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It is often assumed, when interpreting the discrete

trajectory computed by a symplectic numerical integrator

of Hamilton’s equations in Cartesian coordinates, that velocity is equal to the momentum divided by the

physical mass. However, the “shadow Hamiltonian”

which is almost exactly solved by the symplectic inte-

grator will, in general, induce a nonlinear relationship between velocity and momentum. Reythglecti¢
momentum- and midpoint-momentum-Verlet algorithms, the “shadow mass” that relates velocity and mo-
mentum is momentum independent only for a quadratic potential and, even in this case, differs from the
physical mass. Thus, naively assuming the standard velocity-momentum relationship leads to inconsistencies
and unnecessarily inaccurate estimates of velocity-dependent quantities. As examples, we calculate the shadow
Hamiltonians for the momentum- and midpoint-momentum-Verlet solutions of the multidimensional harmonic
oscillator, and show how their velocity-momentum relationships depend on the time step. Of practical impor-
tance is the conclusion that, to gain the full advantage of symplecticity, velocities derived from interpolated
positions, rather than conventional velocity-Verlet velocities, should be used to compute physical properties.

PACS numbsg(s): 02.70.Ns, 45.16:b, 45.20.Jj

I. INTRODUCTION

Many physical systems of particles can be modeled using

Hamilton’s equations with an autonomous Hamiltonian
given by

1
H(g.p)=5p'm *p+U(a), (1)

wherep andg are momentum and position vectors,s the
diagonal mass tensor, att{q) is the potential energy. The
dimensionality of the system &N, whered is the number of
physical dimensionge.g., 3 and N is the number of par-
ticles. The trajectonfp(t),q(t)} is determined by

q=VH, (2a)

p=—VH, (2b)
and initial conditions{q(0),p(0)}.

A numerical integrator of Eq92) that produces a set of
phase space poin{s|,,p,}, referring to discrete time points
t,=nh, is said to besymplectidf

vIIv=], ©)

whereV is the Jacobian of the mapping frofa,,p,} to
{dn+1,Pn+a}:

&qn-#l aqn+l
dq ap
v=| " (@)
IPn+1 IPn+1
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and| is the dN-dimensional identity matrix1]. Symplectic
integrators are popular tools for simulations because of their
excellent stability at large time steps and long-term approxi-
mate conservation of invariant]. The fact that local errors
do not accumulate to grossly violate conservation of invari-
ants is, at first glance, surprising. This global property holds
because théq, ,p,} computed by a symplectic integrator lie
either on, or “very approximately” on, an exact solution
trajectory{q(t), p(t)} of Egs.(2) for ashadow Hamiltonian

H that can be expressed as an asymptotic seribsaboutH
[1,3]. That is,

dn=a(nh), (6a)

pPr=p(nh). (6b)

Not only positions and momenta, but also their derivatives,
are uniquely defined on the shadow trajectigfyi §]. In par-
ticular, the discrete symplectic velocity, at time pointnh is
uniquely defined as the derivative of the continuous position-
space trajectory

dq(t)
ST

UnE F' ’ (7)

=p,
=q,

t=nh P

and satisfies the first Hamilton’s equation, Ega). As we
shall discuss, by interpolating theg, to approximateq(t),
Eq.(7) can be used even when, for practical reasthis not
known.

A point that has frequently been overlooked is that, unlike
H, H need not be separable into the simple form of €.
As we show in Sec. Il Ausing one form of the Verlet algo-
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rithm as an exampje H will in general be a nonquadratic 1 h
function of p. Thus, the shadow mass Vne1=vp—hm 2 VU| g+ Sog |, (133
- (azﬁ - (&v -1 © .
m=|—| =(—| ,
57p2 ap On+1=0nt E(vx+1+v\é)- (13b

will depend on bothg and p, and velocity and momentum
will not be linearly related. The multidimensional harmonic Here the gradient of the potential is evaluated at the mid-
oscillator is a special case in which the shadow mass is point, rather than at the beginning, of the time interval. Skeel
constant. But even in this case, it does not equal the physical al. [2] have shown that the midpoint-momentum-Verlet
mass. Moreover, the tensor structurenoimay not preserve integrator[7], which results from substituting E¢11) into

the physical-particle structure of, where each particle has EQs.(13), satisfies Eq(3) and thus is symplectic:

the same mass in each of thephysical directions. In sum-
mary, for both harmonic and anharmonic potentials

h
Prr1=pPp—hVU qn+§mlpn)1 (14a

Pn#Mu,, 9

the numerically computed symplectic momenta and veloci- h

ties are not simply related by the physical mass. On+1=0nt Em‘l(pn+l+ Pn)- (14b
The altered relationship between momenta and velocities

has important ramifications. For example, tredocity-Verlet

algorithm[5] is However, as with the velocity-Verlet algorithm, the veloci-
ties given by Eqs(13) are inconsistent with the symplectic
h? solution.
qn+1=qn+hvx—7m’1VU(qn), (10a We use the multidimensional harmonic oscillator as an

example to analytically elucidate these points. In Sec. 11 B

h we analyze its velocity-Verlet solution, and show that the
U\r{|+1:U\rg_§mil[VU(qn)+VU(qn+l)]v (10b) \{elocny-VerIet “velocities” are inconsistent with Fhe posi-

tion trajectory. In Sec. Il C we derive the analytic shadow

v ) ) o Hamiltonian for the momentum-Verlet algorithm and show

wherev, is the velocity-Verlet “velocity.” This is trans- o the time-step-dependent shadow mass relates velocities

formed to an integrator fog, andp, by the replacement  and momenta. We extend this analysis to the midpoint-

momentum-Verlet algorithm in Sec. Il D. In Sec. IlE we

vp—m p,, (1) show how naive use of the velocity-Verlet “velocities”
. _ _ leads to unnecessarily large energy fluctuations, and how this
which gives the momentum-Verlet algorithm can be remedied by the use of interpolated velocities.
h2
Gn1=Cnth m pp——=mVU(qn), (123 IIl. RESULTS
A. Nonlinear symplectic relationship between momentum

and velocity

h
=p,— 5[VU +VU . 12h
Pna=Pn 2[ (G) (G (12h The shadow Hamiltonian for time-reversible algorithms,

such as momentum- or midpoint-momentum-Verlet algo-

Equations(12) satisfy Eq.(3), and are thus symplectic. rithms, can be expanded as an asymptotic series using even
Equations(10) and (12), with substitution(11) are com- powers ofh,

pletely equivalent. However, because of inequa(iy, the
velocity-Verlet “velocities” do not equal the symplectic ve- H(q,p)=H(q,p)+G(h%q,p), (15)
locities and do not gain the full benefit of symplecticity. As
we will see, the difference between th¢ and the deriva-
tives of a smooth global interpolation of tlyg can signifi-
cantly degrade computed results. We regard the name
“velocity-Verlet” as a misnomer that may lead to unwary to . _My @)
use thev" as velocities when computing physical observ- G(h JAP)=5779(a.p) + 4 e(q.p) + - (16)
ables. We suggest that it be replaced with the name
“momentum-Verlet” algorithm, since momentare cor- , i i i
rectly computed. The (Vg(q,p) can be determined using the method of modi-
Similar considerations apply to other symplectic integra-fied equationd3,8], which demands order-by-ordéin h)
tors as well. For example, the “midpoint” form of the consistency between Eq&) (with H—H) and Egs.(12).
velocity-Verlet integrator presented by Tuckernetral. [6]  Straightforward application to the momentum-Verlet algo-
is rithm yields in lowest order

whereG is a functional series beginning @(h?):
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1 2U(q) where m*? is the (unique up to eigenvector degenergacy
@g(q,p) = ngm*l >—m 'p symmetric matrix that satisfiea=m*?m'2. The choice oRQ
Jq determines the vector basis in whighis represented.
1 The Stomer form of the Verlet algorithni9] is
- 5[VU()]'m™*VU(q). 17) _
12 V@] ‘ Gne1=20,Gog M2 VU(G).  (25)

WhenU is quadratic, this expression is quadratic in bothlt has been show[10,11] that in one dimension it produces
p andg. Thus to this order the shadow mass is a constanpositionsg, that can be interpolated by a sinusoid having the
m=[m~ 1+ (h?%6) m 15?U/dq?m 1]~ . It is easy to show modified frequency
that G will contain only quadratic terms i and p to all )
orders inh?; thus the exact shadow Hamiltonian is quadratic, . Earcco% 1— (wh) ) (26)
but hasm# m and d°H/dq?# d*H/dq>. h 2

WhenU is anharmonic, the shadow mass will depend on
g in O(h?). Furthermore, in higher order§(q,p) will con-
tai? ni)nq‘ltjeadratic 4terms ] in p ] s4ucr31 as
(h3/7220m )_p a_L_J(q)laq an_d (°/1680m>) p*[a U(ql/ q(t) =% Y cos wt) wA+ sin(wt)B], (27)
dg°]* (for simplicity, here we ignore tensor orderipgndm
will be momentum dependent. However, for smhllithe \wherew is given by Eq.(26) as a matrix equation
momentum-dependence may be small in regions where the
higher derivatives olU(q) are not too large. When a har- ~ 1 %I (wh)z) 28
monic approximation is appropriatey can be approximated @= pareeo 2 ) (28)
as a constant tensor, though it may differ between potential _
catchment regions. Analogous results hold for the midpoinEach eigenvalue o is greater than the corresponding ei-
momentum-Verlet algorithm. genvalue ofw for h>0, and lim,_,w=w. Equation(27)

will satisfy

We generalize to higher dimensions by seeking an inter-
polation having the form of Eq19):

B. Velocity-Verlet solution of the multidimensional harmonic
oscillator a(nh)=dq, (29)

The form of the shadow Hamiltonian can be calculatedif
analytically(i.e., to all orders irh?) for the multidimensional

harmonic oscillator. The Hamiltonian is w=n(w) m?, (30)
1 1 where 7 is any real, invertible function ofy. Becausey is
=—pTm 1p+ ZqgT ) 2 ! .
H(a.p) pP M PT 54 Ka, (18) not yet fixed,u and the shadow mass cannot be determined

) N . ) from the position trajectory alone.
where K and m are symmetric, positive-definite matrices.  The second-order discrete derivative of the rter-

The exact solutions fog(t) andp(t) are Verlet trajectory defines “velocities”
q(t)=pu " [cog wt) uA+sin(wt) uB] (19 Q1= Gn 1
KT @Y
and
p(t)= T w[ — sin( wt) wA+ cod wt) uB], (200  Which are the same as those produced by the velocity-Verlet
algorithm. As illustrated for the one-dimensional harmonic
where oscillator in Fig. 1, they daot equal the derivative of the
~ ~ position trajectory Eq(27): v)#dq(t)/dt|,—,n. The incon-
w=[(x"H K 1", (21)  sistency is evident whether we use the interpolation of Eq.

(27) (which we will soon see is an exact symplectic trajec-

A andB are constant vectors determined by the initial Con'tory) or a simple cubic-spline interpolatidwhich is visually

ditions almost identical In fact, any globally smooth trajectory that
A=q(0), (229 matches both the velocity-Verlet positions and velocities will
necessarily have kinks, such as those in the dotted interpola-
B=u to Y(u " HTp(0) (22b) tion in Fig. 1. In summary, Eqg27) and (31) are not con-

sistent components of a solution to a shadow Hamiltonian.
and u is any real matrix that satisfies
- C. Momentum-Verlet solution of the multidimensional
m=pu u. (23 harmonic oscillator

o is arbitrary up to an Orthogona| or pseudo_orthogonal Contra-st this d|lemma with the outcome -Vyhen the same
transformationQ, i.e., interpolation procedure is applied to the position-momentum
output of the momentum-Verlet algorithm: Tlg are iden-
w=Qm'?2 (24)  tical to those produced by the “smoer-Verlet and velocity-
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FIG. 1. Interpolation of a velocity-Verlet solution of the one 0 0.5 1 1.5 2
dimensional harmonic oscillator. The dots are atdhethe vectors w, At

have slope given by . The solid line is the sinusoidal interpola- ) )
tion of Eq. (27), which corresponds to the symplectic trajectory.  F!G. 2. The normalized shadow mass, spring-constant and
The dotted line is a simple harmonic interpolation that matches botRngular-frequency eigenvalues for the momentum-Verlet solution
theq, andv?. of a particle in a three-dimensional, anisotropic harmonic potential.
The eigenvalues ofy, {w;, ®,, w3}, are{1.0,/0.75,/0.5. The
Verlet algorithms and, as before, can be interpolated by quioli(i, dasheNd, and dotted lines are the corresponding eigenvalues of
(27). Following the same procedure, we look for an interpo-@: M. andK as a function ofw;h. The plots terminate at the
lation of thep,, having the form of Eq(20): instability limit [see Eq.(28)].

p(t) =] —sin(wt) wA+ cog wt) uB]. (32)  frequency tensor. As expected, E85) is consistent with the

0O(h?) expansion obtained from the method of modified
Satisfaction of Eq(29) again requires that have the form  equations in Sec. Il A,

given by Eq.(30). In addition, substituting Eqg28), (27), As required for a physical interpretatiom, K, andw are
and(30) into Eq. (123 implies that all symmetric. However, degenerate eigenvaluesnodvill

12 not be degenerate im unlessw has the same degeneracies.

2
nzzzflw |— (wh) (33) For example, iH represents, in physical three space, a single
4 particle of massn (i.e., a triply degenerate mass ternsaran

_ o _ _ anisotropic harmonic oscillator potential having three differ-
[Equation(28) implies that the magnitude of the eigenvalues gt eigenvaluesn will also have three different eigenvalues.
of 7 are all less than 1t is easy to verify that Eq(32),  thys "while the computed trajectory is an exact solution of
along with the auxiliary conditions of Eq$28), (30), and S .
I the shadow Hamiltoniatd, this Hamiltonian does not de-
(33), satisfies . .
scribe the same type of physical system.

p(nh)=p,, (34) As noted_ aboye, the eigenvalues:mfa_re larger than the
corresponding eigenvalues @f Rearranging Eq.36) to ex-
so we have consistent interpolations for both ¢gheandp,, . pressw as a function ofK andm [i.e., analogously to Eq.
Referring to the exact quadratic solution specified by Eqs(21)], we can understand the frequency shifts as the com-
(18—(24), we recognize that the interpolated phase-spaceined result of changes in both the mass and spring-constant
trajectory specified by Eq§27) and(32) is an exact solution  tensors. Interestingly, Eq$28), (30), (33), (36), and (37)
of the modified Hamiltonian imply that, for momentum-Verlet, the eigenvalues of bkith
andm are smaller than their physical counterparts, and these
~ 1 - 1 . :
H(p,q)==p"m p+-q'Kq, (35  changes have opposing effects on the shadow frequencies.
2 2 However, the mass eigenvalues decrease faster than the
spring-constant eigenvaluéaith increasingh), resulting in
where frequency increases. Figure 2 plots the normalized eigenval-

o g ues of the momentum-Verlé¢, m, andw for a single par-

K=p op, 36 ficle in an anisotropic three-dimensional quadratic well.
o The analytic relationship between the momenta and ve-
m=u'u, (370 locities on the shadow trajectory is given by E@):

and u is specified by Eqs(30) and (33). Thus, H is the ~_ . . .
shadléw Hgmiltonianyforqtrge )symplc(ecti)c momentum-Verlet vn=Mm""py(valid only for the harmonic OSC'”am)'E%a)
solution of the multidimensional harmonic oscillator. Simi-

larly, m is the shadow mass tensor satisfying &), K is the _

shadow spring-constant tensor, ands the shadow angular- =m ‘muy. (38b)
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The second line provides tHedependent relationship be- 10'
tween the velocity-Verlet and the symplectic velocities for
the multidimensional harmonic oscillator, and shows that = o] )
former are smaller than the latter beginning@h?) [12]. = ya
Since the position trajectory is accurate@th?), ignoring \b; . -
this difference degrades the overall accuracy of the algo- & 10 : /
rithm. We will see a manifestation of this when we consider ~ ~J e
energy fluctuations in Sec. Il E. =
g e
D. Midpoint-momentum-Verlet solution b'q 161
of the multidimensional harmonic oscillator =
Following the derivation used for the momentum-Verlet ‘020., po o
algorithm, we find that the continuous trajectory that inter- w At
polates that midpoint-momentum-Verlet solution of the mul-
tidimensional harmonic oscillator is given by E¢&7), (30), FIG. 3. Root-mean-squarems) total energyE fluctuation(nor-
and(32), but with the altered expression malized by the rms potential energy fluctuajiai the Verlet tra-
jectory of a one-dimensional harmonic oscillator computed using
, o~ (wh)?| 712 En=30v""mu)+ 2q]Kq, (using the velocity-Verlet velocities; dot-
n=e ol = 4 B9 teq ling andE,= 3q!mq,+ 30,Ka, (using the momentum-Verlet

velocities; solid ling.
(In contrast with the momentum-Verlet form far, » now

has eigenvalues of magnitude greater thgnThe shadow ([((H=H)—{((H=H))z1%)&

Hamiltonian[13] is again given by Eq9.35)—(37), but be- N N 2
cause 5 is different, m and K will differ from their —limNtS {(En—En)—N*E (E,—E,)
momentum-Verlet counterparts. In contrast with the N o n=1 n=1

momentum-Verlet case, the eigenvalues of thesand K

: . . 40
are bothlarger than their physical values. The eigenvalues of (409
K increase faster than thoserofwith increasingh, resulting N N 2
in the same shadow frequency increases as observed with the = lim NflE E,— NflE E.l , (40b)
momentum-Verlet algorithm. N—o  N=1 n=1

The midpoint-velocity-Verlet “velocities” for the multi- _ _
dimensional harmonic oscillator are related to the symplectievhereE,, andE, are the values off andH, respectively, at

velocities by Eq(38b) using the appropriaten [12]. In this  corresponding phase-space pointShe En terms cancel
case the Verlet “velocities” are larger than the symplecticsinceE,=E at all points)

velocities. BecauseH and H induce different explicit relationships

between momenta and velocities through Etp), the mo-
E. The symplectic energy fluctuation menta that are used in evaluating them at the same point
differ and some care is needed when evaluatigSince

H v
Smc_e thev, do not equal th@”.’ they do not correspond there is no ambiguity im(t) and its derivative (t), we can
to a trajectory that remains on a fixed shadow energy Surfac%)(pressE as a function of these variables. In particular
Thus, they are not fully constrained by symplecticity and the '

energies computed using them can fluctuate excessively. 1. .

This agrees with Mazurl4], who has previously noted that Enzqumqﬁ U(gp). (41)
the energy fluctuations computed using the velocity-Verlet

velocities overestimate the algorithmic error. . . .

Mazur has gone on to suggest that energy fluctuations ar\é/hen th'.s form is used, the mag”'?“de of the energy fluctua-
therefore not a good measure of algorithmic accuidel}. tions defined by Eq(40b) doesprovide a useful measure of
However, we can now show that the energy fluctuation£ccuracy- The incorrect method—evgluatlﬁg&g a function
computed using the appropriate velocitie®., thev, de- Icgc(iqti((;; ?on?:gr(r:z)agc;geese%%r:g)s/ to using velocity-Verlet ve-
fined by Eq.(7)] can be related to the microcanonical en- . . : ' .
sembleyavgrég)(]a of the mean-square deviation between the For |IIus_trat|on, F_|g. 3 compares the energy fluctua_t|ons (.)f
physical and shadow Hamiltonians, whisha good measure the numerical solution for a one-dimensional harmonic oscil-

¢ Si K hEt | " . h lator as a function oh when the energ¥ is computed using
ofaccuracy. Since we know that Is invariant on the sym-  gjihar momentum- or velocity-Verlet velocities. The root-
plectic trajectory, the ergodic hypothesis implies that al

i ohted trai s r‘mean—square energy fluctuation computed using the
equal-time-weighted trajectory average approachiesthe o menium-Verlet velocities is about a factor of 3 smaller

long-trajectory Ii~mih tNhe microcanonical ensemble averagen n that computed with the velocity-Verlet velocitiesx-
for a fixed valuek of H. Thus, the microcanonical ensemble cept ash approaches the |n3tab|||ty ||m|t¢h:2) The pre-

mean-square average of the deviation betwdemdH, ad-  cise interpolation given by Eq19) is not needed for this
justed for the difference between their medhs, is result: essentially the same fluctuations are comp{ercept
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very close to the instability limjtusing a cubic-spline inter- between the numerically computed momenta and velocities,
polation. The main requirement is that the interpolationand the shadow Hamiltonian that generates them, cannot be
should be globally consistent and adequately smooth. obtained without accounting for the difference between the

In both cases, the energy fluctuations #@¢h?). As  physical and shadow masses. For example, ToxVdsidin
pointed out by Mazuf14], most of the velocity-Verlet en- an effort to improve energy conservation, rescaled the
ergy fluctuation results from velocity error. This error is re- Velocity-Verlet velocities and constructed, for the one-
moved when the symplectic velocities are used. The smallefimensional harmonic oscillator, a “shadow Hamiltonian,”
symplecticO(h?) fluctuation is a true measure of the micro- that is, to O(h?), a multiple of the shadow Hamiltonian

) L . given by Eq.(35). Although (to low orde}, it conserves en-

canonical average of the deviation ldffrom H; in the case

of the harmonic oscillator, this mirrors tf@(h?) deviation ergy to the same extent adoes, it does not satisfy Hamil-
~ T ton’s equations, and so can not be considered to be a true
of w from w. The situation is similar when the energy fluc-

s JoH ! 9 %" shadow Hamiltonian.
tuations of the midpoint-velocity-Verlet and midpoint- o main practical conclusion is that derivatives of inter-
momentum-Verlet algorithms are compared. polated position trajectories, rather than velocity-Verlet “ve-
locities,” should be used for computing energy fluctuations
1. CONCLUSION and physical velocity-dependent observales)., diffusion

Ignoring the difference between the shadow and physic qonstan_ts{l?])_. For the simple case of the multidimensional_
mass in symplectic numerical integration, and the related e%]"’t‘;rpp%?;igﬁc'lﬁécxéxi V\?(a)rregaebr:irtgl C:rl]%lg?r;eotrr}g ‘zr&ﬂgﬁ?

ror of assuming that the velocity-Verlet velocities are consis- N ted oh it d the k ledae that
tent with the symplectic shadow trajectory, has caused som €N computed phase-space points and the knowledge tha

confusion. We have examined this explicitly for the multidi- they have been generated by a symplectic integrator will not

mensional harmonic oscillator by examining the relationshigpe adequa;e tohur(;lque:_)'/ sp_leC|fy an :_r|1terpo|at|0nr,] the shha(_jovlv
between the standard and midpoint-velocity-Verlet velocitiegn"’lss.(’j or E[ € sha (I)Wth ?m' tonlan.l' q;/veve[_), w Ien E yS|t(;1a
and the corresponding symplectic velocities. The difference§ONS1derations imply that an upper fimit can be placed on the
are ofO(h?) and globally bounded, so the symplectic global rate of variation of the position trajectory, we expect that

stability properties, though impaired, are retained in Weak_yelocities computed by differentiating a sufficiently smooth

ened form even when the velocity-Verlet velocities are as_lnterpolatlon will give more accurate results than the

sumed to be correct. But since more accurate results are Ogglocit_y—VerIet velocities. Similar conside.rations apply to the
tained when it is recognized that only momenta, and no idpoint form of the velocity-Verlet algorithm and probably

velocities, are correctly computed by the algorithms, we sug—0 symplectic numerical integrators in general.
gest that it is more appropriate to use the term “momentum
Verlet” in describing them.

Even without the symplectic analysis, it is evident that We thank Dr. Bruce W. Church, Dr. Ron Elber, and Dr.
something is wrong with velocity-Verlet velocities, since Tamar Schlick for helpful discussions and comments, the
they do not match derivatives of smooth interpolations of thdntel Corporation for computing equipment, and the NIH for
discrete position trajectory and they yield unnecessarily largéhe support of J.G. through Molecular Biophysics Training
energy fluctuation§l4]. The correct symplectic relationship Grant No. 5T32GM08267.
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