55,40,10,2,0.4,0.04. The other constant parameter values ares50.005, Gc51, Gh52. dashed line is for fixedvb

53000 for every point. The other parameters are the same as for the solid line. Right: The optimal heat flows multiplied by the cor
ing Tc as a function ofva . The optimal time is constant for the chosen parameters;toptimal50.885 for the solid curves and 0.825 for th
dashed curves.
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C. Optimal cooling strategy

The goal is to follow an optimal cooling strategy, whic
exploits the properties of the equations and achieves the
per bound for the rate of coolingQF . The properties of the
equations employed are as follows.~i! The derivative with
respect tova of QF @Eq. ~3.4!# is extensive of order zero in
the ‘‘quartet’’ (va ,vb ,Tc ,Th). ~ii ! For ]QF /]va the exten-
sivity holds also for the ‘‘doublets’’ (vb ,Th) or (va ,Tc).
Scaling these variables by the same number leaves Eq.~3.4!
equal to zero, and the value ofQ F

optimum does not change
~iii ! In spite of QF being monotonic invb , Q F

optimum is
independent ofvb ~and ofTh); thereforeQF saturates asvb

is increased.
From property~i! it follows that once an optimal quarte

(va ,vb ,Tc ,Th) is created, it is possible to cool optimall
with a set of quartets that are scaled by a decreasing sr n

,1, limn→` r n50. For this set the limit of the ratiova /Tc

is a nonzero constant. Therefore in Eq.~3.5! va andTc are
optimal, leading to
p-

Q F
optimum5

F~x,y!

4kBtoptimal
S va,optimal

Tc,optimal
D 2

3
Tc,optimal

cosh2~va,optimal /2kBTc,optimal!
.

~3.10!

In general, the hot bath temperature is constant, and
property~ii ! is used to scale back the value of the optimalTh
to the bath temperature. As a result, the optimal high field
also scaled.

Property~iii ! will be exploited by changing onlyvb in the
optimal quartets and checking for saturation~see Fig. 13 in
Appendix E and the dashed curves of Fig. 9!. Summarizing,
for every quartet the upper bound in Eq.~3.6! can be
reached. The details of the cooling strategy can be foun
Appendix E.

Figure 10 shows that the cooling strategy~Tables V and
VI ! can approach the upper bound, leading to a linear r
g
FIG. 10. Left: The optimal cooling rate as a function of the cold bath temperatureTc , compared with the upper bound for the coolin
rate. Right: The entropy production during cooling shown for the case with friction~upper line, circles! and without friction~lower line,
squares!. The common parameters for all three cases areta5tb50.01, s50.005,Gc51, Gh52.
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tion of the optimal cooling power with temperature. Wi
respect to the fields the optimal strategy leads to a decr
of the field va that is in contact with the cold bath. Thi
causes the internal temperature of the TLST8 to be lower
than the cold bath temperatureTc . On the hot side the opti
mal solution requires as large an energy separation as
sible,va→`, but this effect saturates.

The linear relation of the cooling rate withTc leads to a
constant asymptotic entropy production as can be seen o
right of Fig. 10~cf. Appendix C!.

IV. CONCLUSION

The detailed study of the four stroke discrete heat eng
with internal friction serves as a source of insight into t
performance of refrigerators at temperatures that are v
close to absolute zero. The next step is to find out if
behavior of the specific heat pump described in the study
be generalized. A comparison with other systems studied
dicates that the conclusions drawn from the model are
neric. As a heat engine the model shows the generic beha
of maximum power as a function of control paramete
found in finite time thermodynamics@3–6#. This is despite
the fact that the heat transfer laws in the microscopic mo
of the working fluid are different from macroscopic law
such as the Newtonian heat transfer law@16#. When operated
as a heat pump with friction, the present model shows
universal behavior observed for commercial chillers@27#
caused by a tradeoff between allocating resources to
adiabats or to the heat exchange branches.

Another question is whether the linear scaling of the o
timal cooling power at low cold bath temperatures is a u
versal phenomenon. For low temperatures the results of
present model can be extended to a working fluid consis
of an ensemble of harmonic oscillators or anyN-level sys-
tem. This is because at the limit of absolute zero only the
lowest energy levels are relevant. When examined, o
models with different operating cycles show an identical
havior. For example the continuous model of a quantum h
engine@18# based on reversing the operation of a laser sh
this linear scaling phenomenon. Another example is the E
sson refrigeration cycle@cf. Eq. ~23!# in the study of Chen
and Yan@25# which shows the same asymptotic linear re
tionship.

A point of concern is the dependence of the heat tran
laws on temperature when absolute zero is approached.
kinetic parametersk↓ andk↑ represent an individual couplin
of the two level system to the bath. Considering coefficie
derived from gas phase collisions they settle to a cons
asymptotic value as the temperature is lowered@29#. The
reason is that the slow approach velocity is compensate
the increase in the thermal de Broglie wavelength.

There has been ongoing interest in the meaning of
third law of thermodynamics@30–36#. The issue at stake ha
been the question: Is the third law an independent postu
or is it a consequence of the second law and the vanishin
the heat capacity? This study presents a dynamical inter
tation of the third law. The absolute temperature cannot
reached because the maximum rate of cooling vanishe
least linearly with temperature.
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APPENDIX A: ANALYSIS FOR THE MOVING CYCLES

Insight into the origin of the behavior of the movin
cycles is seen in Fig. 11, where the polarizationsS1 andS2
are shown as monotonically decreasing functions of the t
allocation on the cold bath. However, the envelope ofS1 for
maximal power, namely, for maximalS12S2, is worth no-
ticing. It is a decreasing function for short cycle time
achieves a minimum att0, and starts to increase fort.t0.
Thus it is responsible for shifting the cycles to smaller p
larization for short cycle times, and for the change of th
trend for larger cycle times. The envelope ofS2 for maximal
S12S2 is also a monotonically decreasing function oftc , or
equivalently oft, supporting the increase ofS12S2. The
figure also shows that for a short time allocation bothS1 and
S2 are close to the equilibrium polarizationSh

eq . When not
enough time is allocated on the hot bath both the polar
tions S1 andS2 approachSc

eq .

APPENDIX B: THE COMPUTATION OF t0

The computation oft0 Eq. ~2.39! is not sufficient since it
gives only the relation between the times spent on the c
and hot branches for zero work. The natural additional
quirement is to seek for the optimal allocationstc,0 andth,0
using Eq.~2.52!: t05tc,01th,01ta1tb .

Denoting byx0 andy0 the correspondingx andy values
defined in Eq.~2.19!, the following two equations forx0 and
y0 are obtained:

y05
~xmax2x0!2R

~xmax2x0!2Rx0
~B1!

and

FIG. 11. Comparison between the polarizationsS1 andS2 as a
function oftc , for ten differentt values, 0.06, 0.08, 0.1, 0.25, 0.5
0.75, 1, 1.25, 1.5, and 2. The solid curves areS1 while the dashed
curves areS2. Superimposed are the values ofS1 and S2 for the
maximalS12S2.
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FIG. 12. Left: The entropy production of the heat engine as a function of the time spent on the cold branch for the fixed valueva

51794, vb54238, Tc5500, Th52500, Gc51, Gh52, andt50.1. Middle: The corresponding cycles. Right: The corresponding pow
Seven cases are shown. Case 00 is the frictionless case when the times spent on the adiabats are zero and case 01 is the frictionle
the times spent on the adiabats,ta andtb , are different from zero and equal to 0.01. The other five cases are with increasing friction,
alsota5tb50.01, whereas the different friction coefficientss are for plot 1,s50.003, for plot 2,s50.004, for plot 3,s50.005, for plot
4, s50.006 and for plot 5,s50.007.
le
e
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th
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tios

ht
Gcx0@~12y0!~12y0xmax!#5Ghy0@~12x0!~xmax2x0!#,
~B2!

whereR is defined as

R5
s2va~1/ta11/tb!

~vb2va!~Sh
eq2Sc

eq1s2/ta!
~B3!

andxmax was defined in Eq.~2.29! as

xmax5
~Sh

eq2Sc
eq!2s2/tb

~Sh
eq2Sc

eq!1s2/ta

. ~B4!

The quadratic equation to be solved forx0 is

Ax0
21Bx01C50, ~B5!

Where A5Gh(11R), B52$Gh@(11R)(xmax2R)1xmax#
1Gc(11R2xmax)% andC5Gh(xmax2R)xmax.

APPENDIX C: ENTROPY PRODUCTION

1. Heat engine

DS cycle1
u 52~QAB /Th1QCD /Tc!, ~C1!

or from Table I

DS cycle1
u 5~va /Tc2vb /Th!~S12S2!1

s2va

Tc
~1/ta11/tb!.

~C2!

The entropy production results are shown in Fig. 12. The
figure showsDS u with increasing friction. The middle figur
shows the corresponding cycles, while the right figure sh
the corresponding power values.

The reciprocal behavior of the entropy production and
power is clear from Fig. 12. One also observes that for
given cycle time the ‘‘free’’ time for the cycles becom
more restricted with increasings. This follows from the de-
pendence oftc,min on s. See also Fig. 3.

Introducing Eq.~2.28! into Eq. ~C2!, the entropy produc
tion becomes
ft

s

e
e

DS cycle1
u 5~va /Tc2vb /Th!~Sh

eq2Sc
eq!F~x,y!1DS s1

u ,
~C3!

where

DS s1
u 5s2

1

~12xy! S va

Tc
~12x!~1/ta1y/tb!

1
vb

Th
~12y!~x/ta11/tb! D , ~C4!

Notice that DS s1
u is always positive. Fors50 Eq. ~C4!

reduces to the frictionless results@20#.

2. Heat pump

The entropy production for the heat pump becomes

DS re f
u 5S vb

Th
2

va

Tc
D ~S22S1!1s2

vb

Th
~1/ta11/tb!

5S vb

Th
2

va

Tc
D ~S2

eq2S1
eq!F~x,y!1s2F~x,y!

3Fvb

Th

1

12x S 1

ta
1

x

tb
D1

va

Tc

1

12y S 1

tb
1

y

ta
D G .
~C5!

The asymptotic entropy production asTc tends to zero can
be calculated, leading to

DS re f
u 5F~x,y!F S vb

2

4kBr2Tc
2D @12r~va /vb!#2

1s2S vb

rTc

1

~12x!
~1/ta1x/tb!

1
va

Tc

1

~12y!
~1/tb1y/ta! D G . ~C6!

SinceTh5rTc , the right-hand side of Eq.~C6! tends to a
constant, for each term depends on the constant ra
(vb /Th),(va /Tc). This result is demonstrated on the rig
side of Fig. 10.



eter

s

nt only at

PRE 61 4789PERFORMANCE OF DISCRETE HEAT ENGINES AND . . .
FIG. 13. Left: The optimal heat flow for the heat pump as a function ofvb , showing the saturation phenomenon. The fixed param
values are, for triangles,Th564.5725,Tc512.9145,va511.9233, starting withvb5150; for squares,Th542.908 15,Tc58.581 68,va

57.949 86, starting withvb5100; for circles,Th523.599 05,Tc54.719 81,va54.372 47, starting withvb555. The common parameter
for all three figures areta5tb50.01, s50.005,Gc51, Gh52. Right: The optimal heat flows as a function oftmax, the time at which the
optimum is achieved. The fixed parameter values are the same as on the left. We note that the optimal time is becoming consta
saturation.
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The optimization with respect to time allocation has t
same result as for the heat engine. Therefore, only optim
tion with respect to the fields is presented. Equating to z
the derivatives with respect tox andy of the entropy produc-
tion, one gets two equations similar to the total work deriv
tives:

~12yxmax!

~va /Tc2vbTh!
~DSeq1s2/ta!cosh2S va

2kBTc
D

1
12y

~4kBTc!
>0, ~C7!

~xmax2x!

~va /Tc2vbTh!
~DSeq1s2/ta!cosh2S vb

2kBTh
D

1
12x

~4kBTh!
>0, ~C8!

whereDSeq is Sh
eq2Sc

eq .
Equations~C7! and~C8! show that the entropy productio

is a monotonic function in the allowed range, namely, fo

va

Tc
.

vb

Th
. ~C9!

To conclude, the entropy production has a minimu
valueDS min

u , which will be for the heat engine

DS min
u 5

va

Tc
s2~1/ta11/tb! ~C10!

obtained on the boundary of the range.
a-
ro

-

APPENDIX D: THE TOTAL WORK DONE
ON THE SYSTEM FOR THE HEAT PUMP

The total work done on the system becomes

W cycle3
on 5~vb2va!~S22S1!1s2vb~1/ta11/tb!

~D1!

or

W cycle3
on 5~vb2va!~S2

eq2S1
eq!F~x,y!1Ws3 , ~D2!

where

Ws35
s2

~12xy!
@vb~12y!~1/ta1x/tb!

1va~12x!~y/ta11/tb!#

5s2F~x,y!F vb

12x S 1

ta
1

x

tb
D1

va

12y S 1

tb
1

y

ta
D G .

~D3!

Equation~D1! can be interpreted as the work done on t
working fluid ~cf. Fig. 2!, the sum of three positive area
(vb2va)(S22S1), s2vb(1/ta), and s2vb(1/tb), with the
corresponding cornersD,C,B1,A1, B,B1,S2 ,S3, and
A1,A,S4 ,S1.

APPENDIX E: THE OPTIMAL COOLING STRATEGY
CLOSE TO THE ABSOLUTE ZERO TEMPERATURE

The first step in the cooling strategy is to create the fi
optimal quartet.~1! The system external parameterss, ta ,
tb , Gc , andGh are set.~2! A decreasing set ofvb is chosen.
~3! A constant ratio (r) for Th /Tc , is chosen, which is the
ratio of the initial bath temperatures.~4! For the above cho-
sen values, the optimal values ofva , Tc , andt, and their
optimal allocations between the branches to give maxim
QF are found for eachvb in the set in~2!, by solving nu-
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merically the following additional equation to Eq.~3.4!, with
the condition thatTh5rTc :

]QF

]Tc
5

F~x,y!

4tkB
S va

Tc
D 2S 1

cosh2~va/2kBTc!

2
vb

rva cosh2~vb/2rkBTc!
D50. ~E1!

The above strategy causes a decrease ofTh together with
Tc . Nevertheless, according to~ii ! in Sec. III C above, the
doubletvb andTh can be rescaled to increaseTh back to its
original value. The solid curves of Fig. 9 are optimal in t
sense described above. Increasingonly the value ofvb in the
optimal quartet according to point~iii ! in Sec. III C, leads to
larger values of the cooling rate, but eventually the incre
of QF will slow down and saturate. See Fig. 13 and t
dashed curves of Fig. 9. Figure13 represents the satura
phenomenon onvb . Three points from Fig. 9 are chose
a

ys

pp

n.
e

on

and all parameters are fixed exceptvb , which is allowed to
increase.

In order to approach the upper bound forQF in Eq. ~3.6!,
a decreasing set ofva /Tc is created, achieved in an optima
way. The first step is that after having an optimal quartet,Tc
andTh are fixed. Then, by loweringvb , one finds the cor-
responding optimalva values. This procedure is checke
globally, by also iterating the time allocations. The results
a typical example are shown in Table V.

In the second step, using again the property of extensiv
the cooling will be achieved by multiplying the rows o
Table V by a decreasing sequence, e.g., by 22n for the nth
row. Table VI describes the cooling strategy, checking a
the nondivergence of the entropy production for both
frictionless case and the case with friction. The results
also summarized in Fig. 10. Table V demonstrates that
procedure shifts down to the Carnot bound. The ratioR
5(vb /Th)/(va /Tc) was computed and showed only sma
changes.
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