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Approximate solutions and scaling transformations for quadratic solitons
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~Received 30 August 1999!

We study quadratic solitons supported by two- and three-wave parametric interactions inx (2) nonlinear
media. Both planar and two-dimensional cases are considered. We obtain very accurate, ‘‘almost exact,’’
explicit analytical solutions,matching the actual bright soliton profiles, with the help of a specially developed
approach, based on analysis of the scaling properties. Additionally, we use these approximations to describe
the linear tails of solitary waves which are related to the properties of the soliton bound states.

PACS number~s!: 42.65.Tg, 42.65.Jx, 42.65.Ky
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I. INTRODUCTION

One of the rapidly expanding areas of research is
physics of solitons—wave packets, or self-trapped bea
that propagate with their profiles remaining undistorted.
particular, parametric solitons, composed of mutually
trapped fundamental and harmonic waves, attract the inte
of researchers due to a wide range of possible applicati
In optics, for example, such solitons were observed in me
with quadratic~or x (2)) nonlinearity, and their unique fea
tures can be utilized for the creation of all-optical inform
tion processing devices@1#. In general, parametric soliton
may form in different media which possess resonant q
dratic nonlinearities, such as plasmas, organic superlat
@2#, Bose-Einstein condensates@3#, etc.

Many papers have been devoted to a theoretical ana
of quadratic solitons@4#. It was shown that bright soliton
can be stable, and hence are of most interest for prac
applications; on the other hand, parametric dark solitons
ten exhibit modulation instability. However, due to nontrivi
features of the resonant coupling, there still remain so
properties of bright quadratic solitons which have not be
thoroughly described or completely understood. The prob
here is that the governing equations arenot integrable, and
general analytical solutions can not be constructed. Thus
variational method@5# was widely used to find approximat
solutions. In this approach, the free parameters control
the trial functions are found by minimizing the Lagrangi
functional. One limitation here is that this technique impos
very strong restrictions on the class of trial functions, for t
parameters to be found in an explicit form. This become
drawback if these test functions are not quite suitable for
problem at hand~see, e.g., Ref.@6#!.

In this paper we introduce adifferent approach for ob-
taining approximate expressions for the soliton envelop.
At first we choose trial functions which can precisely d
scribe the actual soliton profiles. This step involves an an
sis of the scaling properties of a soliton family, i.e., how t
envelopes are transformed as a free parameter~propagation
constant! is altered. Second, a specially developed techni
is used to find the fitting parameters. It will be demonstra
that the resulting solutions turn out to beextremely accurate.

The rest of the paper is organized as follows. First, tw
wave solitons in planar structures are studied. Then
PRE 611063-651X/2000/61~4!/4530~10!/$15.00
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analysis is extended to the case of three-wave mutual t
ping in an anisotropic medium. Finally, the properties
two-component solitary beams propagating in a bulk m
dium are investigated.

II. ONE-DIMENSIONAL SOLITONS

A. Two-wave solitons

1. Basic equations and their properties

Parametric interaction between the fundamental f
quency~FF! wave and its second harmonic~SH! in the ~1
11!-dimensional case can be described by a set of cou
equations for slowly varying complex amplitudes of th
wave packets@7# ~see also Refs.@4,8#!. We consider the case
when there is no walk-off, and then in normalized variab
we have@9#

i
]u

]z
1

]2u

]x2
1u* w50,

is
]w

]z
1

]2w

]x2
2bw1

1

2
u250, ~1!

where u(x,z) and w(x,z) are the FF and SH amplitude
correspondingly,z is the propagation distance, and the p
rameterb characterizes the mismatch of the linear pha
velocities. These equations can describe~i! spatial beamsin
a slab waveguide, exhibiting diffraction in the transverse
rection x, where s'2; or ~ii ! temporal pulses, where x
stands for the retarded time, ands.0 is the ratio of the
absolute values of second-order dispersion coefficients~the
signs are those which allow stable bright solutions!.

Under certain conditions, mutual trapping of two wav
can be achieved, when diffraction~or second-order disper
sion! is exactly compensated for by nonlinear refractio
Such stationary propagation is observed for a special clas
beams~or temporal wave packets!—solitons. To find their
profiles, we look for solutions of Eqs.~1! in the forms

u~x,z!5lu0~xAl!eilz,

w~x,z!5lw0~xAl!e2ilz, ~2!
4530 © 2000 The American Physical Society
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PRE 61 4531APPROXIMATE SOLUTIONS AND SCALING . . .
whereu0 andw0 are real envelope amplitudes, andl.0 is
the propagation constant. After substituting expressions~2!
into Eqs.~1!, the following system of coupled ordinary dif
ferential equations can be derived:

d2u0

dx2
2u01u0w050,

d2w0

dx2
2aw01

1

2
u0

250, ~3!

where the only free parameter is the normalized misma
a52s1b/l.

In general, solitons can have a nonzero velocity along
x axis, but such solutions for spatial beams~whens52) can
be readily obtained by employing the Galilean transform
tion, which can be applied because there are no walk
terms in the original equations. On the other hand, in
presence of walk-off, the ‘‘walking’’ soliton profiles are de
scribed by complex functions, which depend on the veloc
in a nontrivial way@10#. As a matter of fact, the latter cas
should mainly be investigated numerically, but this is n
considered here. In our study, we rather concentrate o
comprehensiveanalytical description of the most gener
quadratic soliton features, which in turn can also be ex
pected to be present in more complicated situations.

For localized waves, described by Eqs.~1!, the total
powerP and HamiltonianH are conserved@7#. The values of
these integral characteristics, corresponding to solitons
fined by Eqs.~3!, can be found as@11#

P5l3/2P0 , H5l5/2~H02P0!. ~4!

Here the renormalized power and Hamiltonian areP05Pu0

12sPw0
andH050.4(Pu0

1aPw0
), where

Pu0
5E

2`

1`

u0
2dx, Pw0

5E
2`

1`

w0
2dx. ~5!

We are looking forbright solitons, where the field decays
at infinity. Such solutions of Eqs.~3! were found numerically
for any a.0 @9,12,13#, and corresponding solitons wer
shown to be stable for mismatchesa.acr @14#. Here, the
critical parameter valueacr is a function ofs, and for spatial
solitonsacrus52'0.2.

The properties of this soliton family were extensive
studied in the literature. An exact solution was found ata
51 @7#:

w0~x!5u0~x!/A25~3/2! sech2~x/2!. ~6!

On the other hand, for large mismatches,a→`, the SH
component approachesw0(x).v0

2(x)/(2a). Then, in this
so-called cascading limit, the FF wave is determined a
solution of the nonlinear Schro¨dinger equation~NLSE!, and
the wave envelopes are@8,15#

v0~x!.2Aa sech~x!, w0~x!.2 sech2~x!. ~7!

This solution can be improved by taking into account high
order terms in a series decomposition over a small param
h

e

-
ff
e

y

t
a

e-

a

-
er,

a21 @16,17#. However, this approach leads to cumberso
expressions which are somewhat hard to analyze.

Exact analytical solutions of Eqs.~3! cannot be found for
arbitrary values ofa. Thus, in order to obtain approximat
solutions for the soliton profiles, the variational approa
was used. Calculations with an ansatz in the form of Gau
ian functions predict the power distribution between the
and SH components quite accurately, and provide a c
estimation for the maximum amplitudes in the whole para
eter range 0,a,` @17,18#. However, the trial functions do
not correspond to the actual wave profiles, and thus
‘‘tails,’’ or amplitude asymptotics atx→6`, are not de-
scribed well. In other studies@19#, the profiles of the trial
functions are chosen as scaled exact solutions~6! or ~7! with
arbitrary amplitudes, but fixed relative widths for the FF a
SH wave packets. Due to this limitation, precise results
obtained only fora'1 anda→`, respectively.

2. Approximate analytical solution

In order to construct a solution without the above me
tioned drawbacks, we want to take into account some ch
acteristic properties of the bright solitons. Specifically, w
notice that the form of the SH envelope is the same aa
51 anda→` @see Eqs.~6! and~7!#. Moreover, we perform
numerical simulations and observe a very remarkable f
for a>1, w0(x) remains almost self similar. Thus w
search for an approximate solution with the SH compon
in the form

w0~x!5wmsech2~x/p!, ~8!

where the maximum amplitudewm and characteristic widthp
areunknown parameters. Then the FF component profile ca
be determined using the first equation in Eq.~3!. This is a
linear eigenvalue problem, which has an exact solution
the effective waveguide created by the SH field@Eq. ~8!#. In
a single bright soliton,u0(x) does not have zeros, and thu
we take the fundamental mode. This requirement leads
relation between the parameters of an effective wavegui

wm5111/p. ~9!

Then the corresponding FF profile is found to be

u0~x!5um sechp~x/p!, ~10!

whereum is the peak amplitude.
Our trial functions do not satisfy the SH equation in E

~3! exactly, and thus it should be matched approximate
This can be done with the help of the variational metho
However, this leads to a set of transcendental equations,
then the solution parameters can not be expressed in an
plicit form. As our aim is to derive a simple analytical ap
proximation, which should be easy to analyze and use
calculations, we choose another approach. First, in orde
match the soliton peak, we require the equation for the
amplitude in Eq.~3! to be exactly satisfied at the solito
center,x50, and obtain the following relation:

2wm~a12/p2!5um
2 . ~11!
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Second, we note that Eqs.~3! describe an equivalent dynam
cal problem, viz. particle movement with generalized velo
ties (du0 /dx,dw0 /dx) in a potential Ud(u0 ,w0)5(u0

2w0

2u0
22aw0

2)/2. This is a conservative system, with Ham
tonian Hd5(du0 /dx)2/21(dw0 /dx)2/21Ud(u0 ,w0). For
bright solitons, the field vanishes at infinity, and thusHd
[0. Then, as the functionsu0(x) and w0(x) reach their
maximum values atx50, the corresponding derivatives a
zero, and thus the necessary condition for a zero asymp
is Hdux505Udux5050, which we use to relate the peak am
plitudes:

um
2 wm2um

2 2awm
2 50. ~12!

Combining Eqs.~8!–~12!, we obtain an approximate solutio
in the following simple forms:

u0~x!5umsechp~x/p!, w0~x!5wmsech2~x/p!,

um
2 5

awm
2

~wm21!
, p5

1

~wm21!
, a5

4~wm21!3

~22wm!
. ~13!

Here the last relation allows us to determinewm for an arbi-
trary a as a solution of a cubic equation, and then to find
other parameters as functions ofa. For mismatches in the
interval 0,a,1`, the parameter values change monoto
cally in the ranges 0,um,1`, 1,wm,2, and 1`.p
.1. At a51 the values areum53/A2, wm53/2, and p
52, i.e., our general expression reduces to the exact solu
~6!. Similarly, for a→1` the limiting result~7! follows.

3. Soliton tails

As one of our goals is to describe the soliton tails, let
have a look at the far-field asymptotics that follow from Eq
~13!. It is easy to check that the FF profile exactly match
the linear limit. To understand the properties of the SH co
ponent tails, we note that the corresponding equation in E
~3! describes the motion of a particle driven by an exter
forceu0

2/2. As this expression is positive, the functionw0(x)
can not decay faster than that in the linear limit:w0(x)
;exp(2Aauxu). Indeed, fora.1, we havep,2, i.e., the
FF component is effectively wider than the SH compone
and thus the field decay rate is smaller, as correctly predi
by Eqs.~13!. In contrast, fora,1 the width of the FF com-
ponent is smaller than that of the SH component~asp.2),
and then the SH tails are to be determined by linear asy
totics. However, solution~13! overestimates the SH field lo
calization. To account for this feature, we sue the soli
‘‘peak’’ from Eq. ~13! with a linear tail, so that the function
and its first derivative change continuously, and obtain
more accurate expression for the SH component in the
a,1:

w0~x!5H wmsech2~x/p!, uxu<xa

w0~xa!exp@2Aa~ uxu2xa!#,uxu.xa ,
~14!

wherexa5(p/2)log@(21pAa)/(22pAa)#. From Eq.~14! it
follows that the SH profile becomesdouble scaled. That is,
we predict the existence oflinear tails in the SH component
which are effectively not trapped by the FF field, and ca
some power:
-

tic
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on

s
.
s
-
s.
l

t,
ed

p-

n

a
se

y

Pa52E
xa

1`

w0
2dx5@w0~xa!#2/Aa. ~15!

The dependence of the linear tail parameters on the norm
ized mismatcha is shown in Fig. 1.

4. Soliton bound states

A connection between the soliton bound states and
linear tails has been demonstrated for many physical si
tions. For example, mutual trapping of radiating parame
bright solitons was shown to be possible for a discrete se
propagation constant values when, due to destructive in
ference, the oscillatory tails disappear@20#. However, in our
case the localized modes are not in resonance with propa
ing linear waves@9#, and a natural assumption is that th
solitons can trap each other by their linear tailsfor a con-
tinuous range of mismatches. This physical picture is con
tent with the results of the previous numerical simulatio
and analytical investigations, showing that multisoliton sta
are possible only fora,1 @13,18,21,22#. Moreover, the
characteristic distance between the neighboring solitons
be roughly estimated to be of order 2xa , and this expression
predicts thenonmonotonic dependence of the separation
mismatcha. The minimum separation should be observ
for the mismatch corresponding to an extremum po
dxa /dauama

50, and then it follows thatama.0.12, see Fig.
1~a!. Quite remarkably, this mismatch value correspon
very closely to the results of numerical calculations, see F
4 in Ref. @22#.

5. Comparison with numerical results

In order to determine deviations between the approxim
and exact solutions, we solved Eqs.~3! numerically. The
corresponding dependencies of the peak amplitudes,
power, and Hamiltonian on the detuning parametera are
presented in Fig. 2~left graphs! for the case of spatial soli
tons (s52). As a matter of fact, the numerical and analy
cal results on these plots arenot distinguishable, and that is
why we show them differently, by continuous curves a
asterisks. Plots on the right give corresponding relative
viations with solid lines, and dashed lines demonstrate
errors for the variational solution with Gaussian profil
~SGP’s! @17,18#. We see that the analytical solutions~13!
and ~14! describe the key soliton parameters extremely
curately. In a wide region of mismatch values,a.1, the
relative errors are smaller than 0.7% for the total power, a

FIG. 1. Dependence of the SH linear tails characteristics
mismatcha: ~a! separation from the soliton centerxa , and ~b!
associated normalized powerPa .
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0.3% for other characteristics. Fora,1 the deviations be-
come larger, but do not exceed 3%. It is clear that our so
tion gives much more accurate results than the SGP, and
latter provides a slightly better estimation for the total pow
only in a narrow region of mismatches.

At this point we would like to stress that the abov
mentioned characteristics are not the only ones which de
mine the ‘‘quality’’ of the approximate solutions. The clos
ness of the approximate component profiles to exact sol
envelopes, including the tails, is also very important. Fr
Figs. 3~a! and 3~b!, we see that solutions~13! and ~14! de-
scribe the profiles very accurately as well~left plots!, unlike
the SGP, which matches them only ‘‘on average’’~see plots
on the right!. To characterize the accuracy numerically, w
define the relative deviations as

du5 log

E
2`

1`

uu0
exact2u0

approx.u2dx

E
2`

1`

uu0
exactu2dx

,

FIG. 2. Left: Comparison between numerical results~continuous
curves! and approximate analytical solutions~asterisks! given by
Eqs. ~13! and ~14!. The characteristics are~a! and ~b! maximum
amplitudes of the FF and SH tails,~c! the total power~for the case
s52!, and ~d! the Hamiltonian. Right: Corresponding relative e
rors are shown with solid lines, and dotted lines present deviat
for the SGP.
-
he
r

r-

n

dw5 log

E
2`

1`

uw0
exact2w0

approx.u2dx

E
2`

1`

uw0
exactu2dx

. ~16!

Note that these characteristics have a dB-like scale,
smaller values mean better matching. In Fig. 3~c!, the errors
corresponding to solutions~13! and ~14! are shown on the
left, and these corresponding to the SGP on the right. We
that our approach allows us toprecisely describe the soliton
profiles, both peaks and tails, for any mismatcha. That is
why we were able to reveal some remarkable features
two-component parametric mutual trapping fora,1, when
the SH field configuration becomes double scaled@see Eqs.
~14! and ~15!, and related discussions#. On the other hand
the SGP does not provide close estimations for the ac
profiles, especially fora,1, where the discrepancies in
crease drastically.

Approximate solutions can be used not only in theoreti
studies, but also in numerical simulations. The unique ac
racy of our solution@Eqs.~13! and ~14!# makes it analmost
perfect generator for soliton input conditions. We checked
that in a wide parameter range the initial propagation stag
accompanied by very minor oscillations, and that the ass
ated power loss due to radiation is negligible~see, e.g., Fig.
4!.

To summarize, the approximate analytical solution, giv
in a compact explicit form by Eqs.~13! and ~14!, describes

s

FIG. 3. Comparison of numerical results with analytical pred
tions: solutions~13! and~14! on the left, and the SGP on the righ
Dotted lines correspond to the FF component, and solid lines to
SH component.~a! and ~b! Two-wave soliton profiles ata54 and
0.01, respectively. Continuous curves show exact numerical
crosses show approximate solutions.~c! Deviations of approximate
profiles as defined in Eqs.~16!.
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4534 PRE 61ANDREY A. SUKHORUKOV
virtually all principal features of the soliton family. That i
why it can be calledalmost exact. We might wonder why is
it so accurate. The key point in the analysis was to take
account the self-similarity of the SH envelopes. Then we
view Eqs.~13! and~14! asapproximate scaling transforma
tions of the two-wave bright soliton family.

B. Three-wave interaction in anisotropic medium

Let us now investigate a more general case of three-w
interaction. Following Ref.@23#, we consider a double-phas
matched wave interaction, such that the FF waves of fun
mental orthogonal polarizations~i.e., ordinary and extraordi
nary! are coupled with the same SH component. That is,
full FF field is now vectorial,UW 5$u,v%, and the two com-
ponents are determined as

u~x,z!5U~x,z!cos@w~x,z!#,

v~x,z!5U~x,z!sin@w~x,z!#, ~17!

wherew(x,z) is the polarization angle. For such a config
ration the system of normalized equations can be written
the following forms@23#:

i
]u

]z
1

]2u

]x2
1u* w50,

i
]v
]z

1
]2v

]x2
2b1v1xv* w50,

is
]w

]z
1

]2w

]x2
2bw1

1

2
~u21v2!50. ~18!

Here x is the normalized component of thex (2) nonlinear
susceptibility matrix, characterizing thev↔w coupling
‘‘strength’’ in relation to theu↔w parametric interaction
process, andb1 is the phase mismatch between the ortho
nally polarized FF components. All the other paramet
have the same meaning as in Eqs.~1!.

We are interested in bright solitons supported by E
~18!, and search for solutions in the forms

FIG. 4. Almost stationary evolution of the FF~a! and SH~b!
tails. The initial condition is given by the approximate two-wa
soliton solution~13! at a54, s52, andl51.
to
n

ve

a-

e

in

-
s

.

u~x,z!5lu0~xAl!eilz,

v~x,z!5lv0~xAl!eilz,

w~x,z!5lw0~xAl!e2ilz, ~19!

whereu0 andv0 are the real stationary amplitudes of the F
waves with orthogonal polarizations,w0 is the envelope of
the SH component, andl.0 is the propagation constan
Then, we substitute Eqs.~19! into the original system~18!
and find a set of coupled equations for the soliton profile

d2u0

dx2
2u01u0w050,

d2v0

dx2
2a1v01xv0w050,

d2w0

dx2
2aw01

1

2
~u0

21v0
2!50, ~20!

where the normalized mismatches are

a52s1b/l, a1511b1 /l. ~21!

Similarly to the two-wave case, the total powerP and
Hamiltonian H of system~18! can be found for stationary
solutions using Eqs.~4! and ~5!, where P05Pu0

12sPw0

1(1/x)Pv0
, H050.4@Pu0

1aPw0
1(a1 /x)Pv0

#, and Pv0

5*2`
1`v0

2dx.
First let us study some general properties of Eqs.~20!. We

note that in an isotropic mediumx5a151, and the problem
reduces to the two-wave case considered above, as th
wave can have an arbitrary constant polarization anglew.
Simple two-wave solutions are also possible in an ani
tropic medium, but only for trivial polarizations:w50 (v0
[0) andw5p/2 (u0[0). However, it was shown that soli
tons with mixed polarizations also exist@23#. To study such
three-wave parametric coupling, we follow the same path
in Sec. II A, and, in order to understand the principal scal
properties, refer to an exact one-parameter family of so
tions found fora151/4, x51/3, anda.1 @23#:

u0~x!5~3/A2! sech2~x/2!,

v0~x!5A3~a21! sech~x/2!,

w0~x!5~3/2! sech2~x/2!. ~22!

An interesting feature of this three-component solution
that the SH profile is the same for anya. Thus we suppose
that the SH shape envelope shape always remains clos
sech2(x/p), just as for two-component solitons, and choo
the trial function as in Eq.~8!. The SH shape acts as a
effective waveguide simultaneously for two different F
waves, and that is why, when solving the correspond
equations in Eqs.~20!, we obtain two relations between th
SH profile characteristics,
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wm511p215
q~q11!

xp2
, ~23!

whereq5Aa1p. From Eq.~23!, it is straightforward to find
the parameters

wm5
a12Aa1

x2Aa1

, p5qa1
21/25

x2Aa1

a12x
. ~24!

Then the FF envelopes corresponding to these values a

u0~x!5umsechp~x/p!, v0~x!5vmsechq~x/p!, ~25!

whereum andvm are the peak amplitudes. We would like
note that in the frames of our approach, the SH profile d
not depend ona, as follows from Eqs.~24!. This is quite an
interesting approximate scaling property of the three-w
solitons, and it is exactly satisfied for the solution presen
in Eqs.~22!.

Now we have to determine the remaining unknown p
rameters, viz. the FF amplitudesum andvm . As for the two-
wave case, we fulfill the SH equation atx50:

2wm~a12p22!5um
2 1vm

2 . ~26!

Then we consider an equivalent Hamiltonian dynamic pr
lem and, after matching the valuesHdux505Hdux→1`50,
obtain another relation:

um
2 ~wm21!1vm

2 ~wm2a1x21!2awm
2 50. ~27!

It is now convenient to turn back to the polar notatio
~17!. The total FF intensity and polarization angle at t
soliton center can be found using Eqs.~26! and ~27!:

Um
2 52wm~a12p22!, ~28!

sin2wm5~12a1x21!21~awm
2 Um

222wm11!.

Finally, approximate three-wave soliton profiles are giv
by Eqs.~8! and~25!, with the parameters in an explicit form
from Eqs. ~24! and ~28!. With no lack of generality, we
hereafter assume thatx,1, as it is always possible to swa
the functionsu and v before renormalizing the physica
equations from which system~18! originates. Analysis re-
veals that three-wave solutions exist if the mismatchesa and
a1 fulfill the inequality

a (u)~a1!,a,H a (v)~a1!, q~a1!.1

1`, q~a1!<1,
~29!

where

a (u)5
4

p2~p21!
, a (v)5

4a1

q2~q21!
. ~30!

The corresponding polarization angles arew@a→a (u)#→0
~i.e., v→0) andw@a→a (v)#→p/2 (u→0). It is now obvi-
ous thatboundaries~30! correspond to bifurcationsfrom a
two-wave soliton to a three-wave one.
s

e
d

-

-

n

An example of the parameter region (a,a1), where three-
wave mutual trapping occurs, is shown in Fig. 5 forx51/3.
We see that analytically calculated boundaries given by E
~30! ~shown with dashed lines! are extremely accurate, an
almost coincide with those found using numerical simu
tions. Note that it also gives the correct prediction that
a1→x the two boundaries merge, i.e.,a (u,v)→0.

To understand the features of the three-wave solitons,
now recall that solutions of the original system~18! consti-
tute a one-parameter family, as follows from Eqs.~19!. Then,
according to Eq.~21!, a change of the propagation constantl
corresponds to motion along a straight line in the param
space (a,a1). The limiting point for l→1` is (2s,1),
which always lies above the three-wave existence reg
Thus we find that the trajectory will go through this regio
only if b1,0 andb.2sb1 /(12x). Note that for fixedb1
the value ofb determines the inclination angle, as demo
strated in Fig. 5 by linesa andb. On the other hand, linec
corresponds to the case when the specified conditions do
hold, i.e., three-wave trapping is not possible for anyl.
From this analysis it follows that the three-wave soliton
ways bifurcates from a two-wave state withv50, and then
transforms into the other two-wave mode withu50. This
process can be easily seen in Fig. 6, where examples o
power dependence on the propagation constant are sho

The plots in Fig. 6 demonstrate that the analytical solut

FIG. 5. Shaded region shows the numerically-found existe
region for three-wave solitons; analytically calculated bounda
@Eq. ~30!# are plotted with dashed lines. Dotted lines (a, b, andc)
show the dependence of the normalized mismatches on the pr
gation constantl for b1524 andb510, 215, and225, respec-
tively. The parameters arex51/3 ands52.

FIG. 6. Dependence of the total soliton powerP on the propa-
gation constant. Parameter values for plots~a! and~b! are the same
as in Fig. 5 for trajectories~a! and~b!, respectively. In both cases,
three-wave soliton~solid line! bifurcates from two-wave solutions
with v50 ~dotted line! or u50 ~dashed line!. Crosses show ap
proximate analytical results.
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gives a very precise estimate for the total power. It a
accurately describes the soliton profiles in a wide region
mismatches, with an example being shown in Fig. 7. A th
ough comparison is, however, a separate task, as there
several parameters which control the mutual trapping. T
will be presented elsewhere.

To summarize, we have analyzed three-wave soliton
an anisotropic medium. Our approach allowed us to pre
corresponding parameter regions, and power depend
with high accuracy. Of course, some interesting aspects
main to be investigated, such as stability, formation of lin
tails, and properties of higher-order modes. These probl
are topics of separate study and thus will not be addres
here, but the results obtained form a background for furt
in-depth investigations.

III. TWO-DIMENSIONAL SOLITONS

Two-wave parametric spatial solitons can exist both
planar waveguides and in bulk nonlinear media@4#. In the
latter case, the interaction between the FF and SH wave
described by the following system of coupled equatio
@7,17,24–26#:

i
]u

]z
1

]2u

]x2
1

]2u

]y2
1u* w50,

is
]w

]z
1

]2w

]x2
1

]2w

]y2
2bw1

1

2
u250, ~31!

wherex andy are the transverse coordinates. Other variab
and parameters are the same as for the~111!-dimensional
case described by Eqs.~1!, with the obvious difference tha
the amplitudes depend on three coordinatesu5u(x,y,z) and
w5w(x,y,z). We consider a spatial case close to the ph
matching, i.e.,s.2.

Our goal in this section is to calculate the soliton env
lopes by extending the method introduced for a planar c
Specifically, we look for circularly symmetric stationary s
lutions of Eqs.~31!, which can be found with the help of th
substitutions

FIG. 7. Three-wave soliton profiles. Left: FF componen
@u0(x), dotted line; v0(x), dashed line#. Right: SH envelope.
Crosses give analytically-calculated amplitudes. Parameters ar
same as in Fig. 6~a!, andl55.35.
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u~x,y,z!5lu0~rAl!eilz,

w~x,y,z!5lw0~rAl!e2ilz, ~32!

wherer 5Ax21y2 is the radial distance in cylindrical coor
dinates, andu0(r ) andw0(r ) are the real normalized enve
lope functions. Then Eqs.~31! reduce to

d2u0

dr2
1

1

r

du0

dr
2u01u0w050,

d2w0

dr2
1

1

r

dw0

dr
2aw01

1

2
u0

250, ~33!

where the propagation constantl and the normalized mis
matcha are introduced in the same way as in Eqs.~2! and
~3!. Then the soliton power and Hamiltonian are expres
via the the normalized values as@11,26#

P5lP0 , H5l2~H02P0!, ~34!

whereP05Pu0
12sPw0

, H050.5(Pu0
1aPw0

), and

Pu0
52pE

0

1`

u0
2rdr , Pw0

52pE
0

1`

w0
2rdr .

Similarly to the one-dimensional case, Eqs.~33! are not
integrable, and approximate soliton profiles were found
ing a variational method. Solutions were obtained for tr
functions with Gaussian profiles, and described depende
of the Hamiltonian and power on mismatcha.0 with a
reasonable accuracy@17#. The limitations of the SGP’s re
main the same—rough matching of actual profiles and
inadequate description of the soliton tails. In order to co
struct a better solution, we have to start with some appro
mate scaling property of the soliton family. The problem
that effective ‘‘dissipation’’ terms@;(1/r )d/dr# in Eqs.
~33! lead to~i! a distortion of soliton profiles in the cente
and~ii ! a higher far field localization, which, taken togethe
result in very complicated scaling features. This make
general analysis quite difficult, and thus we limit our study
mismatchesa.1, where the solitons are known to be stab
@17,25,26#. It has been shown that in this parameter range
FF and SH relative beam width changes do not excee
factor of 2@17,25#. On the other hand, from the structure
Eqs. ~33!, it follows that the balance between the secon
order and effective dissipation linear terms, which affects
soliton shape, depends mainly on the same character
beam width. This means that, to some extent, the SH en
lope form stays almost intact fora.1, and thus we choose
the trial function as

w0~x!5wsF~bsr !, ~35!

where the functionF describes a characteristic SH profil
and the relative amplitudews , together with the inverse
width bs , are scaling parameters. Then, we assume t
similarly to the ~111!-dimensional case@Eq. ~10!#, the FF
profile can be approximately described as

u0~x!5usF
p~bsr !, ~36!

the
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wherep is an unknown parameter.
To determine the SH characteristic profile, we conside

mismatcha51. This case is easier to analyze, as the en
lopes of both mutually trapped components coincide,w0(r )
5u0(r )/A25F(r ). Here the functionF(r ) satisfies the
equation

d2F

dr2
1

1

r

dF

dr
2F1F250, ~37!

whose approximate solution was found earlier with the h
of a Hartree-like approach@24#. However, here we choose t
use a variational method, and then select the expres
which provides better matching. First we present Eq.~37! in
a variational form

dL

dF
50, ~38!

whered denotes the variational derivative, andL is the La-
grangian corresponding to the original Eq.~37!:

L~F !5E
0

1`F S dF

dr D 2

1F22
2

3
F3G rdr . ~39!

Next, we select a trial function in the form

F0~r !5Fmsech2~b0r !, ~40!

assuming that the profile is more or less close to that
planar solitons~8!. Now we note that, according to Eq.~38!,
the Lagrangian reaches a minimum at an exact solution,
thus, to determine the peak amplitudeFm and inverse width
b0 in the approximate expression~40!, an extremum point of
the L(F0) integral should be found: ]L(F0)/]Fm
5]L(F0)/]b050. Solving these equations, we obtain t
parameter values

Fm5
15~4log221!

32log2211
'2.3781,

b05
1

2
A5~4log221!

8log211
'0.5818. ~41!

We made a comparison between the exact numerical
approximate solutions of Eq.~37!, and found that our resul
given by Eqs.~40! and~41! provides a much better matchin
than the Hartree approximation. Thus, solutions~40! and
~41! will be used in calculations. In particular, we derive
approximate expression for the derivativedF/dr, which will
be useful in further analysis:

S dF

dr D 2

.4b0
2F2S 12

F

Fm
D . ~42!

Now, after learning some important properties of t
characteristic SH profile, the next step is to determine par
eters in the trial functions~35! and ~36!. First, we substitute
these expressions into the equation for the FF compone
system~33!. The resulting equality can’t be satisfied exac
a
-

p

on

f

nd

nd

-

in

for all r, but we can use Eq.~42! and obtain approximate
relations between the parameters:

pbs
2@114b0

2~p21!#51,

pbs
2@114b0

2~p21!Fm
21#5ws , ~43!

Next, we fulfill the SH equation from Eq.~33! at r→0,
and obtain

wsbs
2~12Fm!2aws1

1

2
us

2Fm
2p2150. ~44!

To determine the solution parameters, one more relatio
needed, preferably following from a conservation law, as t
allows us to better describe far-field asymptotics. The di
culty here is that the equivalent dynamical system descri
by Eqs. ~33! is dissipative, and thus is not Hamiltonia
However, it is still possible to derive a condition similar
Eq. ~12! for a planar configuration. To calculate an integr
relation, we substitute approximate profiles~35! and ~36!
into the equation for the SH component in Eq.~33!, multiply
the equality bydF(bsr )/dr, and integrate over the interva
0,r ,1`. The resulting expression contains an averag
dissipation term, which can be found using Eq.~37!,

E
0

1`S dF

dr D 2 dr

r
5

1

3
Fm

3 2
1

2
Fm

2 ,

and then the final relation is

wsbs
2S 1

2
2

1

3
FmD2

1

2
aws1

1

4p12
us

2Fm
2p2150. ~45!

Now all the parameters can be determined from the
rived relations. First,p is found as a solution of cubic equa
tion

8ab0
2p312a~126b0

2!p21@~4/3!Fm22

1a~4b0
221!] p1@12~4/3!Fm#50, ~46!

and then it is straightforward to calculatebs , ws , andus one
after another, employing Eqs.~43! and ~44!. Finally, using
approximate expressions~40! and ~41! for the wave profiles
at a51 and scaling transformations from Eqs.~35! and~36!,
the solutions can be written as

u0~x!5umsech2p~xb!,

w0~x!5wmsech2~xb!, ~47!

where um5usFm
p , wm5wsFm , and b5bsb0. The ampli-

tudes, characteristic inverse widths, and scaling parametp
are monotonic functions ofa, and for 1<a,1` change in
the limits 1>p.1/2, b0<b,A2b0

2/(122b0
2)'1.448,

(FmA2'3.363)<um,1`, and Fm<wm,(Fm22b0
2)/

(122b0
2)'5.267. Keep in mind however, that, unlike th

~111!-dimensional case, the asymptotics for largea are not
exact.

It is interesting to note that solution~47!, describing the
soliton profiles in bulk media, reduces to expressions~13! for



in

ar
um
a

a

he

te
.
fo

x-

-

f
le

r,
in

,
c-

a
e

4538 PRE 61ANDREY A. SUKHORUKOV
the ~111!-dimensional case if the parameters characteriz
the wave envelopes ata51 are chosen according to Eq.~6!
asFm53/2 andb051/2.

To study the accuracy of our solution, we made comp
sons with direct numerical calculations. The results are s
marized in Fig. 8 in the same way as for solitons in plan
structures~see Fig. 2!.

We also look at relative deviations, defining them in
way similar to Eq.~16! as

du5 log

E
2`

1`

uu0
exact2u0

approx.u2rdr

E
2`

1`

uu0
exactu2rdr

,

dw5 log

E
2`

1`

uw0
exact2w0

approx.u2rdr

E
2`

1`

uw0
exactu2rdr

. ~48!

Each corresponding dependence is shown in Fig. 9~c! for our
solution~47! on the left, and the SGP on the right. From t
data presented, it follows that analytical solution~47! pro-
vides a very good approximation for both integral charac
istics and soliton profiles@see also plots on the left in Figs
9~a! and 9~b!#. Especially accurate results are observed

FIG. 8. Comparison between exact numerical and approxim
solutions Eq.~47! and the SGP, for solitons in bulk media. Th
characteristics shown are the same as in Fig. 2.
g

i-
-

r

r-

r

mismatches of the ordera from 100 to 101. This parameter
range actually corresponds to interesting cases from an e
perimental point of view, as solitons are often observed more
or less close to phase matching, whena;2s.4 @1,4#. The
amazing precision is due to the fact that the approximate
profile @Eqs. ~40! and ~41!# provides outstandingly good
matching with the exact envelope, as shown in Fig. 9~a!.
Actually, it can be claimed that this is an‘‘almost exact’’
solution ata51 for solitons in a bulk medium, as the devia-
tionsdu anddw become extremely small@see the left plot in
Fig. 9~c!#. Note also that, as we have already mentioned
earlier, a similar solution presented in Ref.@24# for the case
a51 is less accurate due to the differences in the approxi
mation coefficients.

For larger mismatches,a.101, the deviations increase,
but the errors always remain smaller than for the SGP. I
even more accurate results are needed, it should be possib
to start the derivation with the NLSE in the limita→1`,
and then take into account terms of ordera21. As for the
opposite case,a,1, linear tails may be expected to form,
similarly to a ~111!-dimensional configuration. However,
such special analysis is beyond the scope of current pape
and we believe that these open problems will be addressed
further studies.

IV. CONCLUDING REMARKS

We have studied the properties of two- and three-
component quadratic bright solitons in planar waveguides
and in bulk media. Very accurate, yet simple and compact
approximate solutions have been derived to describe the a

te

FIG. 9. Comparison of numerical results with analytical predic-
tions for ~211!-dimensional soliton profiles given by Eq.~47! on
the left, and the SGP on the right.~a! and ~b! Envelopes ata51
and 10, correspondingly.~c! Deviations of approximate profiles as
defined in Eq.~48!. The notation is the same as in Fig. 3.
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tual wave profiles, with a precision which the previous
known approximations could not achieve to our knowled
Such amazingly good results have been obtained becaus
trial functions were chosen to correspond to the scaling pr
erties of the solitons. With the help of a specially develop
approach, the optimal values of fitting parameters have b
found in a simple explicit form, which would not be possib
with the variational method.

In particular, analmost exactsolution has been derive
which describes a whole family of two-wave planar soliton,
accounting for all the key properties. It not only provid
perfect estimations of integral characteristics~power and
Hamiltonian!, but also closely matches the envelope profi
of both components for any value of the phase misma
parameter. On the other hand, the solution allowed us
reveal the existence of nonoscillatinglinear tails, and rigor-
ously describe their features, which for example made it p
sible to explain and predict some peculiarities of multisolit
bound states.

We also considered three-wave coupling in an anisotro
medium between the orthogonally polarized FF and SH co
ponents. Mismatch values, when the three-wave solitons
ga
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ev

, i

er

t.

st.

.

.
the
p-
d
en

s
h
to

s-

ic
-

an

exist, have been determined analytically, and bifurcation s
narios have been described. Additionally, an approximate
lution for soliton profiles has been obtained, and it provid
close estimations in a wide parameter region.

Quite interesting results have been obtained for the c
of solitons in a bulk medium. Although exact analytical e
pressions for the two-wave profiles in a~211!-dimensional
case are not known, even in simpler limiting cases~e.g., in
the cascading limit the resulting single component NLSE
not integrable!, we have been able to derive an almost ex
solution for a specific mismatch value. General approxim
expressions are also presented, giving very close estimat
a wide range of detunings, covering values close to ph
matching, which are of major interest from the experimen
perspective.
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