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Dynamics of helical strips
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The dynamics of inertial elastic helical thin rods with noncircular cross sections and arbitrary intrinsic
curvature, torsion, and twist is studied. The classical Kirchhoff equations are used together with a perturbation
scheme at the level of the director basis, and the dispersion relation for helical strips is derived and analyzed.
It is shown that all naturally straight helical strips are unstable whereas free-standing helices are always stable.
There exists a one-parameter family of stationary helical solutions depending on the ratio of curvature to
torsion. A bifurcation analysis with respect to this parameter is performed, and bifurcation curves in the space
of elastic parameters are identified. The different modes of instabilities are analyzed.

PACS numbds): 45.05+x, 46.25-y

[. INTRODUCTION over local cross sections of the rod attached to its central axis
[15]. The central axis is represented by a space curve
The analysis of helical structures plays an important roleR(s,t):R?>— R® parametrized by arc lengthand timet. A
in the study of various types of chemical and biological fi- right-handed orthonormal basis is established at each point
bers such as DNA, bilipid layers, and macrofibgts-7]. of R(s,t) by the well-known Frenet fram@, b, t) consisting
Recently, there has been a great deal of attention paid to thaf the tangent vectar, the normal vecton, which is the unit
stability of different configurations of elastic helical strips vector in the direction obt/ds, and the binormal vectop
[8]. Most analyses are limited to comparisons of elastic en=tXn. The turning rate with respect tof the plane ortho-
ergies(in the context of both linear and nonlinear elasticity normal to the curve—that is, the plane defined(byb)—is
[9,10]. This approach reveals that binormal heli¢esch as related to the Frenet curvaturds,t) =|dt(s,t)/ds|, and the
the strips shown in Fig.)lare more likely to be stable. An- Frenet torsior 7(s,t)|=|db(s,t)/ds| is related to the rate of
other approach consists in studying the dynamical stability ofurning with respect ts of the plane tangent tB(s,t)—that
stationary solutions within the framework of the Kirchhoff is, the plane defined byn, t). The curvature and torsion
equation for thin rods. This has been done for helical rods¢(s,t) and 7(s,t) determine the space curve through the
with circular cross sections ir11] and shown to be of prime  Frenet-Serret equations. For example, if these values are
importance in the analysis of buckling and coilifg2].  both nonzero and constant with respecstthenR(s,t) is a
When the cross section of the rod loses its isotr@pgt is,  helix.
when one considers elastic stripshe type of instability The Frenet frame and its associated definitions of curva-
found in twisted rods strongly depends on the anisotropy ofure and torsion are derived from the space curve itself. For a
the cross sectiongl3,14] and two different regimes can be physical filament, however, it is advantageous to have a local
found depending on the flatness of the cross section. basis that corresponds to some characteristic of the filament's
This paper considers the dynamics of helical inextensiblenaterial properties. Here we are interested in helical fila-
elastic rods of various lengths, cross sectional shapes, andents of constant asymmetridalot circulay cross sections,
material properties. If a rod obeys the laws of elasticity andeferred to astrips and, using a generalized local basis for
has a cross sectional width much smaller than its length, it ishe space curve, we set one of the vectors normal to the
referred to as dilamentor, in the case of noncircular cross
sections, as atrip. Consider such an elastic strip and shape it
as a helix such that it will hold by itseliwith proper end
forces and momenksThis helical strip can be stable or un-
stable under small perturbations. The problem is to deter-
mine the stability properties of such configurations and pro-
vide some information on the wavelengths associated with
the instability. The analysis performed here provides also the
vibration modes associated with stable configurations.

II. THE KIRCHHOFF EQUATIONS

The evolution of filaments and strips is governed by the
Kirchhoff model, where forces and moments are averaged FIG. 1. A typical stripR(s,t) together with its coordinate or-
thonormal triad ¢,,d,,d3). The vectorsd;,d, are chosen along
the direction of greatest and lowest bending stiffness. The vegtor
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curve to correspond to the direction of the filament's greates |

bending stiffness. Also, we allow for intrinsic curvature and
twist—i.e., the curvature and twist of the filament in its natu-

ral, unstressed state. Stationary helical solutions for the™*

Kirchhoff equations were described [ih4]. The aim of this

paper is to study the stability of helical strips using an arc-
length-preserving perturbation scheme first developed ir

[16]. This follows work in[11] on the stability of helical

rods of circular cross sections and[it4] on straight strips.
Together with the space curi®{(s,t) we choose a smooth

unit vector fieldd,(s,t) orthogonal to the tangent vector of

the curve and along the direction of the cross section’s low- £~

est bending stiffness. The vectds(s,t) is part of a local
coordinate triad ¢, ,d,,ds) defined at eacls,?. If we con-
sider a very flat strigithink of a bel, the vectord; is the
tangent vector along the center axis and the vedtois

0.6
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0.2
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FIG. 2. The domains covered in tl@, b) plane by various cross
section shapes with ©0=<1/2 are enclosed in black lines

(solid=ellipses, daskrectangles, detright triangles. The line b

chosen in the direction joining the center axis to the edge ofa plays an important role in the stability analysis of binormal

the strip(in the “flattest” direction) as can be seen on Fig. 1.
Denoting differentiation with respect ®andt by ()’ and
("), respectively, and settindg=R’(s,t), we choosal; to
be the unit vector field such that;=d,Xxd;, and then
(dq,d,,dy) is, for all (s,t), a local right-handed orthonormal
basis. It is related to the Frenet frartreb,t) by the angle/
between the two bases and the relation

cos{ —sin{ O
(dy dy dy)=(n b t)| sin{ cos{ 0. (D)
0 0 1

The local triad ¢I,,d,,d3) evolves in space and time as

(di d; dy)=(d; d, dy)K, i)
(d; dy dg)=(d; dy dm)W, ©)
whereK andW are the antisymmetric matrices
0 — K3 Ko
K: K3 0 — K1 s
— Ko Kq 0
0 — w3 wo
W= w3 0 —wq (4)
O] wq 0

The vectorsk=33>_ k;d; ,0=33 , w;d;, formed from com-
ponents ofK and W, are respectively defined as the twist
and spin vectors.

The twist vector is related to the angfeand the Frenet
curvaturex and torsionr as

©)

. 7
(Kq,Kp,K3)= KSII"I§,KCOS§,T+£ .

One may think ofr, x, and d{/ds as variations on the
filament's twist: 7 measures the nonplanarity &(s,t); «

and g/ ds are both properties of the ribbon defined by the

curve R(s,t) along with the orthogonal fieldl,(s,t). An
intrinsic twist vector KW= («{", k", k") is designed to

helices.

correspond to £1,k,,k3) SO that we have an intrinsic cur-
vature k™ = \/(«") 2+ («7)2, and an intrinsic twistc{" .
As in Eq. (5),

k=kWsing and «¥=«x" cos{. (6)

Let I, andl, be the principal moments of inertia of the
cross section in the directions off and d,, respectively,
with 1,=1,. That is,d; andd, are chosen to be the direc-
tions of greatest and lowest bending stiffnesses, respectively.
Then,a=1,/1, is a value B<a<1 that measures the bend-
ing asymmetry of the filament’s cross sections. The value 1
is reached in the dynamically symmetric case where the mo-
ments of inertia are identical; the scaled radius of circular
cross sections is then equal to 2. A constantalled the
scaled torsional stiffnessoughly measures the change in
volume in the rod as it is stretched. The lower the valub, of
the less the volume changes. Within the framework of linear
elasticity theonf17-19 it is possible to computa andb for
a given cross section shape. For instance, elliptic cross sec-
tions with semiaxeé\ andB (A<B) have

b= 1 2a
T 1+o1l+ta’

()

a=§z,

where ¢ is the Poisson ratio. The scaled semiaxes are, re-
spectively, 2/a and 2. Other values of andb for various
shapes are represented on Fig. 2. With a force veEtor
=F,d;+F,d,+F3d; and moment vectok, the scaled dy-
namical Kirchhoff equations stated in the local basis[adg

F'= d31 (83)

M’ +dgx F=ad;xd;+d,xd,, (8b)

M=(x,— K(lu))dl+ a(ky— K(Zu))d2+ b(k3— K(gu))d3.
(80)

The statiqwithout time dependengéorm of these equations
is
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Ill. PERTURBATION EXPANSION

To study the stability of these solutions, a perturbation
scheme was developed for the Kirchhoff equations in
[20,21]. A perturbation is performed by a near-identity rota-
tion matrix B that maps the unperturbed local basis onto the
perturbed one:

(dp dy dy=(d” oy’ d)B, (133
d=dO+edP+e2d?@+ ..., (13b)
and requiring to each order inthat the orthonormality con-
dition d; - dj= §;; is satisfied. Expanding as a power series
in €, we obtain

B=1+eAWM+c2(AP+ ) +3(A®+S3)+ ..., (19

where 1 is the identity matrix, and the symmetric matrices
S depend solely on the general antisymmetric matrices

FIG. 3. Normal and binormal helices. AD to AK=Dwhere theA()’s are
F'=0, (92 0 -aof of
A=l of 0 —ay|. (15)
M’ +dsX F=0, (9b) o
o)) af 0

M= (k;— k") dy+a(ko— k) dy+b(ka— k) ds.
(k1 =) dy+ali— kg )do+ blKg—k37)ds (99  Given the vector=(ay,a;,as), wherea;=a!!, one can

reconstruct the perturbed rod by integrating the tangent vec-
Helical and circular solutions to these equations are thostor as
with constant Frenet curvature and torsi@re consider here
true helices for which both curvature and torsion are differ-
ent from zerg. The only such solutions are those with the
angle between the director basis and the Frenet frame an
integer multiple of7/2 [14]. That is,{=nx/2, wheren is an = J' [+ e(a,d? — a;d?)]ds+O(€?).  (16)
integer. These solutions are such thaVds=0 and are

called Frenet helices since the principal axes do not rotate

with respect to the Frenet frame. Moreover, for a helix to be=XPressions for the elements of the twisaind spinw vec-
a solution we need tors in terms of the perturbed variables are obtained using

Egs.(2) and (133 which combine to give

R(s,t)=f ds(s,t)ds

kW= kW7, (10 5
0 0 0 _ 0 0 0
That is, helical strips are stationary solutions of the Kirch- %Hd(l) d(2) d(3 ))B]_(d(l) d(z) dg DBK. (A7)
hoff equations only if they are twistless and the ratio of cur-
vature to torsion equals the ratio of intrinsic curvature toThis, in turn, is equivalent to
intrinsic torsion. There are two types of solutions depending
on the parity ofn. For evenn, d, lies along the binormal

vectorb, which is then the direction of lowest bending stiff- © 40 4On[ JB
ness. Such helical solutions, namely, (di” dy’ dy’){K B_BK“Lg =0. (18
K=y + 7ds, (118 gince the matrix is orthogonal and the basis vectors are
independent, we have
F=(b—a)r(k— k"), (11b
B
are referred to abinormal helices For oddn, d, lies along K= BT( KOB+ —|. (19
the normal vecton. These solutions, namely, s
k= xd; + 7d3, (129 The spin vector components are expressed analogously. For
a given unperturbed state, the Kirchhoff equations may now
F=(b—1)7(k— kW), (12 be written in terms of the six variables of the vector

. . _ k k k k k k
are referred to asormal helicessee Fig. 3. XW=(FF FY FY o oy o4 (20
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IV. CONSTRUCTION OF THE PERTURBED HELICAL
STRIPS

It was previously noted that, given the vector

a=(aq,as,a3), We can construct the perturbed strip by the

integration(16). To actually perform this integration we need
the vector @ and the generalized framed®
=(d?,d{,d{) of the unperturbed helix.
The vectord(® is found by the relatiotil) and the Frenet
frame of a helical curve, which is as follows:
|

i

whereR is the radius of the cylinder about which the helix
may be wrappedP is the period of the helix, and=
+1/(P?+R?). The positive root in this last expression de-
fines a right-handed helix, and the negative root defines
left-handed helix. For a binormal helix, with=nw/2 for

evenn, Eq. (1) gives

Hence, Eq(16) becomes

n
b
t

(0,—cog 8s),—sin(5s))
(—R&8,—P&Ssin(8s),PScog 8s))
(P8,—Ré&sin(8s),Ré cog 6s))

n
b
t

(22

Ps €e%-order part of the spin vector expansian'’), is set to 0,
R(S't):f —Ré&sin( 5s) and the expansions for tension, twist, and spin vectors, trun-
R& cog 5s) cated to first order, are substituted into the system. The re-
sult, in matrix form, is
0 LX®=0 (26)
+ €| a,| —cogds) :
—sin( 8s) whereL for the binormal helix is the following second-order
“Rs linear operator:
—a,| —PdJsin(és) ds+0(€?). (23 L La Lg 5
P& cog 8s) lLe Lp/ 27)
For the normal heliX=nw/2, n odd, so Eq(1) gives where
>, ) ] ) d
o5 T Tos  Nos
L 2 i i 28
= — — — KT
A T&S [?32 T ’ ( )
d >
—2K£ KT @— K
J § (?2 2 2 2 1a2
2(b—a)(K2+T3)£ (b—a)7? EKZ—TZ)—P (b—a)7k( 75+ k= 9°95°)
P\ & d d
_ _ 2 2 _ _ 3__ _ _ 2
Lg=| (b—a)7?| k?+7 (952)-{-&,[2 2(b—a)7 75 2(b—a)kr p , (29
b S 2(b 2 2(b 2, ”
(b—a)7k 2T K ( a)KTa—s (b—a)k TS
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b
-n
t

(29)

dO= (

and Eq.(16) becomes

|

PS5
R(s,t)zf (—Résin(és))
R& cog 6s)
-Ré
+e az( —P5sin(85))
P& coq 6s)

0
cog Js)
sin( 8s)

|

ahe vectore is found by finding the vector solution®0)
corresponding to unstable modes, as described below.

) ds+O(€?). (25)

V. STABILITY ANALYSIS

The linearization of the Kirchhoff equations around the
stationary helical solutions allows for a stability analysis.
The unperturbed variablds® and (%) are taken to be the
static helical solutions, Eq11) for a study of the binormal
helix and Eg.(12) for a study of the normal helix. The
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0O -1 0
Le=[1 0 oOf, (30)
0O 0 O
Lp
b 2— 2 ”b“+‘92 - b 1‘9b“& b—a+1 O st
(b—a)(m°— k) —akk,— btk preaiery (b—a )T&S K3og (b—a )K&—S aKzg
J L9 . S "
= (1+a—b)7-£+b;<3£ (b—1)7*—brki+a 22 a2 (1-b)k7+ k3
J u J u & 2 u ’
(a—b—l)Kg—alQ% (1—a)kr+ak,Tt E(a—l)K —aKKZ—(1+a)P
(32)
|
We now look for the fundamental solutions of Eg6), ex- Mu = 0. (33
pressed as
(D= Agerot+ins) 32 The matrixM for the binormal helix is
where A is a constant complex amplituda, is a constant :< Ma MB) (34)
vector with a given normg is a complex constant, andis Mc Mp)/’
a real constant. The substitution of E@2) into Eq. (26)
yields where
|
—(1+n?) 72— «? —2in7? 2inkTt
Mp= 2i7n —(1+n?) 7 KT , (35)
—2inkr KT —k?—7n?
2iTn(F,+ 7F3) —KTFZ—(T2n2+TZ)F3—TZU'2 (72n2+K2)F2+K7'F3
Mg=| 2k7F,+[(1+n?) 7%= k?]F3+ r?0? 2in7°F, —2in7?F, , (36)
—2k7F3—[(n?=1) 7+ k?]F, —2ink7F3 2ink7F,
0O -1 0
0O 0 O
Mp
(b—a) (72— k%) — A(nN*+ o) —akk¥ —brc  inA(b—a—1)—ibnrky" inkr(b—a+1)+ianrxy"
= in7?(1+a—b)+ibnrxy? 7(b—1—an’-ac?)—brxy” (1-b)k7+brr{” ,
inKT(a—b—l)—ianTK(Zu) (1—a)KT+aK(2u)T (a—l)KZ—anTZ—(l+a)720'2—aKK(2u)
(39)
|
and the expression§,=(b—a)r(k—«%¥) and Fy=(b detM)=A(n,0%,a,b,7,x, 4 kY k¥)=0, (39

—a)(r—«W) are the components of the force vectar
The matrixM for the normal helix has a similar foritwith

different coefficients and will not be given explicitly here. wherei=1 for the normal helix(in this case{,;= /2 and
There are nontrivial solutions far only if dettM)=0. This  «W=«", «{=0) andi=2 for the binormal helix {,
leads to thedispersion relation =0 and«{"=0, = kW) due to relationg6). If the dis-
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b=23

FIG. 4. Naturally straight binormal helix(n) with k=1=r, a=1/2, andb=1/10, 1/2, 5/6, 1, and 2.3.

persion relation allows for modes that grow exponentially inwhere s and y are rather complicated functions bf-a, 7,
time—that is, modes with Rej>0—then the helical strip is and k. The neutral modes; andn, are independent df

unstable.

—a; hence we organize a discussion of unstable modes by

The dispersion relations corresponding to the binormatonsidering values df—a since the stability changes occur
and the normal helices are examined for the existence ds the roots; andn, change position relative to the rooj.
these unstable modes. We first study the stability of the natu-

rally straight helices—those witk!) set to0—and then the
stability of the free-standing helices—those witH set to
k. The basic procedure is the following. We solve E2p)
for o2 as a function ofh and the parameteis, b, 7, and «,
and thus obtain three solutiong(n), o5(n), and a3(n).

A. The naturally straight binormal helix

Taking {=¢,=0 and =0 in the dispersion relation
we find the solutions(n) associated with the naturally
straight binormal helix. Various examples of this solution,

We are interested in the real parts of these solutions. For th&ith constantc, 7, anda, and varyingb, are shown in Fig. 4.

binormal helix, whethe=0 or k=), we find that the

The graphs indicate positive concavityrat 0 for most val-

solution oy is pure|y imaginary regard]ess of the values of ues ofb—a. To show that this is indeed the case, we Iocally

the intrinsic curvature and twist, and [Ré(n)]<O0 for all n,

so these solutions contribute no unstable modes. The situa-

tion for the normal helix is similar; the solution R€j is
nonpositive for alln and although the solutiong(n) may
have a real partin the casex"' =0), this part is always
nonpositive. Hence, we only consider the solutiofm)

=Rga5(n)].

VI. THE NATURALLY STRAIGHT HELICES

expand the dispersion relation aroumet 0 and find
K2+ 7

Y

s=e’(a+ \/E) n§~l— s+ (41

wherea, B, andy are all functions of the parametetsr, a,
and b. For small ¢ s behaves approximately like
(a+B)[(k?+ )/ y]n2. Since y is always positive, the
sign of the lowest order term in the expansiors@if) about
(0,0) depends onx+ /3. Forb=a and 3[(47%+ «k?)/%]a

We first consider naturally straight helices, that is, helices<b, 8— a?>0, soa+ \/8>0. Thus,s(n) has positive con-

with no intrinsic curvature or torsion{"?=0). The neutral
modes—the values af such that Ref)=0—are found by
substitutinge®= 0 into the dispersion relatiof89) and solv-

cavity at (0,0) for these values of the parameters. For the
rangea<b<:[(47%+ «?)/7?]a, s has negative concavity at
(0,0. However, for these values, both modesandn, ap-

ing for n. For both the normal and binormal helices we findpear as roots o§(n), and in this rangeg(n) has the form

neutral modes of the form

n1=0, (40@

7+ K2
tn,=t——m, (40b)

T

v2 gy
ins—i? ba’T ) (400)

V2 y—x
in4—i? baT 1] (40d)

shown in Fig. 5. Hence, we conclude that a naturally straight
binormal helix is always unstable. Depending on the values
of a andb, there are two different types of unstable modes.
In the rangeb=<a and 3[(47°+ «?)/ 7?]a<b the instability
is a long wave instabilityall modes close tm=0 are un-
stablg, and the deformation takes place on long wave-
lengths. Fora<b<3[(47°+ k?)/7*]a, there is an unstable
band of modes centered around a nonzero wave number
This Hopf-like instability occurs at finite wavelength and
results in the superposition of two helical modes: the station-
ary solution and the unstable solution with wave numier

To construct the solution, we find the fundamental solu-
tions corresponding to the fastest-growing moge-that is,
the mode that corresponds to a peak in the soluti(mg.
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FIG. 5. Naturally straight binormal helix(n) with k=1=r, a=1/2, andb=2/3.

A\ 4

For example, for the binormal helix with properties as listedof b, two unstable wavelengths can be excited. For instance,
in Fig. 5 (k=1=r7,a=3,b=%), the fastest-growing modes for a=3 andb=4;, the dispersion relatiofFig. 4 shows
are those an~0.7704. The corresponding null vector of Eq. two maxima arounch.= *=0.6685 anch,=+1.797. The re-

(34) is constructed unstable binormal helix is shown in Fig. 7.
—0.392 B. The naturally straight normal helix
0.427 Taking{={,= /2 andK(1“)= 0 in the dispersion relation
—0.294 we find the solutions(n) associated with the naturally
u= 1.769 |- (42) straight normal helix. Typical graphs of this solution are
0.402 shown in Fig. 8 for fixedx, 7, anda, and varyingb. As
_'1 443 indicated there, there is a band of unstable modes araund

=0, and this band grows as the value a increases. Setting
n=0 in detM) and solving fora?, we get the three roots 0,
0, and [(1—a?)(7*k*+ ™)+ (1—a) («*+ 7°k>+ k?) + (72
+k2)2+ k?)I[ (k?+ ?+1)(a+1)]. The first two roots

Similarly, n.= —0.7704 yields the complex conjugate of this
solution vectoru. The corresponding solution is then

Aue[§(0.7704t+0.7704s] 4 KUe[q(0.7704t70.7704S] (43)

and the last three components of this vector faem
Examples of perturbed binormal naturally straight helical

strips follow in Fig. 6. In all cases, we usk=1, R=2

=P, and 5= 3. Two periods are shown. For different values

.,/A i
FlG ; BInOI |a| he|IX,a—1/2, b—l/lo, 7—1—K, K(z)—o

FIG. 6. Binormal helix,a=1/2, b=2/3, r=1=k, «¥=0 =« perturbed modesn,=+0.6685, +1.797, e=0.1, 0.2,
=« , perturbed modes),= +0.7704,e=0.1, 0.2, and 0.5. and 0.3.
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FIG. 8. The solutions(n) for normal helices withh=1= 7, b= 3/4, anda=1/20, 1/2, 3/4, 7/8, and 1.

appear in the solutions3 ando3, and the last appears in the =xYW/[(k¥)?+(7Y)2]. For R#1 the radius of the helix ig
solutiong(n)=a§. Sincea<1 the last root is always posi- =Rp". HenceR describes the relative size of similar heli-
tive. Hence there is always a band of unstable modes abogks. ForR>1 the helices are smaller than the natural size,
n=0 in the solutiors(n). We conclude that, as for the natu- and bigger folR<1. In the preceding sections we studied the
rally straight binormal helix, the naturally straight normal case R=0 (naturally straight helicesand R=1 (free-

helix is always unstable. standing helices We now consider values dR different
from 0 and 1. If we start aR=1, the helix is stable. As we
VIl. THE FREE-STANDING HELICES vary this parameter, the helix might become unstable. The

guestion is to locate the bifurcation poiRt for givena and

For the case") =« we have only two neutral modes, ", 4 1o describe the instability

which are Again, we need only consider the real part of one solution
n,=0, (443 to the dispersion relation since the other two solutions al-
ways have nonpositive real parts, and we call this real part of

J2+ 2 a solutions(n). For example, a graph &f(n) corresponding

Tny,=f—m—. (44  to the normal helix with fixed values of, 7, a, andb, and

T varying R is shown in Fig. 9. Note that, for example, i

1 ph=3 3
These neutral modes all appear as roots of the solg{iojh. =3 b=5, and a<i, the_” there are no unstable mOdeS for
A local perturbation analysis around the points,s) the normal hellx;- a helix must not be free standmg to be
= (0,0),(+ V721 k% ,0) as performed for the naturally _stable. An analysis of the.neytral modes; and £ n, given
straight binormal helix shows that the curygn) always has in Eq. (44) allows for_the finding of the value_s of the param-
negative concavity around these points. Hence, there are fgers that characterize stable forms. Ferl in the normal

unstable modes, and we conclude that the free-standing h&25€ W€ have the situation indicated by Fig. 10, where stable
lices are alwayssiinearly) stable regions are those in whickcn; and =n, are not neutral

modes, and the solutiof(n) is similar to theR=1 case of
Fig. 9. The stability of a stationary helignormal or binor-
mal) depends om, R, a andb. For both helices, the picture
is similar to the one in Fig. 9. We set=1 for the normal
Let r=17/x be the aspect ratio of a helix>1 are long helix andc=a for the binormal helix. We find that fob
helices whereas<1 are “fat” helices. Stationary helical <c, the helix is stable only for £R<R’, and forb>c the
solutions are such thatrW = 7« Let R be the ratio helix is stable only foR'<R<1, where the values d&?’ are
given by the positions of the different roots. We have con-
sidered that all modes can be excitstiort, middle, and long
R=—=—-" (49 wavelength instabilities
Most helical strips are such tha 1 (see Fig. 2 hence,
For a given intrinsic torsion and curvature the one-parameteall normal helices behave the same way. They are stable as
family of helices defined byR corresponds to similar helices long as =R<R’; when the size is such th&>R’ a short
of different size(helices with constant ratio of torsion to wavelength instability developsthe unstable modes,
curvature. The natural size is defined as the size of the helix>1); and smaller helicesR< 1) are all unstable with a long
with  R=1. The radius of such a helix isp™  wavelength instability.

VIIl. HELICES THAT ARE NEITHER NATURALLY
STRAIGHT NOR FREE STANDING



4516 ALAIN GORIELY AND PATRICK SHIPMAN PRE 61

0.3
=0
0.2+ R=1/g
R=1.4
N
0.1 R=1/,

N,

R=1.2

] &
0] 0.5 .5 3
] 4a-R=1y "
'i. =1
— 0.2
—o0.3

FIG. 9. Normal helix:s(n) with k=1= 7, a=3/4, andb=3/2 and varyingR.

The situation for binormal helices is slightly different. For vectors as well as the position vector. This restricts consid-
b<a, the helix is stable only for £€R<R’, and forb>a  erably the type of instabilities since modes with long wave-
the helix is stable only foR’<R<1, So, depending on the lengths(with n/x<1) cannot become unstable and only dis-
cross section anisotropy, binormal helices can become urcrete modes can be unstalgleith n/x>1 and integer Due

stable. Indeed, for a givemand flat cross sectiorisuch that
a<b) small helices can be stab{or R’<R<1), whereas
helices with thick cross sectiona€b) behave like normal
helices.

IX. INSTABILITY OF CIRCULAR STRIPS

to this fact, small binormal ringéwith R<1) are always
stable and large rings of increasing size first become unstable
when n/k=2. The moden/x=m becomes unstable fdR
>R, where

2a—(1+b)+(b—1)2+4bm?
Ry= >1

m 2a

(46)

In order to show how boundary conditions can stabilize
instabilities, we study the case of elastic rings with aniso-Surprisingly, normal rings can become unstable when either
tropic cross sections. This case is of particular interest in th&<1 or R>1. Indeed, themth mode becomes unstable
theory of DNA rings Ref[22]. In the case of elastic rings, whenever G&sR<R{Y or R>R{?>1 with

7=0, hence we do not scale the modevith 7 and we let
R=«"/k. The filament is periodi¢of period 27/«) and

with periodic boundary conditions on the force and curvature

24 R
1.8
161
14 Unstable
12{ Stable
0.8 ]
g ] Stable
04

Unstable

0.2

° 1 2 3 4 5

b

FIG. 10. Bifurcation curvesR-b plane for the normal helix

RY=1-1(a+b)-i|(b—a)’+4m?ab, (47

(48)

RZ=1-3}(a+b)+3(b—a)’+4m’ab.

Note that RV>0 only if a<(1—b)/[(m*—1)b+1].
Hence, the cross section has to be sufficiently flat for small
normal rings to become unstable. In the particular case of
circular cross sections one finds ta=R? and R{M<0

and we recover the solution given in RE23].

X. CONCLUSIONS

In this paper, we have studied the stability of normal and
binormal helices. The first conclusion is that @lhfinitely
long) naturally straight strips shaped as helices are unstable.
This might seem contradictory to one’s intuition. Indeed, if
one plays with a belfor a very flat strip of papérit is easy
to create a binormal helical strip by twisting one end. In the
same way, it is next to impossible to shape a strip as a nor-
mal helix. However, if one considers flat enough strips (
<b), one sees on Fig. 4 that the unstable mode appears

with k=1= 7, a=3/4. The different regions indicate the zones of between 0 and2. These are long wavelength modes only

stability and instability.

(V2 is the mode associated with the helical repeat, hence
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<v2 correspond to wavelengths longer than the helical restationary helix with respect to the corresponding free-
peat3. We conclude that dinite helical binormal strip standing helix and the aspect ratipwe showed that small
clamped at both ends is stable if its cross section is flahormal helices are always unstable. Moreover, depending on
enough. In the case of a normal helix, there always existhe anisotropy of the cross sections, small binormal helices
unstable modes with>v2 and these modes become morecan be stablé¢for flat cross sectionsr unstablethick cross
important as the cross sections become flasee Fig. 8  sections. The analysis of stability becomes quite intricate in
Therefore, we conclude that normal helices with flat crosgyeneral, and a detailed analysis of the roots of the dispersion
sections are always unstable even for finite strips. relation has to be performed.

Our second conclusion is that free-standing helices are Finally, we studied circular strips. Whereas only large
always stable. This is not surprising as these helices corrqwith R>1) binormal circular strips may be unstable, small

spond to minima of the elastic energy and we do not expediormal circular strips with flat cross sections may also have
them to become dynamically unstable. The analysis pernstabilities.

formed here can be used in this case to provide all the vibra-

tion modes of the stable helix; these are timeaginary time
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