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Numerical studies of flames in wide tubes: Stability limits of curved stationary flames
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Flame dynamics in wide tubes with ideally adiabatical and slip walls is studied by means of direct numerical
simulations of the complete set of hydrodynamical equations including thermal conduction, fuel diffusion,
viscosity, and chemical kinetics. Stability limits of curved stationary flames in wide tubes and the hydrody-
namic instability of these flameghe secondary Darrieus-Landau instabjligre investigated. The stability
limits found in the present numerical simulations are in a very good agreement with the previous theoretical
predictions. It is obtained that close to the stability limits the secondary Darrieus-Landau instability results in
an extra cusp at the flame front. It is shown that the curved flames subject to the secondary Darrieus-Landau
instability propagate with velocity considerably larger than the velocity of the stationary flames.

PACS numbeps): 47.20-k, 82.40.Py

I. INTRODUCTION <3R;[5,8]. The analytical theory of curved stationary flames
has been developed in R¢B], where it was obtained that
As is known[1,2], the curved shape of a premixed flame the velocity of a curved stationary flame in an ideal tube
front results in increased velocity of flame propagation independs on the tube widthand on the expansion coefficient
comparison with the velocity of a planar flang , since a  of the fuel® as
curved flame has a larger surface area and consumes more
fuel per unit time. Quite often a curved flame shape develops
due to the hydrodynamic Darrieus-LandéDL) instability
inherent to any flame in a gaseous fuel mixt[B¢ Accord-
ing to the linear theory of the DL instabiliti4], two- and  with the maximal velocity amplification
three-dimensional perturbations of a planar flame front grow
exponentially in time and bend the front, if the perturbation ) (0—-1)2
wavelength exceeds the cut-off wavelenyth The instabil- Un=Ur5 g3792730 -1 2
ity growth rate depends on the expansion coeffict@mf the

flame defined as the ratio of the fuel density to the density of _
the burnt matter, which takes the valu®@s=5-10 for labo- and M =In{R/(2Rc) + 1/2). The dependence of the scaled

ratory flames. The cutoff wavelengtty, is proportional to flame velocity on the inverse tube width found analytically is

the flame thickness with a large numerical factor about 2 resented in Fig. 2 by the solid line. An important feature of
. 9 he obtained formulas is existence of a maximal velocity of a
and larger. Perturbations of a shorter wavelength\ ;. are

suppressed by thermal conduction. If one considers develo gurved stationary flame in a 2D configuratiot ) ma,=Us
PP yt - ' L p+Um, that cannot be exceeded with increase of the tube
ment of the DL instability at a flame front propagating in a

: . - . ) . width. The analytical results of Egél) and(2) are in a very
two-dimensional2D) tube with ideally slip and adiabatical ; : o 7
walls, then the instability occurs for a tube width exceedinggOOd agreement with the velocity amplification found in di

the critical valueR.=\./2, since the width of an ideal tube

R. Re
Uy—Ui=4UM 2| 1-M = |, (1)

determines half of the maximal possible perturbation wave- e o
length[5]. o~ I

Outcome of the DL instability at the nonlinear stage has PR ]
been a subject of long discussions starting from the original
papers by Darrieus and Landau. First it was assumed that the O ‘0‘4' B L T,

DL instability leads to flame self-turbulizatiof8]. Then it
was proposed that the instability results in a smooth curved
stationary shape of a flame front instead of the self- F|G. 1. The shape of a stationary curved flame with the expan-
turbulization[6,7]. Curved stationary flames like that shown sjon coefficient® =8 in a tube of widthR=1.8R, . The isotherms

in Fig. 1 have been observed in numerical simulations otorrespond to the temperatures from 600 to 2100 K with the step
flame dynamics in 2D tubes of moderate widtRs<R 300 K.

z/R
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0 0.2 0.4 0.6 0.8 1 value of the wavenumber in Fourier-space, and the numerical
R /R coefficientsC,, C,, andC3; may be found in scope of the

linear theory of the DL instability17]. Particularly, one has

FIG. 2. Scaled velocity of a 2D curved stationary flame in an\ .=27C5L;. The simbol ¥, stands for nonlinear time-
ideal tube vs the inverse tube width obtained from the analyticaljependent terms of the equation. Stability investigation of
formula Eq.(1). The dashed line presents flame velocity for the cyryed stationary flames on the basis of E?). has shown
symmetric flame shape. The markers show results of numericahat curved stationary flames do become unstable in suffi-
simulations of Ref[5] (triangles for® =_3, circles for® =5) and of ciently wide tubesR>R,,, where the critical tube widtR,,
the present papesquares for® =6, diamonds for® =8, crosses  characterizes the stability limits with respect to the second-
for ©=10). ary DL instability. It has been obtained that the stability limit

R, depends on the expansion coefficient of the flame being

rect numerical simulations of flames in moderate tubes wittalso proportional to the critical tube width of the primary DL
ideally slip and adiabatical wallgs] shown by circles and instability R.. Below we shall call the valu®,, the second
triangles in Fig. 2. critical tube width to distinguish it from the first critical tube

However, curved stationary flames like that shown in Fig.width R. It has been found in Ref16] that the second
1 cannot happen in reality in very wide tubes. Indeed, as theritical tube width is abouR,,/R.~4.2 for flames with re-
tube width goes to infinity, the radius of curvature of thealistic expansion coefficient® =5-10 and this value in-
curved stationary flames becomes infinite too. In that cas€reases as the expansion coefficient goes to unity. Taking
the stabilizing influence of the curved flame shape weakendto account the theory developed in REf2] one can con--
the flame front resembles locally a planar flame and the piclude that the second critical tube_ width becomes |r_1f|n|te
instability should occur on a new scale as discussed in Refw—> for ®—1. It was also found in Ref16] that stabil-
[10]. This secondary DL instability presumably leads to ad-% limits of curved stationary flames do not depend on a
ditional wrinkling of the front and to additional increase of Particular form of the nonlinear time-dependent teifgin
the flame velocity. Theoretical studies of the secondary inEd- (3).

. . In the present paper we perform the first numerical study
stability have been performed mostly on the basis of a non- A ;
i ) " . . of the stability limits of curved stationary flames and the
linear equation for a flame front derived in Rgt1] in the

A : - secondary DL instability. We investigate flame dynamics in
pgcuhgr limit of small expansmn_cogfﬂuen&— 1<1 (the wide tubes with ideally adiabatical and slip walls by use of
Sivashinsky equationThese studies involved much contro- yivect numerical simulations of the complete set of hydrody-
versy, since it was shown ifil2] that curved stationary pamical equations including thermal conduction, fuel diffu-
flames described by the Sivashinsky equation are linearlgion, viscosity and chemical kinetics. The stability limits
stable independent of the radius of curvature of the flametound in the present numerical simulations are in a very good
The last result has been confirmed in later papers based Qyreement with the theoretical prediction[aB]. We show
the Sivashinsky equatidii 3,14}, though it obviously contra-  that the secondary DL instability for tube widths close to the
dicts physical understanding of the secondary DL instabilitystability limits results in an extra cusp at the flame front. It is
[10]. In order to avoid the contradiction it was proposed inalso obtained that the curved flames subject to the secondary
Ref. [13] that curved stationary flames are nonlinearly un-DL instability propagate with velocity considerably larger
stable in wide tubes against perturbations of some finite amthan the velocity of the stationary flames E¢®. and (2).
plitude. Still many questions remained without an answer
even in scope of the idea of the nonlinear instability. Particu-
larly, there was no indication what are the stability limits of |I. BASIC EQUATIONS AND THE NUMERICAL SCHEME
curved stationary flames with respect to linear or nonlinear

perturbations. Besides, it was claimed in Réf5] that it is We solve numerically equations of hydrodynamics and
impossible to describe correctly the secondary DL instabilitychemical kinetics. For the sake of simplicity a single irre-
using the Sivashinsky equation. versible reaction is admitted, so that the governing equations

A nonlinear non-stationary equation for curved flames@re the following:
with arbitrary large expansion coefficients has been derived
recently in Ref[16]. The complete form of the equation is P P
rather complicated, but for a flame fromt=F(x,t) — Ut _p+ _ =0 4
N . (pux) =0, (4)
with thicknessL¢ it may be presented as gt Xk
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9 9 independent of the activation energy of the reactibr9].
5 (U + 0_)(k(Puiuk+ SikP— oK) =0, (5)  Therefore, in all simulations we keep the same scaled value
of the activation energ¥/(®ORyT)=7.
9 p The calculations consisted of the following stages similar
E(pe+ spuUu) + ﬁ[puk(th FUU;) — o+ k] =0, to the calculations performed [8]. First we ignited a planar
k stationary flame. To maintain the planar flame at the center

©) of the tube close to the poiat=0 we imposed the following
P P n Y boundary conditions in the incoming flow of the fuelzt
—(pY)+ —(pukY— Le— —) =—exp(—E/RyT), —-Z,: T=T¢, p=p;s, U,=U¢, u,=0, Y=1. Similar bound-
o X Pr Xy R ary conditions for the outgoing uniform flow of the burnt

matter g=+2.,) follow from the conservation laws of

whereY is the fuel mass fractiore=QY+C,T is the inter- Mass, momentum and energy. When a planar stationary
nal energy anth=QY+C,T is the enthalpy. We consider a flame is established, we impose 2D perturbatlonSNat the flame
reaction of the first order with the energy reles@eThe  front U, — U, +T,(X,2), where  T,(x,2)
temperature dependence of the reaction rate is given by the Uz(2)Ao cos@x/L)exp(— = Z/L?) with the initial dimen-
Arrhenius law with the activation enerdgyand the constant Sionless perturbation amplitude,=10"°. The small pertur-
of time dimensionrg. The stress tensor and the energy dif- Pations grow because of the DL instability until the flame
fusion vector are given by the formulas acquires a curved shape. As the curved shape of the flame
develops, the flame velocity increases and the flame front
du; du, 2 4y, pushes weak pressure waves. To avoid undesirable reflec-
Oik= 77((9_xk + a3 5“23_)(,)’ @) tions of the pressure waves at the ends of the computational
domain we used special precautions describgdjn
” oT aY We carried out the numerical simulations using 2D hydro-
CIk=—5r(Cp(9—Xk+|—eQa—Xk), (9 dynamic Eulerian code based on the cell-centered finite-
volume scheme which was described in details previously

where Pr is the Prandtl number and Le is the Lewis number5,18,19. We used a rectangular grid imposed on the finite
Since the transport properties of the fuel do not influence th€omputational domain with boundaries zt*Z.. in the
nonlinear stage of the DL instability of a flame front in a longitudinal direction, withZ.. being 51Q.¢. The size of the
tube with ideally slip and adiabatical wall$,9], then we Mesh in the vicinity oz=0 was adjusted to the structure of
consider the fuel with a constant coefficient of thermal con-the flame front. Along the axis we used nonuniform grid: in
duction, constant Prandtl number and unit Lewis numbeghe domain—40L¢<z<40L the grid step was constant
Le=1. We take the gas mixture under consideration to be &.2-¢, but outside that area the step increased gradually with
perfect gas of molecular weight with the equation of state factor 1.18. In the transverse direction the grid was uniform
P=RgpT/m. We choose the axis directed along the wall With the stepR/N with N=20 for narrow tubes withR

and the axisx in the transverse direction. An infinite length <2R. andN=30 and more for wide tube&8>2R. . In order

of the tube is assumed, which is achieved in simulations byo check if the number of the grid points in the transverse
an appropriate choice of the computational intervals. Thelirection is sufficient we performed some calculations in
boundary condition at the ideally adiabatical and slip wallswide tubes withN=40. However the larger number of grid
of the tube of widthR may be written as points did not lead to any noticeable change in the results.
On the contrary, if one takes= 20 for wide tubes, then the
physical results of calculations do change though not drasti-
cally, but noticeably. Particularly, for a flame wiéh=8 one
obtains the stability limiR,~ 3.8R, for N=20, while calcu-
The initial temperature of the fuel i$;=300 K and the lations withN=30, 40 giveR,~4.2R. in that case.

pressure ifP;=10° Pa. The viscosity coefficient of the fuel
is 7=1.82x10 °Ns/n? with the molecular weightm
=2.9x 103 kg/mol and the specific he&,=7Ry,/2m. The
velocity of a planar stationary flamé; is determined by the The main dimensionless parameters that determine dy-
chosen values of the chemical parameters of the fuel. We ameamics of curved flames in ideal tubes are the expansion
interested in dynamics of a slow flame with a velodily  coefficient of the flame® and the scaled tube widiR/R;.

much less than the sound sperd We choose the chemical Present numerical simulations of flame dynamics in narrow
parameters of the fuel in such a way that the flame propatubes R/R.<1 and tubes of moderate width<lR/R.<3
gates in an almost isobaric regime with the Mach numbedemonstrate results similar to the previous simulatifBis
M=U;/cs=0.01. Then the main parameters of the simula-and to the analytical theor|9]. We have obtained that in
tions are the tube widtR and the expansion coefficiefl. narrow tubesR/R.<1 the DL instability is suppressed by
For the case of isobaric flames the expansion coefficient ithermal conduction. Even if we impose initial perturbations
determined by the energy release in the reactt®dr1  of an appreciable amplitude, after some transitional time the
+Q/(C,T). When the velocity of a planar flame is known, perturbations vanish and the flame propagates as a planar
the thickness of the flame front may be calculated by thdront.

formula L= n/(Prp;Us). Development of the DL instabil- In tubes of a moderate width<lR/R.<3 the DL insta-

ity at the nonlinear stage in the case of unit Lewis number idility develops and leads to a smooth curved stationary flame

JT
u,=0, u,#0, 5:0 at x=0R. (20

Ill. SIMULATION RESULTS
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front like that shown in Fig. 1. The flame front may be de- Lo
scribed as a hump directed towards the fresh fuel mixture
and a cusp pointing to the products of burning. The markers
(squares, diamonds and crogsesFig. 2 show the velocity
amplification for flames with different expansion coefficients
versus the inverse scaled tube width obtained in the preser 0.0
simulations. As one can see in Fig. 2, in agreement with the -
analytical theory[9] the velocity of the curved stationary 1.0
flame is equal to the planar flame velocity fR<R.. In-
crease of the tube width leads to increase of the flame veloc
ity until it reaches a local maximum. The analytical nonlin-
ear theory[ 9] predicts the local maximum for the tube width
equal to the doubled first critical vall=2R.. The point of
the first local velocity maximum of a curved stationary flame &
is also a special point in the linear theory of the DL instabil- * 1.0
ity [4]. According to the linear theory perturbations of a
small amplitude at a planar flame front have the largest pos:
sible instability growth rate for the tube of widlR=2R,. 0.5
The maximal velocity amplification for curved stationary
flames depends on the expansion coefficient of the fuel: the
larger the expansion coefficient, the stronger the DL instabil-
ity and the larger the velocity amplification. The calculated 1.0
values of the maximal velocity amplification are in a very
good agreement with the analytical formula E2).

Absolutely new effects of the secondary DL instability 0.5
quite different from those observed in the previous simula-
tions [5] and predicted by the theory of curved stationary
flames[9] have been obtained in the present numerical simu- 0-01
lations in the case of a sufficiently wide tube. In order to
describe these effects it is convenient to use Fourier expan-
sion of the isotherms of a flame front and to study time FIG. 3. Evolution of a flame front with the expansion coefficient
history of the amplitudes-,(t) of the Fourier harmonics. ®=8 in a tube of widthR=4.6R.. The isotherms correspond to
Since all isotherms are parallel to each other with a goodhe temperatures from 500 to 2100 K with the step 400 K at the
accuracy, then it does not matter which of the isothems time instantstU;/R=2.1, 2.9, 3.5, and 7.4, (b), (c), and (d),
=T* one chooses to study. An isothemw F(x,t) is calcu-  respectively.
lated from the equatio(x,z,t)=T* and then the ampli-
tudesF,(t) are determined af(x,t)=2F,(t)cosfimx/R). lution of the Fourier harmonics in Fig(&. The peak of the
The isotherms of a flame front with the expansion coefficientamplitudes is accompanied by abrupt increase of the flame
® =8 propagating in a tube of widtR=4.6R. are shown in  velocity [Fig. 4(c)]. However, this state of the flame is not
Fig. 3 at different time instants after initiation of the DL stationary. As one can see in Fig. 4, the amplitude of Fourier
instabilitytU;/R=2.1, 2.9, 3.5, and 7.4. The respective time harmonics and the flame velocity oscillate. From the point of
history of the amplitudes of the Fourier harmonics and theview of flame isotherms the pulsations imply change of
velocity amplification is presented in Fig. 4. As one can sealepth of the cusps at the flame front with the characteristic
in Figs. 3@ and 4a), in the beginning the flame front flame shape shown in Fig.(d). Though the pulsations on
evolves similar to the case of curved stationary flames. Th&ig. 4 are shown only up toU;/R=28, a similar regime of
first Fourier harmonic grows exponentially in time and in- pulsations have been actually observed in the simulations for
duces growth of other harmonics due to the nonlinear interthrice longer time. The secondary DL instability results in
action. As a result the flame acquires a shape similar to thatonsiderable growth of the second Fourier harmonic, while
shown in Fig. 1 with a well distinguished hump and cusp.the first harmonic looses its dominant role. As a rule, the new
The only difference of the flame in Fig(& from the sta- extra cusp developing at the flame front has noticeably larger
tionary flame presented in Fig. 1 is a much flatter humpdepth than the first one. The final shape of the flame front in
Figure 3a) corresponds to the time instant when the ampli-Fig. 3(d) is quite different from the shape of curved station-
tude of the first Fourier harmonic reaches its maximum. Theary flames observed if6] and described by the analytical
flat hump in Fig. 8a) resembles locally a planar flame front, theory[9]. First indication on the described above changes of
which leads to development of the secondary DL instabilitya flame shape in wide tubes has been obtaing¢g0hfor the
at the front. As one can see in FigbBan extra cusp appears case of fast nonisobaric flames with rather large Mach num-
on the flat part of the front next to the center of the tube bers of the incoming flow. Similar oscillations of the curved
starts growing and shifting in the direction of the hump. Thisflame velocity have been also obtained 2] in one of the
leads to additional strong bending of the flame front, until acalculation runs for the case of periodic boundary conditions
new large cusp is formed near the wigfig. 3(c)]. This ex-  with the period\ =4.25\.. This period of flame structure is
treme flame shape corresponds to the sharp peak in the ewery close to the stability limit of curved stationary flame,
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FIG. 4. The time history of the scaled amplitude of the first three 0'0_1 1
Fourier harmonic§(a), curves 1, 2, Band the scaled flame velocity 1.0
(b) in a tube of widthR=4.6R.. The expansion coefficient of the [
flame is®=8. C
0.5 N
found in the present paper. The small deviation of the results L
[21] from our results may be explained by somewhat lower C

calculation accuracy of the mentioned simulations, which 0.0
leads to smaller stability limitésee discussion at the end of

the previous section One more comment should be given
concerning Figs. 3 and 5. The adiabatic boundary condition |G, 5. Evolution of a flame front with the expansion coefficient
at the walls requires that flame isotherms should touch the) =6 in a tube of widthR=4.6R.. The isotherms correspond to
walls at a right angle, which is not obvious for some of thethe temperatures from 500 to 2100 K with the step 400 K at the
isotherms at the figures. However, the “smashed” righttime instantstU;/R=2.5, 3.9, 4.8, and 8.8(a), (b), (c), and (d),
angle for these isotherms results from smoothing of theespectively.

curves on the figures and has nothing to do with numerical

accuracy of the calculations. valueR>4.2R.. The critical valueR,=4.2R. represents the

However, the described above scenario of the secondastability limit of a curved stationary flame with the expansion
DL instability is not the only possible one. For example, in coefficient® =8. Similar dependence of the velocity ampli-
the case of a flame in a tube of the same width4.6R. but  fication on the tube width has been obtained for flames with
with smaller expansion coefficief =6 (see Figs. 5 and)6 other expansion coefficients. Particularly, the additional ve-
the extra cusp arising near the center of a t{iBig. 5b)] locity amplification has been observed for flames with the
shifts not in the direction of the hump as in the previous cas@&xpansion coefficient® =10 for a tube width R>R,,
but to the cusp. This causes additional stretching of the cusp 4.3R. (shown by circles in Fig. 7and for flames with the
while the front retains its original shapeig. 5(c)]. This case expansion coefficient® =6 for a tube width R>R,,
is also characterized by rapid increase both of the amplitudes 4.4R_. (shown by triangles in Fig.)7 The stability limits of
of Fourier harmonic$Fig. 6] and of the velocity amplifi-  curved stationary flames found numerically in the present
cation[Fig. 6(b)]. But after short time the flame front also simulations are compared to the theoretical predictions of
acquires its new shagéig. 5d)] similar to that described [16] in Fig. 8. As one can see in Fig. 8 the numerical and
above[Fig. 3(d)]. Itis interesting to note, that in the last case theoretical results are in a very good agreement.
the final flame shape is practically stationary.

Another important point is that the new shape of the flame
front leads to considerable increase of the flame velocity in
comparison with the velocity of curved stationary flames de- Simulations of the present paper demonstrate that curved
scribed in[5,9]. The velocity amplification for flames with stationary flames in tubes with ideally slip and adiabatical
the expansion coefficien® =8 versus the tube width is walls become unstable as soon as the tube width exceeds
shown in Fig. 7 by diamonds. Careful investigation of flamecertain critical valueR,,. For flames with realistic expansion
dynamics in tubes of different widths for a fixed expansioncoefficients the second critical tube widf, is approxi-
coefficient of the fuel® =8 shows that the additional veloc- mately four times larger than the first critical tube widRp,
ity amplification and the described changes in the flamédor which the DL instability overcomes the stabilizing influ-
shape take place for the tube width larger than some criticaénce of thermal conductioRR,,/R.=4.2—4.4. The obtained

)
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The dashed line shows the estimation taking into account the theory
from Ref.[12].

2
FIG. 6. The time history of the scaled amplitude of the first three

Fourier harmonic§(a), curves 1, 2, Band the scaled flame velocity

(b) in a tube of widthR=4.6R.. The expansion coefficient of the
flame is® =6.

U U] 14 2 (0-1)°
vt 2 9%+02+30-1

(11)

for the tube widthR,<R< RfV/RC. According to the esti-
mate Eq.(11) the characteristic amplification of the flame
stability limits of the curved stationary flames are in a veryvelocity due to the secondary DL instability i, /U¢=1.6
good agreement with the theoretical predictioRg /R,

for®=6,U,,/U;=1.76 for®=8 andU,,/U;=1.85 for®

=4.2—4.3[16]. In wider tubes the secondary DL instability =10 The respective numerical results for the velocity am-
takes place, which is the next step in the development of thglification areU,,/Us=1.4;1.5;1.7 for® =68;10,which is
instability at a planar flame after the primary DL instability. SOmewhat smaller than the estimate Etf). However, the
While the primary instability results in curved stationary 9rowth of flame velocity with the tube width obtained in

flames for the tube widtlR.<R<R,,, the secondary one
leads to an extra cusp at the flame front for wider tuBes

>R,, and sometimes to pulsations of the flame shape. Th
primary instability amplifies the velocity of a flame front
with a realistic expansion coefficient by the factor about

U, /U;=1.2—1.35 determined by Eq2). Taking into ac-

count physical similarity between the primary and secondar

numerical simulations is not saturated yet. For wider tubes
one should expect even larger flame velocities. Thus accord-

g to the theoretical predictions and to the numerical results

ame velocity is amplified about twice for flames with real-

<16R..

istic expansion coefficients in tubes of widthR4&R

For wider tubes further development of the DL instability

instabilities one should expect that the secondary instabilit)(yS expecte.d leading toa fractal flame structure similar to that
observed in the experimenit82]. In a certain sense one can

leads to amplification of the flame velocity by the factor

FIG. 7. The scaled velocity of a curved stationary flame as a
function of the inverse tube width for different expansion coeffi-

)

U /U-1
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0.7 |
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0.4

RC/R

0.6
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cients:(1) ®=6; (2) 8; (3) 10. The markers show the results of 2D _ _
simulations, the solid lines present the best parabolic approximaand the factob asb,p =R, /R, we find the estimate for the
fractal excessl,y of 2D flames as shown in Fig. 9. The solid

tion.

interpret the fractal structure as spontaneous turbulization of
the flame front. A fractal structure of a flame front implies
cascades of humps and cusps of different sizes imposed one
on another. The fractal flame structure may be described ten-
tatively in the following way. Assuming that every step of
the cascade amplifies the size of the humps and the flame
velocity by the factor$ and 8, respectively, one finds that
the velocity of the fractal flame depends on the largest pos-
sible length scale characterizing flame dynamic§2a%

Uwoc ( I:zmax/ Rmin)du

(12

whered=Ing/Inb is the excess of the fractal dimension
over the embedding dimension. Evaluating the fa@dor
2D fractal flames with the help of EqR),

ﬁZD

0 (0—-1)?
=1+— :
2 0%+02+30-1

(13
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0.4 T the fuel expansion. In the case of 3D flames the DL instabil-
g PP E ity is stronger at the nonlinear stage and a larger fractal ex-
; LT 3 cess over the embedding dimension is expected. The velocity
030 3D - 3 o
i L 1 amplification for 3D flames on every step of the fractal struc-
ture is about twice larger than in the 2D cd424,19,25

= 02F /I » —
- i E L. ©©-1p y
ot S - E Po=1t g3 675301 a4
- : There are no results on stability limits of 3D curved station-
o EX e ary flames yet, therefore the only estimate for the fabtgy
1 3 5 7 9 1 available so far comes from the theory of 2D flames. Adopt-
) ing the estimatd;p~4 in the 3D case we obtain the evalu-

ation for the fractal excess of a 3D flame front shown in Fig.
 FIG. 9. Excess of the fractal dimension over the embeddingg py the dashed line. The estimated fractal dimension de-
dimension as a functllon of the expapsmn coefﬂment. The solid l'nepends also on the expansion coefficient of the flame predict-
presents the evaluation on the basis of the analytical tebB¥| g the values 2.3-2.35 for flames with realistic expansion
and the markers show the evaluation using the present numerical,otficiants. Though the last estimates are very tentative,
Lzsslgts for the 2D case. The dashed line is the estimation for the 3 ey agree well with the experimentally measured values
: 2.33 of the fractal dimension for spherically expanding labo-
ratory flameq22].
line in Fig. 9 presents the evaluation of the fractal excess
made on the basis of the analytical theg®yl16], while the
markers show the evaluation performed by use of the nu-
merical results of the present paper. As one can see, both The authors are grateful to Konstantin Kovalev for useful
evaluations are rather close to each other predicting the fracliscussions. This work was supported in part by the Swedish
tal dimension 1.18-1.22 for 2D flames with realistic expan-National Board for Industrial and Technical Development
sion coefficients. The fractal dimension depends on the exNUTEK), by the Swedish Natural Science Research Coun-
pansion coefficient of the flame increasing with increase ofil (NFR) and by the Swedish Royal Academy of Sciences.
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