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Approximate solutions and scaling transformations for quadratic solitons
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We study quadratic solitons supported by two- and three-wave parametric interactigff ionlinear
media. Both planar and two-dimensional cases are considered. We obtain very accurate, “almost exact,”
explicit analytical solutionsmatching the actual bright soliton profilewith the help of a specially developed
approach, based on analysis of the scaling properties. Additionally, we use these approximations to describe
the linear tails of solitary waves which are related to the properties of the soliton bound states.

PACS numbds): 42.65.Tg, 42.65.Jx, 42.65.Ky

[. INTRODUCTION analysis is extended to the case of three-wave mutual trap-
ping in an anisotropic medium. Finally, the properties of
One of the rapidly expanding areas of research is théwo-component solitary beams propagating in a bulk me-
physics of solitons—wave packets, or self-trapped beamglium are investigated.
that propagate with their profiles remaining undistorted. In
particular, parametric solitons composed of mutually Il. ONE-DIMENSIONAL SOLITONS
trapped fundamental and harmonic waves, attract the interest
of researchers due to a wide range of possible applications.
In optics, for example, such solitons were observed in media 1. Basic equations and their properties
with quadratic(or x®) nonlinearity, and their unique fea-
tures can be utilized for the creation of all-optical informa-

tion processing devicel]. In general, parametric solitons : . :
may form in different media which possess resonant qua_+1)—d|menS|onaI case can be described by a set of coupled

dratic nonlinearities, such as plasmas, organic superlatticee‘squ""t'onS for_slowly varying complex amp!|tudes of the
[2], Bose-Einstein condensatis), etc wave packet§7] (see also Refg4,8]). We consider the case

Many papers have been devoted to a theoretical analys}g

A. Two-wave solitons

Parametric interaction between the fundamental fre-
quency(FF) wave and its second harmoni€H) in the (1

hen there is no walk-off, and then in normalized variables

of quadratic solitong4]. It was shown that bright solitons we have(9]

can be stable, and hence are of most interest for practical )
applications; on the other hand, parametric dark solitons of- iﬁ—u+a—u+u*w:0
ten exhibit modulation instability. However, due to nontrivial Iy N '

features of the resonant coupling, there still remain some
properties of bright quadratic solitons which have not been oW 92w 1
thoroughly described or completely understood. The problem ic— +———Bw+ =u?=0, 1)
here is that the governing equations aw integrable and 9z ox? 2
general analytical solutions can not be constructed. Thus the )
variational method5] was widely used to find approximate Where u(x,z) and w(x,z) are the FF and SH amplitudes
solutions. In this approach, the free parameters controllingorrespondinglyz is the propagation distance, and the pa-
the trial functions are found by minimizing the Lagrangianfameters characterizes the mismatch of the linear phase
functional. One limitation here is that this technique imposeg/elocities. These equations can descfibespatial beamsn
very strong restrictions on the class of trial functions, for the@ slab waveguide, exhibiting diffraction in the transverse di-
parameters to be found in an explicit form. This becomes &€ection X, where o~2; or (i) temporal pulseswhere x
drawback if these test functions are not quite suitable for thétands for the retarded time, amd>0 is the ratio of the
problem at handsee, e.g., Ref6]). absolute values of second-order dispersion coefficights

In this paper we introduce different approach for ob- Signs are those which allow stable bright solutions
taining approximate expressions for the soliton envelopes Under certain conditions, mutual trapping of two waves
At first we choose trial functions which can precisely de-can be achieved, when diffractidior second-order disper-
scribe the actual soliton profiles. This step involves an analysion is exactly compensated for by nonlinear refraction.
sis of the scaling properties of a soliton family, i.e., how theSuch stationary propagation is observed for a special class of
envelopes are transformed as a free parangtepagation Peams(or temporal wave packets-solitons To find their
constankis altered. Second, a specially developed techniquérofiles, we look for solutions of Eq¢l) in the forms
is used to find the fitting parameters. It will be demonstrated

that the resulting solutions turn out to betremely accurate U(X,2)=NUg(xyA)e™?,
The rest of the paper is organized as follows. First, two- _
wave solitons in planar structures are studied. Then the w(x,z):)\wo(x\/f)ez'“, 2
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whereu, andw, are real envelope amplitudes, ang+0 is o~ ! [16,17]. However, this approach leads to cumbersome
the propagation constant. After substituting expressi@s expressions which are somewhat hard to analyze.

into Egs.(1), the following system of coupled ordinary dif- Exact analytical solutions of Eqé3) cannot be found for
ferential equations can be derived: arbitrary values ofx. Thus, in order to obtain approximate
solutions for the soliton profiles, the variational approach
d?uq was used. Calculations with an ansatz in the form of Gauss-
) Up+ UgWo=0, ian functions predict the power distribution between the FF
and SH components quite accurately, and provide a close
d2w 1 estimation for the maximum amplitudes in the whole param-
o_ awy+ = U3=0, (3)  eterrange &< [17,18. However, the trial functions do
dx? 2 not correspond to the actual wave profiles, and thus the

, i ) “tails,” or amplitude asymptotics ak— *=o, are not de-
where the only free parameter is the normalized mismatclcrihed well. In other studiefl9], the profiles of the trial
a=20+ BIN. ) ) functions are chosen as scaled exact solutiéhsr (7) with

In general, solitons can have a nonzero velocity along thepitrary amplitudes, but fixed relative widths for the FF and
x axis, but such solutions for spatial beatmhieno=2) can gy wave packets. Due to this limitation, precise results are
be readily obtained by employing the Galilean transformaptained only fore~1 anda— o, respectively.
tion, which can be applied because there are no walk-off
terms in the original equations. On the other hand, in the 2. Approximate analytical solution
presence of walk-off, the “walking” soliton profiles are de-

scribed by complex functions, which depend on the velocity . I order to construct a solution without the above men-
in a nontrivial way[10]. As a matter of fact, the latter case tioned drawbacks, we want to take into account some char-

should mainly be investigated numerically, but this is notacteristic properties of the bright solitons. Specifically, we

considered here. In our study, we rather concentrate on tice that the form of the SH envelope is the samevat
comprehensiveanalytical description of the most general =1 anda—o [see Eqs(6) and(7)]. Moreover, we perform
quadratic soliton featureswhich in turn can also be ex- numerical simulations and observe a very remarkable fact:

pected to be present in more complicated situations. for a=1, wo(x) remains almost self similar. Thus we
For localized waves, described by Eqd), the total search for an approximate solution with the SH component

powerP and HamiltoniarH are conservefi7]. The values of N the form

these integral characteristics, corresponding to solitons de-

fined by Egs(3), can be found afl1] Wo(X) =Wpseck(x/p), (8)

P=\%2P,, H=\YAHy—Py). (4)  where the maximum amplitude,, and characteristic widtp
) o areunknown parameter§ hen the FF component profile can
Here the renormalized power and Hamiltonian Bee=P, pe determined using the first equation in E8). This is a

+20Py,, andHy=0.4(P, + aPy, ), where linear eigenvalue problem, which has an exact solution for
the effective waveguide created by the SH fighd. (8)]. In
e, e, a single bright solitonugy(x) does not have zeros, and thus
Pu,= Jlx UgdX, Py, = ﬁx WodX. (5 e take the fundamental mode. This requirement leads to a

relation between the parameters of an effective waveguide:
We are looking foibright solitons where the field decays

at infinity. Such solutions of Eq$3) were found numerically w,=1+1/p. 9

for any «>0 [9,12,13, and corresponding solitons were

shown to be stable for mismatches> a., [14]. Here, the Then the corresponding FF profile is found to be

critical parameter value, is a function ofo, and for spatial

solitons agl ,—»~0.2. Uo(X) =up, sech(x/p), (10

The properties of this soliton family were extensively

studied in the literature. An exact solution was foundaat whereu,, is the peak amplitude.

=1[7] Our trial functions do not satisfy the SH equation in Eq.
(3) exactly, and thus it should be matched approximately.

Wo(X) = Ug(X)/y2=(3/2) seck(x/2). (6)  This can be done with the help of the variational method.

. However, this leads to a set of transcendental equations, and

On the other hand, for large I'ZT'llsmatCheBﬁOO, the SH then the solution parameters can not be expressed in an ex-

component approacheso(x) =vo(x)/(2a). Then, in this et form. As our aim is to derive a simple analytical ap-

so-called cascading limit, the FF wave is determined as groximation, which should be easy to analyze and use in

solution of the nonlinear Schdinger equatioNLSE), and  5jcyjations, we choose another approach. First, in order to

the wave envelopes afé,15] match the soliton peak, we require the equation for the SH
amplitude in Eq.(3) to be exactly satisfied at the soliton

vo(X)=2 e sechix), wo(x)=2 sech(x). () centerx=0, and obtain the following relation:

This solution can be improved by taking into account higher- ) 5
order terms in a series decomposition over a small parameter, 2Wi(a+2/p%) =ug,. (11)
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Second, we note that Eq8) describe an equivalent dynami- 8 (a) ' 10 (b)
cal problem, viz. particle movement with generalized veloci-
ties (duy/dx,dwy/dx) in a potential Ug(ug,Wo) = (usw,
—uj—awj)/2. This is a conservative system, with Hamil- s 4 ! o sl
tonian Hy= (dug/dx)?/2+ (dwg/dx)2/2+ U 4(ug,W,). For L

bright solitons, the field vanishes at infinity, and thidg
=0. Then, as the functiongy(x) and wy(x) reach their

maximum values ax=0, the corresponding derivatives are 0 ' 0
zero, and thus the necessary condition for a zero asymptotic 0.0 05 1.0 0.0 0.5 1.0
is Hylx=0=Uyglx=0=0, which we use to relate the peak am- * *
plitudes: FIG. 1. Dependence of the SH linear tails characteristics on
5 5 5 mismatcha: (a) separation from the soliton centey, and (b)
UmWm— U=~ awWp,=0. (12 associated normalized powEr, .
Combining Eqgs(8)—(12), we obtain an approximate solution oo
in the following simple forms: Pazzf w2dx=[wo(xa) 1%/ Ve. (15
Xa

Uo(X) =upseck(x/p), Wy(x)=wysechk(x/p),
The dependence of the linear tail parameters on the normal-
aw?, 1 4(w,—1)3 ized mismatchy is shown in Fig. 1.

2 (13

WD)’ P T we—1) T (2-wy)

u
4. Soliton bound states

Here the last relation allows us to determimg for an arbi- A connection between the soliton bound states and the
trary o as a solution of a cubic equation, and then to find alllinear tails has been demonstrated for many physical situa-
other parameters as functions @f For mismatches in the tions. For example, mutual trapping of radiating parametric
interval 0< a <+, the parameter values change monotoni-bright solitons was shown to be possible for a discrete set of
cally in the ranges &u,<+», 1<w,<2, and +%>p propagation constant values when, due to destructive inter-
>1. At a=1 the values arei,,=3/\/2, w,=3/2, andp ference, the oscillatory tails disappga0]. However, in our

=2, i.e., our general expression reduces to the exact solutiozase the localized modes are not in resonance with propagat-

(6). Similarly, for «— + the limiting result(7) follows. ing linear waved 9], and a natural assumption is that the
solitons can trap each other by their linear taiflsr a con-
3. Soliton tails tinuous range of mismatches. This physical picture is consis-

As one of our goals is to describe the soliton tails, let udent with the results of the previous numerical simulations
have a look at the far-field asymptotics that follow fror,n EqS_and analytical investigations, showing that multisoliton states
(13). It is easy to check that the FF profile exactly matches'® pOSS'_bl_e °_”'y fora <1 [13’18’21'2.2 Mo_reover,_ the
the linear limit. To understand the properties of the SH comEharacteristic distance between the neighboring solitons can
ponent tails, we note that the corresponding equation in Eq® roughly estimated to be of ordex2, and this expression

(3) describes the motion of a particle driven by an externaPredicts thenonmonotonic dependence of the separation on
foree uglz. As this expression is positive, the functiog(x) mismatcha. The minimum separation should be observed

can not decay faster than that in the linear limitg(x) for the mismatch corresponding to an extremum point,

~exp(—valx|). Indeed, fora>1, we havep<2, i.., the dxa/d“|vfma:0' and then it follovys thatv,,=~0.12, see Fig.
FF component is effectively wider than the SH component1(&)- Quite remarkably, this mismatch value corresponds
and thus the field decay rate is smaller, as correctly predicte¥e"y closely to the results of numerical calculations, see Fig.
by Egs.(13). In contrast, fore<1 the width of the FF com- 4 in Ref.[22].
ponent is smaller than that of the SH compon@stp>2),
and then the SH tails are to be determined by linear asymp-
totics. However, solutiofl3) overestimates the SH field lo- In order to determine deviations between the approximate
calization. To account for this feature, we sue the solitorand exact solutions, we solved Ed8) numerically. The
“peak” from Eq. (13) with a linear tail, so that the function corresponding dependencies of the peak amplitudes, total
and its first derivative change continuously, and obtain gower, and Hamiltonian on the detuning parameteare
more accurate expression for the SH component in the caggesented in Fig. 2left graphs for the case of spatial soli-
a<l: tons (c=2). As a matter of fact, the numerical and analyti-
cal results on these plots anet distinguishablgand that is
wysech(x/p), |x|<x, 14 Why we show them differently, by continuous curves and
Wo(Xz)ext — \/E(|X|—Xa)],|x|>xa, (14 asterisks. Plots on the right give corresponding relative de-
viations with solid lines, and dashed lines demonstrate the
wherexaz(p/2)|og[(2+p\/5)/(2—p\/E)]. From Eq.(14) it errors for the variational solution with Gaussian profiles
follows that the SH profile becomatouble scaledThat is, (SGP’9 [17,18. We see that the analytical solutio3)
we predict the existence @ihear tailsin the SH component, and (14) describe the key soliton parameters extremely ac-
which are effectively not trapped by the FF field, and carrycurately. In a wide region of mismatch valueg,>1, the
some power: relative errors are smaller than 0.7% for the total power, and

5. Comparison with numerical results

Wo(X)=
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20t E : T tions: solutiong13) and(14) on the left, and the SGP on the right.
Dotted lines correspond to the FF component, and solid lines to the
0 ¢ SH component(a) and (b) Two-wave soliton profiles atr=4 and

0 2 4 & 8 10(g)0 2 4 &6 & 10 001, respectively. Continuous curves show exact numerical and
crosses show approximate solutiofr. Deviations of approximate
FIG. 2. Left: Comparison between numerical res@@tntinuous  profiles as defined in Eq$16).
curves and approximate analytical solutioriasteriskg given by
Egs. (13) and (14). The characteristics ar@) and (b) maximum +o

amplitudes of the FF and SH tail&) the total power(for the case - | WG et WP 2dx

o=2), and(d) the Hamiltonian. Right: Corresponding relative er- S.=lo (16)
i S : - w g T

rors are shown with solid lines, and dotted lines present deviations |Wexa°}2dx

for the SGP. o

Note that these characteristics have a dB-like scale, i.e.,

0.3% for other characteristics. Far<l1 the deviations be- . .
smaller values mean better matching. In Fig) 3the errors

come larger, but do not exceed 3%. It is clear that our solu

tion gives much more accurate results than the SGP, and t é)rrespondlng to solut|on(§L3) and (14) are shown on the
. . o eft, and these corresponding to the SGP on the right. We see
latter provides a slightly better estimation for the total power : . .
. . X that our approach allows us fwecisely describe the soliton
only in a narrow region of mismatches.

At thi int Id like to st that the ab profiles, both peaks and tails, for any mismaighThat is

this point we ‘would Tike 1o stress that the above- why we were able to reveal some remarkable features of
mentioned characteristics are not the only ones which dete‘ﬁ\'/vo-component parametric mutual trapping fex 1, when
mine the “quality” of the approximate solutions. The close- he S field configuration becomes double scdleee Egs.
ness of the .appro.X|mate co'mpgnent proﬂleg to exact solltopl4) and (15), and related discussiohsOn the other hand,
envelopes, including the tails, is also very important. Fromhe SGP does not provide close estimations for the actual
Figs. 3a) and 3b), we see that solutiondl3) and (14) de-  profiles, especially fore<1, where the discrepancies in-
scribe the profiles very accurately as w@dlft plots), unlike  crease drastically.

the SGP, which matches them only “on averagsee plots Approximate solutions can be used not only in theoretical
on the righ}. To characterize the accuracy numerically, westudies, but also in numerical simulations. The unique accu-
define the relative deviations as racy of our solutionfEgs.(13) and(14)] makes it amalmost

perfect generator for soliton input conditiang/e checked
that in a wide parameter range the initial propagation stage is

+oo accompanied by very minor oscillations, and that the associ-
|uexact_uappro><|2dx .. . .. .
1% 0 ated power loss due to radiation is negligiéee, e.g., Fig.
5,=log — , 4).
j luect2qx To summarize, the approximate analytical solution, given
0 in a compact explicit form by Eqg$13) and (14), describes
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Uu(X,2)=AUg(Xy\)e*?,
v(X,2)=Avo(x\\)e?,
W(X,Z) = AWo(X\\)eZZ, (19

whereuy andv are the real stationary amplitudes of the FF
waves with orthogonal polarizationg, is the envelope of
the SH component, and>0 is the propagation constant.
Then, we substitute Eq$19) into the original systen{18)
and find a set of coupled equations for the soliton profiles:

d2U0
FIG. 4. Almost stationary evolution of the F@) and SH(b) W_u0+u0W0:o’
tails. The initial condition is given by the approximate two-wave
soliton solution(13) at a=4, =2, and\=1. &
Vo

virtually all principal features of the soliton family. That is dx2 ~ ot xvoWo=0,

why it can be calleglmost exactWe might wonder why is

it so accurate. The key point in the analysis was to take into
account the self-similarity of the SH envelopes. Then we can
view Eqgs.(13) and(14) asapproximate scaling transforma- dx
tions of the two-wave bright soliton family.

d?wy
2

_ 1 2, 2 _
awo+ 5 (Ug+vg) =0, (20

where the normalized mismatches are

B. Three-wave interaction in anisotropic medium
_ ) a=20+BIN, a;=1+pB1/\. (21

Let us now investigate a more general case of three-wave
interaction. Following Ref{23], we consider a double-phase  Similarly to the two-wave case, the total powerand
matched wave interaction, such that the FF waves of fundg4amiltonianH of system(18) can be found for stationary
mental orthogonal polarizatiorise., ordinary and extraordi- = solutions using Eqgs(4) and (5), where Py=P, +20P,,
nary) are coupled with the same SH component. That is, the 0 0

Y P P (1P, Ho=0.4P, +aP, +(ai/x)P, ], and P,

full FF field is now vectorialU={u,v}, and the two com- = [*=p2dx
. —J -V .
ponents are determined as First let us study some general properties of Eg6). We
u(x,z)=U(x,z)cod ¢(x,2)], note that in an isotropic mediupp= a1 =1, and the problem
reduces to the two-wave case considered above, as the FF
v(x,2)=U(x,2)siM (x,2)] (17) Wave can have an arbitrary constant polarization angle

Simple two-wave solutions are also possible in an aniso-

where ¢(x,2) is the polarization angle. For such a configu- ropic medium, but only for trivial polarizationgp=0 (vo
ration the system of normalized equations can be written if=0) ande=7/2 (u,=0). However, it was shown that soli-

the following forms[23]: tons with mixed polarizations also exig23]. To study such
three-wave parametric coupling, we follow the same path as
U Jd2u in Sec. Il A, and, in order to understand the principal scaling
i—+—2+u*W=0, properties, refer to an exact one-parameter family of solu-
9z gx tions found fora,;=1/4, y=1/3, anda>1 [23]:
dv dPv Up(x)=(31/2) secf(x/2),
|E+F—ﬁlv+xv*wzo,
X
vo(X)=3(a—1) seclix/2),
oW  FPw 1
i0—+— — Bw+ = (u+0v2)=0. (18) Wo(X) = (3/2) sech(x/2). (22)
0z axz 2

An interesting feature of this three-component solution is

Here x is the normalized component of thg? nonlinear  that the SH profile is the same for aay Thus we suppose
susceptibility matrix, characterizing the—w coupling that the SH shape envelope shape always remains close to
“strength” in relation to theu«—w parametric interaction secH(x/p), just as for two-component solitons, and choose
process, an@, is the phase mismatch between the orthogo+the trial function as in Eq(8). The SH shape acts as an
nally polarized FF components. All the other parametereffective waveguide simultaneously for two different FF
have the same meaning as in E@b. waves, and that is why, when solving the corresponding

We are interested in bright solitons supported by Eqgsequations in Eqs20), we obtain two relations between the
(18), and search for solutions in the forms SH profile characteristics,
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,_a(+1)

Wnh=1+p e ,

(23

whereq=\/ap. From Eq.(23), it is straightforward to find
the parameters

T Nag o _p XTNag
Wp=——"—, p=Qa; =———. (29
X Vaq a;—Xx

Then the FF envelopes corresponding to these values are

Uo(X) =upsec®(x/p), vo(X)=v,secl(x/p), (25

APPROXIMATE SOLUTIONS AND SCALING . ..
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0.38[:

s 0.29

0.20

FIG. 5. Shaded region shows the numerically-found existence
region for three-wave solitons; analytically calculated boundaries

whereu,,, andv,, are the peak amplitudes. We would like to [Eq. (30)] are plotted with dashed lines. Dotted lines , andc)
note that in the frames of our approach, the SH profile doeshow the dependence of the normalized mismatches on the propa-

not depend o, as follows from Eqs(24). This is quite an

gation constank for 8;=—4 andB=10, — 15, and— 25, respec-

interesting approximate scaling property of the three-wavdively. The parameters ang=1/3 ando =2.
solitons, and it is exactly satisfied for the solution presented

in Egs.(22).

An example of the parameter regioa,4), where three-

Now we have to determine the remaining unknown pa-wave mutual trapping occurs, is shown in Fig. 5 for 1/3.

rameters, viz. the FF amplitudes, andv,,. As for the two-
wave case, we fulfill the SH equationt0:

2W(a+2p 2 =uZ+v2,. (26)

Then we consider an equivalent Hamiltonian dynamic prob-

lem and, after matching the valuésy|,—o=Hglx_ +.=0,
obtain another relation:

urzn(wm_ 1) +vﬁ1(wm— al)(fl) - aW2m= 0.

(27)

We see that analytically calculated boundaries given by Egs.
(30) (shown with dashed lingsare extremely accurate, and
almost coincide with those found using numerical simula-
tions. Note that it also gives the correct prediction that at
a;— x the two boundaries merge, i.e{""")—0.

To understand the features of the three-wave solitons, we
now recall that solutions of the original systgiB) consti-

tute a one-parameter family, as follows from E@®). Then,
according to Eq(21), a change of the propagation constant
corresponds to motion along a straight line in the parameter
space {,«q). The limiting point forA— +« is (20,1),

It is now convenient to turn back to the polar notationswhich always lies above the three-wave existence region.
(17). The total FF intensity and polarization angle at theThus we find that the trajectory will go through this region

soliton center can be found using E¢86) and (27):
U2=2wn(a+2p~?), (28)

sifem=(1—ax 5 HawiU, 2 —wpn+1).

only if 8,<0 andB>208,/(1— x). Note that for fixed3,

the value of 3 determines the inclination angle, as demon-
strated in Fig. 5 by lines andb. On the other hand, line
corresponds to the case when the specified conditions do not
hold, i.e., three-wave trapping is not possible for any
From this analysis it follows that the three-wave soliton al-

Finally, approximate three-wave soliton profiles are givenways bifurcates from a two-wave state with=0, and then
by Egs.(8) and(25), with the parameters in an explicit form transforms into the other two-wave mode with=0. This

from Egs. (24) and (28). With no lack of generality, we

process can be easily seen in Fig. 6, where examples of the

hereafter assume thgt<1, as it is always possible to swap power dependence on the propagation constant are shown.

the functionsu and v before renormalizing the physical

equations from which syster{l8) originates. Analysis re-
veals that three-wave solutions exist if the mismatchesd
a4 fulfill the inequality

a(ay), qla)>1

(u)
aV(a)<a< too glag)=1, (29
where
4 4
aW=— " a<v>=%. (30)
p=(p—1) q°(q—1)

The corresponding polarization angles aex— a¥]—0
(i.e.,v—0) and¢[ a— aV)]— 7/2 (U—0). It is now obvi-
ous thatboundaries(30) correspond to bifurcationgrom a
two-wave soliton to a three-wave one.

The plots in Fig. 6 demonstrate that the analytical solution

3600 1200

(a) (b)
o A" o e
£ 2200¢ £ 800f .-
a a o
800 b-ox- 400 Lt
5.0 5.0 5.3 5.6

A

FIG. 6. Dependence of the total soliton powon the propa-
gation constant. Parameter values for pl@sand(b) are the same
as in Fig. 5 for trajectorie&) and(b), respectively. In both cases, a
three-wave solitor{solid line) bifurcates from two-wave solutions
with v =0 (dotted ling or u=0 (dashed ling Crosses show ap-
proximate analytical results.
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u(X,y,2)=Nuo(r yX)e"?,
W(X,Y,Z) = AWo(r y\)e?r?, (32)
wherer = \/x2+y2 is the radial distance in cylindrical coor-

dinates, andiy(r) andwy(r) are the real normalized enve-
lope functions. Then Eq$31) reduce to

ug(x), vo(x)

d?uy 1 dug

— + — —— —Upt+Ugwy=0,
qrz | dr ot too

d®w, 1 dw, 1 2o a3
ar? +FW_G’WO+§UO— , (33

0.0 25 50 75 100
X X

FIG. 7. Three-wave soliton profiles. Left: FF componentswhere the propagation constaxtand the normalized mis-
[uo(x), dotted line; vo(x), dashed ling Right: SH envelope. matcha are introduced in the same way as in E@.and
Crosses give analytically-calculated amplitudes. Parameters are tmg)_ Then the soliton power and Hamiltonian are expressed
same as in Fig. @), and\ =5.35. via the the normalized values k1,26

gives a very precise estimate for the total power. It also P=\Py, H=A%(Hy—Py), (34)
accurately describes the soliton profiles in a wide region of
mismatches, with an example being shown in Fig. 7. A thorwherePy=P, +20P,,, Ho=0.5(P, +aP,, ), and
ough comparison is, however, a separate task, as there exist
several parameters which control the mutual trapping. This B e, _ e,
will be presented elsewhere. P“o_zwjo uprdr, PWO_ZWJO wordr.

To summarize, we have analyzed three-wave solitons in
an anisotropic medium. Our approach allowed us to predict Similarly to the one-dimensional case, E¢33) are not
corresponding parameter regions, and power dependenagegrable, and approximate soliton profiles were found us-
with high accuracy. Of course, some interesting aspects réag a variational method. Solutions were obtained for trial
main to be investigated, such as stability, formation of linearfunctions with Gaussian profiles, and described dependence
tails, and properties of higher-order modes. These problemsf the Hamiltonian and power on mismatet™>0 with a
are topics of separate study and thus will not be addressagasonable accuradyLl7]. The limitations of the SGP’s re-
here, but the results obtained form a background for furthemain the same—rough matching of actual profiles and an

in-depth investigations. inadequate description of the soliton tails. In order to con-
struct a better solution, we have to start with some approxi-
1. TWO-DIMENSIONAL SOLITONS mate scaling property of the soliton family. The problem is

i i ) ) . that effective “dissipation” terms[ ~(1/r)d/dr] in Egs.
Two-wave parametric spatial solitons can exist both in(33) jead to(i) a distortion of soliton profiles in the center,

planar waveguides and in bulk nonlinear mef#d In the o4 i) a higher far field localization, which, taken together,
latter case, the interaction between the FF and SH waves Rsult in very complicated scaling features. This makes a

described by the following system of coupled equationgyeneral analysis quite difficult, and thus we limit our study to

[7,17,24-2§ mismatchesy>1, where the solitons are known to be stable
5 5 [17,25,28. It has been shown that in this parameter range the
i‘?_“+‘9_u+ a—u+u*w=0 FF and SH relative beam width changes do not exceed a

9z gx%  gy? ’ factor of 2[17,25. On the other hand, from the structure of

Egs. (33, it follows that the balance between the second-

W PPW JPw order and effective dissipation linear terms, which affects the
iUEﬂLEﬁL F—Bw+ §u2=0, (3D  soliton shape, depends mainly on the same characteristic
y beam width. This means that, to some extent, the SH enve-

pe form stays almost intact far>1, and thus we choose

wherex andy are the transverse coordinates. Other variable%i . .
e trial function as

and parameters are the same as for (thel)-dimensional

case described by Eq€l), with the obvious difference that _

the amplitudes de%er?c(ig%n three coordinatesi(x,y,z) and Wo(X) =W (bsr), 39

w=w(X,y,z). We consider a spatial case close to the phasg/here the functiorF describes a characteristic SH profile,

matching, i.e.o=2. and the relative amplitudev,, together with the inverse
Our goal in this section is to calculate the soliton enve-yidth b, are scaling parameters. Then, we assume that,

lopes by extending the method introduced for a planar casgimilarly to the (1+1)-dimensional cas¢Eq. (10)], the FF

Specifically, we look for circularly symmetric stationary so- profile can be approximately described as
lutions of Eqs.(31), which can be found with the help of the

substitutions Ug(X) =ugFP(bgr), (36
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wherep is an unknown parameter. for all r, but we can use Eq42) and obtain approximate
To determine the SH characteristic profile, we consider aelations between the parameters:
mismatcha=1. This case is easier to analyze, as the enve- 5 5
lopes of both mutually trapped components coincisg(r) pbg[1+4bg(p—1)]=1,
=uy(r)/\y2=F(r). Here the functionF(r) satisfies the B
equation pb[1+4b5(p—1F =ws, (43
2F 1dE Next, we fulfill the SH equation from E(33) atr—0,
- - — = 2= and obtain
dr2+r ar F+F<=0, (37
2 2-2p—1_
whose approximate solution was found earlier with the help Web(1—F ) — awgt SUSFP™ =0, (44)

of a Hartree-like approadi24]. However, here we choose to
use a variational method, and then select the expressiono determine the solution parameters, one more relation is
which provides better matching. First we present @) in  needed, preferably following from a conservation law, as this

a variational form allows us to better describe far-field asymptotics. The diffi-
culty here is that the equivalent dynamical system described

ﬁzo (39) by Egs. (33) is dissipative, and thus is not Hamiltonian.

oF 7 However, it is still possible to derive a condition similar to

Eqg. (12) for a planar configuration. To calculate an integral
where § denotes the variational derivative, ahds the La-  relation, we substitute approximate profil€35) and (36)
grangian corresponding to the original E§7): into the equation for the SH component in Eg83), multiply
the equality bydF(bgr)/dr, and integrate over the interval

+=[ [dF)? 2 0<r<-+oo. The resultin i tai d
B ar 2 4.3 ) g expression contains an average
L(F)= fo (dr +F 3 F }rdr. (39 dissipation term, which can be found using Eg7),
o 2
Next, we select a trial function in the form f+ d_F ﬂZEFa _ }Fz
o \dr/ r 3 m 2 m
Fo(r)=Fsech(bgr), (40)

and then the final relation is
assuming that the profile is more or less close to that of
planar solitong8). Now we note that, according to E(9), P
the Lagrangian reaches a minimum at an exact solution, and WSbS(E_ §Fm
thus, to determine the peak amplitublg, and inverse width
b in the approximate expressig#0), an extremum point of Now all the parameters can be determined from the de-
the L(F,) integral should be found:dL(Fy)/dF,  rived relations. Firstp is found as a solution of cubic equa-
=dL(Fo)/dby=0. Solving these equations, we obtain thetion
parameter values

Ip+2 ulFP71=0. (45

— s aWgt

1 1 1
2

8ab3p®+2a(1—6b2)p?+[(4/3F ,—2

15(4log2—1) 5
m:—32logz— 11 ~2.3781, +a(4bg—1)]1p+[1-(4/3)F,]=0, (46)
and then it is straightforward to calculdtg, wg, andug one
b _1 /5(4log2— 1)%0 5818 (a1) after another, employing Eq$43) and (44). Finally, using
072 8log2+1 ' ' approximate expressiorid0) and (41) for the wave profiles

ata=1 and scaling transformations from E¢35) and(36),
We made a comparison between the exact numerical anghe solutions can be written as
approximate solutions of E¢37), and found that our result

given by Eqs(40) and(41) provides a much better matching Ug(X) = UpseckP(xb),

than the Hartree approximation. Thus, solutiqd€) and

(42) will be used in calculations. In particular, we derive an Wo(X)=wpsect(xb), (47)
approximate expression for the derivatae/dr, which will .
be useful in further analysis: where up=usFf,, Wn=wsFn,, and b=bgb,. The ampli-

tudes, characteristic inverse widths, and scaling parameter

dE\?2 - F are monotonic functions af, and for 1= <<+ change in
ar) TR - (42 the limits 1=p>1/2, by<b<+2bZ/(1-2b2)~1.448,

(Fm/2~3.363)<u,<+%, and Fp=<w,<(Fn—2b3)/
Now, after learning some important properties of the(1—2b3)~5.267. Keep in mind however, that, unlike the

characteristic SH profile, the next step is to determine param-+1)-dimensional case, the asymptotics for larg@are not

eters in the trial function§35) and(36). First, we substitute exact.

these expressions into the equation for the FF component in It is interesting to note that solutio@7), describing the

system(33). The resulting equality can't be satisfied exactly soliton profiles in bulk media, reduces to expressidrss for
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5 FIG. 9. Comparison of numerical results with analytical predic-
o tions for (2+1)-dimensional soliton profiles given by EA7) on

0 S o 5 20 () o - 0 5 20 the left, and the SG_P on the ri_gt(_a) and (b) Env_elopes aty_=1
N and 10, correspondinglyc) Deviations of approximate profiles as
defined in Eq(48). The notation is the same as in Fig. 3.
FIG. 8. Comparison between exact numerical and approximate
solutions Eq.(47) and the SGP, for solitons in bulk media. The mismatches of the order from 1 to 10'. This parameter
characteristics shown are the same as in Fig. 2. range actually corresponds to interesting cases from an ex-
. ] . ~ perimental point of view, as solitons are often observed more
the (1+1)-dimensional case if the parameters characterizingy |ess close to phase matching, wher 20=4 [1,4]. The
the wave envelopes at=1 are chosen according to E®)  amazing precision is due to the fact that the approximate
asFy,=23/2 andby=1/2. _ _profile [Egs. (40) and (41)] provides outstandingly good
To study the accuracy of our solution, we made comparimatching with the exact envelope, as shown in Fit).9
sons with direct numerical calculations. The results are sumactually, it can be claimed that this is dfalmost exact”
marized in Fig. 8 in the same way as for solitons in planarsplution ate:= 1 for solitons in a bulk mediunas the devia-

structures(see Fig. 2 tions 8, and 6,, become extremely smdlsee the left plot in
We- a_|SO look at relative deViationS, defining them in aF|g qC)] Note also that, as we have a|ready mentioned
way similar to Eq.(16) as earlier, a similar solution presented in REZ4] for the case
a=1 is less accurate due to the differences in the approxi-
f +°°|uexact_ LEPPIO 2p mation coefficients.
—w For larger mismatchesy> 10", the deviations increase,
o,=log o , but the errors always remain smaller than for the SGP. If
f |ugxet2rdr even more accurate results are needed, it should be possible
- to start the derivation with the NLSE in the limit— + o,
and then take into account terms of order!. As for the
+°°|Wexact_Wapme|2rdr opposite caseq<1, linear tails may be expected to form,
0 0 similarly to a (1+1)-dimensional configuration. However,
ow=log - (48)  such special analysis is beyond the scope of current paper,
J |wgel?rdr and we believe that these open problems will be addressed in
- further studies.
Each corresponding dependence is shown in Rig).f@r our
solution(47) on the left, and the SGP on the right. From the V. CONCLUDING REMARKS
data presented, it follows that analytical soluti@tv) pro- We have studied the properties of two- and three-

vides a very good approximation for both integral charactercomponent quadratic bright solitons in planar waveguides
istics and soliton profilefsee also plots on the left in Figs. and in bulk media. Very accurate, yet simple and compact,
9(a) and 9b)]. Especially accurate results are observed forapproximate solutions have been derived to describe the ac-
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tual wave profiles, with a precision which the previously exist, have been determined analytically, and bifurcation sce-
known approximations could not achieve to our knowledgenarios have been described. Additionally, an approximate so-
Such amazingly good results have been obtained because thgion for soliton profiles has been obtained, and it provides
trial functions were chosen to correspond to the scaling propelose estimations in a wide parameter region.
erties of the solitons. With the help of a specially developed Quite interesting results have been obtained for the case
approach, the optimal values of fitting parameters have beeg solitons in a bulk medium. Although exact analytical ex-
found in a simple explicit form, which would not be possible pressions for the two-wave profiles in(2+1)-dimensional
with the variational method. case are not known, even in simpler limiting cages., in

In particular, analmost exactsolution has been derived the cascading limit the resulting single component NLSE is
which describes a whole family of two-wave planar solitons not integrable we have been able to derive an almost exact
accounting for all the key properties. It not only provides sojytion for a specific mismatch value. General approximate
perfect estimations of integral characteristigeower and  expressions are also presented, giving very close estimates in
Hamiltonian), but also closely matches the envelope profilesy wide range of detunings, covering values close to phase

of both components for any value of the phase mismatchnatching, which are of major interest from the experimental
parameter. On the other hand, the solution allowed us t@erspective.

reveal the existence of nonoscillatitigear tails, and rigor-
ously describe their features, which for example made it pos-
sible to explain and predict some peculiarities of multisoliton
bound states.

We also considered three-wave coupling in an anisotropic The author is grateful to Yu. S. Kivshar for initiating this
medium between the orthogonally polarized FF and SH comproject, and for fruitful discussions and useful comments,
ponents. Mismatch values, when the three-wave solitons caand to A. Ankiewicz for a critical reading of this manuscript.
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