
PHYSICAL REVIEW E APRIL 2000VOLUME 61, NUMBER 4
Monte Carlo simulations of the periodically forced autocatalytic A¿B\2B reaction
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The one-parameter autocatalytic Lotka-like model, which exhibits self-organized oscillations, is considered
on a two-dimensional lattice, using Monte Carlo computer simulations. Despite the simplicity of the model,
periodic modulation of the only control parameter drives the system through a sequence of frequency locking,
quasiperiodic, and resonance behavior.

PACS number~s!: 02.70.Lq, 68.10.Jy, 82.20.Wt, 82.65.Jv
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I. INTRODUCTION

Heterogeneous catalysis belongs to a class of very c
plicated self-organizing phenomena, which is characteri
by the formation of spatiotemporal structures in the react
system@1,2#. The recent attention to surface catalytic rea
tions was caused not only by the practical interest but also
a number of new experiments and methods@3#, which re-
sulted in a better understanding of the underlying mic
scopic processes. The most studied reaction is CO2 catalysis
on Pt~100! and Pt~110! monocrystal surfaces. It is found ex
perimentally that the effective oxidation of CO on a Pt s
face is accompanied by the formation of spatiotempo
structures such as periodical oscillations of the macrosc
CO2 production rate and formation of waves of the react
particles~for details, see@1# and references therein!.

An important method for treating self-oscillating system
in particular autocatalytic reactions, is the periodical var
tion of an external parameter and analysis of the syste
response. This has been done experimentally in Ref.@4# for
the autocatalytic CO1 1

2 O2 reaction on a Pt~110! surface in
the low-pressure limit. In this study the external parame
varied periodically in time was the partial pressure of O2 gas
above the Pt~110! sample. It was shown experimentaly tha
depending on the modulation frequencies, the s
oscillations in the system exhibit sub- and superharmo
resonance, phase locking, and quasiperiodic behavior.
more general case, the periodic modulation of external
rameters can lead a system to chaos achieved via period
bling @5#.

To understand the mechanisms of spatiotemporal st
ture formation, the standard procedure is to define a m
ematical model based on the experimentally observed mi
scopic processes. Such a mathematical model can the
analyzed either analytically, in terms of the correspond
master equation, or via Monte Carlo computer simulatio
The first successful mathematical model of CO2 catalysis on
Pt~100! and Pt~110! surfaces, which took into account ad
sorption, desorption, and reaction, was presented by Z
Gulari, and Barshad~hereafter the ZGB model! @6#. This
model leads to reactant concentration oscillations only
introduction of blocked sites~see@7# and references therein!.
Later, in terms of the ZGB model, the spatiotemporal patt
formation and oscillatory behavior were analyzed incorpo
ing particle diffusion and different~reconstructed and nonre
PRE 611063-651X/2000/61~4!/4593~6!/$15.00
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constructed! surface phases@8–11#.
In this paper, we consider a simple Lotka-like mod

which was first proposed by Maiet al. @12# for heteroge-
neous catalytic reactions on a surface. Using Monte Ca
computer modeling, it was shown there that this model de
onstrates macroscopic concentration oscillations@12,13#
within certain parameter variation ranges that are indep
dent of the system’s size. The solution of the correspond
master equations in the mean-field approximation led only
the stable solutions because this approximation does not
into account the long-range correlations@12#. Monte Carlo
simulations of this model were extended for one and th
dimensions by Hoviet al. @13# ~see also the review article
@7,14#!. For a more complicated Lotka-Volterra model th
mean-field approximation predicts the oscillatory behav
which indeed has been observed in Monte Carlo comp
simulations@15#.

The standard Lotka-like model treats two species on
square lattice, referred to hereafter asA and B. Particles
A (B) can be created~annihilated! with the probability
z (12z). The autocatalytic reaction stepA1B→2B takes
place instantly ifA and B are nearest neighbors. With a
appropriate normalization, this model has only one con
parameter and reveals spatiotemporal structures. We em
a Lotka-like model and introduce therein a small periodica
oscillating contribution to the parameterz, in order to deter-
mine which phenomena of the forced systems can be re
duced within this simple autocatalytic model.

The paper is organized in the following way. The mat
ematical model with detailed microscopic rules and simu
tion algorithm is described in Sec. II. Analysis of the data
performed with Fourier transform and all poles metho
which are introduced in Sec. III. In Sec IV the simulatio
results are discussed.

II. MATHEMATICAL MODEL AND SIMULATION
ALGORITHM

The Lotka-like model treats reaction between two kin
of particles, labeledA andB and placed on a square discre
lattice. ParticlesA are adsorbed from a gas phase on em
lattice sites~* ! with the probabilityz,

A~gas!1* →
z

A~ads!, ~1!
4593 © 2000 The American Physical Society
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B~ads! →
12z

B~gas!1* , ~2!

A~ads!1B~ads!→2B~ads!. ~3!

The autocatalytic reaction step occurs instantly if particleA
appear to be the nearest neighbors toB, Eq. ~3!. With an
appropriate time scaling, the desorption of theB particles
from the surface, Eq.~2!, is given by probability 12z, thus
leading to a single-parameter model. It is easy to introd
periodic modulations of this control parameter in the form

z5z01Dz sin~vmodt !, ~4!

whereDz!z0 is the modulation amplitude,vmod the modu-
lation frequency, andt the time.

In Monte Carlo computer simulations a discrete squ
lattice L3L with periodic boundary conditions is used. L
us denote the concentrations ofA and B particles on the
lattice ascA andcB , respectively. Then the initial condition
arecA(0)50 andcB(0)50.5, sinceB particles initially are
distributed randomly on the lattice. The initial conditions
this model are not important; the only stipulation is that i
tially B particles should be present somehow on the latt
The simulation loop consists of the following steps.

~1! The time is set tot50.
~2! z is calculated from Eq.~4!.
~3! A time step is determined as the time that is necess

for the quickest process,dt5min@1/z, 1/(12z)].
~4! The time is updatedt5t1dt/L2.
~5! A site is chosen randomly.
~6! For this site the following cases are distinguished:~i!

If the site is empty,A is created there with the probabilit
zdt. Then the four nearest-neighbor sites are checked foB
particles. If one is found, the just createdA transforms toB.
The four nearest-neighbor sites of the newly createdB are
then checked for the presence ofA particles; if anyA is
found, it transforms toB. This continues until no moreA
particles are connected to theB cluster. ~ii ! If the site is
occupied byB, then B is annihilated with probability (1
2z)dt.

~7! The loop returns to the second step, ift is less than the
given simulation time.

III. MATHEMATICAL METHODS

The concentrations of species obtained from compu
simulations are recorded with sampling frequencyf scan. To
analyze the oscillating quantities, one can calculate
power spectral density~PSD! @16#. In this paper two methods
are used. The first one is straightforward and based on
culation of the discrete Fourier transform coefficients from
discrete set ofN datacj ,

Ck5 (
j 50

N21

cje
2p i jk /N, k50, . . . ,N21, ~5!

with the following calculation of PSD coefficients:

PFT~vk!5
uCku2

N2
, k50,N/2, ~6!
e

e

e.

ry
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PFT~vk!5
2uCku2

N2
, k51, . . . ,N/221 ~7!

at frequenciesvk , wherevk is defined as

vk52p
k

N fscan
, k50, . . . ,N/2. ~8!

The PSD is normalized in such a way that the sum over
N/211 values ofPFT(vk) is equal to the mean-squared am
plitude cj . PSD values can be calculated only at discr
frequencies. But if one assumes that the system oscill
with some frequency between two such discrete quantit
one gets at least two nonzero PSD values at neighbo
frequencies. The trick to get a clear spectrum function
based on variation of the length of the sampled dataN in
such a way that one value ofvk coincides with the system’s
oscillation frequency. This allows us to determine the cor
sponding PSD value as well.

Another method is the all-poles~AP! technique@16# based
on the Wiener-Khinchin theorem. The latter states that
Fourier transform of autocorrelation is equal to the PSD. T
oscillation frequency rangevk is extended to the complexv
plane and then this plane is transformed to thez plane by the
transformationz5eiv f scan. The PSD is approximated with
Laurent series

PAP~v!'
a0

U11 (
k51

M

akz
kU2 , ~9!

where M is the number of poles. To determine the coef
cients of the Laurent seriesak , the Laurent series is mappe
on the Fourier transform of the autocorrelation

a0

U11 (
k51

M

akz
kU2 ' (

j 52M

M

F j z
j , ~10!

where the autocorrelationF at lag j is defined as

F j5F2 j'
1

N112k (
k50

N2k

ckck1 j , k50,1, . . . ,N.

~11!

The coefficientsak can then be found iteratively@16#, e.g., at
the first approximationa0

(0)5F0, then at the next stepa1
(0)

52F1 /F0 anda0
(1)5F0@12(F1 /F0)2#. This method can

resolve very close oscillation frequencies, but its disadv
tage is that it cannot be used for signals of a sinuso
shape; in this case the AP method gives a singularity at
corresponding frequency.

IV. SIMULATION RESULTS

The Monte Carlo computer simulation was performed
a square lattice with the side lengthL51024 (L is given in
units of the lattice constant!. For smaller system sizes osci
lations are not clearly observable because of high noise le
Although at lattice sizeL51024 the oscillation parameter
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still depend on the lattice sizeL, it is possible to reproduce
all the qualitative properties of the system and it is a go
compromise between system size and simulation time.

To describe the oscillations quantitatively, the PSD
used. It is directly connected to the amplitude of oscillatio
e.g., it tends to zero if there are no oscillations.

The parameter’sz variation can be approximately divide
into two regions separated by the value ofzc'0.07. Particle
concentration oscillations are observed for theA particle cre-
ation probability z,zc ~see Fig. 1!. The transition to the
oscillatory regime occurs within a narrow interval ofz
aroundzc . The system still exhibits oscillatory behavior fo
z slightly larger thanzc . In this region the height of the PSD
peak at the system’s self-oscillation frequency decreases
larger data interval in the PSD calculations, since this de
mines the higher-frequency resolution in the Fourier tra
form. As long as the system does not oscillate with one p
ticular self-oscillation frequency, the PSD function peak
the system’s self-oscillation frequency in the high-frequen
resolution limits is distributed over a range of frequenci
which are close to the system’s self-oscillation frequency
the spectrum this is seen as the broadening and lowerin
the peak at the self-oscillation frequency. Forz,zc where
the concentration oscillations are more stable, the lowe
of the PSD peak at the self-oscillation frequency is not p
nounced. To obtain stable PSD values, one has to fin
compromise between the precision of determining the os
lation frequency and amplitude~e.g., the uncertainty in the
frequency determination is 10% of the system’s se
oscillation frequency!. Both of them cannot be calculate
simultaneously with an arbitrarily high precision~a kind of
uncertainty relation holds here!.

The frequency of the self-oscillation decreases nearly
early withz, as seen in Fig. 1. This relation and the fact th
the PSD values increase at smallz is easy to illustrate with
the following example. Let us imagine a region in the latti
where theA particle concentration is larger than averag

FIG. 1. The PSD~Fourier transform! at the system’s self-
oscillation frequencyvsys vs A particle creation probabilityz
~squares!, and the self-oscillation frequencyvsys vs A particle cre-
ation probability~circles!.
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Assume that there are a fewB particles distributed randomly
As time goes on,A particles are created in empty sites a
their probability of survival is larger if they form a cluster o
A particles. Meantime,B particles generally are only annih
lated. In this regime, the concentration ofA continuously
increases and that ofB decreases. TheA particles will create
a percolating cluster, and as soon as it grows, eventually
touch aB particle that is still surviving. If this happens, th
autocatalytic reactionA1B→2B takes place immediately
and a wholeA cluster turns into aB cluster. This correspond
to the region where theA particle concentration decrease
but the B particle concentration correspondingly increas
At this stage theB particles are picked up very often and the
are annihilated very quickly, leaving empty space for t
creation ofA particles, which will form a new cluster. Con
centration oscillations arise in the system only if the creat
of A particles and annihilation ofB particles are in a range o
parameters whereA clusters can be formed and there are
few B left in the lattice. This explains the decrease of t
oscillation frequency with decrease ofz seen in Fig. 1. The
period of oscillations increases, becauseA particles are cre-
ated more slowly, which allows moreB to be annihilated,
and thusA particles have more space to create a larger p
colating cluster. It takes a longer time for this cluster to m
someB particle. Simultaneously, the oscillation amplitud
increases due to the fact that moreA particles have accumu
lated in the lattice. This is reflected by an increase of P
values for smallz values.

Decrease ofz to less than 0.055 leads toA poisoning.A
particles are created so slowly that allB particles are annihi-
lated before any catalytic reaction takes place. To treat
model for small z values one can use, for example, t
method proposed in@13#. For our study this is irrelevant a
long as our simulations are not performed forz,0.055.

Let us choose now the parameterz50.08 in the region
z.zc , where oscillations are not pronounced. This allows
to clearly detect the influence of external modulation on
oscillatory behavior in theB particle concentration. Forz
,zc , the effect of external modulation is weakly express
At z50.08, the system’s self-oscillation frequency is fou
to bevsys50.465 s21.

Now we assume that a periodic external force Eq.~4! is
applied to the system, where the external modulations
switched on after some time, with modulation frequen
vmod'vsys. In this case the system is forced with a fr
quency close to its self-oscillation frequency and one can
that the oscillation frequency becomes locked to the exte
frequency and the PSD increases, indicating an increas
the oscillation amplitude.

Changingvmod and keepingDz50.01 constant, one ca
look for changes in the spectrum of oscillating species. I
found that in the PSD, in addition to the maximum at t
system’s self-oscillation frequencyvsys, there now appears
a maximum corresponding to the frequencyvmod of an ex-
ternal modulation. The height of this maximum increas
monotonically asvmod approaches the oscillation frequenc
vsys, or the doubled frequency 2vsys ~see Fig. 2!. The ex-
ternal force is damped at small frequencies, but with an
crease of the external modulation frequency the damping
creases. There is peculiarity in the region around freque
vsys/2 where a small window exists in which the dampin
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decrease is more pronounced. This is more clearly show
the inset of Fig. 2. Further damping again decreases mo
tonically, until the frequency of external modulation reach
the system’s oscillation frequency, where damping start
grow.

Let us compare the PSD changes at the system’s osc
tion frequencyvsys, Fig. 3, with the PSD changes at th
modulation frequencyvmod, Fig. 2. It is easy to see tha
both PSDs have maxima at the same modulation frequen
namely, atvmod51/2, 1, and 2 timesvsys. When vmod
approaches one of these frequencies,vsys becomes locked to
the modulation frequencyvmod, i.e., the system oscillate
with 2vmod, vmod, or vmod/2, respectively. Thevsys lock-
ing to the modulation frequency depends on the modula
amplitudeDz. If Dz increases,vsys locks to the modulation
frequency, even ifvmod is far from the resonance ratios o
1/2, 1, or 2.

As an example of the PSD spectrum in thevmod reso-
nance regions, one can consider Fig. 4. In Fig. 4~a!, two
maxima are observed for the modulation frequency:vmod
50.23 s21, i.e., close tovsys/2, and the frequencyvsys,
which is locked now to the frequency 2vmod. To relate these
observations to the previous figures, let us consider

FIG. 2. The PSD~Fourier transform! at the modulation fre-
quencyvmod vs ratio vmod/vsys. Parameterz050.08 and modu-
lation amplitudeDz50.01.

FIG. 3. The PSD~Fourier transform! at the system’s self-
oscillation frequencyvsys vs ratio vmod/vsys. Parameterz0

50.08 and modulation amplitudeDz50.01.
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points, one at the modulation frequencyM1/2 and the other at
the system’s oscillation frequencyS1/2, when the modulation
frequency is half of the self-oscillation frequency. Now it
seen that the height of the PSD maximum atvmod

50.23 s21 ~point M1/2) corresponds to the pointM1/2 in Fig.
2, which is a local maximum. The PSD value~point S1/2) at
the frequencyvsys corresponds to pointS1/2 in Fig. 3~a!,
which is also a local maximum. In Fig. 4~b! the modulation
frequencyvmod50.46 s21 is chosen to be close to the sy
tem’s oscillation frequency, which in its turn is captured
the external modulation frequency, leading to just o
maximum M15S1 in the oscillation spectrum. This
maximum corresponds to the pointsM1 in Fig. 2 andS1
in Fig. 3, which coincide in the locking region. This i
the global maximum point, provided the system is forc
with a modulation frequency close to its self-oscillation fr
quency.

The AP method gives a clear picture of phase lockin
occurring, for example, whenvmod approaches the
frequency vsys/2, and starting atvmod/vsys'0.46. Then
in the PSD curves in Fig. 5 one can find a maximu
corresponding to the self-oscillation frequency atv/vsys

FIG. 4. The PSD~Fourier transform! for parameterz050.08,
modulation amplitudeDz50.01, and modulation frequencie
vmod50.23 s21 ~a!, 0.46 s21 ~b!.

FIG. 5. The PSD~all-poles method! vs the modulation fre-
quency vmod, approaching the resonance frequency 1/2~scaled
with respect to self-oscillation frequencyvsys). Parameterz0

50.08 and modulation amplitudeDz50.01.
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51 and a small maximum corresponding to the freque
2vmod at v/vsys'0.9. As vmod is increased, this smal
maximum approaches thevsys frequency and become
more pronounced. At the ratiovmod/vsys'0.49 the modu-
lation frequency captures the self-oscillation frequency a
forces the system to oscillate withvsys52vmod ~but not
with the self-oscillation frequency of the unmodulated s
tem!.

To determine the resonance behavior one can use a v
observation method as well. For example, forcing the sys
at frequencies close to the ratiovmod/vsys51/3 with
the forcing amplitudeDz50.02 shows resonance behavi
~see Fig. 6!. During one oscillation period ofz(t), the B
particle concentration reveals three oscillations, wh
implies resonance behavior at the frequency ra
vmod/vsys51/3. In the case ofDz50.01, the maxima are
not clearly distinguishable by visual observation of t
concentration oscillations, but already asDz50.02 the
maxima are well pronounced. This method can be used
the first estimate of resonance behavior and as the only
method for more complicated cases when the system
tinuously exhibits transitions between two or more resona
regimes.

V. CONCLUSIONS

The periodically forced Lotka-like autocatalytic reactio
model has been studied here by means of Monte Carlo c
puter simulations. Two mathematical methods were e
ployed for analyzing the simulation results. The first one
based on a power spectral density calculation, using the F
rier transform. Using this method, the oscillations are a
lyzed in the unperturbed system and in the resonance reg
of the modulated system. The second approach used to
culate the PSD is the all-poles method, which is employ
for detecting frequency locking processes. One can use
ditionally a visual observation method to determine the re
nance behavior.

The Lotka-like model considered is a remarkable simp
fication of theoretical models available for describing osc
latory systems. It differs strongly from real catalytic rea
tions ~e.g., the CO catalytic transformation on the Pt surfa!
in the following respects:~i! concentration oscillations ar
not connected with surface reconstructions;~ii ! diffusion of

FIG. 6. Temporary oscillations in theB particle concentration.
Parameterz050.08, modulation amplitudeDz50.02, and modula-
tion frequencyvmod/vsys51/3. The top figure represents the pe
odic modulationz(t) of the A particle creation probabilityz0.
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particles~a rapid and very important processin real system!
is not taken into account;~iii ! our modelhas an origina
mechanism of oscillation synchronization~obviously differ-
ent from that in real systems!, which ensures macroscopi
oscillations of particle concentrations independently of
lattice size without implicating any additional mechanisms
synchronization, like diffusion.

We have clearly detected the existence of resonance
havior when the frequency ratio~the external modulation
frequency vs the system’s self-oscillation frequency! is one
of the three 1:2, 1:1, or 2:1 at forcing amplitudeDz>0.01.
Resonance behavior is observed at the ratio 1:3 with forc
amplitudeDz>0.02, but its full demonstration is limited in
Monte Carlo simulations due to a large noise level. F
quency locking is observed at the resonance frequencies
in their neighborhood. The region of observed frequen
locking depends on the amplitude of the modulation fo
Dz: the higher the amplitude of the modulation force, t
larger the region of frequency locking.

The resonance behavior at frequency ratios 1:3, 1:2,
and 2:1 is similar to the experimentally obtained results
forced CO catalysis on a Pt surface@4#. Between the reso-
nance frequencies, our simulations show a quasiperiodic
havior, similar to the real system. However, in contrast
this experiment, Monte Carlo computer simulations do n
show resonance behavior for some frequency ratios, e.g.,
3:5, or 2:3. An increase of the modulation amplitude in t
resonance regions does not lead to a quasiperiodic beha
as is observed in the experiments for frequency ratios 3:5
2:3. The transition to chaos has not been detected.
should note that these discrepancies could arise from
causes:~i! The Lotka-like model suggests a quite simplifie
treatment of real autocatalytic reactions. Refining the mo
will lead to better agreement with the experimental data, a
more effects will be reproduced. But this step unavoida
increases the number of parameters in the model and thu
origin of the resonance behavior will be harder to trace.~ii !
A specific feature of the Monte Carlo method is a large no
level thus complicating detection of resonance phenome
Most probably because of this particular fact we were
able to detect resonance behavior at other ratios~e.g., 1:4,
3:5, or 2:3!.

A comparison of experimental data with our simulatio
results shows that resonance phenomena~like frequency
locking, quasiperiodic, and resonance behavior! are not
connected to aspecificsurface reaction, e.g., CO catalyt
oxidation, but they reflect general aspects of oscillato
processes. The simplicity of the formulated Lotka-like mod
and the large number of observed oscillatory and resona
phenomena might suggest that the Lotka-like mo
could serve as the kinetic analog of the well known Isi
model.
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