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Solitonic energy transfer in a coupled exciton-vibron system
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(Received 19 October 1999

We consider the exciton transfer along a one-dimensional molecular chain. The exciton motion is influenced
by longitudinal vibrations evolving in a Toda lattice potential. It is shown how the soliton solutions of the
vibron system coupled to the exciton system induce solitonic exciton transfer. To this aim the existence of a
regime of suppressed energy exchange between the coupled excitonic and vibrational degrees of freedom is
established in the case of which a nonlinear Sdimger equation for the exciton variable is derived. The
nonlinear Schrdinger equation possesses soliton solutions corresponding to coherent transfer of the localized
exciton.

PACS numbe(s): 41.20.Jb, 42.65.Pc, 63.20.Pw, 71:20:

I. INTRODUCTION coherent exciton transfer. In particular, different from the
Davydov soliton model, our approach does not necessitate
As is well known the interplay of dispersion and nonlin- the elimination of the vibrational degrees of freedom from
earity in nonlinear evolution equations may result in local-the coupled exciton vibron system. Moreover, incorporation
ized solutiong1,2]. Solitons are an important prototype of Of the nonlinear evolution of the vibrations proves to be es-
such localized solutions allowing stable storage and cohereg€ntial in achieving solitonic exciton dynamics.
transport of a physical quantity. The soliton concept was [N Sec. Il we introduce the model of the coupled molecu-
successfully applied in various physical contexts including@’ €xciton vibron system and in Sec. Ill its dynamics with
nonlinear optics, condensed matter physics, and hydrodyeMphasis on soliton solutions is studied. Section IV deals
namics[3]. Soliton solutions are regarded to play also anWith the energy exchange between the exciton and vibron
important role in modeling the efficient and loss-free transfeSystems. The energy exchange rate is computed from which
of energy and quasiparticles in biomolecular aggregate¥® infer on dlff_erent regimes of |_nteract|0n be_twe_en the two
[4-9]. Basic to many models of biomolecules is a lattice SUbsystems. Finally in Se¥’ a brief summary is given.
system the sites of which correspond to the molecular sub-

units of the chain10]. The mere excitonic transfer along Il. THE COUPLED EXCITON VIBRON SYSTEM
these molecular sites is usually described by a tight-binding ) ,
system giving rise to a linear discrete Satirmer equation We consider the transfer of an exciton along a one-

for the exciton amplitude. Taking the coupling between theQir_nensional molecul_ar c_hain _vvhe_re the excitonic movement
vibrational degrees of freedom of the molecular sites and th& influenced by longitudinal vibrations of the molecular con-
exciton motion into account nonlinearity come into play in Stituents of the chain. The Hamiltonian is determined by
the coupled exciton vibron equations. In the case of Davy-

dov's model of biomolecular energy transfef] the lattice H=HexctHyip, 1)
system of coupled exciton and vibron equations was reduced. o ] . o .

to a single integrable continuum nonlinear Schinger equa- with the excitonic part given by a tight-binding lattice system
tion expressed solely in the excitonic amplitude. The corre-
sponding soliton solutions describe the solitonic exciton . .
movement. In the frame of Davydov's model passing from Hexc= _n;m Vin-1(Cn€a-1%CnCx-1), )
the discrete system of coupled exciton vibron equations to a

single integrable continuum equation was crucial for obtain-Wherecn represents the probability amplitude of the exciton

ing exact soliton sol_utions. On thg other hand there are only, occupy the sit@ andV, ., is the transfer matrix element
a few examples of integrable lattice system known, such ag¢ the coupling between two molecular lattice sites. The

the Toda lattic¢11] and the Ablowitz-Ladik latticg12] both 4 ansfer matrix element depends on the intersite relative co-
possessing soliton soluuons. Nonet_heless, al_so ngnlntegrab ‘?dinateqn—qn,l in an exponential fashion

discrete systems can provide localized solutions in the form

of intrinsically localized modes, also called breathgt8—

18]. However, unlike the mobile solitons, most of the intrin-
sically localized modes are pinned by the discrete structure . . . .
of th?a/ lattice preventing theFl)”n from )t/ransferring excitationW'th dn being the elongation of thesth.molecular unit ang
energy across the latti¢@9—27. is the range paramet@23]. The nonlinear dynamics of the

In this paper we address the issue of exciton transfeIong|tud|nal vibrations of the molecular sites is described

along a molecular lattice chain where the exciton dynamic hrough a Toda lattice system with Hamiltonian

is influenced by anharmonic longitudinal lattice vibrations. 1 a

We.demc.)nstrate that _for the_ d|sprete system of. the_cogpled Hvib=§ E pﬁ+5 2 {exd —b(qr—0n_1)]—1}, (@
exciton vibron dynamics solitonlike solutions exist yielding n n

oo

Vion-1=Voexd — (4, —dn-1) 1, (3
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anda,b>0. We underline that our anharmonic treatment of ién: —ex —b(ns1—Gn)ICnie

the lattice vibrations goes beyond the usual harmonic ap-

proximation of the Holstein or Davydov-type Hamiltonians —exd —b(g,—dn-1)Ich-1 9
[4,10]. In Ref.[24] a Davydov-type Hamiltonian was con-

sidered where the intermolecular vibrations were also treated .. N N

as a Toda lattice. However, the coupling to the exciton was dn =2 1= 7 (Cay1CaFCniaCp)
chosen to be linear in the vibrational coordinates whereas in
the current paper it is taken to be nonlinear. It is through Eg.
(3) that the coupling between the excitonic and intersite vi-

brational degrees of freedom is introduced. Since the latter
are not constant, the transfer matrix elements are modulated (10

by the motion of the molecular sites relative to each OtherConsidering the cadsa<1 we note that the excitonic terms
When two adjacent units are further apart, the corresponding, Eq. (10) have negligible impact on the dynamics of the
matrix element diminishes, causing a reduction in the excis

. . ) vibrational system. Therefore, up to terms of the order
tonic transfer from one site to the other. Correspondingly, for(’)(b/a), the vibrational dynamics is governed by the Toda

two neighboring _sites being closgr to _each other the tr"’}nSf?L'%\ttice solutions. Upon inserting the soliton solution of the
matrix element increases resulting in enhanced exCitoniEyiar into Eq.(9) one obtains

qu_b(Qn+l_qn)]

exq—_b(qn_qnfl)]-

b
—a[1—5<c:cn1+cnc:1>

transfer.
The system of coupled exciton vibron equations reads ién: —[1+sinhk secR(k(n+1)— Brt)]Cns1
icn="—Vo{exd — ¥(dn+1=dn)]Cns1 —[1+sinhx secB(xkn—Brt)]c, 1. (12)
—exfl — (4= dn-1)]Cn-1} () The structure of this nonlinear Scliiager equation points
) to its relationship with the integrable Ablowitz-LadilAL)
dn=2a{exd —b(gn41—0gn)]—exd —b(d,—an-1)]} equation given by
= Vol (G4 1Cn+ Cnr1Ch) XA — ¥(Un+1—0n) ] i 0= —[1+ |21 (Gns 1+ Y1), (12)
(% * _ _
(CnCn-1%CnCh—1)€XH — ¥(Gn—Gn-1) ]} ®)  Wwhich exhibits exact soliton solutions
For y=0 the excitonic and vibrational degrees of freedom s .. _ . _ NV
decouple. The solutions of the two separate subsystems (V=S Ba )sech Ba (n—ub]exd —i(wt an+((71)%)
hibit markedly different behavior. The linear tight-binding
iCh=—Vo(Cns1+Cno1), (7 w=—2cosa coshBy , u=2B,'sinasinhB, ,
(14

does not support any localized solution at all. In fact, when

we take as an example an initially strongly localized exci-whereB, e[0%) anda e[ — ] [12].

tonic state of a single-site excitatian(t=0)= 4, , it de- In order to establish full contact between E@sl) and
cays in the course of time according toc,(t)|? (12) we suppose that, obeys the soliton solutiofil3) and
=|Tn-m(2Vot)|? (J, is the Bessel function of the first adopt the soliton parameters such thatcS|?
kind). Eventually, the excitonic energy becomes spread=sinhpg, sech[ B8, (n—ut)] matches the driving term
along the lattice sites. In contrast, the Toda system supportinhx secl[ kn— B+] in Eq. (11) which requires thaiBa,
moving localized vibronic states in form of solitons =k as well as 2 sim=+/ab holds. Then we can indeed ex-

extf — b(q— Gn_1)]= 1+ sinhx sech(xn— Brt), (8) press Eq(11) as a modified AL equation

with the soliton parameterg;= \absinhx [11]. When the ich—(L+|cl®) (et en ) =(cfl?=lcq o)) ens .
two systems become coupleg¥0) an interesting question (15

arises, namely, whe_ther the. Toda solitons.are preserved, aRfhe derivation of the AL-type equatiofl5) in terms of the
if so, can they additionally “infect” the exciton evolution 0 o\ ggjiton solution is justified if the term on the right-hand

behave in a solitonic fashion as well? side(RHS) acts only as a small perturbation of the the genu-
ine AL equation represented by the left-hand SidES) of
ll. SOLITONIC EXCITONIC MOTION MEDIATED BY Eg. (15). The strength of the perturbation is measured by the
VIBRONIC TODA SOLITONS ratio
In this section we study the dynamics of the coupled ex- S12 1.8 12\ .8
citon vibron system of Eqg5) and(6) focusing interest on [(eal™= ICnal*)Chral <tani’p (16
possible solitonlike excitonic propagation induced by solito- (1+|c3®)|ci,+ch ] AL

nic Toda vibrations. To reduce the number of parameters in
our model we assume that=b and furthermore sef,=1.  which in fact is small as long g8, is not very large(In the
The system of coupled equations then reads forthcoming studies we tak@, =«<0.5)
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In order to give analytical evidence that E45) supports  Within the frame of this approach it is assumed that the
slightly modified AL soliton solutions we invoke perturba- parameters of the exact AL soliton vary slowly in time and
tion theory based on the inverse scattering transf@m?26.  the equations describing their evolution affected by the per-
(Perturbed AL equations were also considered in R&f].)  turbation are given by

[

SinA BaL(N—Xop)]

=SB 2 oo B (7 1) o} COSM B[ (1= 1) %]
X Re{f(c})exd —ia(n—xg)—io]}, (17)
. 2 sinhBa. Sina+smh'BAL 5: (N—Xg)cosh BaL(N—Xo)]
0 BaL BaL  nT=w cosh{Ba [(n+1)—Xgl}cosh{ Ba [(N—1)—Xo]}
XIm{f(cy)exgd —ia(n—xq)—io]}, (18

[’

. . cosh BaL (N—Xo) ]
Ba= SthALn:Z—m cosh{ Ba [ (n+1) —Xo]}cosh{ Ba [(N—1) —Xo]}

xIm{f(c})exd —ia(n—xq)—icl}, (19

with the perturbational term
f(en)=(lcl>=lens1l®)eq - (20)

Evaluation of the sums with the help of the Poisson formula yields

a=—[FS(BaL)cog 2mxo) + FSsin(27x,) |cosa, (22)
2sinhBy . ) )
Xo=——5— sina+[F (BaL)cos2mxo) +F sin(2mxo)]sina, (22)
[FBAL(BAL)COS(ZWXo)JFFEAL(ﬁAL)Sif‘(ZWXo)]Sina, (23
with coefficients
TS
wBa)= 5 - 2 sinh™ (—)[—[sech/sALsinr(zxs'AmsinhﬂAL]
IBAL ﬁAL
P e 2+—) 28, )+ 2" sinh 4 M PR PRR ] 24
~ 2aSeCHBa| 5 =| 2+ 5= SiN2B) + o =Sin4B ) = 5= | 2+ 5~ |sin6B.,) (24
2g 1
Fs (,BAL)—— Z sinh™ (,3 [1+2 costi2B, ) ]sechB —2 coshBa — sech,BAL 1+ 3 ) [1+cosi4Ba)] ]
AL AL

(25

6w
—Slnf'(zﬁAL)"‘ B Sinh(484.)
AL

al = s

(ﬁAL) 25|n|'F,3ALE sinh™ ( )
BaL

+[1+8 )zi 6 ] K2 i inh(2 —sinh™! ﬁ'ﬂ—z r(ws)
B BALsmP( BaL) (secht(2Ba.) — BALsec BaLSINN(2B4.) —sin B ) B cos B
( 1 ( s TS 241
X 192 3—-4 m KSInHZﬁAL)—’_B_SInr(‘]'ﬂAL)
s |2 s .
—) —smI‘(G,BAL)] sec B — = secl B sink 2/3)) } (26)
IBAL BAL
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Fy =—2sink? i h1<w—28)[ ™S secBa 1+ 4 +si hl( m’s | ;‘(77_25 4—T11
xo(ﬂAL)— sin ,3A|_S:l sin B SBALseC BaL[1+cosh4B,)]+sin 28aL BALCOS BaL [
2
+cosh28,, ) ]sech Ba. — Sint?Ba. cosecl%(ZB)—;1 1+ B [1+cosh4Ba)]
+4 sintf B [1+cosi48a.)] ] (27
. T g ) _1(7728) 1 )2 T 241
FBAL(,E%A,_)—msmhﬂALS:1 sinh m El_Gm :smr(Z,BAL)JrKsmI*MBAL)
N4m T .
+[1+8| ——| |-—sinh(684 )sech(28a ) — ——secRBa sinh(28a0) (, (28)
ﬂAL AL IBAL
T S s _
Fa, (Ba)= msmhﬁALgl sinh™! B [4—[1+cosr(Z,BAL)]secﬁBAL—smhz,BAL cosecR(2p)
1 2
- 7|1t B [1+cosh4Ba)]|+4 sinIﬁ‘,BAL[1+cosk(4ﬂA,_)]]. (29

The nonlinear dynamics of the systdit7)—(19) is conve-  Finally we remark that we found very good agreement be-
niently analyzed on they-a phase plane for fixegB,, . tween the exciton solutions obtained from the dynamics of
Taking into account the influence ¢@f,, leads merely to a the coupled systent) and (6) and those gained from the
breathing of the phase plane trajectories. A plot of theseeduced nonlinear Schdinger equatior(15).

trajectories reveals straight horizontal lin@®t shown herg

so that the dynamics is characterized by moving solitons. v, ENERGY EXCHANGE BETWEEN THE EXCITONIC

Hence the perturbational ter(@0) imposes no restrictions to AND VIBRONIC SYSTEMS
the free movement of the soliton centey. ) ) ) )
For an illustration of the solitonic exciton movement in-  In this section we investigate the energy exchange be-

duced by a vibronic Toda soliton we numerically integratedfWeen the excitonic and vibrational subsystems. The findings
the systent5) and(6) for a lattice consisting of 500 sites. At of the last section indicate that for proper initial configura-
the central siten= 250 a vibronic Toda soliton is launched tions the two subsystems evolve in a solitonic manner main-
and the excitonic subsystem is excited with the initial condi-{aining their initially allocated energy localization. The
tion c¢,(0)=sinhB, sech Ba (nN—250)]explan) corre- change of energy of the vibron subsystem is determined by
sponding to the AL soliton. dH

Before discussing the nonlinear coupled exciton vibron _V“’:{H i, H} (32
dynamics we consider briefly the linear evolution of the de- dt vier T
coupled excitonic lattice, that is whep=0 in Eq. (5). The . ]
solution of the linear lattice is then given by giving with Egs.(2), (3), and(4)

c,(t)=sinhkY, i"™™
m

X exp(iam)sech km— B1t)] T m(2Vot),
(30

from which we deduce an asymptotic decay according
|cn(t)|?~exp(—2Bt)/t, a behavior which is seen in Fig. 1.
For a better illustration only the evolution of the lattice sites
160<n=<320 are shown. Evidentially, exciton localization is
excluded. However, for the coupled nonlinear exciton vibron
system (y>0) localized exciton solutions may be found. We

depict in Figs. 2a) and 2b) the excitonic occupation ampli- FIG. 1. The linear evolution of the decoupled excitonic sub-
tude |c,(t)|> and the vibronic soliton state expb(d,  system (7). The initially localized excitonic statec,(t)
—0n—1)—1], respectively. Apparently, similar to the vibra- =sinhg, seclig, nlexpan) corresponding to the AL soliton de-
tional amplitudes the exciton remains localized and is coherpletes all over the lattice in the course of time. Paramet@fs:
ently transferred along the lattice in a solitonlike fashion t00.=0.5 anda=0.2.
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FIG. 2. The nonlinear evolution of the coupled exciton vibron
system(5) and(6). The parameters for the vibronic Toda soliton are
x=0.5, a=1, andb=0.05. Concerning the excitonic system the
parameters are the same as in Fig. 1.

[

=—bVy > (Ph—Pn-1)exH —b(dn—dn-1)]

n=-—w

dHyip
dt

X(Chcn_1+CnaCh_y). (32
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FIG. 3. The energy exchange radE in dependence on the
soliton distance/,. We plot the expression f&XE given in Eq.(34)
divided by 28, Vo sinhB,, tantf cosa. Curve parameter ix as
indicated.

In computing the sums in E¢433) we note that the argu-
ments of then-dependent terms are of the formr(— B+t)
and[ Ba (n—ut)—yg]. Consequently, the sums in E@J)
are invariant undetrtranslations, and thus actuatlyndepen-
dent. We get then

AE= 2ﬂALV0 SInh,BALtanf?K

tanh(kn)

X |cosa
n 1—tantfx tantf(xn)

X (1—2 tantf[ kn])[ 1+ secl« secl(«kn)]

X sechi By n—yolsech Ba (N—1)—Yyol|. (34

An equivalent expression is derived for the change of thg, Fig. 3 we show the energy exchange rate given by expres-

energy of the excitonic subsystem. Actually,
energy of the excitonic system follows directly from the one
of the vibronic system due to energy conservation.

Using the soliton solutions for the excitonic and vibronic
system, respectively,
T is given by

1
AE:‘J‘ dt{HVib’H}
Tl

COSa —
T

1
Jdt
T

= ZBALVOSinhBALtanI’-?K

tani kn— B+t]
n 1—tant« tantf[ kn— Brt]

X (1—2 tantf[ kn— B1t])(1+ secK« sech[ kn
— Brt])sech B (n—ut) —yo]

X sech{Ba [(N—1)—ut]—yo} (33

the change insion (34) as a function of the relative soliton positigg for

variousk. From these graphs we conclude that the smadler
the more is the energy exchange suppressed. For each graph
there exists a valugy=0 for which the energy exchange

the energy exchange rate per time urjilye anishes. With increasedthe position of the minimum

gets even closer tgy=0. It is this particular regime of no
energy exchange between the exciton and vibron system
which enabled us to derive the reduced nonlinear Schro
dinger equatior(15) in the preceding section. Furthermore,
the graphs exhibit two extrema of maximal energy exchange

2
e

Q.00 Q08 046 024

FIG. 4. Amplitudes of the excitonic system when the relative

The variabley, determines the relative distance between theposition of the Toda and AL soliton, respectively, is taken to be

vibronic and the excitonic soliton centers.

y0:2.
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rate foryo~ =1 and beyond them the monotone curves de-molecular chain model. In the realm of a Holstein-type
cay with growing|y,|. Enhancingx has the effect that the Hamiltonian the longitudinal intersite vibrations of the lattice
curves decay more rapidly with growing distarigg|. The  were described by the nonlinear dynamics of a Toda lattice.
latter fact becomes plausible by noting that the largghe = The exciton motion across the molecular units was presented
smaller is the width of a solitoridetermined by 1) and by a tight-binding system which, if decoupled from any mo-
hence, their mutual influence diminishes with larger dis-lecular vibrational degrees of freedom, would evolve linearly
tancesyy|. Finally, for soliton distancelyo|=5 there takes making exciton localization impossible. However, as a strik-
no energy exchange place between the excitonic and ving feature of the coupled exciton vibron dynamics we dem-
bronic subsystems. In Fig. 4 we illustrate the energy transfeonstrated that not only the vibrational Toda solitons are pre-
from the excitonic into the vibronic system by plotting the served but also render their localizatioand mobility
evolution of the excitonic occupation amplitudes(t)|? for ~ properties to the excitonic system. We stress the mutual ap-
a relative soliton distancg,=2. According to the consider- pearance of exciton localization and mobility for mere exci-
ations abovécompare Fig. Bfor such a distance the coupled ton localization happens already in the Holstein system in the
system is in the regime of moderate energy transfer. As théorm of immobile localized modes pinned by the lattice. The
Fig. 4 reveals the excitonic amplitudes diminishes during armobility of the localized exciton in the present situation al-
initial transient phase of energy transfer from the excitonidows for stable and loss-free excitonic energy transfer along
into the vibronic system. Nevertheless, at the end of thishe molecular chain.
transfer transient the reduced exciton amplitudes get stabi-
lized and evolve in the following as a soliton.
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