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Stationary and drifting localized structures near a multiple bifurcation point
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Localized states embedded in a patterned background are found in numerical simulations of spontaneous
pattern formation in a spin-1/2 atomic system with optical feedback. In the vicinity of a parameter region with
bistability between two homogeneous states large amplitude peaks as well as dark holes exist as stable
localized states on a hexagonal background. Moreover, resonant interaction between oscillatory and stationary
inhomogeneous modes produces a nonstationary background which may force the localized states to drift.

PACS numbe(s): 47.54+r, 42.65.Sf, 82.40.Bj

Multistability of several states in a spatially extended non- Since the system is already described in the literature
linear system may result in the appearance of localized stru¢18-23, we omit here the detailed description. The pattern
tures when a pattern is embedded in a background corrdermation processes are described with the help of the quan-
sponding to a different state. The best known objects areum mechanical equation of motion for the Bloch veator
localized StateE(LS) [1—3], which in different treatments :(U,U,W), representing the magnetization of the Spin_llz
were named also autosolitofd,5], spatial solitong6], or  sodjum ground statf18,19:

“optical bullet holes” [7] in an optical context. In most

cases considered so far, the LS exist on a homogeneous gm=—(y—DA, +P)m—mX Q+e&P (1)
background. Bistability between different inhomogeneous

states can result in the formation of localized pattéir®.  and the classical paraxial wave equation for the light propa-
These can have the form of large area regions with differengation[24]. In Eq. (1), vy is the collision induced relaxation
patterns, which are separated by domain bound@8ied3.  of m D is the diffusion constanty | is the transverse part of
More recently also the existence of small localized patcheg,g LaplacianP denotes the optical pump rate. The vector

of one pattern or even single peaks embedded in a back- =(QX,O,QZ—KP) is a torque vector, whose components

ground corresponding to another pattern was demonstrat . . :
[14,9,10,15—1F are given by the Larmor frequencies corresponding to the

An experimental demonstration of the latter cdkege Cartesian components of the_extemal magnetic field and the
amplitude solitary peaks superimposed on a small amplitudight-shift induced level shiftAP. A is the detuning be-
hexagonal latticewas recently given in an optical system tween the incident field and the atomic transition, normalized
[16]. The observations were related to the simultaneous odo the homogeneous linewidth, (half width at half maxi-
currence of a modulational instability and bistability betweenmum). The pump rateP is taken to be proportional to the
two homogeneous states. In this paper, we are going to irsum of the intensities of the forwardg) and the backward
vestigate theoretically a related optical system in more detailE,) waves:
in which different (stationary and nonstationanperiodic
patterns exist close to a region with bistability between ho- | eel?
mogeneous states and may serve as a background for LS's P:(|EO|2+|Eb|2)#’

) . Ah°T 5(A+1)
These different background patterns can be selected by tun-

ing a single stress parameter. whereu, denotes the dipole matrix element of the transition.

In our system, pattern formation is due to the nonlinearrhe packward field is related to the incident one by
interaction of an intense light field with sodium vapor in an

external magnetic field. The transmitted light is fed back into Ep= JRe AL Ikog =1 xin(1=wW)kol 2E ®)

the vapor by a distant plane reflectaf. Fig. 1). During the

propagation to the mirror and back different points in thewhere the first exponential factor results from the formal
transverse cross section of the beam are coupled by diffrasolution of the paraxial wave equation describing the light
tion. The interaction between the vapor and the light can bgropagation over the distancel detween the cell and the
controlled in a wide range by parameters such as the lighmirror (reflection coefficienR) and back. The second expo-
frequency or the magnetic field which are easily accessible in

experiments. In this paper the parameters are chosen to ob- E B mirror

tain different overlapping instabilities: modulational insta- laser 9»

bilities which generate periodic patterns of different length > ——)

scales, bistability of the homogeneous state, and a pattern- beam x| <Ey

forming Hopf instability. The physical reason for the latter

instability is the Larmor precession of the magnetization of
the Na atoms. FIG. 1. Schematic diagram of the considered optical system.
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Hopf <>J‘\H FIG. 3. (a) Localized pattern from the domain of Fig. 2 dem-
08t ap d onstrating stable bright localized states on the static hexagonal
l ‘ ‘ ‘ background(b) A snapshot of localized states on the nonstationary
) 06 0.8 ] 10 winking hexagon background from th@ domain of Fig. 2.(c)
P, (10%y) Localized pattern from thé domain demonstrating black holes on

the background of positive hexagons. The white region®jirand

. . b) are overexposed in order to emphasize the background.
FIG. 2. Steady-state orientatianversus external pump rate for () P P 9

the parameterd =8, R = 0.915,1=15 mm, ,/27= 100 kHz,  ing a grid of 128<128 points, but all results discussed in this
0,/2m=9 kHz, d=100 mm, andD=180 mnt/s. The intervals  grticle have been cross-checked on a larger grid with 512
with formation of stationary patterns are marked by thick solid linesy 512 points. Below we describe the results of numerical

and diamonds$Hopf instability). The intervals | and 1l are separated simulations and discuss the developed spatial structures on
near the minimum of the nonlinear resonance where only Hop e basis of a linear stability analysis

modes are unstable. The interval Il is not essential for the matter o
this paper. Domaing, B, and?d correspond to different types of
localized patterns.

a domain If we increase the control parameteg up to
the level of thea domain in Fig. 2 static positive hexagons
emerge out of the random initial noise. We will refer to these
. i ) . ) .. hexagons as small-scale ones, because their wavelength is
nential factor is responsible for the light propagation withingmgjier than that of the structures due to the other instabili-
the nonlinear medium with a susceptibiligf,(1—w). koIS  ties. These small-scale stationary hexagons are stable almost
the wave number of light in vacuunhis the length of the i the whole interval where the homogeneous state is also
nonlinear mediuni25]. As a control parameter we consider ynstaple versus the Hopf bifurcation. We are able to produce
the pump rateP, introduced by the forward beamP§  pyright peaks on the background created by these stationary
~|Eql?). o ) small-scale hexagons by increasing the param@tefor a

_In our situation, pattern formation takes place under spesnort period in arbitrarily chosen domains of the transverse
cific conditions, as it can be seen from the steady state chagyiq. Figure 3a) shows the transverse distribution of the ori-
acteristic(SSQ in Fig. 2, where the steady homogeneousgntationw resulting from this simulation. A comparison of
solutionw is plotted versu®,. A bistable characteristic oc- the amplitudes of these peaks with the SSC in Fig. 2 reveals
curs when a specific condition of nonlinear resonance is fula localized switching to a state close to the upper bistable
filled, i.e., the action of the longitudinal exteﬁal field is state.(Note that the upper homogeneous state does not exist
“cancelled” by the light induced level shift@,~AP) [22].  for these parameters, but as it has been discussed quite re-
Regions of the SSC where the homogeneous steady statedsntly [26,27], the interaction between the homogeneous
unstable against perturbations by spatially dependent statibode and the pattern forming mode in the vicinity of an
(denoted by I, II, and Il in Fig. 2or Hopf modes are de- interval of bistability can create additional homogeneous so-
picted by thick solid lines or diamonds, respectively. Thelution branches and thus can effectively widen the bistability
spatial wave numbers of the structures due to the Hopf indomain) lllumination with a rather broad transverse pertur-
stability and the static-Il instability are approximately the bation does not produce a spatially smooth state, but several
same, while the static-1 instability produces a structurebright peaks appear which can form amorphous clusters
whose wave number is about 1.7 times larger than the formewithout an internal order, like those presented in the central
ones. As a result, resonant interaction of these modes occupart of Fig. 3a). Comparing the profile of a localized struc-
when the sum of the wave vectors of the modes with smalleture with the profile of a constituent of the hexagonal pattern
wave numbers is in resonance with a mode with a largebelonging to instability region I[similar to Fig. 3c)] we
wave number. This is the reason for a secondary instabilitfind that they virtually coincide from the peak to the back-
from hexagons tailtrahexagong18,20 and for the emer- ground of the hexagonal constituents. However, the back-
gence ofwinking hexagong21] in our system. ground is considerably lower for LS in tkedomain. There-

Carrying out simulations in the vicinity of the minimum fore we conclude that the bright large amplitude peaks in

of the nonlinear resonance we have found different domainfig. 3(a) are due to a manifestation of the static-Il instability.
(a,B,6 in Fig. 2) where different kinds of localized struc- Concluding the discussion of the domain we note that the
tures occur. The results of numerical simulations have beemain characteristics of the LP here are as follows: The pat-
verified using different integration schemésxplicit, hop-  terns are stationary and the background for large amplitude
scotch, alternating-direction-implicit integratioto treat the peaks is a small-scale positive hexagonal pattern.
Laplacian term in the Bloch equations. The diffraction op-  g-domain In this case, the background for LS is a non-
erator has been treated with a spectral method and a fastationary pattern produced by resonant interaction of the
Fourier transform. Periodic boundary conditions have beestatic-1 and Hopf instabilities. As discussed in Refl1,23),
imposed. Most of the simulations have been carried out usthe sum of the wave vector of two Hopf modes with tempo-
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ral frequencied) and — ) and spatial wave numbéde can We have carried out numerical simulations for the case of

coincide with the wave vector of a static mode with a spatial©n€ spatial transverse dimension and found that the traveling
wave numbeg=3k. A pattern created by two resonantly and standing waves emerging due to the pattern-forming

coupled hexagonal triads of static and Hopf modes has beeﬁgpf instability coexist in thes domain. Also, farmation of

namedwinking hexagong21] and was obtained in numerical has been obtained on a background consisting of travel-
; : ghexag ; - " ing as well as standing waves. The nonstationary hexagons
simulations starting from suitable initial conditions.

. . . composed of three traveling or standing waves are a natural
In Fig. 3b) an example of a Iocahze_d I_arge amplltudel eneralization of the one-dimensional waves for the case of
peak on a background created by winking hexagons gy, transverse dimensions. In view of the recent study of
shown. As in thea domain, these LS have been createdpistapility between traveling and standing waves in a gener-
numerically by a local increase &, for a short period of  alized complex Swift-Hohenberg equatif#0], it is not sur-
time. The peaks seem to be of the same origin as the ones fising that we observe bistability between different kinds of
Fig. 3(@. The main change is the type of the backgroundnonstationary hexagons. In simulations, the visual difference
pattern. Therefore the structures appearing inghdomain  between them is that in the case of thimking hexagons, the
are classified as localized peaks appearing on a backgrousdme pattern appears shifted in the transverse plane after 1/3
of nonstationary hexagons. and 2/3 of the oscillation period, whereas a standing pattern
The image in Fig. @) is only a snapshot. Together with only reproduces itself after the full oscillation period.
the oscillating small amplitude constituents forming the & domain At higherP, (& domain, cf. Fig. 2 large am-
winking hexagons the large amplitude peaks drift on theplitude hexagons create a background for localized patterns
background, however, with a very small velocigompared Which are dark spots in this case. Figure)3vas calculated
to the oscillatory dynamics of the background/e associate by starting the simulation with a perfect hexagonal pattern as
this slow time scale of the drift motion with the small relax- the initial condition and decreasing the local intensity in
ation constanty (of the order of s%) while the Hopf fre- SOMe regions for a short period of time. Examining the trans-
quency is of the order of the Larmor frequer(ogns of kHa. verse distribution of orientation we find thgt the offset level
It is well known that the sum of the phases of the mode f the hexagonal lattice lies in the domain of the unstable

composing the principal hexagon triad is a main characterisg Y20,y 0 CIEMECARER B T 2 B U SR R TR
tic for hexagonal structures. For ideal positive and negativ )

h thi is 0 tivelvITh | She zero homogeneous mode determining the offset level of
exagons this sum is 0 and respectively[The sum equa the hexagonal pattern is modified through interaction with
to O corresponds to the case of the small-scale hexagons {Re triad of roll (strip® modes[26]. We verified the long-

Fig. 3(a).] Typically the phase sum of the Hopf modes is not(erm stability of the structure in Fig.(® over long integra-
constant over the whole transverse area, e.g., in Rio. 3 (o times (comparable withy~1). However, this pattern
there is a gradient in a nearly vertical direction. We haveshows some nonstationarity: The values of the maxima and
found in simulations that the drift motion of the large ampli- the minima(as well as the intensity distribution within the
tude localized state roughly coincides with the direction ofdark spoy “fluctuate” slightly with time, although the whole
the sum phase gradient. This matches the long-known fagiattern remains structurally stable. Whether this nonstation-
that in optical systems, in which the optical field is itself the arity is a residual action of the Hopf instability, or whether it
dynamical variable, a phase gradient causes a drift of the L& due to the internal complexity of the pattern is an open
[7,28]. Our result indicates that gradients in the dynamicalquestion at this stage of investigation.
variable will favor a drift independently of the nature of the  In conclusion let us compare our findings with the results
physical variable. known in the field of pattern formation. Coexistence of do-
Along with winking hexagongelements of which are mains of different patterns is a rather widely observed phe-
traveling wavel we have also observed in tiiedomain the  nomenon[8,9,31. In this context, the excitation of a single
formation of a nonstationary hexagon background composelbcalized state on a hexagonal background is rather rare and
of three standing waves. Again, the Hopf modes have beeit is interesting to note that similar phenomena have been
obtained to be in resonance with the static-l modes. In @&xperimentally observed recently in a nonlinear optical ex-
recent numerical study of a Swift-Hohenberg equationperiment[16]. The two-dimensional geometry and resonant
Brand and Deissler obtained hexagons built from thrednteraction between different instabilities make the dynamics
standing waves and referred to such nonstationary patterns asour system especially sophisticated and the possible struc-
blinking hexagong29]. Brand and Deissler do not investi- tures very numerous. Compared to other cases where static
gate the structures in Fourier space of the developed patternscalized structures were studied in the vicinity of a saddle-
Therefore it is not possible do decide whether the pattermode bifurcation (bistability) of the homogeneous mode
they observe coincides with ours, i.e., whether they also cor6,27,16, we note that in our case the Hopf instability brings

tain the small scale “harmonic” static hexagons. about new delicate features.
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