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Diffusion Monte Carlo methods with a fixed number of walkers
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In this paper we discuss various aspects of diffusion Monte Carlo methods using a fixed number of walkers.
First, a rigorous proof of the divergence of pure diffusion Monte C&ABMC) methods(DMC without
branching in which the weights are carried along trajectpigegiven. Second, a bias-free Monte Carlo method
combining DMC and PDMC approaches, and based on a minimal stochastic reconfiguration of the population,
is discussed. Finally, some illustrative calculations for a system of coupled quantum rotators are presented.

PACS numbes): 02.70.Lg, 75.40.Mg

I. INTRODUCTION In a Monte Carlo scheme, successive applications of
G(H) are done using probabilistic rules. In short, it is based
Quantum Monte CarlgQMC) methods are powerful ap- on the fact that the quantity

proaches to compute the ground-state properties of quantum L
systems. They have been applied with success to a great * PP .
variety of problems including quantum liquids and solids, PI_i(n=y¢r()(I[1-7(H-Ep]i) (i) ®
nuclear matter, spin systems, the electron gas, the electronic
structure of small atoms and molecules, é€see, e.g., Refs. can be viewed as a “generalized” transition probability and
[1-4]). The basic idea of QMC is to extract from a known can be used to sample stochastically the actio®@f) on
trial vector| ) its exact ground-state componeéri). This  an arbitrary vector. This statement can be made more explicit

is realized by using an operat@(7{) acting as a filter, by rewriting Pi’;j 7) under the form
lim G(H)"|4r)~ o)., (1) PLi(N=Pi_j(w, 6)
L—oe
where
where H is the Hamiltonian operator of the system. For
problems defined in a continuous configuration space two . 1
forms for G() are usually introduced; they define the two Pioj(n=¢r((IL=7(H=-ED]II) (i) @)
following types of approaches.
(i) Diffusion Monte Carlo(DMC) methods is now a genuinetransition probability:P;_,;(7)=0 and
c 2;Pi_;j=1 (the latter condition is not fulfilled bPi*ﬂ- , eX-
G(H)=e "M"FD, (2)  cept when|y7) is the exact ground stjtand where the

quantityw;; is defined as follows:

o 2 I r(H=En1li)
3) 1= 7(H=ED )
In both expressiong, is the so-called local energy which

whereE+ is some reference energy anglays the role of a plays an important role in any QMC scheme
time step. For lattice problems or any problem described by

(ii) Green’s function Monte Carl§GFMC) methods

8

SO =T m—E

a Hamiltonian matrix in a finite linear space, a most natural IR [ Hlgr) 9
choice is L= (ilgm) - ©
G(H)=1-1(H—Ey) 4 In order to apply stochasticall&(7), two type of ap-

proaches have been considered. A first type of approaches
and the method is usually referred to as lattice Green’s funceonsists in using the transition probabilig;_; to generate
tion Monte Carlo. Note that the denomination “projector successive states and then introducing at each step the quan-
Monte Carlo” is also found in the literature to refer to any of tity w;; as a weight in the averagé4o carry” the weights.
the previous variants of the method. For simplicity we shallln this type of approaches the number of configurati@rs
use here the general denomination “diffusion Monte Carlo” “walkers” ) is constant by the very definition of the stochas-
for QMC methods based on E@l) and present our results tic process. These methods are usually referred to as(pare
for afinite linear space with the choid@) for the operator branching diffusion Monte Carlo(PDMC) methods. In the
G('H). All results presented in this paper can be straightforsecond type of approach a birth-deébh branching process
wardly generalized to continuous models. associated with the local weight is introduced. In practice, it
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consists in adding to the stochastic move defined by the trarimits. Finally, we illustrate and compare the respective
sition probability, a new step in which the current configu-qualities and drawbacks of the different approaches on some
ration is destroyed or copied a number of times proportionahumerical examples.

to the local weightw;; . In these methods—generically re-  The organization of the paper is as follows. In Sec. Il we
ferred to as the diffusion Monte Carlo method—the numbedive the basic ingredients of the diffusion Monte Carlo meth-
of configurations is no longer constant. Remark that in0ds. Section lll is devoted to the derivation of the proof of
theory there is no need to go beyond the pure diffusiorf€ divergence of PDMC approaches. Section IV discusses
Monte Carlo method. In practice, this is not true since then€ construction of a DMC method including a minimal re-
numerical experience has shown that for extended and/gonfiguration process. In Sec. V some practical calculations
complex systems, the efficiendgomputer time needed to for a system of coupled quantum rotators are shown. Calcu-

achieve a given accuracys drastically reduced when con- Iatl(_)ns are intended to |Ilustrate the Important aspects of the
. . . ) . various DMC approaches discussed in this work. Finally, a
figurations are let to go to regions of configuration space . .

; o summary of our results is presented in Sec. VI.
where the weights are small. In other words, it is important
to sample less frequently regions where the total weight is
small and to accumulate statistics where it is large. This is
the basic reason which motivates the introduction of the In this section we give a very brief account of the main
branching process and justifies the widespread use of DM@spects of diffusion Monte Carlo methods. This part is es-
compared to PDMC methods. Now, since in DMC the num-sentially designed to introduce formulas and notations used
ber of walkers can fluctuate, some sort of population controin the following sections. It will also enable the nonexpert to
is required. Indeed, nothing prevents the total popuIatioande_rStand the major steps 9f DMC app.roaches. For more
from exploding or collapsing entirely. Various solutions to detailed presentations of the implementation of DMC to lat-
this problem have been proposed. The most employed agice (finite) systems the reader is referred to R¢és-12].
proaches consist either in performing from time to time a

random deletion/duplication step or in varying slowly the A. Pure diffusion Monte Carlo

reference energy to keep the average number of walkers ap- as already mentioned in the Introduction the basic idea of
prOXimately constant. In both cases, a finite bias is intrO'QMC approaches is to extract from a known trial Ve¢w>
duced by the population control step. In order to minimizejts exact ground-state componént,y). Note that such ap-
this undesirable source of error it is important to control theproaches are in a very close relation with power-type meth-
size of population as rarely as possible and in the most gentleds in which the ground-state eigenvector is obtained by
way [1]. applying a large number of times the matrix on an arbitrary
Very recently, following an idea introduced by Hethering- initial vector. Here, the major difference is that the basic step
ton [5], Sorella and co-workeri6—8] have reconsidered the (matrix times a vectgris no longer done exactlfthe size of
use of stochastic reconfiguration in diffusion Monte Carlo.the linear space is too largbut in a probabilistic way using
Their motivation is to combine the best of both worlds: effi- a Markov chain. Once the ground-state eigenvector has been
ciency of DMC and absence of bias as in PDMC. Theirdetermined, a number of properties can be obtained. As an
approach is derived within a PDMC framewd(itke walkers  important example, the energy is given by
“carry” some weighy but the population is “reconfigured” L
using specific rules. The reconfiguration is done in a such Eq= lim (r|H[1—7(H—Ey)] |¢T>_ (10)
way that the number of walkers is kept constant at each step. Lo (7] [1— 7(H—E7)] 1)
In this work we present a number of results regarding
diffusion Monte Carlo methods and stochastic reconfiguralsing the basic formula relating the matrix elements of the
tion strategies. First, we present a rigorous proof that anyamiltonian and the “generalized” transition probability al-
PDMC method is expected to diverge as the simulation timeeady presented in the Introduction, E¢8)—(8), we easily
and the number of iteratioris[as defined by Eq.l)] are let  get
to go to infinity. This result is not surprising and has already
been realized by a number of authors. However, to our Eo= lim,
knowledge no rigorous arguments have been given so far to Lo
clarify this point. In general, it is stated in a more or less L1 L1
detailed fashion that the variance of the product of weights .
w;; explodes as the number of iterations is made large. Quite < < EL( L)k[[o W‘kik+1> > / < < kl:[o W‘kik+1> > - D
interestingly, the derivation of the proof of the divergence of
PDMC presented here shows that this result is in fact fain this formula the symbol(---)) denotes the stochastic
from being trivial. In particular, the proof of the divergence average over all realizations of the Markov chain described
requires some care from a mathematical point of view. Secby P;_;, Eq. (7). It is easily checked that the stationary
ond, we present a variant of the stochastic reconfiguratiodensity of the process verifying
method which we consider to be a minimal bias-free QMC
method combining efficiently PDMC and DMC ideas. This
approach is built such as to minimize as much as possible the
fluctuations associated with the reconfiguration step and also
to recover the PDMC and DMC methods as two well-defineds given by

II. DIFFUSION MONTE CARLO METHODS

2 P, _(n) =1, (12
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I = (i), (13 my; = int(w;; + 1), (19
The probability of a given realization of the chain corre- where inti) denotes the integer part & and » a uniform
sponding toL steps and a total time @=L 7 is random number on (0,1). In theory, such a process is prop-
o ) _ erly defined only for an infinite number of walkers. Of
Plip—ig—- i =i J=1L Py i (1) Py (7). course, in practice only a large but finite number of walkers

(14 (a populationis considered. Adding a branching process can
be viewed as sampling directly with the generalized transi-

Remark that in the limiP—c and 7—0 with t=L 7 fixed, }ion probabilityP* () defined above, Eq5). The fact that

this probability defines a functional measure on the set of al
“trajectories” of time-lengtht. View from that point, for-
mula (11) is nothing but a generalized version of the well-
known Feynman-Kac formul@l3—-15. Using the ergodic
(recurrent property of the Markov chain, the sum-over-all
trajectories restricted to a finite time interval can be rewritten

i—
its normalization isJ, not constant is responsible for the fluc-
tuations of population. However, a stationary density for this
modified process can still be defined. By writing the station-
ary condition

as a sum alongne singlearbitrary infinite realization of the > PP (1) =P; (20
chain '
1t -1 we see from Eq(5) that this relation is fulfilled ifE; is
- E EL(j)H Wiges 1 chosen to be the exact enerBy and for the following sta-
L= k=0 tionary density:
EOZ lim L -1 , (15)
e S T Wis Pi= (i) (). (2D)
=1 k=0

By using a stabilized population of configurations the exact
where different states are denoted for simplicity asenergy may be obtained as
[0,1,2 ... ,L]. In practice, numerical calculations are based
on this formula which is particular simple to implement on a Eo=({E))w- (22)
computer. Now, for later use, let us remark that the basicN

. . . ote the use of an additional subscriptin the average to
equation(11) can be rewritten as a simple sum-over states )
under the form recall the presence of the branching process. Formally, ex-

pressiong16) and (22) for the estimate of the exact energy
in PDMC and DMC methods, respectively, are identical. The
Eo=2 EL(DPI/X Py, (16)  same for the expressions of the probabiRtyof a given state
! ! i in both approaches, Eqél8),(21). However, there is an
essential difference which distinguishes both methods. This
is the way that this probability is realized stochastically. In
PDMC, the stationary density of the Markov chain Ik
L1 =2 and P; represents some effective probability obtained
P=lim >  Plig—ig—-ip—i ] Wi .,» from averaging the weights along trajectories of infinite
L—ee foddgr---dL-1 k=0 time-length, formulg17). In DMC, the probabilityP; is re-
17 alized by the stochastic process itself. There is no need to
where, for simplicity of notation, stafeis identified to state [ntroduce additional weights in averagee formula(22)].
i, . By using Eqs.(7), (8), (13, and (14) it can be verified As a consequence, the DMQ appro'ach isa muph more stable
that P, is given by meth_od from a num_erlcal point of wew._The price to pay for
that is the introduction of a bias resulting from the popula-
Pi= (i) (i) (18  tion control (done either by random deletion/duplication or
smooth variation of the reference energy, see discussion in
up to an immaterial normalization constant. Note that whenthe Introduction. In contrast, with PDMC there is no need
the weights are all taken to be equal to oRereduces to the  for population control. However, as we shall see in the next
stationary densityI; of the Markov chain as it should be.  section, the method is intrisically unstable.

where the probabilityP; associated with a given stateis
given by

B. Diffusion Monte Carlo Ill. DIVERGENCE OF THE PDMC

In the pure DMC method just described the number of
configurations is kept fixed and the weights are carried ou
along random sequences of states. In DMC approaches t
weight is introduced directly into the stochastic process via 7

0,

In this section it is shown that the estimate of the effective
robability P; associated with a given stateas defined in
MC, Eq.(17), does not converge to a finite deterministic
alue. Let us defina (i) (n=1) the product of weights be-
een the (— 1)th andnth occurences of staten the Mar-
oV sequence:

birth-death or branching process. In practice, it consists
adding to the standard stochastic move of the PDMC metho
a new step in which the current configuration is destroyed or
copied a number of times proportional to the local weight. Np—1
Denotingm;; the number of copie@multiplicity) of the state Ap(i)= H
j» we take I=Np—1

(23
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whereN, denotes the time index of the Markov chain. Let usAs an important consequence of the Markov property all
denoteX,(i) the total weight associated with all states oc-pairs of random variablgsX,,(i),\,(i)] are independent and
curing between timé\,_; and timeN, equidistributed(same lay. Only random variableX and \
corresponding to the same indexand same stateare de-

Np k-1 X X X i
N N pendent. Using the ergodic property of the chain and previ-
X“(I)_k:%:’m |:1N_L1 Wit 1 24 ous definitions, expressidii7) for P; can be rewritten as
|
N(D) NN+ - NN - - - Ny (i
P.(n)= (D) + g (D)No(1) 1(DAo(1) - Np(i) (25

Xa(D) + N (D) Xo(1) + - - AN (DAR(1) - Ny g (1) X (1)

when the numben of occurences of statebecomes large. Let us now suppose thatF/ converges to a constant. Then
Now, our problem is to determine whether or not this quan-t follows that in the limit of largen, the random variables
tity has a well-defined limit as goes to infinity. For reasons Y,/Z, and X;+Y,)/(\1+Z,) converge to the same con-
we shall understand later, two different cases must be distirstant. Now, sinceY,,,Z,) are independent ofX;,\;) [and
guished. Denotingz[In(\)] the finite expectation value of the same for ¥,_1,Z,_1) and (X,,\,)] it follows that the
the random variabl@ we consider separately the two casesrandom variables X;,\;) must reduce to some constants,
|E[In(\)]|>0 and E[In(\)]=0. Note that the time or state and the same for allX;,\;). This result shows that, except
indices are not specified since all random variableare in the trivial case where the weights are equal to ¢me

independent and of the same law. branching, P; cannot converge to a well-defined limit as
goes to infinity. Note that similar arguments can be given in
A. |[E[In A]>0 the caseE(In \)<<0, after the transformation;— 1/\; .

Now, the important remark is that all these arguments are
valid only if the random variabl&, converges to a finite
distribution. For our purposes, the convergenc¥ phas not
to be considered here since the two conditiahsonverges

Let us first consider the cad€ In \]>0. After some el-
ementary manipulations the inverseRy{n) as expressed by
Eq.(25) can be rewritten in the equivalent for(eame law

i i i and P; finite and different from zenoimplies the conver-
o Xo(0) Xs(i) Xa(1) .
1 Xq(i)+ () + WY ORE m gence ofY,,. In the casde[In A]>0 the convergence &, is
~ 2l 2(D) A5 2(D)- - An _ a consequence of the law of large numbers. Indeed, accord-
P A(D)+ 1+ 1 N 1 L 1 ing to this theorem, for a given realization of the Markov
1 No(i)  No(i)Ng(i) No(i) -+ Ny(i) chain there exist two constan®>0 andB>1 such that
(26)
Ai(i)- - Np(D)=CB" (30)

Note that, while deriving this expression, subscripts of ran-

dom variables have been interchanged. Such a manipulatiagg, p large enough. As a consequengg converges to a
is allowed since random variables are independent and equipsitive andfinite distibution almost surely. In the case
Qi_stributed. To proceed further we define the following quan-g[|n \]=0 this is no longer trueZ,, tends to infinity for large
uties: n and no direct constraint on the law of random variat{es
X,(0) X(i) X, (i) or A; can be drawn. As a consequence, this case must be
Yy =22 T LA S treated separately. Before doing that, let us emphasize that
TN N(i)Ng(i) No(i) -+ (i) this case is in fact general. Indeed, the expectation value of
In\ does not depend on the particular sti@s a result of the
and Markov property and by multiplying all weights by a suit-
1 1 1 able constant we can always impds@n \)=0.

RSV W R VRS W 5. E(n =0

(27)
To treat this case we try to depart as less as possible from
We then have the previous case. For that we introduce some new quantities
vn(i) which will play a role similar to that played by quan-
i_ X1+ Yn (28) tities \y(i), except that by their very definitiory,(i)=C
P, Nt+Z, whereC is some constant strictly greater than 1. As a direct
consequencé&(In y)>0 and arguments similar to those em-
and ployed previously will be invoked.
Let us definey,(i) as the product of weights

Z,=1+

Y Xo+Y . . ikik+l be-
_n_n22z ‘nl (29)  tween two occurences of statsuch that the ratio of the total
Zy NotZyg product of weights at the two occurences is greater than the
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constantC>1. y,(i) can be written as

Ng(n)-1

I1

1=Ng(n-1)

Yn(i)= (3D

Wijiy,yr

where ¢(n) denotes thep(n)th occurence of stateverify-
ing the condition associated with the thresh@ldMore pre-
cisely, ¢(n) is defined as

Nk

I1

_ M+1
I=Ngn-1)+1

d(n)=inf= gyn-1)+1)

Note that the functionp(n) is well defined[successive val-
ues ofp(n) are finitg because we have

Uy(i) + ya(D)Ua(0) + - -
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k
SUstsnE NN\ (i)—+o°
=1

as n—+oo  for a given realization.

(33

This property is a consequence of the theor@® which

will be presented later. Roughly speaking, what is done here
is to extract from the full set of occurences of statesubset

of occurenceglabeled by the functior) corresponding to a
series of “stopping times” along the random sequence. Once
more, as a result of the Markov property the random vari-
ablesy,(i) are independent and equidistributed. In addition,
from their very definitiony,(i)=C>1. Using previous defi-
nitions we can rewritd®; as

YD ya(i)- - - yn-a(DHUR(I)

(34

Pi(n)=

whereU (i) represents the sum of the products\gf) be-
tween the occurences(n—1) and¢(n)

Ng(n) k

> I

kK=Ng(n-1) 1=Ng(n-1)

Un(i)= N(1) (39

V(i) +y()Va(i) + - -

+y1(1) y2(i) - - yp_1()Vp(i) '

vation of the convergence df, is not necessajylf Z,, con-
verges we can concludsame arguments as befptbat P;
converges to a finitédeterministi¢ value only if the ratio
V,/U, is a constant, which is not the case. To do that let us
first introduce the following theorem.

Theorem Let X, be a family of independent, equidistrib-

andV,, the sum of all weights between the two occurences uted and centere(zero meanrandom variables. If all mo-

N (n) k X, (i
V= > | T ) kk—g:; (36
=Non-1) L1=Ng(n-1) K

The triplets U,,V,,y, are independent and equidistrib-

uted. After some elementary manipulations the inverse;of
as expressed by E¢34) can be rewritten in the equivalent
form (same law

1 Vi+T,
P Ui+ W, 87
and
T, Vo+T,1
Wy Uyt Wy 39
with the following definitions:
LoVl Vs V(D)
" ya(i)  yali) ys(i) ya2(i)- - - yali)
and
oY Ush o Ug(D)
" oya(i) o yali) ya(i) Ya(i) -+ yali)
(39

In order to complete the proof we need to show that the

series associated witW,, converges to some finite distribu-

tion (as already discussed in the preceding section, the deri-

ments of the random variables are finite we have

k
Suptsksn;l XI

1
—+o asn—+owo Va<z.
n< 2

(40)

This theorem is a consequence of the central-limit theorem.
Using rough arguments we can say that the sum of the inde-
pendent variables in the numerator converges to some
Gaussian distribution with a variance proportionalntand

that the greatest value is expected to behave as the square
root of the variance/n. As a consequence, the ratio of the
numerator and denominator must diverge as soonaxas
>1/2. Although these arguments are correct, a rigorous deri-
vation is actually not so simple. It requires some mathemati-
cal care which is beyond the scope of this work. The deriva-
tion will be presented elsewhef@0]. Now, the important
point is that the random variablesN({(i) verify the hypoth-
eses of the theorem. They are independent, equidistributed
(with zero meaj and as a consequence of the finite variation
of the weights and “stopping times[as defined by the func-
tion ¢(n)] all their moments are finite. Using the fact that
@(n) is a series extracted from the full series of occurences
of statei we obtain the following property:

K
SUB <K= ¢(n) 21 In X\ (i)

d(n)*

—+0o asn—+xo Va<s

(41)
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or, equivalently, Before considering this point, let us determine the depen-
| dence of the error as a function of the computational effort in
. a PDMC scheme. The fluctuations of the weight from itera-
21 In (i) 1 tion n to iterationn+ 1 will be described by the variangg?
—— —+© asn—+w VY a<§. (42 defined as

$(n)”
< (W(n+ 1)) 2>
Note that, in the particular cage=0, we recover the prop-
erty (33), a result which guarantees that the functipfn) is > w® 47)
well defined. From its definitior§35) the seriesU (i) is a p= wh+1) z
sum of at mosibut not equal ¢(n) terms all smaller than < o >
the constan€C except the last one which ig,(i). Therefore, w

we have By definition B is greater or equal to one. The equality is
=11 (i< ; obtained in the optimal case corresponding to constant
0=Un()=Chm+¥n(D). “3 weights(no branching Let N be the total number of Monte
From this relation we can write Carlo steps of the SimulatiO('[he Computational effort is
proportional toN). The systematic error due to a finite pro-
U,(i) Ce(n) 1 jecting time T (number of iterationd.=T/7) is of order
= y2(i) - yn(i) = Ya(i)- - yali) + Yoy exp(~TA) where A is the gap in energy of the model (
(44) =E,;—Eq, whereE is the ground-state energy alkg the

energy of the lowest state having a nonzero overlap with the
The series of general term/(i)- - - y,(i) is convergent trial wave function. The statistical error due to the finite
since all y,(i) are greater or equal t6>1. Regarding the statistics on some quantity evaluated at some fixed projecting
other termA,=C(n)/y,(i)- - - yo(i) we can write as are- time T is given by 87/\/N/T. By equating both errors an
sult of Eq.(42) that there exists a constalt(«) such that  estimate of the relation between the computational effoat
N) and a given accuracy can be obtained. In the larde-

" ) Ve 1 limit the relation is easily found to be
d(nN)<M| >, Iny(i) for 0<a<y. (45
I=1 1
Therefore, we have TN
n 1/ .
with
[T »()

Cém) CMiyy(i)— (46) A
—g I - n —
YD)yl TR Y= ETE (48)

|H1 (i) A

When =1 (no fluctuations of the weightsy=1 and the

From the fact that the functiofinx]“®/x decreases fok efficiengy of the simulatio_n is optimal: th_e -standardfﬁl
large enough and thag,>C it follows that A, is bounded Iavy 9fd|ffu5|on processes is recovered. Ass mpreasgd the
from above byCM 1y, (i)[n In C]¥*/C", the general term of a eff|C|'ency of the simulations can decrease quite rapidly. Ac-
convergent series. Finally, we can conclude that the serig"dingly, to enhance the efficiency of PDMC the fluctua-
W,, converges to some finite positive distribution. This resultions of the weights must be decreased. An elegant solution
completes our proof of the nonconvergence of the PDMP this problem has been introduced more than ten years ago
estimate of the effective probabilit, . by Hethe_r|ngton[5]. The |de.a consists in carrying many

walkers simultaneously and introducing a global weight as-
sociated with the entire population instead of a local weight
for each walker. The global weighW is chosen to be the
average of the local Weighwi|

IV. DMC WITH MINIMAL STOCHASTIC
RECONFIGURATION

As seen in the previous section PDMC is intrinsically "
unstable. As already remarked, the basic reason for that is the 1
increase of variance of the products of weights as a function Wiy iy = M 21 Wi
of the number of iterationgr projecting time. However, as
illustrated by a number of applications performed using thisvhereM is the number of walkers consider&d avoid con-
type of approachege.g., Refs[15,11,16—19 the method fusion between various indices only one subscript has been
has proven to be very useful. This is the case when the triaised for individual weighis By increasing the numbév of
wave function is accurate enough to allow the convergencevalkers the fluctuations of the global weight is reduced and
of the various averages before large fluctuations associatg8l as defined in Eq47) is decreased. It is easy to check that
with large projecting times arise. When convergence ishe quantity In3 decreases as the inverse of the number of
achieved no finite bias due to a population control process iwalkers. As a consequence of Ed8) the gain in computa-
introduced. In order to make PDMC approaches effective théional efficiency can be very important. Now, the method
fluctuations of the weights must be decreased in some wayonsists in defining a PDMC scheme in the enlarged linear

(49
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space defined by the tensorial produbt (ime9g of the ini-  no source of systematic error has been introduced and that it
tial linear space. In this new space the full transition prob-is equivalent to the original reconfiguration process of Heth-
ability is defined as the tensorial product of individual tran-erington. However, in contrast with the latter the average
sition probabilities. Note that no correlation between thenumber of reconfigurations is kept minimal and, conse-
stochastic moves of different walkers is introduced at thisquently, the efficiency of the simulation is significantly en-
level. Second, and this is the important point, each individuahanced. In addition, the average number of reconfigurations
weight carried by a walker is rewritten as a function of thevanishes as the weights become constant. In other words, the

global weight reconfiguration method reduces in this limit to the standard
PDMC method. In their recent work Calandra-Buonaura and
w; w,l( i)W Sorella[7] (CBS) have proposed to use a reconfiguration
process which is essentially identical to that of Hetherington,
with except that the reconfiguration step is not necessarily done at

each iteration. Besides reducing the finite bias on the station-
ary density they have shown that their approach allows to
calculate efficiently ground-state correlation functions within

a forward walking approach. Here, our reconfiguration pro-

This rewriting allows us to introduce the global weight as acess is built in order to minimize as much as possible the
weight common to all walkers and thus to define a standardluctuations of the weights at each step. As a consequence,
PDMC scheme in the tensorial product of spaces. To takéhe finite bias on the stationary density is also reduced as
into account the new Weigﬁvil a so-called reconfiguration much as possible. In particular, and in contrast with the CBS

o . scheme, our algorithm is found to be optimal when the re-
process Is ‘|‘ntroduped. A,t, each step the t_otal pop“'??“d”“ of configuration process is applied at each iteration.
walkers is “reconfigured” by selecting with probability pro-

portional tow the same numbe¥ of walkers. Note that, at
this point, some correlation between different walkers is in-
troduced. Now, let us discuss the two important limits of the In this section we present some calculations illustrating
algorithm, namely, the case of an infinite number of walkersthe various aspects of DMC approaches discussed in the pre-
M—o and the case of constant weightg,— 1. WhenM ceding sections. The system considered is a chaitNof
—oo the global weight converges to its stationary exactcoupled quantum rotatof®ne per sitg In the angular rep-

value. As a consequence, the different weightassociated ~resentation the Hamiltonian is written
with each walkefas given by Eq(50)] become independent Ne o N
from each other and the reconfiguration process reduces to N xS cos 6: 1~ 6) (52)
the usual branching proce§g9) without population control S 245 i+ i

and systematic bias since the population is infinite. In the '

limit w;—1 the method does not _reducga to the standargvhere (9, - - - gN) are angular variableg, e R/27Z and pe-
PDMC approach. Indeed, the reconfiguration step “reconfig tiodic boundary conditions are used,\@l— 6,). In this for-

ures” the entire population whatever the values of the | defi h | ht of th
weights. In order to improve the efficiency of such methodg"u'a X is a parameter defining the relative weight of the
tential and kinetic terms. It can be shown that the model

this undesirable source of fluctuations must be reduced a
the limit of the exact PDMC should be implemented in the _escrlbed by this Hamiltonian has the same critical proper-
ties as the two-dimensionaY spin model[21]. The finite-

method. For that we divide the population of walkers into . ; .
two different sets. A first set of walkers corresponds to allfemperature Kosterlitz-Thoule$KT) classical phase transi-
tion of the spin model is equivalent to a zero-temperature

walkers venfylng_w =1. Thes? wa_ll_<er§ can be potentially quantum phase transition in the rotator model occuring at
duplicated and will be called “positive” walkers. The other (. critical value for the parameter Monte Carlo simu-
walkers verify 0<w<1, they can be potentially destroyed |ations have been done in the angular momentum represen-
and will be called “negative walkers.” The number of re- tation. In this representatioH is expressed in the discrete
configurations is defined as basis,|I;- - -In.) (Ii€Z), consisting of the eigenvectors of

the angular momentum operators at different sites. We have

Wil

Wi (i1 i) = (50

i1 iy

V. AN ILLUSTRATIVE EXAMPLE

NReconf:iE+ |Vvi_1|:i2_ |Vvi_1|: (52)

NS S
=2, -5 2 (¢lagitHe), (53

I\)|><

whereX;, (Z;_) indicates that the summation is done over
the set of positivelnegative walkers. The equality in Eq. .
(51) is a simple consequence of the definition of positive andvhere the operatorsf(”, ¢; ,J;) are defined as followfLie-
negative walkers. In practice, an integer number of reconalgebra ofO(2)]:

figurations is obtained by considering iNi¢.ont 7), Where

7 is a uniform random number on the interv@,1). Once ¢i+|ll' sl =[l L),
the number of reconfigurations has been draMjg,,,swalk-
ers are added to or removed from the current population by Gilly 1y =[lg- - li=1- ), (54)

drawing separateli,..onfWalkers among the lists of positive ~
and negative walkers. It is easily verified that by doing this Jillg- -l )=y 1),
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-4.364 T T T T

i
-4.366 [ -
i
4368 | Pure Diffusion Monte Carlo -
o 1 FIG. 1. PDMC calculation of
L 437 k J the energy as a function of the
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. 32, Egs.(53),(54).
-4.372 % .
374 [~Exact energy “”““Mﬂilﬂlﬂﬂm
0 2lo 4Io 6I0 slo 150
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Here we are interested in calculating the ground-state energyherek is some positive parameter.

of the model. Note that the ground state belongs to the fun- The unstable character of PDMC at large times is clearly

damental representation @(2) corresponding to a total illustrated. At zero-projecting time the variational energy as-

momentum equal to Zer@iN_Sl'iZO- In what follows the Sociated with the trial wave function is recovered with small
luctuations,E,= —4.10284(25). The fact that this value is

quite different from the exact one illustrates the poor quality

. . of the trial wave function. Now, when the projecting time is

aptual calcqlatlons we have Paké{lg:.G. By using exact nqreased the estimate of the energy converges to the exact

diagonalization methodgLanczes algorithm and after ex- ae(number of iterations of about P5For larger times the

trapolation to an infinite basis se{~>) we getEo  estimate of the energy begins to wander and no stabilization
=—4.37367626(all digits convergel for parameters X s observed.

parameterx is taken to be 1.78, a value expected to be ver
close to the exact critical valugee, Hameet al. [21]). In

=1.8,N;=6). _ _ In Fig. 2 we present some DMC calculations performed
In Fig. 1 a PDMC calculation of the exact energy is pre-py ysing the standard branching process associatedwyith
sented. The trial wave function used is given by [Eq. (19)] and a population control step to keep the number
N of walkers under control. The population control has been
kS 2 done by adjusting the reference energy to the fluctuations of
Ypr=e "4, (59 population by using a formula of the type
-4.373 T T T T T T T
Exact Energy
aana| ° 1 I _
-4.375 - .
I
-4.376 - .
o FIG. 2. DMC calculation of
L the exact energy as a function of
-4.377 | 7 the size of the populatior, is in
Diffusion Monte Carlo units of )%, Egs. (53),(54).
-4.378 - 4
-4.379 | { T
_438 1 1 1 1 1 1 1
0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026

1/M
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-4.364 . T T T
-4.366 | 1
4368 - Stochastic Reconfiguration .
I.IJO I FIG. 3. PDMC with stochastic
-4.37 - ; reconfiguration methodg, is in
I units of 32, Egs.(53),(54).
-4.372 |
ANNABARARAAREAE ,
4374 - “Exact energy i

0 20 40 60 80 100

Number of iterations L (projecting time)

E(t+ 7)=E1(t)+K/7In[M(t)/M(t+ 7)], (56) wave function has been used. With more sophisticated and
fully optimized forms the error would be much smaller.

In Fig. 3 we present a PDMC calculation with the original
reconfiguration process of Hetherington. The number of
)&valkers used iM =50. When compared to the PDMC cal-
step. In the opposite casg; is raised and more walkers are culat.i.on _Of Fig. }(same range for the projecting tingehe
duplicated. sta_b|I|zat|on in time re_sultmg from the use of the global

Calculations have been done with populations of differentv€ight and the reconfiguration process is clearly seen. A
sizes ranging fronM =40 toM = 100. AtM =40 the bias is chaotic behavior similar to that observed in Fig. 1 at large
small (systematic error of about 1/1006ut much greater fimes is also expected but for much larger projecting times.
than the statistical error. The error is seen to decrease as the In the next figure, Fig. 4, we present our improved version
size of the population is increased. Adr=100 it is smaller  for the stochastic reconfiguration process. The convergence
than the statistical error. It should be emphasized that thas a function of time of the energy is very satisfactory and
magnitude of the systematic error is very dependent on ththe fluctuations are reduced. Note that the value of the en-
quality of the trial wave function. Here a quite simple trial ergy at the origin(no projection Eq=—4.37115(16) is

whereM (t) is the total number of walkers at timeandK is
some positive constant. Whén(t+ 7)>M(t) the reference

-4.364 T . . :
-4.366 <
4.368 |- Minimal Stochastic Reconfiguration -
LIJO FIG. 4. PDMC with minimal
R 7 stochastic reconfiguratiok is in
units of 32, Egs.(53),(54).
-4.372 i1 i
'“ﬁﬂ@ﬂﬂ:ﬂ:-ﬂ-: ! H:JI_T_ILT{IFJ:H_HEHP|T|T|T|T|T|T|T|T| TTT i i ﬁ'"'"H”””HIHTITH+-
4374 ' “Exact energy 1
0 20 40 60 80 100

Number of iterations L (projecting time)
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much closer to the exact resuE{= —4.37367 - -) than in  tive probability associated with a given state as calculated in
the standard cadéig. 3) Eo=—4.36708(24). This resultis a PDMC scheme does not converge to a finite deterministic
a direct consequence of the fact that the average number ghlue. This is in sharp contrast with what happens in DMC
reconfigurations with our minimal scheme is much smallerwhere a different —but biased— estimate is used for the
than in the previous case. In other words, the effective numsame quantity. Quite interestingly, the derivation of the proof
ber of walkers has been increased and, then, the finite bias @Qirns out to be far from being trivial. In particular, it was
the stationary density has been reduced. Note that in the IimHecessary to deal in detail with a difficult cag@@(In \)=0

of an infinite number of walkers the finite error on the energyyitn our notation$ from which a convergent variant of

would entirely disappear. PDMC could have emerged. Second, based on an original
estimate of the PDMC errofformula (48)] we have dis-
VI. SUMMARY cussed the most natural generalization of PDMC which can

In this paper we have discussed various aspects of diffu"ake the method effective for problems associated with
sion Monte Carlo methods at fixed number of walkers. First/arge fluctuations of the weights. By introducing stochastic
we have concentrated our attention on the so-called pure difeconfiguration processes as proposed by Hetherington and
fusion Monte CarldPDMC) methods in which no branching very recently reconsidered by Sorella and co-workers we
process is introducedhe weights are carrigénd for which ~ have proposed an alternative approach to realize what can be
the number of configurations is kept fixed at any level of thecalled a minimal stochastic reconfiguration DMC approach.
algorithm. As already remarked by a number of authors;The method has been designed to reduce as much as possible
PDMC methods are powerful, but they suffer from a severghe statistical fluctuations associated with the reconfiguration
problem at large projecting timegapid increase of the vari- process and also to recover both PDMC and DMC limits.
ance. In this paper this statement has been made much morehe numerical calculations presented have illustrated the va-
precise by showing that the statistical estimate of the effeclidity of such an approach.
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