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Coherent backscattering of light in a magnetic field

D. Lacoste and B. A. van Tiggelen
Laboratoire de Physique et Mode´lisation des Milieux Condense´s, CNRS, Universite´ Joseph Fourier, Maison des Magiste`res,

B.P. 166, 38042 Grenoble Cedex 09, France
~Received 11 November 1999!

This paper describes how coherent backscattering is altered by an external magnetic field. In the theory
presented, magneto-optical effects occur inside Mie scatterers embedded in a nonmagnetic medium. Unlike
previous theories based on pointlike scatterers, the decrease of coherent backscattering is obtained in a leading
order of the magnetic field using rigorous Mie theory. This decrease is strongly enhanced in the proximity of
resonances, which cause the path length of the wave inside a scatterer to be increased. Also presented is an
analysis of the shape of the backscattering cone in a magnetic field.

PACS number~s!: 42.68.Ay, 78.20.Ls
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I. INTRODUCTION

The enhancement of backscattering in propagation
waves in a random medium is a well documented top
Weak localization theory explains how interference effe
between direct and reverse scattering events produce co
ent backscattering~CBS!. The main features of CBS are in
sensitive to many aspects of the statistics of the inhomo
neities. Even absorption does not alter the relative strengt
the interference@1#. The interference is only affected by th
properties of the medium with respect to the reciprocity pr
ciple, as first noted by Golubentsev@2#. MacKintosh and
John @3# analyzed how CBS is altered by Faraday rotat
and natural optical activity in a medium of inhomogeneit
smaller than the wavelength, and in the diffusion approxim
tion. Using a method based on point-like scatterers, V
Tiggelenet al. extended these ideas, and discussed the
isotropy induced by a magnetic field in light diffusion@4#.
The case of nonmagnetic Mie scatterers embedded
Faraday-active medium was studied by means of Mo
Carlo simulations by Martinez and Maynard@5#. Lu et al.
specifically considered the two-dimensional coherent ba
scattering of light from a randomly rough surface in the pr
ence of a magnetic field@6#. Experimentally, CBS in a mag
netic field was studied by Erbacheret al. @7#, and some of
their results will be discussed here.

In Sec. II, the main results of a recent calculation of theT
matrix for a Mie scatterer in a magnetic field are presen
@8,9#, and serve in Sec. III as the building block to stu
diffusion of light in a magnetic field. After having detaile
the main features of the Faraday effect for multiple Rayle
and Mie scattering, the modification of the line shape of C
in a medium with finite-size scatterers in a magnetic field
investigated in Sec. IV.

II. T MATRIX IN A MAGNETIC FIELD

In this paper,c051 has been set. In a magnetic field, t
refractive index is a tensor of rank 2. For the standard M
problem, it depends on the distance to the center of
spherer, which has a radiusa, via the Heaviside function
Q(r 2a), that equals 1 inside the sphere and 0 outside:

«~B,r !2I5@~«021!I1«FF#Q~r 2a!. ~1!
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In this expression,«05m2 is the value of the normal isotro
pic dielectric constant of the sphere of relative index of
fraction m, and

«F52mV0B/v ~2!

is a dimensionless coupling parameter associated with
amplitude of the Faraday effect (V0 being the Verdet con-
stant,B the amplitude of the magnetic field, andv the fre-
quency!. The antisymmetric Hermitian tensorF i j 5 i e i jk B̂k
has been introduced~the hat above vectors means that t
vectors have been normalized!. The Mie solution depends on
the dimensionless size parametersx5va andy5mx. In this
paper, only nonabsorbing media are considered so thatm and
«F are real valued. Since«F'1024 in most experiments, a
perturbational approach is valid. The part ofT that is inde-
pendent of the magnetic field is denotedT0, the part of theT
matrix linear inB is T1, and the second order correctionT2.

Two important symmetry relations must be obeyed byT
matrix of a scatterer in a magnetic field. The first one
parity symmetry and the second one is reciprocity@8#:

T2ks,2k8s8~B!5Tks,k8s8~B!, ~3!

T2k82s8,2k2s~2B!5Tks,k8s8~B!. ~4!

It is important to note thats(2 k̂)52s( k̂), i.e.,s indicates
the helicity. In particular, relations~3! and~4! must hold for
T1. T2 satisfies Eq.~4! without a minus sign forB and obeys
the standard reciprocity principle. For this reason,T2 will not
contribute to the suppression of the backscattering cone
sidered in this article, the next order beingT3.

BecauseT1 is linear in B̂, it can be constructed by con
sidering only three special cases for the direction ofB̂. If k̂
and k̂8 are not collinear, the unit vectorB̂ can be decom-
posed in the nonorthogonal but complete basis ofk̂, k̂8, and
ĝ5 k̂3 k̂8/uk̂3 k̂8u. This results in@8#,
4556 © 2000 The American Physical Society
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Tkk8
1

5
~B̂• k̂!~ k̂• k̂8!2B̂• k̂8

~ k̂• k̂8!221
Tkk8

1
~B̂5 k̂8!

1
~B̂• k̂8!~ k̂• k̂8!2B̂• k̂

~ k̂• k̂8!221
Tkk8

1
~B̂5 k̂!

1~B̂•ĝ!Tkk8
1

~B̂5ĝ!. ~5!

With respect to an helicity base,T1 takes the forms

Tss8
1

~B̂5 k̂!5
p

v
@R1~u!s1R2~u!s8#, ~6!

Tss8
1

~B̂5 k̂8!5
p

v
@R1~u!s81R2~u!s#, ~7!

with

R1~u!52
2«F

m (
J>1

2J11

J~J11!
@CJpJ,1~u!1DJtJ,1~u!#,

~8!

R2~u!52
2«F

m (
J>1

2J11

J~J11!
@DJpJ,1~u!1CJtJ,1~u!#,

~9!

where the coefficientsCJ andDJ have been defined in Re
@8#. For Tss8

1 (B̂5ĝ), the expression

Tss8
1

~B̂5ĝ!5
p

v
~Q11ss8Q2! ~10!

has been found, with

Q152 i
d

du
R1 , Q252 i

d

du
R2 . ~11!

For k̂5 k̂8,

Tk,k
1 5F

2p

v
R1~0!, ~12!

with

R1~0!5R2~0!52
«F

m (
J>1

~2J11!~CJ1DJ!. ~13!

III. DIFFUSION OF LIGHT IN A MAGNETIC FIELD

The equation of radiative transfer aims to describe
propagation of the average intensity in multiple scatteri
but violates reciprocity@10#. The reason is that it does no
contain the most-crossed diagrams (Ci jkl

1 ) responsible for
CBS. By definition, the 4-rank tensorLi jkl linearly connects
the field correlations of incident and outgoing fields. Th
can be represented by a diagram that starts on the first
tering event, and which has two lines, corresponding to
propagation of the field and to the complex conjugate of
field as can be seen in Fig. 1. ForLi jkl

1 both fields propagate
in the same magnetic fieldB as opposed toLi jkl

2 for which
e
,

at-
e
e

both fields propagate with opposite sign for the magne
field B @4#. The relations deduced from the application of t
reciprocity relation~4! are

Ci jlk
6 ~p,p8,q,B!5Li jkl

7 S p2p81q

2
,
p82p1q

2
,p1p8,BD ,

~14!

and

Li jkl
6 ~p,p8,q,B!5L jilk

6 ~2p8,2p,2q,2B!. ~15!

On long length scales (q→0) and for stationary situations
(V50), the ladder diagramsLi jkl

2 take the following hydro-
dynamic form@11#:

Li jkl
2 ~p,p8,q,B!5

2p

l 2

dik~p,q,B!dl j ~2p8,2q,2B!

Dq21l/ l
.

~16!

The symmetry of the numerator is imposed by the reciproc
principle; l is a scalar dimensionless parameter that elu
dates the breaking of reciprocity by the magnetic field
multiple scattering. In Eq.~16!, D is the conventional diffu-
sion coefficient for radiative transfer, andl is the scattering
mean free path, which is a typical distance between two s
tering events. This diffusion constant was shown theor
cally and experimentally@12# to depend on the square of th
magnetic field. These corrections are not considered h
since the dephasing parameterl/(Dl ) is only discussed to
secondorder in the magnetic field. The enhancement fac
of coherent backscattering is a ratio of a coherent contri
tion, described by the most-crossed diagrams, over an in
herent contribution represented by the ladder diagrams.
parameterl plays the role of an ‘‘absorption’’ term for the
coherent contribution only, and is therefore responsible
the decrease of the coherent backscattering cone in a m
netic field. This parameterl can be expressed as the squa
of a Faraday dephasing angle, which is the product o
Verdet constant, the magnetic field strength, and a chara
istic length scale for the propagation of light in the mediu
Since the scattering mean free pathl is a natural and experi
mentally relevant length scale for coherent backscatterin
is possible to define an effective Verdet constantVe f f from a
relation derived in Ref.@3#:

FIG. 1. Ladder diagramsLi jkl
6 and the most-crossed diagram

Ci jlk
6 in a magnetic field. Bold lines denote the Dyson-Green ten

the crosses denoteT matrices, and dotted lines connect identic
particles.
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l5
4

3
Ve f f

2 B2l 2. ~17!

Equation ~17! was obtained by MacKintosh and John@3#,
who considered a situation where the scatterers and the
side medium both have a Verdet constantVe f f .
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To first order in the magnetic field, the tensordik defined
in Eq. ~16! must take the form

d~p,q50,B!5I1d2F, ~18!

whered2 describes persisting polarization effects in diffu
scattering due to the magnetic field@11#. For low densityn of
particles, d2 can be determined from the Bethe-Salpeth
equation
Lpp8
2

~B!5nTpp8~B!Tpp8
* ~2B!1n(

p9
Tpp9~B!•G~p9,B!•G* ~p9,2B!•Tpp9

* ~2B!•Lp9p8
2

~B!, ~19!
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where G(p,B) denotes the ensemble averaged Dys
Green’s tensor~see the Appendix for details of notations!,
and the asterisk denotes Hermitian conjugation in polar
tion space. This equation is slightly more complicated th
the one forLpp8

1 @11#, because it involves bothB and2B due
to definition ~16!. Inserting Eqs.~16! and ~18! into Eq. ~19!
and expanding to first and second orders in the magn
field using Eq.~5!, fixesd2 andl rigorously. The final result
reads

d25 i S 2A2

12^cosu&p
2h D , ~20a!

l5
1

3 S A1
21

A2
2

12^cosu&p
D , ~20b!

with

A1
25

1

x2Qscatt
E

21

1

dm

3F2
uR1u21uR2u222 Re~R1R̄2!m

12m2
1uQ1u21uQ2u2G ,

~20c!

A25
1

x2Qscatt
E

21

1

Re~R1S21R2S1!dm2h. ~20d!

Equations~20a!–~20d! contain the main results of thi
paper, and will be discussed in Secs. V–VIII. The fac
1/(12^cosu&p) in Eqs.~20a! and ~20b! is related to a depo
larization length which will be introduced in Sec. IV. In Eq
~20b!, l contains two terms: the first one is seen to domin
for finite-size particles (x@1), whereas the second one pr
vails for small particles (x!1). Sections V and VI will dis-
cuss these two contributions. Far from resonances, the
term corresponds to the Faraday rotation of the wave in
the scatterer, whereas the second represents the Farad
tation between two scattering events. Although the med
outside the scatterers is not Faraday active, the Farada
tation from one scatterer to the next can be defined in
n
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framework of an effective medium theory using the para
eterh, which will be defined in Sec. V.

IV. DEPOLARIZATION LENGTH

In this section, the factor 1/(12^cosu&p), which tends to
amplify the second term of Eq.~20b!, is defined. The term
A2

2 is easily seen to dominate for small particles. The to
cross-section of one particle is given by@13#,

Qscatt5
1

x2E21

1

~@S1u21uS2u2!dm, ~21!

with m5cosu. The transport mean free path is defined
l * 5 l /(12^cosu&), where the asymmetry parameter^cosu&
is given by

^cosu&5
1

x2Qscatt
E

21

1

~@S1u21uS2u2!m dm.

Likewise, a depolarization length can be defined asl dep
5 l /(12^cosu&p), where

^cosu&p5
1

x2Qscatt
E

21

1

2 Re~S1S̄2!m dm.

Rayleigh scattering has a forward-backward symmetry
that ^cosu&50. However, scattering is not isotropic due
the polarization, and one can easily show that for Rayle
scattererŝcosu&p50.5. In the limit of large forward scatter
ing and form51.33, both asymmetry parameters^cosu& and
^cosu&p tend toward a limit close to 0.85, as shown in Fi
2~a!. In the forward direction the differences between the t
states of polarization vanish, sinceS1(0)5S2(0).

The well-known oscillations and ripple structure@13# of
the asymmetry parameter^cosu& are also present in̂cosu&p .
As shown in Fig. 2~b!, for a relative high value of the rela
tive index of refraction (m52.73 corresponding to TiO2),
the asymmetry parameterŝcosu& and ^cosu&p may take
negative values, which can be seen in this particular c
nearx52. In this very particular case, where the scatter
is essentially in the backward direction, the characteris
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length for the loss of the polarizationl dep can be smaller than
the characteristic length for the loss of the phase in mult
light scattering, which isl.

V. FARADAY ROTATION FOR MULTIPLE
RAYLEIGH SCATTERING

Equation~20a! for d2 and the second term in Eq.~20b!
can be understood from an ‘‘effective medium’’ theory, va
for Rayleigh scatterers. The real part of the forward scat
ing amplitude~12! is associated with the Faraday effect a
the imaginary part with magneto-dichroism~i.e., different
absorption for different circular polarization! of an ensemble
of Faraday-active scatterers. For a dilute system, the a
symmetric part of this effective refractive index«a is defined
as

«a52
2pn

v3
R1~0!. ~22!

For the real part of this effective refractive index, the dime
sionless parameterh is defined by

FIG. 2. Asymmetry parameters^cosu& and^cosu&p as functions
of the size parameterx for relative indexes of refractionm51.33~a!
andm52.73 ~b!.
e

r-

ti-

-

h5Re~«a!kl. ~23!

Equations~20a! and ~20d! involve this parameterh, which
represents a characteristic phase in multiple scattering, du
the Faraday effect in the effective medium accumulated o
a distancel. An ensemble of Rayleigh scatterers~for which
the electromagnetic field changes only slightly on a sc
comparable to the particle size! has the finite value

«a5
9 f «F

~m212!2
. ~24!

The Faraday effect of a composite material made of partic
smaller than the wavelength, and of different shape~spheri-
cal, needlelike, and platelike! was discussed in Ref.@14#,
using a more general version of the effective medium
proximation~not limited to dilute samples!.

For Rayleigh scatterers (x→0), one obtains

d25
9i«F

4~m221!2x3
,

l5
27«F

2

8~m221!4x6
,

so that, by definition~17!,

Ve f f

f V0
5

9A2m

~m212!2
. ~25!

Apart from a factor depending on the index of refractio
the effective Verdet constant is found to be the product of
volume fraction of the particles by their Verdet constant.
noticed before@4#, one finds a factor ofA2 more than ex-
pected on the basis of the effective medium approach of
~24!, if Ve f f would have defined by«a52Ve f fB/v. This
discrepancy is due to the denominator in Eq.~20b!,
12^cosu&p51/2 for Rayleigh particles.

From the experimental parameters described in the
periments of Erbacheret al. ~a relative index of refraction of
m51.15), the estimate using Eq.~25! is

Ve f f

f V0
'1.32. ~26!

This value is to be compared with the experimental value
1.5560.15 @7#. The proximity of the two values probabl
explains the success of previous theories based on Ray
scatterers, although this experiment dealt with Mie partic
In this experiment, the maximum of the distribution of th
size parameters was roughly estimated atx.23, but the
width of the distribution was very broad. Using the para
eters of Erbacheret al., our Mie theory reproduces the limi
of Eq. ~26! for x50, but predicts a value of only 0.4 atx
.23. The solid line in Fig. 3~a! represents the effective Ver
det constant as a function of the size parameterx, for the
same relative index of refraction used in the experiment
Erbacheret al. One can clearly see in this figure that a d
tribution of large spheres of size parameterx of the order of
20 or higher cannot explain the experimental result. Ho
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ever, if the size distribution of the scatterers was rather c
tered around a size parameter of roughly 10, the experim
tal value of the effective Verdet constant could possibly
recovered from this Mie theory. In Fig. 3~b!, a higher value
of the relative index was chosen. In this case, the effec
Verdet constant is seen to be enhanced by resonances, w
will be the subject of Sec. VII.

VI. FARADAY ROTATION FOR MULTIPLE
MIE SCATTERING

The first term in Eq.~20b! originates from the Farada
effect inside the scatterers, and is the main contribution
the Mie regime ofx@1. Resonances will be discussed
Sec. VII. Using the definition of Eq.~17!, the effective Ver-

FIG. 3. Plot of the effective Verdet constantVe f f /( f V0) as a
function of the size parameterx. ~a! The solid line represents th
solution of Eqs.~20a!–~20d!, containing contributions from all the
rays incident on the sphere, whereas the dashed line correspon
the contribution of only the first partial waveJ51 ~the ray with
central impact in geometrical optics!. The scattering medium has a
index of refraction of 1.7, the value in the experiment of Erbac
et al. ~b! The same plot for an index of refraction of 2.73 for whic
resonances are clearly visible. The host medium is in both c
glycerol ~of index of refraction 1.47). A general decrease of t
effective Verdet constant for increasing size parameterx can be
observed in both plots.
n-
n-
e

e
ich

in

det constant of Mie particles is written as

Ve f f

f V0
5

3mQscattA3l

4x«F
. ~27!

When the size parameter obeysx@1 andy5mx@1, the
scattering can be interpreted in terms of geometrical opt
In geometrical optics, rays incident on the sphere are con
ered rather than plane waves. The ray with central impac
characterized in Mie theory byJ51. In Fig. 3~a!, the effec-
tive Verdet constant, that contains contributions from all t
rays, is plotted as a solid line, with respect to the size par
eterx. The dashed line in this figure represents the separ
contribution of the ray with central impactJ51 in the effec-
tive Verdet constant. The two curves merge forx50, the
Rayleigh limit, but deviate from each other for larger si
parameter. For a given value of the size parameter, it can
noted that the ray with central impact already represen
significant contribution to the effective Verdet constant.
addition to this, the effective Verdet constant is seen to
crease for increasing size parameterx. This is an important
observation, because this means that Mie scatterers of l
size ~typically x.20) are less efficient than Rayleigh sca
terers in suppressing the coherent backscattering cone.

VII. MIE RESONANCES

Let us first recall some results for resonant Rayleigh sc
tering, for which the resonance behavior is analogous to
resonance of a two-level atom in atomic physics. For re
nant Rayleigh scatterers the effective Verdet constant is
lated to the ‘‘path length’’Lpath of the wave inside the par
ticle. In fact, the path length, the dwell time of the light, an
the total electromagnetic energy stored inside the scatt
have been seen to be proportional. The path length can
defined as@see formula~2-22!, p. 17 of Ref.@15##,

Lpath5 lim
mi→0

Qabs

vmi
, ~28!

whereQabs is the absorption cross section, andmi the imagi-
nary part of the index of refraction. The physical idea beh
this definition is that the longer the path of the light is in t
particle, the more the light will suffer from absorption. F
resonant Rayleigh particles, the relation to the effective V
det constant is obtained from Eqs.~25! and ~28!:

Ve f f

f V0
5

4mrA2

3

Lpath

a
. ~29!

At resonance, the path length can exceed the size of
scatterer, which means that the effective Verdet cons
should be strongly enhanced by resonant scattering. Alte
tively, one may relate the path length to the time spent by
wave in the medium, which means that the Faraday rota
is in some sense aLarmor clock, measuring this time@16#.

The question is whether resonant enhancement of Fara
rotation occurs in resonant Mie scattering. For Mie res
nances the increase in path length is related to the chang
the electromagnetic energy within the scatterers with resp
to the surrounding. The total time-averaged electromagn

s to

r

es
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energy inside the sphere is denoted byW, andW0 represents
this energy for the incident plane wave. For weak absorpt
mi!mr , the electromagnetic energyW can be approximated
by @17#

W

W0
.

3mrQabs

8xmi
5

3mrLpath

a
, ~30!

where Eq.~28! was applied to obtain the last equality. Th
relation is exact for scalar waves, and is a very good appr
mation for vector waves. It is even an excellent approxim
tion in the vicinity of resonances, where the deviations
tween the exact solution and its approximation are
largest. In the domain ofJ.x, several resonances take pla
in the Mie coefficientsaJ andbJ . These resonances are we
separated, and can be numbered by an additional int
which is the order of the resonance@18#. Near one electric
Mie resonance of a specified order, the denominators of

FIG. 4. Near a particular resonance curve of a water spher
indexm5(1.334–1.5)31029i the following curves have been plo
ted:~a! Respectively from the upper part of the figure to the botto
a plot of log10„Ve f f /( f V0)… ~solid line!, log10(W/W0) ~dashed line!,
and the scattering cross sectionQscatt ~dotted! as functions of the
size parameterx. ~b! Close to this particular resonanc
log10„Ve f f /( f V0)… is shown against the logarithm of the total ele
tromagnetic energy log10(W/W0) ~dots!, to be compared with a line
of slope one~solid!, the prediction of Eq.~31!.
n,

i-
-
-
e

er

e

Mie coefficientsaJ andcJ , which are identical, are close t
zero. From Eqs.~20b! and ~20c!, one findsAl;ucJu2/uaJu.
By Eqs.~27! and ~30!, this implies

Ve f f

f V0
;ucJu2uaJu;

W

W0
uaJu;

W

W0
. ~31!

In the last equality the role ofuaJu is dominated byucJu2 at
resonance, since resonances in the scattering cross se
Qscatt are much less significant than resonances inW. In-
deed, in Fig. 4~a!, the lower curve representsQscatt, on a
normal scale, near one resonance of a water sphere.
much below the curves ofW or Ve f f /( f V0), which are even
plotted on a logarithmic scale. From Eq.~31!, the effective
Verdet constant is expected to be simply proportional to
electromagnetic energyW ~or, equivalently, toLpath). This
generalizes the result for Rayleigh scatterers in Eq.~29!. The
numerical verification of Eq.~31! can be deduced from th
double logarithmic plot ofVe f f /( f V0) against the total elec
tromagnetic energyW in Fig. 4~b!.

The proportionality of the Verdet constant and the to
electromagnetic energy~or, equivalently,Lpath) has been de-
rived for the particular case where the path of the light
confined along the same line~the one-dimensional problem
in a Fabry-Perot configuration@8#!. In this case, the cumula
tive character of the Faraday rotation with respect to the p
length leads to an experimentally observed enhancemen
the Faraday rotation@19#. Equation~31! applies to any reso-
nant impact, and shows that the possible occurrence of
flips in Mie scattering, as suggested in Ref.@7#, does not
affect the behavior of the effective Verdet constant near re
nances, and that the Faraday rotation still accumulates a
the path as in the 1D case. This is consistent with the ob
vation, made in Sec. VI, that the ray with central impact h
an important role for interpreting the Faraday rotation
multiple Mie scattering.

In conclusion, as for resonant Rayleigh particles, a stro
correlation between the effective Verdet constant and
stored energy inside the sphere was found for resonant
particles. The general behavior and proportionality in the
cinity of a resonance is apparently universal.

VIII. SHIFT OF THE INTENSITY PROFILE
OF THE COHERENT BACKSCATTERING CONE

IN A MAGNETIC FIELD

A magnetic field can be expected to introduce some
isotropy in the light intensity profile of the cone. In th
section, the form taken by this anisotropy is investigated
taking care of the selection rules imposed for the polarizat
in reflection of a semi-infinite system of Mie scatterers. Th
analysis is restricted to linear corrections in the magne
field, so that the parameterl discussed in Sec. VII, quadrati
in the field, will no longer appear.

This approach is based on an improved version of
scalar diffusion approximation. The ladder propagator
point r5$r' ,z% for a source atr 85$r'8 ,z8% in a semi-infinite
medium is denoted byr(r ,r 8). The z axis is directed along
the normal of the sample, andr' andr'8 are vectors perpen
dicular to thez axis. Because of translational invariance
the plane of the sample, the ladder propagator only depe

of
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on r'2r'8 . The two-dimensional Fourier transform o

r(r ,r 8) with respect tor'2r'8 is denoted byr̃(q,z,z8). The
ladder propagatorr(r ,r 8) obeys the diffusion equation

S 2¹21
1

La
2D r~r ,r 8!5d~r2r 8!, ~32!

with the radiative boundary condition@20#

;r' ,;r'8 ,;z.0, r~$r' ,z%,$r'8 ,z852z0%!50.
~33!

The trapping plane is located at a distancez052l * /3 out-
side the sample, andLa is the absorption length for the ligh
intensity. We assume that the first and last scattering ev
take place one transport mean free pathl * away from the
boundary, in the directions specified by the incoming wa
vectorp and the outgoing wave vectorp8. This allows us to
calculate the contribution of the ladder diagram
Li jkl

1 (p,p8,q,B), the so-called incoherent contribution to th

coherent backscattering, directly fromr̃(q50,z2 l * p̂z ,z8

1 l * p̂z8). Similarly, the coherent contribution is obtaine
from the most-crossed diagramsCi jlk

1 (p,p8,q,B), which are
derived fromLi jkl

2 (p,p8,q,B) using Eq.~14!. These deriva-
tions are detailed out in the Appendix. The coherent con
bution in an helicity basis and at reflection (z50,z850)
reads

Css8
1

5 r̃~p'1p'8 ,2 l * p̂z ,l * p̂z8!dss8

3@112b1v l det~ p̂'8 ,p̂' ,B̂!

22sb2v l B̂•~ p̂'1p̂'8 !#, ~34!

where the Kronecker symboldss8 guarantees conservatio
of helicity s(p̂)5s8(p̂8), and b1 and b2 are real-valued
coefficients to be determined. Most experiments on cohe
backscattering were done in the helicity-conserving chan
which has the advantage of having a maximal enhancem
factor ~since the contribution from single scattering vanish
in this case! and of having an isotropic line shape. Equati
~34! states that the magnetic field modifies the cone exa
in this channel, in agreement with previous work@3#. Even
when a magnetic field is present, no coherent backscatte
is found in the opposite-helicity channel, at least accord
to the present diffusion approximation.

Only the components of the magnetic field along the s
contribute to the right-hand side of Eq.~34!. When the field
is perpendicular to the slab, the decrease of the enhance
factor, described byl, is the sole impact of the magnet
field, and is not included in the present approximation. Wh
the magnetic field is in the plane of the slab, two correctio
show up. The first one, proportional tob1, is magnetotrans-
verse, since it produces a shift of the intensity profile of
cone in the plane of the slab, normal to the magnetic fie
This correction is independent of the state of helicity of t
light. The second correction in Eq.~34! proportional tob2
does depend on the helicitys. It produces a shift of the
intensity profile of the cone in the direction of the magne
ts

e

i-

nt
l,
nt
s

ly

ng
g

b

ent

n
s

e
.

field in the plane of the slab, quite similar to the correcti
induced by the magnetic field in the group velocity@21#.

The coefficientb1 can be calculated independently fro
b2, in a way exactly analogous to the calculation ofa1 in
Ref. @11# responsible for thephotonic Hall effect~PHE!. The
result is

b15
1

~12^cosu&!2

3

E
21

1

d cosu sinu(
ss8

Im„Tss8
0

~u!Tss8
1

~B̂5ĝ,u!…

2E
21

1

d cosu(
ss8

uTss8
0

~u!u2
,

~35!

where the magnetoT matrix Tss8
1 (B̂5ĝ)(u) was introduced

in Eq. ~10!. Note that the imaginary part in Eq.~35! discrimi-
natesb1 from the parametera1 responsible for the PHE, in
which thereal part figures. For Rayleigh scattering, one c
readily prove that the parametersb1 andb2 both vanish. The
calculation ofb2 for Mie scattering is very complicated an
is beyond the scope of this paper.

The expected modification of the lines of equal enhan
ment factor due to the magnetic field is now investigat
Equation~34! translates into a CBS line shape

E~m,w!511C~m!~112b1m sinw22b2sm cosw!.
~36!

The enhancement factor, in the helicity-conserving chan
is denoted byE for a state of helicitys. The dimensionless
parameterm5v lu, and C(m), the well-documented line
shape of the cone without applied magnetic field, were int
duced@4#. The azimuthal angle between the projection of t
outgoing wave vector into the plane of the slab and the m
netic field direction, which has been chosen along thex axis,
was denoted byw. For simplicity, only the magnetotrans
verse correction proportional tob1 will be considered here
so thatb250. This case corresponds to unpolarized incid
light, for which the term proportional tob2 in Eq. ~36! van-
ishes. The pattern of the lines of equal enhancement fa
associated with theb2 correction alone is the same as the o
of the transverse correction after a rotation of anglep/2
about thex axis. For a typical experiment@22# with CeF3
particles of an approximate radius of 2mm at room tempera-
ture, with a wavelengthl5457 nm, Eq.~35! leads to the
estimation b1.1.831022. The experimentally measure
mean free path for a volume fraction off 50.1 is l *
.90 mm. Equation~36! is valid for b1m!1, which means
that our approach is limited to the angular domainuuu<0.8
rad. The equation for the lines of the constant enhancem
factor E0 in the absence of magnetic field isE051
1C(m0), independent of the azimuthal anglew. The first-
order correction in the magnetic field is separated by writ
m5m01m1. Equation~36! gives

m1522b1

C~m0!

C8~m0!
m0 sinw. ~37!
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In Fig. 5, the polar diagram of the lines of constant e
hancement factor is shown forb151.831022. As is appar-
ent from Eqs.~36! and~37!, the distortion of the lines should
increase away from backscattering~at exact backscatterin
there is no modification at all to first order in the magne
field!. As a consequence, with the value ofb1 given above,
only a modification of the line shape in the wings might
observed. Although the conditionb1m!1 limits the domain
of validity of the approximation, there should nevertheless
a sufficiently broad angular range, in the wings of the co
where the magnetic corrections could be visible. In Fig. 5
condition of validity of the approximation has been satisfie

Another condition of validity lies in the use of the diffu
sion approximation. This approximation predicts a 1/m2 be-
havior for the line shape of the cone in the wings, which
actually a wrong result. In the wings, the contribution
lowest orders of scattering is dominant, and not prope
taken into account in the diffusion approximation. Using
exact theory, Gorodnichevet al.proved that the outcome is
1/m dependence@23#. Their result was derived only fo
pointlike scatterers, but it should also be valid for Mie sc
terers when the mean free path is much larger than the w
length. In any case, the magnetic correction in Eq.~37! de-
pends only on the logarithmic derivative ofC(m0), which
should change only by a factor of 2 if the actual law is 1/m or
1/m2, the general pattern of the lines of equal enhancem
factor not being modified. Therefore, the shift of the cen
of mass of the light intensity profile which was calculat
should be fairly robust with respect to the exact form
C(m0).

FIG. 5. Polar plot of the lines of constant enhancement facto
the coherent backscattering cone in a magnetic field, in the heli
conserving channel, forb151.831022. The magnetic field is along
the horizontal axis on this graph. The graduations of the axis
resent the dimensionless parameterm5v lu. For instance, a gradu
ation of 10 corresponds to an angle of 145 mrad~for the mean free
path l * .90 mm, and the wavelengthl5457 nm mentioned in the
text!. Without magnetic field or for a magnetic field perpendicu
to the slab, these lines of constant enhancement factor would
been circles.
-
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IX. CONCLUSION

This paper describes two modifications on the coher
backscattering cone produced by a magnetic field. The
one, the decrease of the enhancement factor, depends
parameterl quadratic in the magnetic field, and was o
served experimentally. The second modification is related
the anisotropy of the light intensity, and already appears
the linear order of the magnetic field. Preliminary expe
ments seem to have reported the possibility of a shift in
intensity profile@24#. Our analysis applies to spherical sca
terers of any size that are Faraday active. The decrease o
backscattering cone becomes less pronounced as the si
the scatterers increases, whereas a shift in the intensity
file is only possible with finite size scatterers. As surmised
Ref. @7#, the effective Verdet constant defined by the d
crease of the cone is enhanced near Mie resonances.
effective Verdet constant is found to be intimately related
the stored electromagnetic energy, i.e., the dwell time of
light in the particle.
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APPENDIX: DERIVATION OF THE MAGNETIC
CORRECTIONS TO THE TENSOR Css8

¿

In this appendix, the notations are explained and a de
onstration of Eq.~34! is given. The transverse part of the fre
Green tensor is denoted

G05
Dp̂

~v/c0!21 ie2p2
, ~A1!

with (D p̂) i j 5d i j 2 p̂i p̂ j the projector upon the space orthog
nal to p. Similarly, the Hermitian projector on the spac
orthogonal top for a given state of helicitys is Pi j

s (p̂)

5 1
2 @(D p̂) i j 2 is« i jk p̂k#.
Generalizing Eq.~18! for finite value ofq ~to first order in

q and in the magnetic fieldB) gives

d~p,q,B!5I1d2F1@L ~p,q!2G2~p,q,B!#
l

2iv
,

~A2!

whereL (p,q)52(p•q)I2pq2qp and G2(p,q,B) are ten-
sors of rank 2, linear inq, that determine the anisotropy i
diffuse scattering. Without a magnetic field it is well know
that G0(p,q)52(p•q)/(12^cosu&). When a magnetic field
is present, the first order correction in the magnetic field
separated asG2(p,q,B)5G0(p,q)1BdG2(p,q,B̂). Because
of the symmetry relation of Eq.~4!, one hasG2(p,q,B)
5G2(p,q,2B)* . This implies that dG2(p,q,B̂)
52dG2(p,q,B̂)* , so that dG2(p,q,B̂) must be anti-
Hermitian. Mirror symmetry imposes in addition tha
Tpp8(B)5T2p-p8(B) and thus G2(2p,2q,B)
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5G2(p,q,B). The general form of the tensordG1(p,q,B̂)
allowed by symmetry was already discussed in Ref.@11#, and
will be only slightly different fordG2:

dG i j
2~p,q,B̂!5 ib1 det~p,q,B̂!d i j

2 i« i jkpk@ ib2~B̂•q!1 ib3~B̂•p̂!~p•q!#

1 ib4@pkFkiqj1qipkFk j#, ~A3!

where thebi are real-valued coefficients to be determined
The contribution of the first and the last scattering eve

is obtained by multiplying the tensor for the ladder diagra
of Eq. ~16! by free Green tensorsG0. This gives the inco-
herent contribution to the coherent backscattering,

G0G0* •L1~p,p8,q!•G0G0*

.G0•d~p,q!•G0* G0* •d~2p8,2q!•G0 ,

.~12 i l * p̂•q!r̃~q50,z,z8!~11 i l * p̂8•q!Dp̂Dp̂8 ,

. r̃~q50,z2 l * p̂z ,z81 l * p̂z8!Dp̂Dp̂8 ,

in terms of the Fourier transform of the ladder propaga
r̃(q,z,z8), which is obtained from the solution of the diffu
sion equation~32!. The coherent contribution depends on t
most-crossed diagramsCi jlk

1 . The tensorCi jlk
1 is obtained

from Li jkl
2 after reversing the indicesk andl, according to Eq.

~14!, and after adding the contribution of the first and the l
scattering event. In this calculation of the tensorCi jlk

1 , the
reciprocity transformation~14! for the normal componentsz
andz8 of the tensor has been neglected. The result is fin
evaluated at reflection wherez5z850. The components o
the ingoing and outgoing wave vectorsp andp8 perpendicu-
lar to thez axis are denoted byp' andp'8 . Finally the co-
herent contribution can be written

Ci jlk
1 ~p,p8,p1p8,B!5 r̃~p'1p'8 ,2 l * p̂z ,l * p̂z8!3D i l D jk

1 i FD i l M jk
2S p'8 2p'

2
,p'1p'8 ,2BD

1Mil
2S p'2p'8

2
,p'1p'8 ,BDDk jG ,

~A4!
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