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Stationary and drifting localized structures near a multiple bifurcation point
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Localized states embedded in a patterned background are found in numerical simulations of spontaneous
pattern formation in a spin-1/2 atomic system with optical feedback. In the vicinity of a parameter region with
bistability between two homogeneous states large amplitude peaks as well as dark holes exist as stable
localized states on a hexagonal background. Moreover, resonant interaction between oscillatory and stationary
inhomogeneous modes produces a nonstationary background which may force the localized states to drift.

PACS number~s!: 47.54.1r, 42.65.Sf, 82.40.Bj
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Multistability of several states in a spatially extended no
linear system may result in the appearance of localized st
tures when a pattern is embedded in a background co
sponding to a different state. The best known objects
localized states~LS! @1–3#, which in different treatments
were named also autosolitons@4,5#, spatial solitons@6#, or
‘‘optical bullet holes’’ @7# in an optical context. In mos
cases considered so far, the LS exist on a homogen
background. Bistability between different inhomogeneo
states can result in the formation of localized patterns~LP!.
These can have the form of large area regions with differ
patterns, which are separated by domain boundaries@8–13#.
More recently also the existence of small localized patc
of one pattern or even single peaks embedded in a b
ground corresponding to another pattern was demonstr
@14,9,10,15–17#.

An experimental demonstration of the latter case~large
amplitude solitary peaks superimposed on a small amplit
hexagonal lattice! was recently given in an optical syste
@16#. The observations were related to the simultaneous
currence of a modulational instability and bistability betwe
two homogeneous states. In this paper, we are going to
vestigate theoretically a related optical system in more de
in which different ~stationary and nonstationary! periodic
patterns exist close to a region with bistability between
mogeneous states and may serve as a background for
These different background patterns can be selected by
ing a single stress parameter.

In our system, pattern formation is due to the nonline
interaction of an intense light field with sodium vapor in
external magnetic field. The transmitted light is fed back in
the vapor by a distant plane reflector~cf. Fig. 1!. During the
propagation to the mirror and back different points in t
transverse cross section of the beam are coupled by diff
tion. The interaction between the vapor and the light can
controlled in a wide range by parameters such as the l
frequency or the magnetic field which are easily accessibl
experiments. In this paper the parameters are chosen to
tain different overlapping instabilities: modulational inst
bilities which generate periodic patterns of different leng
scales, bistability of the homogeneous state, and a pat
forming Hopf instability. The physical reason for the latt
instability is the Larmor precession of the magnetization
the Na atoms.
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Since the system is already described in the literat
@18–23#, we omit here the detailed description. The patte
formation processes are described with the help of the qu
tum mechanical equation of motion for the Bloch vectorm
5(u,v,w), representing the magnetization of the spin-1
sodium ground state@18,19#:

] tm52~g2DD'1P!m2m3V1êzP ~1!

and the classical paraxial wave equation for the light pro
gation @24#. In Eq. ~1!, g is the collision induced relaxation
of m, D is the diffusion constant,D' is the transverse part o
the Laplacian,P denotes the optical pump rate. The vect
V5(Vx,0,Vz2D̄P) is a torque vector, whose componen
are given by the Larmor frequencies corresponding to
Cartesian components of the external magnetic field and
light-shift induced level shiftD̄P. D̄ is the detuning be-
tween the incident field and the atomic transition, normaliz
to the homogeneous linewidthG2 ~half width at half maxi-
mum!. The pump rateP is taken to be proportional to th
sum of the intensities of the forward (E0) and the backward
(Eb) waves:

P5~ uE0u21uEbu2!
umeu2

4\2G2~D̄211!
, ~2!

whereme denotes the dipole matrix element of the transitio
The backward field is related to the incident one by

Eb5ARe2 idD' /k0e2 ix lin(12w)k0l /2E0 , ~3!

where the first exponential factor results from the form
solution of the paraxial wave equation describing the lig
propagation over the distance 2d between the cell and the
mirror ~reflection coefficientR) and back. The second expo

FIG. 1. Schematic diagram of the considered optical system
4622 © 2000 The American Physical Society
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nential factor is responsible for the light propagation with
the nonlinear medium with a susceptibilityx lin(12w). k0 is
the wave number of light in vacuum,l is the length of the
nonlinear medium@25#. As a control parameter we consid
the pump rateP0 introduced by the forward beam (P0
;uE0u2).

In our situation, pattern formation takes place under s
cific conditions, as it can be seen from the steady state c
acteristic ~SSC! in Fig. 2, where the steady homogeneo
solutionw is plotted versusP0. A bistable characteristic oc
curs when a specific condition of nonlinear resonance is
filled, i.e., the action of the longitudinal external field
‘‘cancelled’’ by the light induced level shift (Vz'D̄P) @22#.
Regions of the SSC where the homogeneous steady sta
unstable against perturbations by spatially dependent s
~denoted by I, II, and III in Fig. 2! or Hopf modes are de
picted by thick solid lines or diamonds, respectively. T
spatial wave numbers of the structures due to the Hopf
stability and the static-II instability are approximately th
same, while the static-I instability produces a structu
whose wave number is about 1.7 times larger than the for
ones. As a result, resonant interaction of these modes oc
when the sum of the wave vectors of the modes with sma
wave numbers is in resonance with a mode with a lar
wave number. This is the reason for a secondary instab
from hexagons toultrahexagons@18,20# and for the emer-
gence ofwinking hexagons@21# in our system.

Carrying out simulations in the vicinity of the minimum
of the nonlinear resonance we have found different doma
(a,b,d in Fig. 2! where different kinds of localized struc
tures occur. The results of numerical simulations have b
verified using different integration schemes~explicit, hop-
scotch, alternating-direction-implicit integration! to treat the
Laplacian term in the Bloch equations. The diffraction o
erator has been treated with a spectral method and a
Fourier transform. Periodic boundary conditions have b
imposed. Most of the simulations have been carried out

FIG. 2. Steady-state orientationw versus external pump rate fo

the parametersD̄58, R 5 0.915, l 515 mm, Vz/2p5100 kHz,
Vx/2p59 kHz, d5100 mm, andD5180 mm2/s. The intervals
with formation of stationary patterns are marked by thick solid lin
and diamonds~Hopf instability!. The intervals I and II are separate
near the minimum of the nonlinear resonance where only H
modes are unstable. The interval III is not essential for the matte
this paper. Domainsa, b, andd correspond to different types o
localized patterns.
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ing a grid of 1283128 points, but all results discussed in th
article have been cross-checked on a larger grid with
3512 points. Below we describe the results of numeri
simulations and discuss the developed spatial structure
the basis of a linear stability analysis.

a domain. If we increase the control parameterP0 up to
the level of thea domain in Fig. 2 static positive hexagon
emerge out of the random initial noise. We will refer to the
hexagons as small-scale ones, because their waveleng
smaller than that of the structures due to the other insta
ties. These small-scale stationary hexagons are stable al
in the whole interval where the homogeneous state is a
unstable versus the Hopf bifurcation. We are able to prod
bright peaks on the background created by these statio
small-scale hexagons by increasing the parameterP0 for a
short period in arbitrarily chosen domains of the transve
grid. Figure 3~a! shows the transverse distribution of the o
entationw resulting from this simulation. A comparison o
the amplitudes of these peaks with the SSC in Fig. 2 reve
a localized switching to a state close to the upper bista
state.~Note that the upper homogeneous state does not e
for these parameters, but as it has been discussed quit
cently @26,27#, the interaction between the homogeneo
mode and the pattern forming mode in the vicinity of
interval of bistability can create additional homogeneous
lution branches and thus can effectively widen the bistabi
domain.! Illumination with a rather broad transverse pertu
bation does not produce a spatially smooth state, but sev
bright peaks appear which can form amorphous clus
without an internal order, like those presented in the cen
part of Fig. 3~a!. Comparing the profile of a localized struc
ture with the profile of a constituent of the hexagonal patt
belonging to instability region II@similar to Fig. 3~c!# we
find that they virtually coincide from the peak to the bac
ground of the hexagonal constituents. However, the ba
ground is considerably lower for LS in thea domain. There-
fore we conclude that the bright large amplitude peaks
Fig. 3~a! are due to a manifestation of the static-II instabilit
Concluding the discussion of thea domain we note that the
main characteristics of the LP here are as follows: The p
terns are stationary and the background for large amplit
peaks is a small-scale positive hexagonal pattern.

b-domain. In this case, the background for LS is a no
stationary pattern produced by resonant interaction of
static-I and Hopf instabilities. As discussed in Refs.@21,23#,
the sum of the wave vector of two Hopf modes with temp

s

f
of

FIG. 3. ~a! Localized pattern from thea domain of Fig. 2 dem-
onstrating stable bright localized states on the static hexag
background.~b! A snapshot of localized states on the nonstation
winking hexagon background from theb domain of Fig. 2.~c!
Localized pattern from thed domain demonstrating black holes o
the background of positive hexagons. The white regions in~a! and
~b! are overexposed in order to emphasize the background.
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ral frequenciesV and 2V and spatial wave numberk can
coincide with the wave vector of a static mode with a spa
wave numberq5A3k. A pattern created by two resonant
coupled hexagonal triads of static and Hopf modes has b
namedwinkinghexagons@21# and was obtained in numerica
simulations starting from suitable initial conditions.

In Fig. 3~b! an example of a localized large amplitud
peak on a background created by winking hexagons
shown. As in thea domain, these LS have been creat
numerically by a local increase ofP0 for a short period of
time. The peaks seem to be of the same origin as the on
Fig. 3~a!. The main change is the type of the backgrou
pattern. Therefore the structures appearing in theb domain
are classified as localized peaks appearing on a backgr
of nonstationary hexagons.

The image in Fig. 3~b! is only a snapshot. Together wit
the oscillating small amplitude constituents forming t
winking hexagons the large amplitude peaks drift on
background, however, with a very small velocity~compared
to the oscillatory dynamics of the background!. We associate
this slow time scale of the drift motion with the small rela
ation constantg ~of the order of s21) while the Hopf fre-
quency is of the order of the Larmor frequency~tens of kHz!.
It is well known that the sum of the phases of the mod
composing the principal hexagon triad is a main characte
tic for hexagonal structures. For ideal positive and nega
hexagons this sum is 0 andp, respectively.@The sum equal
to 0 corresponds to the case of the small-scale hexagon
Fig. 3~a!.# Typically the phase sum of the Hopf modes is n
constant over the whole transverse area, e.g., in Fig.~b!
there is a gradient in a nearly vertical direction. We ha
found in simulations that the drift motion of the large amp
tude localized state roughly coincides with the direction
the sum phase gradient. This matches the long-known
that in optical systems, in which the optical field is itself t
dynamical variable, a phase gradient causes a drift of the
@7,28#. Our result indicates that gradients in the dynami
variable will favor a drift independently of the nature of th
physical variable.

Along with winking hexagons~elements of which are
traveling waves!, we have also observed in theb domain the
formation of a nonstationary hexagon background compo
of three standing waves. Again, the Hopf modes have b
obtained to be in resonance with the static-I modes. I
recent numerical study of a Swift-Hohenberg equati
Brand and Deissler obtained hexagons built from th
standing waves and referred to such nonstationary pattern
blinking hexagons@29#. Brand and Deissler do not invest
gate the structures in Fourier space of the developed patt
Therefore it is not possible do decide whether the patt
they observe coincides with ours, i.e., whether they also c
tain the small scale ‘‘harmonic’’ static hexagons.
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We have carried out numerical simulations for the case
one spatial transverse dimension and found that the trave
and standing waves emerging due to the pattern-form
Hopf instability coexist in theb domain. Also, formation of
LS has been obtained on a background consisting of tra
ing as well as standing waves. The nonstationary hexag
composed of three traveling or standing waves are a nat
generalization of the one-dimensional waves for the cas
two transverse dimensions. In view of the recent study
bistability between traveling and standing waves in a gen
alized complex Swift-Hohenberg equation@30#, it is not sur-
prising that we observe bistability between different kinds
nonstationary hexagons. In simulations, the visual differe
between them is that in the case of thewinkinghexagons, the
same pattern appears shifted in the transverse plane afte
and 2/3 of the oscillation period, whereas a standing pat
only reproduces itself after the full oscillation period.

d domain. At higherP0 (d domain, cf. Fig. 2! large am-
plitude hexagons create a background for localized patte
which are dark spots in this case. Figure 3~c! was calculated
by starting the simulation with a perfect hexagonal pattern
the initial condition and decreasing the local intensity
some regions for a short period of time. Examining the tra
verse distribution of orientation we find that the offset lev
of the hexagonal lattice lies in the domain of the unsta
branch of the characteristics in Fig. 2 and the dark spot te
to reach the lower bistable state. We believe that in this c
the zero homogeneous mode determining the offset leve
the hexagonal pattern is modified through interaction w
the triad of roll ~stripe! modes@26#. We verified the long-
term stability of the structure in Fig. 3~c! over long integra-
tion times ~comparable withg21). However, this pattern
shows some nonstationarity: The values of the maxima
the minima~as well as the intensity distribution within th
dark spot! ‘‘fluctuate’’ slightly with time, although the whole
pattern remains structurally stable. Whether this nonstat
arity is a residual action of the Hopf instability, or whether
is due to the internal complexity of the pattern is an op
question at this stage of investigation.

In conclusion let us compare our findings with the resu
known in the field of pattern formation. Coexistence of d
mains of different patterns is a rather widely observed p
nomenon@8,9,31#. In this context, the excitation of a singl
localized state on a hexagonal background is rather rare
it is interesting to note that similar phenomena have b
experimentally observed recently in a nonlinear optical
periment@16#. The two-dimensional geometry and resona
interaction between different instabilities make the dynam
in our system especially sophisticated and the possible st
tures very numerous. Compared to other cases where s
localized structures were studied in the vicinity of a sadd
node bifurcation ~bistability! of the homogeneous mod
@6,27,16#, we note that in our case the Hopf instability bring
about new delicate features.
.
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