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Coherent backscattering of light in a magnetic field

) D. Lacoste and B. A. van Tiggelen
Laboratoire de Physique et Moliation des Milieux CondenseCNRS, Universitdoseph Fourier, Maison des Magists,
B.P. 166, 38042 Grenoble Cedex 09, France
(Received 11 November 1999

This paper describes how coherent backscattering is altered by an external magnetic field. In the theory
presented, magneto-optical effects occur inside Mie scatterers embedded in a nonmagnetic medium. Unlike
previous theories based on pointlike scatterers, the decrease of coherent backscattering is obtained in a leading
order of the magnetic field using rigorous Mie theory. This decrease is strongly enhanced in the proximity of
resonances, which cause the path length of the wave inside a scatterer to be increased. Also presented is an
analysis of the shape of the backscattering cone in a magnetic field.

PACS numbdis): 42.68.Ay, 78.20.Ls

[. INTRODUCTION In this expressions,=m? is the value of the normal isotro-
pic dielectric constant of the sphere of relative index of re-
The enhancement of backscattering in propagation ofractionm, and
waves in a random medium is a well documented topic.
Weak localization theory explains how interference effects
between direct and reverse scattering events produce coher- ep=2mVyB/ow 2
ent backscatteringCBS). The main features of CBS are in-
sensitive to many aspects of the statistics of the inhomoge- ) ) ) ) )
neities. Even absorption does not alter the relative strength ¢¢ @ dimensionless coupling parameter associated with the
the interferencél]. The interference is only affected by the @mplitude of the Faraday effecv§ being the Verdet con-
properties of the medium with respect to the reciprocity prin-Stant,B the amplitude of the magnetic field, amdthe fre-
ciple, as first noted by Golubents¢2]. MacKintosh and quency. The antisymmetric Hermitian tensdr;; =i €;;, By
John[3] analyzed how CBS is altered by Faraday rotationhas been introducetthe hat above vectors means that the
and natural optical activity in a medium of inhomogeneitiesvectors have been normalizedhe Mie solution depends on
smaller than the wavelength, and in the diffusion approximathe dimensionless size parameterswa andy=mx. In this
tion. Using a method based on point-like scatterers, Vampaper, only nonabsorbing media are considered sanlzeid
Tiggelenet al. extended these ideas, and discussed the arer are real valued. Sincer~10 * in most experiments, a
isotropy induced by a magnetic field in light diffusi¢d]. perturbational approach is valid. The part®that is inde-
The case of nonmagnetic Mie scatterers embedded in pendent of the magnetic field is denofY the part of theT
Faraday-active medium was studied by means of Montenatrix linear inB is T, and the second order correcti®A.
Carlo simulations by Martinez and Maynaf8]. Lu et al. Two important symmetry relations must be obeyed Ay a
specifically considered the two-dimensional coherent backmatrix of a scatterer in a magnetic field. The first one is
scattering of light from a randomly rough surface in the presparity symmetry and the second one is reciprof&jy
ence of a magnetic fielgs]. Experimentally, CBS in a mag-
netic field was studied by Erbachet al. [7], and some of
their results will be discussed here. T ko.—k' o (B)=Tko ko (B), (€]
In Sec. Il, the main results of a recent calculation of The
matrix for a Mie scatterer in a magnetic field are presented
[8,9], and serve in Sec. lll as the building block to study Tk —o—k—o(—B)=Tys ko (B). (4)
diffusion of light in a magnetic field. After having detailed
the main features of the Faraday effect for multiple Rayleigh
and Mie scattering, the modification of the line shape of CBSt is important to note that(— k) = — o(k), i.e., o indicates
in a medium with finite-size scatterers in a magnetic field isthe helicity. In particular, relation3) and(4) must hold for

investigated in Sec. IV. TL. T? satisfies Eq(4) without a minus sign foB and obeys
the standard reciprocity principle. For this reasbhwill not
IIl. T MATRIX IN A MAGNETIC FIELD contribute to the suppression of the backscattering cone con-

In this paperco=1 has been set. In a magnetic field, thes'dere(j " thls.art'lcle, t.heAne.xt order beilig.
refractive index is a tensor of rank 2. For the standard Mie BecauseT' is linear inB, it can be constructed by con-
problem, it depends on the distance to the center of thsidering only three special cases for the directioBoflf k
spherer, which has a radius, via the Heaviside function andk’ are not collinear, the unit vectd can be decom-

®(r—a), that equals 1 inside the sphere and 0 outside: 4564 in the nonorthogonal but complete basi,ok’, and

e(B,r)—1=[(go— 1)+ ®]O(r —a). (1)  g=kxKk'/|kxk'|. This results if8],
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With respect to an helicity bas&} takes the forms

- qR2

FIG. 1. Ladder diagram*e:ﬁkI and the most-crossed diagrams

A A~ aa
., (B=k)= S[Ry(0)o+Ry(6)0], (6)  Cjjy in a magnetic field. Bold lines denote the Dyson-Green tensor,
the crosses denof€ matrices, and dotted lines connect identical
- particles.
T! (B=Kk')=—[Ry(6) o’ +Ry(6)0], ) _ _ o _
w both fields propagate with opposite sign for the magnetic
with field B [4]. The relations deduced from the application of the
reciprocity relation(4) are
Ry(0)=— 2285, 2 (e ()4 Dy (6)]
1(0)=—— 2, ——=—=[Cym;, 1734(0) ], . , - [P=p'+q p'—p+q )
m =1 J(J+1) ® Ciji(p.p",d,B) = Ljj 5 o5 kTP :B>,
(14)
28|: 2J+1
R2(9)=—FJ>1 m[DJWJ,l(HHCJTJ,l(@)], and
© Lia(P.p",0,B)=Lji(—p’,—p,—q,—B). (15

where the coefficient€; and D; have been defined in Ref.

[8]. ForT._,(B=g), the expression
1 8~ T ,
T, (B=0)= E(Qﬁ(ﬂf Q2) (10
has been found, with
. d e
Qu=—igpR1 Q=—ig R (13)
Fork=k’,
1 2
with

R,(0)=R,(0)=— %F PORCARE IARE HICE)

lll. DIFFUSION OF LIGHT IN A MAGNETIC FIELD

On long length scalesg—0) and for stationary situations
(2=0), the ladder diagranis;;,; take the following hydro-
dynamic form[11]:

_ 27 dik(p,q,B)d;j(—=p’,—q,—B)
L" ’ ,1 1B = .
Ijkl(pp q ) |2 Dq2+>\/l

(16)

The symmetry of the numerator is imposed by the reciprocity
principle; \ is a scalar dimensionless parameter that eluci-
dates the breaking of reciprocity by the magnetic field in
multiple scattering. In Eq(16), D is the conventional diffu-
sion coefficient for radiative transfer, ahds the scattering
mean free path, which is a typical distance between two scat-
tering events. This diffusion constant was shown theoreti-
cally and experimentall{12] to depend on the square of the
magnetic field. These corrections are not considered here,
since the dephasing parameiei(Dl) is only discussed to
secondorder in the magnetic field. The enhancement factor
of coherent backscattering is a ratio of a coherent contribu-
tion, described by the most-crossed diagrams, over an inco-
herent contribution represented by the ladder diagrams. The

The equation of radiative transfer aims to describe th%arametep\ p|ays the role of an “absorption” term for the

propagation of the average intensity in multiple scatteringcoherent contribution only, and is therefore responsible for
but violates reciprocityf 10]. The reason is that it does not the decrease of the coherent backscattering cone in a mag-
contain the most-crossed diagram@;i(,) responsible for netic field. This parametex can be expressed as the square
CBS. By definition, the 4-rank tensasj linearly connects of a Faraday dephasing angle, which is the product of a
the field correlations of incident and outgoing fields. Thisverdet constant, the magnetic field strength, and a character-
can be represented by a diagram that starts on the first scagtic length scale for the propagation of light in the medium.
tering event, and which has two lines, corresponding to theince the scattering mean free paik a natural and experi-
propagation of the field and to the complex conjugate of thementally relevant length scale for coherent backscattering, it
field as can be seen in Fig. 1. Floifj‘k, both fields propagate is possible to define an effective Verdet constdgyt from a

in the same magnetic field as opposed td;,, for which  relation derived in Refl3]:
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Ao To first order in the magnetic field, the tensh defined
A= 3 VerBA%. (17 in Eq. (16) must take the form

d(p,q=0,B)=1+d,®, (18

whered, describes persisting polarization effects in diffuse
Equation(17) was obtained by MacKintosh and Joh8],  scattering due to the magnetic fi¢ttll]. For low densityn of
who considered a situation where the scatterers and the oysarticles,d, can be determined from the Bethe-Salpether
side medium both have a Verdet const¥gi;. equation

o (B), (19

Lop (B) =T (B) T (—B)+ N2 Tppu(B)-G(p",B)-G*(p",—B)- Ty,(—B) L
p

where G(p,B) denotes the ensemble averaged Dysorframework of an effective medium theory using the param-
Green’s tensofsee the Appendix for details of notations eter 7, which will be defined in Sec. V.

and the asterisk denotes Hermitian conjugation in polariza-
tion space. This equation is slightly more complicated than

. > IV. DEPOLARIZATION LENGTH
the one foerp, [11], because it involves botB and— B due

to definition (16). Inserting Eqs(16) and (18) into Eq. (19)

In this section, the factor 1/(1(cos#),), which tends to

and expanding to first and second orders in the magneti@MPplify the second term of Eq20b), is defined. The term

field using Eq(5), fixesd, and\ rigorously. The final result

Aj is easily seen to dominate for small particles. The total

reads cross-section of one particle is given f3],
dy=i| — 22 20 LY (8241820 2
2= 1—<0059>p ar ( a Qscatt_;fl([ l| +|SZ| ) 12 ( 1)
1, A% with w=cosé. The transport mean free path is defined as
=3 ALt 1—(cosb),)’ (20D =1/(1—(cos#)), where the asymmetry paramet@oso)
P is given by
with
1 ! 2 2
- (cos0) = ——— [ 1+ I8 an.
xX“Q -1
A2: d scatt
! X*Qscate) ~1 #
sea . Likewise, a depolarization length can be definedlgs,
IR.|%+|Ry|?2— 2 RER;R,) =1/(1—{cos#f),), where
x| 2 . +1Qul?+1Ql2, "
1—u L
(200 <C030>p:2—f_12 RES,Sy) e due.

scatt

Rayleigh scattering has a forward-backward symmetry so
that (cos6)=0. However, scattering is not isotropic due to
the polarization, and one can easily show that for Rayleigh
Equations(20a—(20d) contain the main results of this scatterergcos6),=0.5. In the limit of large forward scatter-
paper, and will be discussed in Secs. V-VIII. The factoring and form=1.33, both asymmetry parametéc®s6) and
1/(1—(cos#),) in Egs.(20a and(20b) is related to a depo- (cos6), tend toward a limit close to 0.85, as shown in Fig.
larization length which will be introduced in Sec. IV. In Eg. 2(8). In the forward direction the differences between the two
(20b), X contains two terms: the first one is seen to dominatestates of polarization vanish, sin€(0)=S,(0).
for finite-size particlesX>1), whereas the second one pre- The well-known oscillations and ripple structur&3] of
vails for small particlesX<1). Sections V and VI will dis- the asymmetry parametécosé) are also present ifcosé), .
cuss these two contributions. Far from resonances, the firé&s shown in Fig. ), for a relative high value of the rela-
term corresponds to the Faraday rotation of the wave insidéve index of refraction in=2.73 corresponding to Tis),
the scatterer, whereas the second represents the Faraday tlte asymmetry parametexgosé) and (cos6), may take
tation between two scattering events. Although the mediunmegative values, which can be seen in this particular case
outside the scatterers is not Faraday active, the Faraday raearx=2. In this very particular case, where the scattering
tation from one scatterer to the next can be defined in thés essentially in the backward direction, the characteristic

1 1
Ax=— f Re(R:1S;+RyS))du—7. (200
X Qscatt -1
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1.0 : : w ‘ n=Regg,)kl. (23

Equations(209 and (20d) involve this parameter;, which
represents a characteristic phase in multiple scattering, due to
the Faraday effect in the effective medium accumulated over
a distancd. An ensemble of Rayleigh scatterdfer which

the electromagnetic field changes only slightly on a scale

<cos(6)> comparable to the particle sizhas the finite value
----- <cos(9)p

o
3
T

P

e
o

o
~

9f8p
= m . (24

<cos(0)>,<cos(8)>

€a

e
o
T

The Faraday effect of a composite material made of particles
smaller than the wavelength, and of different shég@heri-
%0 100 200 300 200 500 cal, needlelike, and platelikevas discussed in Ref14],
@) Size parameter x using a more general version of the effective medium ap-
proximation(not limited to dilute samplgs
0.8 ‘ - - ‘ For Rayleigh scatterers<{~0), one obtains

\) - .
- 9|8F

06 b dy=————,
! 2 am?—1)23

4
T
.
\

272

04 - %
‘I - 8(m2_1)4X6’

02 r

so that, by definition(17),

0.0 i E_ 9\/§m
“i Vo (m2+2)2

<cos(0)>
----- <cos(0)> ;

<c0s(0)>,<cos(8)>

(25

%0 20 40 60 80 100 Apart from a factor depending on the index of refraction,
(b) Size parameter X the effective Verdet constant is found to be the product of the
FIG. 2. Asymmetry parametefsos6) and(cos6), as functions \rﬁ(c))ltlijcrzg fgzgg 4? g:z 2;}:‘;‘3Zsfggtg:egf\/\i/err:srtec?y?:;ag(._p\s

of the size parameterfor relative indexes of refractiom=1.33(a) e . .

andm=2.73(b). pecte_d on the basis of the eff_ectlve medium approach_of Eq.

(24), if Vg would have defined by ,=2Vq:B/w. This

o discrepancy is due to the denominator in E@Ob),
length for the loss of the polarizatidg, , can be smaller than 1—(cosé),—1/2 for Rayleigh particles.

r%itczgg?tztr?r:gtl\?vllﬁgr?tig for the loss of the phase in multiple From the experimental parameters described in_ the ex-
' ' periments of Erbacheat al. (a relative index of refraction of
m=1.15), the estimate using E(R5) is
V. FARADAY ROTATION FOR MULTIPLE

RAYLEIGH SCATTERING Vet

Vo

~1.32. (26)

Equation(20g for d, and the second term in EROb)
can be understood from an “effective medium” theory, valid This value is to be compared with the experimental value of
for Rayleigh scatterers. The real part of the forward scatter{ 55+0.15[7]. The proximity of the two values probably
ing amplitude(12) is associated with the Faraday effect andexplains the success of previous theories based on Rayleigh
the imaginary part with magneto-dichroistne., different  scatterers, although this experiment dealt with Mie particles.
absorption for different circular polarizatipof an ensemble | this experiment, the maximum of the distribution of the
of Faraday-active scatterers. For a dilute system, the antisize parameters was rough|y estimatedxatzc-;, but the
Symmetric part of this effective refractive indeg is defined width of the distribution was very broad. Using the param-
as eters of Erbacheet al., our Mie theory reproduces the limit
of Eq. (26) for x=0, but predicts a value of only 0.4 at
2. =23. The solid line in Fig. &) represents the effective Ver-
£a=— —3R1(0). (22 det constant as a function of the size paramefefor the
@ same relative index of refraction used in the experiment of
Erbacheret al. One can clearly see in this figure that a dis-
For the real part of this effective refractive index, the dimen-tribution of large spheres of size parametasf the order of
sionless parametey is defined by 20 or higher cannot explain the experimental result. How-
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3.0 - - ‘ ‘ det constant of Mie particles is written as
25 1 Veff _ 3szcattV37\ (27)
fVO 4X8|: ’

When the size parameter obeys 1 andy=mx>1, the
scattering can be interpreted in terms of geometrical optics.
In geometrical optics, rays incident on the sphere are consid-
ered rather than plane waves. The ray with central impact is
characterized in Mie theory by=1. In Fig. 3a), the effec-
tive Verdet constant, that contains contributions from all the
rays, is plotted as a solid line, with respect to the size param-
eterx. The dashed line in this figure represents the separated
contribution of the ray with central impadt=1 in the effec-

Vel (V)

990 100 200 300 400 500 tive Verdet constant. The two curves merge %ot 0, the
@ Size parameter x Rayleigh limit, but deviate from each other for larger size
parameter. For a given value of the size parameter, it can be
30.0 . . ‘ ‘ noted that the ray with central impact already represents a

significant contribution to the effective Verdet constant. In
addition to this, the effective Verdet constant is seen to de-
crease for increasing size parameteiThis is an important
observation, because this means that Mie scatterers of large
size (typically x>20) are less efficient than Rayleigh scat-
terers in suppressing the coherent backscattering cone.

20.0 |

Vel (Vo)

VIl. MIE RESONANCES

0o Let us first recall some results for resonant Rayleigh scat-

tering, for which the resonance behavior is analogous to the

resonance of a two-level atom in atomic physics. For reso-

nant Rayleigh scatterers the effective Verdet constant is re-

0.0 . ‘ lated to the “path length™L ., of the wave inside the par-

o 0 heparameterx %00 ticle. In fact, the path length, the dwell time of the light, and
the total electromagnetic energy stored inside the scatterer

FIG. 3. Plot of the effective Verdet consta¥its;/(fVo) as a have been seen to be proportional. The path length can be

function of the size parameter (a) The solid line represents the defined agsee formula(2-22), p. 17 of Ref[15]],
solution of Eqs.(209—(20d), containing contributions from all the

rays incident on the sphere, whereas the dashed line corresponds to . Qabs
the contribution of only the first partial wawg=1 (the ray with Lpath: lim om’ (28)
central impact in geometrical opticsThe scattering medium has an m;—0 !

index of refraction of 1.7, the value in the experiment of Erbacher . . . . .
et al. (b) The same plot for an index of refraction of 2.73 for which whereQaps is the absorption cross section, angdthe imagi-

resonances are clearly visible. The host medium is in both case®@ry part of the index of refraction. The physical idea behind

glycerol (of index of refraction 1.47). A general decrease of the this definition is that the longer the path of the light is in the

effective Verdet constant for increasing size parametean be  Pparticle, the more the light will suffer from absorption. For

observed in both plots. resonant Rayleigh particles, the relation to the effective Ver-
det constant is obtained from Eq25) and(28):

ever, if the size distribution of the scatterers was rather cen-

tered around a size parameter of roughly 10, the experimen- \ 4m\2 Lpath
tal value of the effective Verdet constant could possibly be Vo 3 a ’
recovered from this Mie theory. In Fig(l3, a higher value

of the relative index was chosen. In this case, the effectivé\t resonance, the path length can exceed the size of the

Verdet constant is seen to be enhanced by resonances, whigatterer, which means that the effective Verdet constant

(29

will be the subject of Sec. VII. should be strongly enhanced by resonant scattering. Alterna-
tively, one may relate the path length to the time spent by the
VI. FARADAY ROTATION FOR MULTIPLE wave in the medium, which means thaF the Earaday rotation

MIE SCATTERING is in some sense karmor clock measuring this timg16].

The question is whether resonant enhancement of Faraday

The first term in Eq.(20b) originates from the Faraday rotation occurs in resonant Mie scattering. For Mie reso-
effect inside the scatterers, and is the main contribution imances the increase in path length is related to the change of
the Mie regime ofx>1. Resonances will be discussed in the electromagnetic energy within the scatterers with respect
Sec. VII. Using the definition of Eq17), the effective Ver-  to the surrounding. The total time-averaged electromagnetic
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3 - ‘ Mie coefficientsa; andc;, which are identical, are close to
zero. From Egs(20b) and (200), one findsy ~|c,|%/|ay|.
By Egs.(27) and (30), this implies

N
T

log,((V/(fVy)

Verr
Vo

ol g~ ] ~ 31
CJ aJ ~ a3~—.
log,(W/W,) Wo = Wo

-
T

In the last equality the role dfa,| is dominated byc;,|? at
resonance, since resonances in the scattering cross section
Qscart @re much less significant than resonancesMnin-
deed, in Fig. 4a), the lower curve represent@gcai, ON @
normal scale, near one resonance of a water sphere. It is
Qs much below the curves & or V.4:/(fVy), which are even
plotted on a logarithmic scale. From E@1), the effective
47.06 47.065 4707 47.075 Verdet constant is expected to be simply proportional to the
Size parameter x electromagnetic energy (or, equivalently, tol ,,,). This
generalizes the result for Rayleigh scatterers in(€). The
20 ‘ ' ' numerical verification of Eq(31) can be deduced from the
double logarithmic plot o¥/.¢:/(fV,) against the total elec-
tromagnetic energWV in Fig. 4(b).

The proportionality of the Verdet constant and the total
electromagnetic enerdyr, equivalentlyL ,.,) has been de-
rived for the particular case where the path of the light is
confined along the same linghe one-dimensional problem
in a Fabry-Perot configuratid]). In this case, the cumula-
tive character of the Faraday rotation with respect to the path
length leads to an experimentally observed enhancement of
the Faraday rotatiofil9]. Equation(31) applies to any reso-
nant impact, and shows that the possible occurrence of spin
flips in Mie scattering, as suggested in REf], does not
affect the behavior of the effective Verdet constant near reso-

03 08 14 19 nances, and that the Faraday rotation still accumulates along
b) log,(W/W) the path as in the 1D case. This is consistent with the obser-
0\{ation, made in Sec. VI, that the ray with central impact had
an important role for interpreting the Faraday rotation for
multiple Mie scattering.

log, (Ve (EVo))r108,(W/W (). Qi

~_~
£

log,((V/(fV,))

FIG. 4. Near a particular resonance curve of a water sphere
indexm=(1.334—-1.5x 10 % the following curves have been plot-
ted: (a) Respectively from the upper part of the figure to the bottom,

o ; In conclusion, as for resonant Rayleigh particles, a strong
a plot of log o(Ves:/(fVy)) (solid line), log,o( W/W,) (dashed ling . ' . '
and the scattering cross secti.. (dotted as functions of the correlation between the effective Verdet constant and the

size parameterx. (b) Close to this particular resonance, Stored energy inside the sphere was found for resonant Mie
logo(Vei¢/(FVo)) is shown against the logarithm of the total elec- Particles. The general behavior and proportionality in the vi-
tromagnetic energy lag(W/W,) (dots, to be compared with a line  Cinity of a resonance is apparently universal.
of slope ong(solid), the prediction of Eq(31).

VIIl. SHIFT OF THE INTENSITY PROFILE

energy inside the sphere is denotedWyandW, represents OF THE COHERENT BACKSCATTERING CONE
this energy for the incident plane wave. For weak absorption, IN A MAGNETIC EIELD
m;<m,, the electromagnetic enerdy can be approximated o .
by [17] A magnetic field can be expected to introduce some an-
isotropy in the light intensity profile of the cone. In this
W 3m,Qaps  3MiLpain section, the form taken by this anisotropy is investigated by

(30 taking care of the selection rules imposed for the polarization
in reflection of a semi-infinite system of Mie scatterers. This

where Eq.(28) was applied to obtain the last equality. This analysis is restricted to linear corrections in the magnetic
relation is exact for scalar waves, and is a very good approxifield, so that the parametgrdiscussed in Sec. VI, quadratic
mation for vector waves. It is even an excellent approximadn the field, will no longer appear.

tion in the vicinity of resonances, where the deviations be- This approach is based on an improved version of the
tween the exact solution and its approximation are thescalar diffusion approximation. The ladder propagator at
largest. In the domain af=x, several resonances take placepointr={r, ,z} for a source at’ ={r} ,z'} in a semi-infinite

in the Mie coefficients; andb;. These resonances are well medium is denoted by(r,r'). The z axis is directed along
separated, and can be numbered by an additional integéte normal of the sample, amd andr| are vectors perpen-
which is the order of the resonanf&8]. Near one electric dicular to thez axis. Because of translational invariance in
Mie resonance of a specified order, the denominators of ththe plane of the sample, the ladder propagator only depends

W, 8xm, a '
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on r,—r,. The two-dimensional Fourier transform of field in the plane of the slab, quite similar to the correction
p(r,r') with respect ta, —r/ is denoted by(q,z,2'). The induced by the magnetic field in the group velodigd].

/ o - The coefficientb, can be calculated independently from
ladder propagatop(r.r’) obeys the diffusion equation b,, in a way exactly analogous to the calculationagfin

Ref.[11] responsible for thehotonic Hall effecfPHE). The

1 .
(_Vz—’_F p(r,r')=5(r—r’), (32) result is
a
_ 1
with the radiative boundary conditidi20] bl_(l—<0089>)2
' [ — 1 T A A
VIV VZZ0 p(r Zhin 2= 20h) =0 (39 f dcosfsingY, Im(T> (0T, (B=g,6))
-1 oo’
>< 1
The trapping plane is located at a distamge 21* /3 out- Zfl T° 2
side the sample, and, is the absorption length for the light 71d Cosgg‘, IToor (O]

intensity. We assume that the first and last scattering events
take place one transport mean free pHthaway from the
boundary, in the directions specified by the incoming wave B .
vectorp and the outgoing wave vectpr. This allows us to yvhere the magnet® matr.|x T@,(B—g)(q) was |nt-rodl.Jc.ed
calculate the contribution of the ladder diagramsi" EQ-(10). Note that the imaginary part in EGBS5) discrimi-
Lﬁm(p,p',q,B), the so-called incoherent contribution to the natesb, from the parametea, responsible for the PHE, in

h back . directl ~, 15, which thereal part figures. For Rayleigh scattering, one can
coherent backscattering, directly frop(q=0,z=1"p,,.z"  \o44ily prove that the parametdys andb, both vanish. The

+1*p;). Similarly, the coherent contribution is obtained calculation ofb, for Mie scattering is very complicated and
from the most-crossed diagrarﬁﬁm(p,p’,q,B), which are s beyond the scope of this paper.

derived fromLj;,(p,p’,q,B) using Eq.(14). These deriva- The expected modification of the lines of equal enhance-
tions are detailed out in the Appendix. The coherent contriment factor due to the magnetic field is now investigated.
bution in an helicity basis and at reflectioz=0,z'=0)  Equation(34) translates into a CBS line shape

reads

(39

E(u,0)=1+C(u)(1+2byusing—2b,0u cosp).
C;g':;(pL+pi v_l*ﬁzil*f)é)aov’ (36)
The enhancement factor, in the helicity-conserving channel,
is denoted byE for a state of helicityo. The dimensionless
—20b,wlB-(p, +p))], 34 parameteru=wl 6, and C(u), the well-documented line
7b20IB- (P +pL)] 34 shape of the cone without applied magnetic field, were intro-
duced[4]. The azimuthal angle between the projection of the
o N o outgoing wave vector into the plane of the slab and the mag-
of helicity o(p)=0"(p’), andb, and b, are real-valued netic field direction, which has been chosen alongxthais,
coefficients to be determined. Most experiments on coherentas denoted bye. For simplicity, only the magnetotrans-
backscattering were done in the helicity-conserving channe|,orse correction proportional to, will be considered here,

which has the advantage of having a maximal enhancemeny, thath,=0. This case corresponds to unpolarized incident
factor (since the contribution from single scattering vanlshesﬁght for which the term proportional tb, in Eq. (36) van-

in this casg and of having an isotropic line shape. Equationishes. The pattern of the lines of equal enhancement factor
(34) states that the magnetic field modifies the cone exactlygsqciated with the, correction alone is the same as the one

in this channel, in agreement with previous wo8{. Even .t 1o transverse correction after a rotation of angi

when a magnetic field is present, no coherent backscatteri%out thex axis. For a typical experimer22] with CeFs

Is found in the opposite-helicity channel, at least according,; icjes of an approximate radius of#h at room tempera-
to the present diffusion approximation. ture, with a wavelengtt\ =457 nm, Eq.(35) leads to the

Only the components of the magnetic field along the slab ..~ _.. ~1.8x10°2 ;
contribute to the right-hand side of E(4). When the field %nStgath?enebLatlh'Sforloa .vo-lr:rieei‘(rgecttlig]r? ngﬂ)g lm ?2 SlLired

is perpendicular to the slab, the decrease of the enhancemen

: ; . . =90 um. Equation(36) is valid for b;u<<1, which means
factor, described by, is the sole impact of the magnetic o
field, and is not included in the present approximation. Whe that our approach is limited to the angular dompif=0.8

the magnetic field is in the plane of the slab, two correctionr}ad' The equation for the lines of the constant enhancement

show up. The first one, proportional by, is magnetotrans Factor Eo in the absence of magnetic field =1
. 1 1 - 0 1 1 1 -
verse, since it produces a shift of the intensity profile of the+ C(x"), independent of the azimuthal angje The first

! . .. Jorder correction in the magnetic field is separated by writing
cone in the plane of the slab, normal to the magnetic field. — 1%+ uX. Equation(36) gives

This correction is independent of the state of helicity of the ™
light. The second correcyqn in Eq34) propomon.al tob, C(u)
does depend on the helicity. It produces a shift of the 1 _

=-2b Osine. (37
intensity profile of the cone in the direction of the magnetic H 1C’(,u,o) # v

X[1+2b,wl de(p! ,p, ,B)

where the Kronecker symbdl,,. guarantees conservation
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IX. CONCLUSION

This paper describes two modifications on the coherent

backscattering cone produced by a magnetic field. The first
one, the decrease of the enhancement factor, depends on a
parametern quadratic in the magnetic field, and was ob-
served experimentally. The second modification is related to
the anisotropy of the light intensity, and already appears in
the linear order of the magnetic field. Preliminary experi-
ments seem to have reported the possibility of a shift in the
intensity profile[24]. Our analysis applies to spherical scat-

\ terers of any size that are Faraday active. The decrease of the

N

)

- - s . backscattering cone becomes less pronounced as the size of
K the scatterers increases, whereas a shift in the intensity pro-

LL(mrad) file | ; o >

ile is only possible with finite size scatterers. As surmised in

Ref. [7], the effective Verdet constant defined by the de-

i crease of the cone is enhanced near Mie resonances. The

effective Verdet constant is found to be intimately related to
the stored electromagnetic energy, i.e., the dwell time of the

— = light in the particle.

B

FIG. 5. Polar plot of the lines of constant enhancement factor of ACKNOWLEDGMENTS
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ation of 10 corresponds to an angle of 145 mffad the mean free
pathl*=90 um, and the wavelength=457 nm mentioned in the
text). Without magnetic field or for a magnetic field perpendicular APPENDIX: DERIVATION OF THE MAGNETIC
to the slab, these lines of constant enhancement factor would have CORRECTIONS TO THE TENSOR C_,
been circles.

In this appendix, the notations are explained and a dem-

In Fig. 5, the polar diagram of the lines of constant en-onstration of Eq(34) is given. The transverse part of the free
hancement factor is shown for, =1.8xX10 2. As is appar- Green tensor is denoted
ent from Eqs(36) and(37), the distortion of the lines should
increase away from backscatterif@t exact backscattering A;
there is no modification at all to first order in the magnetic 0T T o . (A1)
field). As a consequence, with the valuelmf given above, (w/co)"+ie—p
only a modification of the line shape in the wings might be .
observed. Although the conditidm x<1 limits the domain ~ With (Ap)i; = &;; — p;p; the projector upon the space orthogo-
of validity of the approximation, there should nevertheless béal to p. Similarly, the Hermitian projector on the space
a sufficiently broad angular range, in the wings of the coneprthogonal top for a given state of helicityr is Pjj(p)
where the magnetic corrections could be visible. In Fig. 5 the_ 1 S e D

.. .. . . C 2[(Ap)|1 |0'8|Jkpk]-
condition of validity of the approximation has been satisfied. Generalizing Eq(18) for finite value ofq (to first order in
. Another c.ond'mon of'valldlty Ilgs in the use of the diffu- q and in the magnetic field) gives

sion approximation. This approximation predicts a2be-
havior for the line shape of the cone in the wings, which is |
actually a wrong result. In the wings, the contribution of d(p,q,B)=|+d2<I>+[L(p,q)—F*(p,q,B)]m,
lowest orders of scattering is dominant, and not properly
taken into account in the diffusion approximation. Using an
exact theory, Gorodnicheat al. proved that the outcome is a
1/u dependencg23]. Their result was derived only for
pointlike scatterers, but it should also be valid for Mie scat-
terers when the mean free path is much larger than the wav
length. In any case, the magnetic correction in 8Y) de-
pends only on the logarithmic derivative 6f(«°), which

(A2)

whereL(p,q)=2(p-q)l—pq—gp andI' (p,q,B) are ten-
sors of rank 2, linear im, that determine the anisotropy in
diffuse scattering. Without a magnetic field it is well known
Hrat I'(p,q)=2(p-q)/(1—(cosh)). When a magnetic field

is present, the first order correction in the magnetic field is

— _ O — ko
should change only by a factor of 2 if the actual law i bt separated ab™ (p,q,B)=I"(p,q) + BsI' (p,q,B). Because

1/u?, the general pattern of the lines of equal enhancemerﬁ'c the symmetry relat!on ‘?f 59(4)’ one hasl’ (p,q,l?)
factor not being modified. Therefore, the shift of the center=I" (p.d,—B)*.  This implies that 4" (p.q,B)

of mass of the light intensity profile which was calculated =—6I""(p,q,B)*, so that 6I'"(p,q,B) must be anti-
should be fairly robust with respect to the exact form ofHermitian. Mirror symmetry imposes in addition that
C(u9). Top'(B)=T_p.(B) and thus I' (—p,—q,B)
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=I'"(p,q,B). The general form of the tensadl*(p,q,B)  With the definition
allowed by symmetry was already discussed in REf], and
will be only slightly different forsT":

. B |

—isijpliba(B-q) +ibs(B-p)(p-q)] _ _ _ o

) and{=2(id,— 7) is the Mie generalization of the parameter
+iba[ pi®iig;+ 9 PPyl (A3)  Fin Eq. (73) of Ref. [4], which was shown to produce a
rotation of the polarization vector in the linear polarization

The contribution of the first and the last scattering eventsChanne'S of coherent backscattering. To first order in the

is obtained by multiplying the tensor for the ladder diagramgMagnetic field, the front factos(p, +p ,—1*p,.1*p;) of
of Eq. (16) by free Green tensor§,. This gives the inco- EQ. (A4) is evaluated by replacing the parameitgr, which

where theb; are real-valued coefficients to be determined.

herent contribution to the coherent backscattering, was an absorption length for the evaluation of the light in-
tensity in Eq.(32), by a factor depending on the backscatter-
GoGs -L ™ (p,p'.a)- GoGg ing angle according to:

=Gq-d(p,q)-G; Gy -d(—p',—q)- Gy,

A~ e, 1
=(1-il"p-q)p(q=0,z,2")(1+il*p"-q) ApA; , F—>(pi+pi)2.
a

=p(q=0,z—1*p,,z' +1*p}) AsA;r

in terms of the Fourier transform of the ladder propagatonn second order in the magnetic field, would be present
p(0,2,2"), which is obtained from the solution of the diffu- here as well as stated in E(.6).

sion equation(32). The coherent contribution depends on the The values of the coefficients; can only be found by
most-crossed diagra”@ﬁk . The tensorcfjlk is obtained solving a system of four coupled_ equations that one pbtains
from L;;,, after reversing the indicdsandl, according to Eq.  When inserting EqsiA2) and (A3) into Eq. (19), and which
(14), and after adding the contribution of the first and the lastS not reported explicitly here. The contributioninf always
scattering event. In this calculation of the tengyj, , the ~ Vanishes in Eq(A4), since it is proportional to the scalar
reciprocity transformatiort14) for the normal components  product p-q in Eq. (A3), which is transformed into '
andz’ of the tensor has been neglected. The result is finally-p) - (p+p’)=0 in the operation involved in Eq14). For
evaluated at reflection whem=z'=0. The components of the same reason there is no contributionl8tp,q) in Eq.

the ingoing and outgoing wave vectgrsandp’ perpendicu-  (A4). Selection rules for the polarization are obtained in the
lar to thez axis are denoted bp, andp;] . Finally the co- helicity basis by considering the product

herent contribution can be written

Cii(P.p,p+p" B)=p(p. +p], = 1P, 1*p)) X Ay Aji Cl  =PL(P)CHa P (). (A6)
. _(Pi—pL ,
+1 AiIMjk<—er_+pJ_i_B> , . . .
2 In this calculation, the terms proportional foin Eq. (A5)
o, —p disappear, as well as the contribution frdmpwhich is lon-
+My %,pDLpi ,B)Ak,}, gitudinal as can bf seen from EEA3). AmF)ng the four
terms of8I'(p,q,B) ~, only the terms proportional tb, and

(A4) b, survive, and Eq(34) is obtained forCZU, .
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