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Monte Carlo simulations of the periodically forced autocatalytic A+B—2B reaction
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The one-parameter autocatalytic Lotka-like model, which exhibits self-organized oscillations, is considered
on a two-dimensional lattice, using Monte Carlo computer simulations. Despite the simplicity of the model,
periodic modulation of the only control parameter drives the system through a sequence of frequency locking,
quasiperiodic, and resonance behavior.

PACS numbgs): 02.70.Lg, 68.10.Jy, 82.20.Wt, 82.65.Jv

[. INTRODUCTION constructeg surface phasegs8-11].
In this paper, we consider a simple Lotka-like model,

Heterogeneous catalysis belongs to a class of very conwhich was first proposed by Magt al. [12] for heteroge-
plicated self-organizing phenomena, which is characterizedieous catalytic reactions on a surface. Using Monte Carlo
by the formation of spatiotemporal structures in the reactinggomputer modeling, it was shown there that this model dem-
system[1,2]. The recent attention to surface catalytic reac-onstrates macroscopic concentration oscillatidi®,13
tions was caused not only by the practical interest but also byithin certain parameter variation ranges that are indepen-
a number of new experiments and meth¢@§ which re- dent of the system’s size. The solution of the corresponding
sulted in a better understanding of the underlying micro-master equations in the mean-field approximation led only to
scopic processes. The most studied reaction is @@alysis  the stable solutions because this approximation does not take
on P{100) and P¢110) monocrystal surfaces. It is found ex- into account the long-range correlatiof?]. Monte Carlo
perimentally that the effective oxidation of CO on a Pt sur-Simulations of this model were extended for one and three
face is accompanied by the formation of spatiotemporafimensions by Hovet al. [13] (see also the review articles
structures such as periodical oscillations of the macroscopic/,14]). For a more complicated Lotka-Volterra model the
CO, production rate and formation of waves of the reactingmean-field approximation predicts the oscillatory behavior
particles(for details, se¢1] and references thergin which indeed has been observed in Monte Carlo computer

An important method for treating self-oscillating systems,simulations[15].
in particular autocatalytic reactions, is the periodical varia- The standard Lotka-like model treats two species on a
tion of an external parameter and analysis of the system’square lattice, referred to hereafter Asand B. Particles
response. This has been done experimentally in Ré¢ffor A (B) can be createdannihilated with the probability
the autocatalytic C® 30O, reaction on a R110 surface in ¢ (1—¢). The autocatalytic reaction stefo+B— 2B takes
the low-pressure limit. In this study the external parameteplace instantly ifA and B are nearest neighbors. With an
varied periodically in time was the partial pressure gfgas  appropriate normalization, this model has only one control
above the R110 sample. It was shown experimentaly that, parameter and reveals spatiotemporal structures. We employ
depending on the modulation frequencies, the selfa Lotka-like model and introduce therein a small periodically
oscillations in the system exhibit sub- and superharmoni®scillating contribution to the parametgyin order to deter-
resonance, phase locking, and quasiperiodic behavior. In @ine which phenomena of the forced systems can be repro-
more general case, the periodic modulation of external paduced within this simple autocatalytic model.
rameters can lead a system to chaos achieved via period dou- The paper is organized in the following way. The math-
bling [5]. ematical model with detailed microscopic rules and simula-

To understand the mechanisms of spatiotemporal strudion algorithm is described in Sec. Il. Analysis of the data is
ture formation, the standard procedure is to define a mathperformed with Fourier transform and all poles methods
ematical model based on the experimentally observed micro#hich are introduced in Sec. Ill. In Sec IV the simulation
scopic processes. Such a mathematical model can then besults are discussed.
analyzed either analytically, in terms of the corresponding
mastgr equation, or via Monte_ Carlo computer simglations. Il. MATHEMATICAL MODEL AND SIMULATION
The first successful mathematical model of Cgatalysis on ALGORITHM
P#100 and P¢110 surfaces, which took into account ad-
sorption, desorption, and reaction, was presented by Zziff, The Lotka-like model treats reaction between two kinds
Gulari, and Barshadhereafter the ZGB model[6]. This  of particles, labeledh andB and placed on a square discrete
model leads to reactant concentration oscillations only vidattice. ParticlesA are adsorbed from a gas phase on empty
introduction of blocked sitegsee[7] and references thergin  lattice sites(x) with the probabilityZ,
Later, in terms of the ZGB model, the spatiotemporal pattern
formation and oscillatory behavior were analyzed incorporat- ¢
ing particle diffusion and differenreconstructed and nonre- A(gas)+*—A(ads), @
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1-¢ e 2lG?
B(ads) — B(gas) +*, 2 P™ (wyp)= 2 k=1,...N/2-1 (7
A(ads)+B(ads)—2B(ads). ) at frequenciesoy, wherew, is defined as
The autocatalytic reaction step occurs instantly if partiéles K
appear to be the nearest neighborsB{oEq. (3). With an wk:zwr, k=0, ... N/2. (8
scan

appropriate time scaling, the desorption of tBeparticles
from the surface, Eq2), is given by probability -, thus
leading to a single-parameter model. It is easy to introduc
periodic modulations of this control parameter in the form

The PSD is normalized in such a way that the sum over all
R/2+ 1 values ofPFT(w,) is equal to the mean-squared am-
k q q
plitude c;. PSD values can be calculated only at discrete
_ ; frequencies. But if one assumes that the system oscillates
={otAlSI t), 4 ; . "
£=Lot ALSiN@mod) @ with some frequency between two such discrete quantities,
whereA {<{, is the modulation amplitudeyoq the modu-  One gets at least two nonzero PSD values at neighboring
lation frequency, and the time. frequencies. The trick to get a clear spectrum function is
In Monte Carlo computer simulations a discrete squardased on variation of the length of the sampled datm
lattice L x L with periodic boundary conditions is used. Let SUCh a way that one value af coincides with the system’s
us denote the concentrations Afand B particles on the Oscillation frequency. This allows us to determine the corre-
lattice asc, andcg, respectively. Then the initial conditions SPonding PSD value as well.

arec,(0)=0 andcg(0)=0.5, sinceB particles initially are Another method is the all-pol¢&\P) technique 16] based
distributed randomly on the lattice. The initial conditions in N the Wiener-Khinchin theorem. The latter states that the

this model are not important; the only stipulation is that ini- Fou-rier. transform of autocorrglation is equal to the PSD. The
tially B particles should be present somehow on the lattice@Scillation frequency rangey is extended to the complex

The simulation loop consists of the following steps. plane and then this plane is transformed toziptane by the
(1) The time is set td=0. transformatiorz=e'“'scan. The PSD is approximated with a
(2) ¢ is calculated from Eq(4). Laurent series
(3) A time step is determined as the time that is necessary

for the quickest processlt=min[1/Z, 1/(1—{)]. PAP(w)~ Mao ©)

———,

(4) The time is updatedi=t+dt/L2.
(5) A site is chosen randomly.
(6) For this site the following cases are distinguish@y:

If the site is empty A is created there with the probability where M is the number of poles. To determine the coeffi-

{dt. Then the four nearest-neighbor sites are checke®for cients of the Laurent serigg , the Laurent series is mapped
particles. If one is found, the just creat@dransforms tdB. on the Fourier transform of the autocorrelation

The four nearest-neighbor sites of the newly crediedre

1+ azf
K1

then checked for the presence Afparticles; if anyA is ap M ,
found, it transforms tdB. This continues until no moré M 2“_2 ®;7, (10
particles are connected to th# cluster. (ii) If the site is 1+2 a,zv J==M
occupied byB, then B is annihilated with probability (1 k=1
—{)dt. . . .
(7) The loop returns to the second step,ii§ less than the  Where the autocorrelatiod at lagj is defined as
given simulation time. 1 N—K

(b]:@_J%m kgo Cka+j, k:O,l,...N.
(13)

IIl. MATHEMATICAL METHODS

The concentrations of species obtained from computer
simulations are recorded with sampling frequerigy,,. To  The coefficients, can then be found iterativejL6], e.g., at
analyze the oscillating quantities, one can calculate théhe first approximatioral’)=®,, then at the next step{”)
power spectral densitypSD) [16]. In this paper two methods = —® /P, andagl)=<bo[1—(¢>1/d>o)2]. This method can
are used. The first one is straightforward and based on catesolve very close oscillation frequencies, but its disadvan-
culation of the discrete Fourier transform coefficients from atage is that it cannot be used for signals of a sinusoidal
discrete set oN datac;, shape; in this case the AP method gives a singularity at the

N1 corresponding frequency.

_ a2mijk/N - _
Cr EO cie » k=0,...N—1, ®) IV. SIMULATION RESULTS
The Monte Carlo computer simulation was performed on
a square lattice with the side lendth=1024 (L is given in
IC,2 units of the lattice constantFor smaller system sizes oscil-
PP (o) = TR k=0N/2, (6) lations are not clearly observable because of high noise level.
N2 Although at lattice sizd-=1024 the oscillation parameters

with the following calculation of PSD coefficients:
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25 y T - T - 1 0.56 Assume that there are a fdBvyparticles distributed randomly.
As time goes onA patrticles are created in empty sites and
their probability of survival is larger if they form a cluster of
A particles. MeantimeB particles generally are only annihi-
lated. In this regime, the concentration Afcontinuously
increases and that & decreases. Tha particles will create

20 0.52

.15 — a percolating cluster, and as soon as it grows, eventually they
‘B K2 touch aB particle that is still surviving. If this happens, the
i 044 8% autocatalytic reactiorA+B— 2B takes place immediately

and a wholéA cluster turns into 8 cluster. This corresponds

to the region where thé particle concentration decreases,
but the B particle concentration correspondingly increases.
At this stage thd3 particles are picked up very often and they
are annihilated very quickly, leaving empty space for the
creation ofA particles, which will form a new cluster. Con-

centration oscillations arise in the system only if the creation
of A particles and annihilation d@ particles are in a range of

parameters wher@ clusters can be formed and there are a
e few B left in the lattice. This explains the decrease of the

FIG. 1. The PSD(Fourier transform at the system’s self- oscillation frequency with decrease ofseen in Fig. 1. The

oscillation frequencyws,s vs A particle creation probabilityl period of oscillations Increases, becausparticles are cre-
(squarey and the self-oscillation frequenays,s vs A particle cre- ated more slowly, which allows morB to be annihilated,

ation probability(circles. and thusA particles have more space to create a larger per-
colating cluster. It takes a longer time for this cluster to meet
still depend on the lattice siZe, it is possible to reproduce SomeB particle. Simultaneously, the oscillation amplitude
all the qualitative properties of the system and it is a goodncreases due to the fact that makearticles have accumu-
compromise between system size and simulation time. lated in the lattice. This is reflected by an increase of PSD
To describe the oscillations quantitatively, the PSD isvalues for small values.
used. It is directly connected to the amplitude of oscillations, Decrease of to less than 0.055 leads # poisoning.A
e.g., it tends to zero if there are no oscillations. particles are created so slowly that Blparticles are annihi-
The parameter’s variation can be approximately divided lated before any catalytic reaction takes place. To treat this
into two regions separated by the valuelpf0.07. Particle model for small{ values one can use, for example, the
concentration oscillations are observed for #garticle cre-  method proposed ifi13]. For our study this is irrelevant as
ation probability /<. (see Fig. 1 The transition to the long as our simulations are not performed {or0.055.
oscillatory regime occurs within a narrow interval d¢f Let us choose now the parametg+0.08 in the region
around{.. The system still exhibits oscillatory behavior for {>{., where oscillations are not pronounced. This allows us
¢ slightly larger thary.. . In this region the height of the PSD to clearly detect the influence of external modulation on the
peak at the system’s self-oscillation frequency decreases f@scillatory behavior in theB particle concentration. Fof
larger data interval in the PSD calculations, since this deter<{c, the effect of external modulation is weakly expressed.
mines the higher-frequency resolution in the Fourier transAt {=0.08, the system’s self-oscillation frequency is found
form. As long as the system does not oscillate with one parto be wgys=0.465 st
ticular self-oscillation frequency, the PSD function peak at Now we assume that a periodic external force &.is
the system’s self-oscillation frequency in the high-frequencyapplied to the system, where the external modulations are
resolution limits is distributed over a range of frequenciesswitched on after some time, with modulation frequency
which are close to the system’s self-oscillation frequency. Inwmed™ wsys. In this case the system is forced with a fre-
the spectrum this is seen as the broadening and lowering ofuency close to its self-oscillation frequency and one can see
the peak at the self-oscillation frequency. Ror /. where  that the oscillation frequency becomes locked to the external
the concentration oscillations are more stable, the loweringrequency and the PSD increases, indicating an increase in
of the PSD peak at the self-oscillation frequency is not prothe oscillation amplitude.
nounced. To obtain stable PSD values, one has to find a Changingwy.q and keepingd {=0.01 constant, one can
compromise between the precision of determining the oscillook for changes in the spectrum of oscillating species. It is
lation frequency and amplitud@.g., the uncertainty in the found that in the PSD, in addition to the maximum at the
frequency determination is 10% of the system’'s self-system’s self-oscillation frequenays,, there now appears
oscillation frequency Both of them cannot be calculated a maximum corresponding to the frequensy,,q of an ex-
simultaneously with an arbitrarily high precisig¢a kind of  ternal modulation. The height of this maximum increases
uncertainty relation holds here monotonically asw,.q approaches the oscillation frequency
The frequency of the self-oscillation decreases nearly linwgy, or the doubled frequency« s (see Fig. 2 The ex-
early withZ, as seen in Fig. 1. This relation and the fact thatternal force is damped at small frequencies, but with an in-
the PSD values increase at smalis easy to illustrate with crease of the external modulation frequency the damping de-
the following example. Let us imagine a region in the latticecreases. There is peculiarity in the region around frequency
where theA particle concentration is larger than average.wsyd2 where a small window exists in which the damping
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FIG. 2. The PSD(Fourier transform at the modulation fre- I H
QUENCY Wmoq VS Fatio wmeq/ wsys. Parametet,=0.08 and modu- 00 1' é g
lation amplitudeA {=0.01. /o

decrease is more pronounced. This is more clearly shown in g5 4 The PSD(Fourier transform for parameterZ,=0.08

the inset of Fig. 2. Further damping again decreases monQnoqylation amplitude A¢=0.01, and modulation frequencies
tonically, until the frequency of external modulation reaches,, = —023 s (a), 0.46 s (b).

the system’s oscillation frequency, where damping starts to

grow. . :
Let us compare the PSD changes at the system’s oscill&oints, one at the modulation frequeridy, and the other at

tion frequencywg,s, Fig. 3, with the PSD changes at the the system_’s oscillation frequenq/z_, when the modulatiqn_
modulation frequencyw,,og, Fig. 2. It is easy to see that frequency is half of the self-oscillation frequency. Now it is
both PSDs have maxima at the same modulation frequenciegeen that the height of the PSD maximum @t,qq
namely, atwmoq=1/2, 1, and 2 timeswgys. When wpeq = 0.23 S_.l (pointMy;5) corresponds to the poiM, in Fig.
approaches one of these frequencies,sbecomes locked to 2, which is a local maximum. The PSD val(goint S, ) at
the modulation frequency g, i.€., the system oscillates the frequencywsys corresponds to poing,, in Fig. 3a),
With 20 mod, ®mods OF ®@mod2, respectively. Thevgys lock- which is also a local maximum. In Fig(#) the modulation
ing to the modulation frequency depends on the modulatioffequencywmqq=0.46 s * is chosen to be close to the sys-
amplitudeA{. If A¢ increasespsyslocks to the modulation  tem'’s oscillation frequency, which in its turn is captured by
frequency, even ifv,oq is far from the resonance ratios of the external modulation frequency, leading to just one
1/2, 1, or 2. maximum M;=S; in the oscillation spectrum. This

As an example of the PSD spectrum in thg,,4 reso- Mmaximum corresponds to the pointd; in Fig. 2 andS;
nance regions, one can consider Fig. 4. In Fip),4two in Fig. 3, which coincide in the locking region. This is
maxima are observed for the modulation frequeney;,q  the global maximum point, provided the system is forced
=0.23s ! ie., close tows,42, and the frequencysys, with a modulation frequency close to its self-oscillation fre-
which is locked now to the frequency?,.4. To relate these guency.

observations to the previous figures, let us consider two The AP method gives a clear picture of phase locking,
occurring, for example, whenw,.qy approaches the

frequency wsyd2, and starting alwm g/ wsys~0.46. Then

0.2 . i > )
s a) in the PSD curves in Fig. 5 one can find a maximum
12 . N .
corresponding to the self-oscillation frequency @twsys
-
o oot}
(3]
o
™
0.0 ' L
0.45 0.50 0.55
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FIG. 5. The PSD(all-poles methog vs the modulation fre-
quency w4, approaching the resonance frequency (gealed
with respect to self-oscillation frequencys,d. Parameter{,
=0.08 and modulation amplitud&=0.01.

FIG. 3. The PSD(Fourier transform at the system’s self-
oscillation frequencywsys Vs ratio wmeg/ wsys. Parameter(
=0.08 and modulation amplitude{=0.01.



PRE 61 MONTE CARLO SIMULATIONS OF THE PERIODICALLY ... 4597

0.100 £ particles(a rapid and very important processin real systems
= 0075} \/ is not taken into account(iii) our modelhas an original
> 0.050 mechanism of oscillation synchronizati¢obviously differ-
ent from that in real systemswhich ensures macroscopic
0.10f 1 s oscillations of particle concentrations independently of the
= » lattice size without implicating any additional mechanisms of
& 005 synchronization, like diffusion.
We have clearly detected the existence of resonance be-
0.0 . { L L havior when the frequency ratitthe external modulation
2000 2050 2100 2150 2200 frequency vs the system'’s self-oscillation frequénisyone

t(s) of the three 1:2, 1:1, or 2:1 at forcing amplitudg=0.01.
Resonance behavior is observed at the ratio 1:3 with forcing
amplitudeA ¢=0.02, but its full demonstration is limited in
Monte Carlo simulations due to a large noise level. Fre-
quency locking is observed at the resonance frequencies and
in their neighborhood. The region of observed frequency

~1 and a small maximum corresponding to the frequenC);OCking depends on the amplitude of the modulation force
20mod at 0l wey~0.9. AS wmog is increased, this small AZ: the higher the amplitude of the modulation force, the

maximum approaches thes,, frequency and becomes 'a'ger the region of frequency locking. o
more pronounced. At the rati@og/wsys~0.49 the modu- The resonance behavior at frequency ratios 1:3, 1:2, 1:1,

lation frequency captures the self-oscillation frequency and@nd 2:1 is similar t_o the experimentally obtained results for
forces the system to oscillate Withg,c=2wmoq (but not forced CO cata!y5|s on a Pt sgrfab@]. Between t_he reso-
with the self-oscillation frequency of the unmodulated sys-nance frequencies, our simulations show a quasiperiodic be-
tem). havior, similar to the real system. However, in contrast to
To determine the resonance behavior one can use a visulis experiment, Monte Carlo computer simulations do not
observation method as well. For example, forcing the systershow resonance behavior for some frequency ratios, e.g., 1:4,
at frequencies close to the rati@myog/wsys=1/3 with  3:5, or 2:3. An increase of the modulation amplitude in the
the forcing amplitudeA {=0.02 shows resonance behavior resonance regions does not lead to a quasiperiodic behavior,
(see Fig. & During one oscillation period of(t), the B as is observed in the experiments for frequency ratios 3:5 or
particle concentration reveals three oscillations, which2:3. The transition to chaos has not been detected. One
implies resonance behavior at the frequency raticshould note that these discrepancies could arise from two
wmod/ wsys=1/3. In the case oA{=0.01, the maxima are causes(i) The Lotka-like model suggests a quite simplified
not clearly distinguishable by visual observation of thetreatment of real autocatalytic reactions. Refining the model
concentration oscillations, but already a@(=0.02 the jll lead to better agreement with the experimental data, and
maxima are well pronounced. This method can be used agore effects will be reproduced. But this step unavoidably
the first estimate of resonance behavior and as the only regicreases the number of parameters in the model and thus the
method for more complicated cases when the system coRsigin of the resonance behavior will be harder to tra(@é.
tinuously exhibits transitions between two or more resonancg specific feature of the Monte Carlo method is a large noise

regimes. level thus complicating detection of resonance phenomena.
Most probably because of this particular fact we were not
V. CONCLUSIONS able to detect resonance behavior at other ra@og., 1:4,

The periodically forced Lotka-like autocatalytic reaction > O 2
€ periodically forced Lotka-like autocatalylic reaction — o comparison of experimental data with our simulation
model has been studied here by means of Monte Carlo com- .
. ) : results shows that resonance phenoméii@ frequency
puter simulations. Two mathematical methods were emiockin uasiperiodic, and resonance behdviare not
ployed for analyzing the simulation results. The first one is 9. 4 P ’

based on a power spectral density calculation, using the Fo&_onnected to &pecificsurface reaction, e.g., CO catalytic

rier transform. Using this method, the oscillations are anafXidation, but they reflect general aspects of oscillatory

lyzed in the unperturbed system and in the resonance regiof§0CeSSes. The simplicity of the formulgted Lotka-like model
of the modulated system. The second approach used to c&and the large nL_meer of observed oscillatory anq resonance
culate the PSD is the all-poles method, which is employe®n€nomena might suggest that the Lotka-like model
for detecting frequency locking processes. One can use aould serve as the kinetic analog of the well known Ising
ditionally a visual observation method to determine the resoModel.
nance behavior.

The Lotka-like model considered is a remarkable simpli-
fication of theoretical models available for describing oscil- ACKNOWLEDGMENTS
latory systems. It differs strongly from real catalytic reac-
tions(e.g., the CO catalytic transformation on the Pt surface  Financial support of G.Z. through the NORDITA/Baltic
in the following respects(i) concentration oscillations are foundation and the Deutsche Forschungsgemeinschaft is
not connected with surface reconstructiofis); diffusion of  gratefully acknowledged.

FIG. 6. Temporary oscillations in th® particle concentration.
Parameter,=0.08, modulation amplituda {=0.02, and modula-
tion frequencywmqq/ wsys= 1/3. The top figure represents the peri-
odic modulationZ(t) of the A particle creation probability,.
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