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Dynamics of helical strips
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The dynamics of inertial elastic helical thin rods with noncircular cross sections and arbitrary intrinsic
curvature, torsion, and twist is studied. The classical Kirchhoff equations are used together with a perturbation
scheme at the level of the director basis, and the dispersion relation for helical strips is derived and analyzed.
It is shown that all naturally straight helical strips are unstable whereas free-standing helices are always stable.
There exists a one-parameter family of stationary helical solutions depending on the ratio of curvature to
torsion. A bifurcation analysis with respect to this parameter is performed, and bifurcation curves in the space
of elastic parameters are identified. The different modes of instabilities are analyzed.

PACS number~s!: 45.05.1x, 46.25.2y
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I. INTRODUCTION

The analysis of helical structures plays an important r
in the study of various types of chemical and biological
bers such as DNA, bilipid layers, and macrofibers@1–7#.
Recently, there has been a great deal of attention paid to
stability of different configurations of elastic helical strip
@8#. Most analyses are limited to comparisons of elastic
ergies~in the context of both linear and nonlinear elasticit!
@9,10#. This approach reveals that binormal helices~such as
the strips shown in Fig. 1! are more likely to be stable. An
other approach consists in studying the dynamical stability
stationary solutions within the framework of the Kirchho
equation for thin rods. This has been done for helical ro
with circular cross sections in@11# and shown to be of prime
importance in the analysis of buckling and coiling@12#.
When the cross section of the rod loses its isotropy~that is,
when one considers elastic strips!, the type of instability
found in twisted rods strongly depends on the anisotropy
the cross sections@13,14# and two different regimes can b
found depending on the flatness of the cross section.

This paper considers the dynamics of helical inextens
elastic rods of various lengths, cross sectional shapes,
material properties. If a rod obeys the laws of elasticity a
has a cross sectional width much smaller than its length,
referred to as afilamentor, in the case of noncircular cros
sections, as astrip. Consider such an elastic strip and shap
as a helix such that it will hold by itself~with proper end
forces and moments!. This helical strip can be stable or un
stable under small perturbations. The problem is to de
mine the stability properties of such configurations and p
vide some information on the wavelengths associated w
the instability. The analysis performed here provides also
vibration modes associated with stable configurations.

II. THE KIRCHHOFF EQUATIONS

The evolution of filaments and strips is governed by
Kirchhoff model, where forces and moments are avera
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over local cross sections of the rod attached to its central
@15#. The central axis is represented by a space cu
R(s,t):R2→R3 parametrized by arc lengths and timet. A
right-handed orthonormal basis is established at each p
of R(s,t) by the well-known Frenet frame~n, b, t! consisting
of the tangent vectort, the normal vectorn, which is the unit
vector in the direction of]t/]s, and the binormal vectorb
5t3n. The turning rate with respect tos of the plane ortho-
normal to the curve—that is, the plane defined by~n, b!—is
related to the Frenet curvaturek(s,t)5u]t(s,t)/]su, and the
Frenet torsionut(s,t)u5u]b(s,t)/]su is related to the rate o
turning with respect tos of the plane tangent toR(s,t)—that
is, the plane defined by~n, t!. The curvature and torsion
k(s,t) and t(s,t) determine the space curve through t
Frenet-Serret equations. For example, if these values
both nonzero and constant with respect tos, thenR(s,t) is a
helix.

The Frenet frame and its associated definitions of cur
ture and torsion are derived from the space curve itself. F
physical filament, however, it is advantageous to have a lo
basis that corresponds to some characteristic of the filame
material properties. Here we are interested in helical fi
ments of constant asymmetrical~not circular! cross sections,
referred to asstrips, and, using a generalized local basis f
the space curve, we set one of the vectors normal to

FIG. 1. A typical stripR(s,t) together with its coordinate or
thonormal triad (d1 ,d2 ,d3). The vectorsd1 ,d2 are chosen along
the direction of greatest and lowest bending stiffness. The vectod3

is tangent to the curve.
4508 © 2000 The American Physical Society



te
nd
tu
th

rc

f
w

o
.

l

st

he

-

e

-
ely.
-

e 1
mo-
lar

in
f
ear

sec-

re-

r

s

al

PRE 61 4509DYNAMICS OF HELICAL STRIPS
curve to correspond to the direction of the filament’s grea
bending stiffness. Also, we allow for intrinsic curvature a
twist—i.e., the curvature and twist of the filament in its na
ral, unstressed state. Stationary helical solutions for
Kirchhoff equations were described in@14#. The aim of this
paper is to study the stability of helical strips using an a
length-preserving perturbation scheme first developed
@16#. This follows work in @11# on the stability of helical
rods of circular cross sections and in@14# on straight strips.

Together with the space curveR(s,t) we choose a smooth
unit vector fieldd2(s,t) orthogonal to the tangent vector o
the curve and along the direction of the cross section’s lo
est bending stiffness. The vectord2(s,t) is part of a local
coordinate triad (d1 ,d2 ,d3) defined at each~s,t!. If we con-
sider a very flat strip~think of a belt!, the vectord3 is the
tangent vector along the center axis and the vectord1 is
chosen in the direction joining the center axis to the edge
the strip~in the ‘‘flattest’’ direction! as can be seen on Fig. 1
Denoting differentiation with respect tos and t by ( )8 and
( ˙), respectively, and settingd35R8(s,t), we choosed1 to
be the unit vector field such thatd15d23d3 , and then
(d1 ,d2 ,d3) is, for all (s,t), a local right-handed orthonorma
basis. It is related to the Frenet frame~n,b,t! by the anglez
between the two bases and the relation

~d1 d2 d3!5~n b t!S cosz 2sinz 0

sinz cosz 0

0 0 1
D . ~1!

The local triad (d1 ,d2 ,d3) evolves in space and time as

~d18 d28 d38!5~d1 d2 d3!K, ~2!

~ ḋ1 ḋ2 ḋ3!5~d1 d2 d3!W, ~3!

whereK andW are the antisymmetric matrices

K5S 0 2k3 k2

k3 0 2k1

2k2 k1 0
D ,

W5S 0 2v3 v2

v3 0 2v1

2v2 v1 0
D . ~4!

The vectorsk5( i 51
3 k idi ,v5( i 51

3 v idi , formed from com-
ponents ofK and W, are respectively defined as the twi
and spin vectors.

The twist vector is related to the anglez and the Frenet
curvaturek and torsiont as

~k1 ,k2 ,k3!5S k sinz,k cosz,t1
]z

]sD . ~5!

One may think oft, k, and ]z/]s as variations on the
filament’s twist: t measures the nonplanarity ofR(s,t); k
and ]z/]s are both properties of the ribbon defined by t
curve R(s,t) along with the orthogonal fieldd2(s,t). An
intrinsic twist vectork(u)5(k1

(u) ,k2
(u) ,k3

(u)) is designed to
st

-
e

-
in

-

f

correspond to (k1 ,k2 ,k3) so that we have an intrinsic cur
vaturek (u)5A(k1

(u))21(k2
(u))2, and an intrinsic twistk3

(u) .
As in Eq. ~5!,

k1
~u!5k~u! sinz and k2

~u!5k~u! cosz. ~6!

Let I 1 and I 2 be the principal moments of inertia of th
cross section in the directions ofd1 and d2 , respectively,
with I 1>I 2 . That is,d1 and d2 are chosen to be the direc
tions of greatest and lowest bending stiffnesses, respectiv
Then,a5I 2 /I 1 is a value 0,a<1 that measures the bend
ing asymmetry of the filament’s cross sections. The valu
is reached in the dynamically symmetric case where the
ments of inertia are identical; the scaled radius of circu
cross sections is then equal to 2. A constantb, called the
scaled torsional stiffness, roughly measures the change
volume in the rod as it is stretched. The lower the value ob,
the less the volume changes. Within the framework of lin
elasticity theory@17–19# it is possible to computea andb for
a given cross section shape. For instance, elliptic cross
tions with semiaxesA andB (A,B) have

a5
A2

B2 , b5
1

11s

2a

11a
, ~7!

wheres is the Poisson ratio. The scaled semiaxes are,
spectively, 2Aa and 2. Other values ofa and b for various
shapes are represented on Fig. 2. With a force vectoF
5F1d11F2d21F3d3 and moment vectorM, the scaled dy-
namical Kirchhoff equations stated in the local basis are@14#

F95d̈3 , ~8a!

M 81d33F5ad13d̈11d23d̈2 , ~8b!

M5~k12k1
~u!!d11a~k22k2

~u!!d21b~k32k3
~u!!d3 .

~8c!

The static~without time dependence! form of these equations
is

FIG. 2. The domains covered in the~a,b! plane by various cross
section shapes with 0<s<1/2 are enclosed in black line
~solid5ellipses, dash5rectangles, dot5right triangles!. The line b
5a plays an important role in the stability analysis of binorm
helices.



os

er
e

ta
b

h
ur
to
in
l
f-

on
in

a-
the

s
ces

ec-

ing

re

. For
ow

4510 PRE 61ALAIN GORIELY AND PATRICK SHIPMAN
F850, ~9a!

M 81d33F50, ~9b!

M5~k12k1
~u!!d11a~k22k2

~u!!d21b~k32k3
~u!!d3 .

~9c!

Helical and circular solutions to these equations are th
with constant Frenet curvature and torsion~we consider here
true helices for which both curvature and torsion are diff
ent from zero!. The only such solutions are those with th
angle between the director basis and the Frenet frame
integer multiple ofp/2 @14#. That is,z5np/2, wheren is an
integer. These solutions are such that]z/]s50 and are
called Frenet helices since the principal axes do not ro
with respect to the Frenet frame. Moreover, for a helix to
a solution we need

kt~u!5k~u!t. ~10!

That is, helical strips are stationary solutions of the Kirc
hoff equations only if they are twistless and the ratio of c
vature to torsion equals the ratio of intrinsic curvature
intrinsic torsion. There are two types of solutions depend
on the parity ofn. For evenn, d2 lies along the binorma
vectorb, which is then the direction of lowest bending stif
ness. Such helical solutions, namely,

k5kd21td3 , ~11a!

F5~b2a!t~k2k~u!!, ~11b!

are referred to asbinormal helices. For oddn, d2 lies along
the normal vectorn. These solutions, namely,

k5kd11td3 , ~12a!

F5~b21!t~k2k~u!!, ~12b!

are referred to asnormal helices~see Fig. 3!.

FIG. 3. Normal and binormal helices.
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III. PERTURBATION EXPANSION

To study the stability of these solutions, a perturbati
scheme was developed for the Kirchhoff equations
@20,21#. A perturbation is performed by a near-identity rot
tion matrix B that maps the unperturbed local basis onto
perturbed one:

~d1 d2 d3!5~d1
~0! d2

~0! d3
~0!!B, ~13a!

d5d~0!1ed~1!1e2d~2!1 . . . , ~13b!

and requiring to each order ine that the orthonormality con-
dition di•dj5d i j is satisfied. ExpandingB as a power series
in e, we obtain

B511«A~1!1«2~A~2!1S2!1«3~A~3!1S~3!!1 . . . , ~14!

where1 is the identity matrix, and the symmetric matrice
S(k) depend solely on the general antisymmetric matri
A(1) to A(k21), where theA( j )’s are

A~ j !5S 0 2a3
~ j ! a2

~ j !

a3
~ j ! 0 2a1

~ j !

2a2
~ j ! a1

~ j ! 0
D . ~15!

Given the vectora5(a1 ,a2 ,a3), wherea i5a i
(1), one can

reconstruct the perturbed rod by integrating the tangent v
tor as

R~s,t !5E d3~s,t !ds

5E @d3
~0!1e~a2d1

~0!2a1d2
~0!!#ds1O~e2!. ~16!

Expressions for the elements of the twistk and spinv vec-
tors in terms of the perturbed variables are obtained us
Eqs.~2! and ~13a! which combine to give

]

]s
@~d1

~0! d2
~0! d3

~0!!B#5~d1
~0! d2

~0! d3
~0!!BK . ~17!

This, in turn, is equivalent to

~d1
~0! d2

~0! d3
~0!!S K ~0!B2BK1

]B

]s D50. ~18!

Since the matrixB is orthogonal and the basis vectors a
independent, we have

K5BTS K ~0!B1
]B

]s D . ~19!

The spin vector components are expressed analogously
a given unperturbed state, the Kirchhoff equations may n
be written in terms of the six variables of the vector

X~k!5~F1
~k! F2

~k! F3
~k! a1

~k! a2
~k! a3

~k!!T. ~20!
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PRE 61 4511DYNAMICS OF HELICAL STRIPS
IV. CONSTRUCTION OF THE PERTURBED HELICAL
STRIPS

It was previously noted that, given the vect
a5(a1 ,a2 ,a3), we can construct the perturbed strip by t
integration~16!. To actually perform this integration we nee
the vector a and the generalized framed(0)

5(d1
(0) ,d2

(0) ,d3
(0)) of the unperturbed helix.

The vectord(0) is found by the relation~1! and the Frenet
frame of a helical curve, which is as follows:

S n
b
t
D 5S „0,2cos~ds!,2sin~ds!…

„2Rd,2Pd sin~ds!,Pd cos~ds!…

„Pd,2Rd sin~ds!,Rd cos~ds!…
D , ~21!

whereR is the radius of the cylinder about which the he
may be wrapped,Pp is the period of the helix, andd5
6A1/(P21R2). The positive root in this last expression d
fines a right-handed helix, and the negative root define
left-handed helix. For a binormal helix, withz5np/2 for
evenn, Eq. ~1! gives

d~0!5S n
b
t
D . ~22!

Hence, Eq.~16! becomes

R~s,t !5E H S Pd
2Rd sin~ds!

Rd cos~ds!
D

1eFa2S 0
2cos~ds!

2sin~ds!
D

2a1S 2Rd
2Pd sin~ds!

Pd cos~ds!
D G J ds1O~e2!. ~23!

For the normal helixz5np/2, n odd, so Eq.~1! gives
a

d~0!5S b
2n

t
D , ~24!

and Eq.~16! becomes

R~s,t !5E H S Pd
2Rd sin~ds!

Rd cos~ds!
D

1eFa2S 2Rd
2Pd sin~ds!

Pd cos~ds!
D

2a1S 0
cos~ds!

sin~ds!
D G J ds1O~e2!. ~25!

The vectora is found by finding the vector solutions~20!
corresponding to unstable modes, as described below.

V. STABILITY ANALYSIS

The linearization of the Kirchhoff equations around t
stationary helical solutions allows for a stability analys
The unperturbed variablesF(0) and k(0) are taken to be the
static helical solutions, Eq.~11! for a study of the binormal
helix and Eq.~12! for a study of the normal helix. The
e0-order part of the spin vector expansion,v (0), is set to 0,
and the expansions for tension, twist, and spin vectors, tr
cated to first order, are substituted into the system. The
sult, in matrix form, is

LX ~1!50, ~26!

whereL for the binormal helix is the following second-orde
linear operator:

L5S LA LB

LC LD
D , ~27!

where
LA5S ]2

]s2 2k22t2 22t
]

]s
2k

]

]s

2t
]

]s

]2

]s2 2t2 kt

22k
]

]s
kt

]2

]s22k2

D , ~28!

LB5S 2~b2a!~k21t3!
]

]s
~b2a!t2S ]2

]s2 k22t2D2
]2

]t2 ~b2a!tk~t21k22]2]s2!

~b2a!t2S k21t22
]2

]s2D1
]2

]t2 2~b2a!t3
]

]s
22~b2a!kt2

]

]s

~b2a!tkS ]2

]s22t22k2D 22~b2a!kt2
]

]s
2~b2a!k2t

]

]s

D , ~29!



4512 PRE 61ALAIN GORIELY AND PATRICK SHIPMAN
LC5S 0 21 0

1 0 0

0 0 0
D , ~30!

LD

5S ~b2a!~t22k2!2akk2
u2btk3

u1
]2

]s22
]2

]t2 ~b2a21!t
]

]s
2bk3

u ]

]s
~b2a11!k

]

]s
1ak2

u ]

]s

~11a2b!t
]

]s
1bk3

u ]

]s
~b21!t22btk3

u1aS ]2

]s22
]2

]t2D ~12b!kt1k3
u

~a2b21!k
]

]s
2ak2

u ]

]s
~12a!kt1ak2

ut b
]2

]s2 ~a21!k22akk2
u2~11a!

]2

]t2

D .

~31!
We now look for the fundamental solutions of Eq.~26!, ex-
pressed as

X~1!5Auet~st1 ins!, ~32!

where A is a constant complex amplitude,u is a constant
vector with a given norm,s is a complex constant, andn is
a real constant. The substitution of Eq.~32! into Eq. ~26!
yields
.

Mu50. ~33!

The matrixM for the binormal helix is

M5S MA MB

MC MD
D , ~34!

where
MA5S 2~11n2!t22k2 22int2 2inkt

2i t2n 2~11n2!t2 kt

22inkt kt 2k22t2n2
D , ~35!

MB5S 2i tn~F21tF3! 2ktF22~t2n21t2!F32t2s2 ~t2n21k2!F21ktF3

2ktF21@~11n2!t22k2#F31t2s2 2int2F3 22int2F2

22ktF32@~n221!t21k2#F2 22inktF3 2inktF2

D , ~36!

MC5S 0 21 0

1 0 0

0 0 0
D , ~37!

MD

5S ~b2a!~t22k2!2t2~n21s2!2akk2
~u!2btk3

~u! int2~b2a21!2 ibntk3
~u! inkt~b2a11!1 iantk2

~u!

int2~11a2b!1 ibntk3
~u! t2~b212an22as2!2btk3

~u! ~12b!kt1bkk3
~u!

inkt~a2b21!2 iantk2
~u! ~12a!kt1ak2

~u!t ~a21!k22bn2t22~11a!t2s22akk2
~u!
D ,

~38!
and the expressionsF25(b2a)t(k2k2
(u)) and F35(b

2a)t(t2k3
(u)) are the components of the force vectorF.

The matrixM for the normal helix has a similar form~with
different coefficients! and will not be given explicitly here
There are nontrivial solutions foru only if det(M)50. This
leads to thedispersion relation
det~M !5D~n,s2,a,b,t,k,z i ,k i
~u! ,k3

~u!!50, ~39!

where i51 for the normal helix~in this casez15p/2 and
k1

(u)5k (u), k2
(u)50) and i 52 for the binormal helix (z2

50 andk1
(u)50, k2

(u)5k (u)) due to relations~6!. If the dis-
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FIG. 4. Naturally straight binormal helix:§(n) with k515t, a51/2, andb51/10, 1/2, 5/6, 1, and 2.3.
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persion relation allows for modes that grow exponentially
time—that is, modes with Re(s).0—then the helical strip is
unstable.

The dispersion relations corresponding to the binorm
and the normal helices are examined for the existence
these unstable modes. We first study the stability of the n
rally straight helices—those withk(u) set to0—and then the
stability of the free-standing helices—those withk(u) set to
k. The basic procedure is the following. We solve Eq.~39!
for s2 as a function ofn and the parametersa, b, t, andk,
and thus obtain three solutionss1

2(n), s2
2(n), and s3

2(n).
We are interested in the real parts of these solutions. For
binormal helix, whetherk50 or k5k(u), we find that the
solution s2 is purely imaginary regardless of the values
the intrinsic curvature and twist, and Re@s3

2(n)#<0 for all n,
so these solutions contribute no unstable modes. The s
tion for the normal helix is similar; the solution Re(s3

2) is
nonpositive for alln and although the solutions2

2(n) may
have a real part~in the casek(u)50), this part is always
nonpositive. Hence, we only consider the solution§(n)
5Re@s1

2(n)#.

VI. THE NATURALLY STRAIGHT HELICES

We first consider naturally straight helices, that is, helic
with no intrinsic curvature or torsion (k(u)50). The neutral
modes—the values ofn such that Re(s)50—are found by
substitutings250 into the dispersion relation~39! and solv-
ing for n. For both the normal and binormal helices we fi
neutral modes of the form

n150, ~40a!

6n256
At21k2

t
, ~40b!

6n356
&

2

c1Ax

bat
, ~40c!

6n456
&

2

c2Ax

bat
, ~40d!
l
of
u-

he

f

a-

s

wherec andx are rather complicated functions ofb2a, t,
and k. The neutral modesn1 and n2 are independent ofb
2a; hence we organize a discussion of unstable modes
considering values ofb2a since the stability changes occu
as the rootsn3 andn4 change position relative to the rootn2 .

A. The naturally straight binormal helix

Taking z5z250 and k2
(u)50 in the dispersion relation

we find the solution§(n) associated with the naturall
straight binormal helix. Various examples of this solutio
with constantk, t, anda, and varyingb, are shown in Fig. 4.
The graphs indicate positive concavity atn50 for most val-
ues ofb2a. To show that this is indeed the case, we loca
expand the dispersion relation aroundn50 and find

§5e2~a1Ab!
k21t2

g
n1

21e3§~3!1 . . . , ~41!

wherea, b, andg are all functions of the parametersk, t, a,
and b. For small e, § behaves approximately like
(a1Ab)@(k21t2)/g#n1

2. Since g is always positive, the
sign of the lowest order term in the expansion of§(n) about
~0,0! depends ona1Ab. For b<a and 1

3 @(4t21k2)/t2#a
,b, b2a2.0, soa1Ab.0. Thus,§(n) has positive con-
cavity at ~0,0! for these values of the parameters. For t
rangea,b, 1

3 @(4t21k2)/t2#a, § has negative concavity a
~0,0!. However, for these values, both modesn3 andn4 ap-
pear as roots of§(n), and in this range§(n) has the form
shown in Fig. 5. Hence, we conclude that a naturally strai
binormal helix is always unstable. Depending on the valu
of a andb, there are two different types of unstable mod
In the rangeb<a and 1

3 @(4t21k2)/t2#a,b the instability
is a long wave instability~all modes close ton50 are un-
stable!, and the deformation takes place on long wav
lengths. Fora,b, 1

3 @(4t21k2)/t2#a, there is an unstable
band of modes centered around a nonzero wave numbernc .
This Hopf-like instability occurs at finite wavelength an
results in the superposition of two helical modes: the stati
ary solution and the unstable solution with wave numbernc .

To construct the solution, we find the fundamental so
tions corresponding to the fastest-growing modenc—that is,
the mode that corresponds to a peak in the solutions§(n).
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FIG. 5. Naturally straight binormal helix:§(n) with k515t, a51/2, andb52/3.
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For example, for the binormal helix with properties as list
in Fig. 5 (k515t,a5 1

2 ,b5 2
3 ), the fastest-growing mode

are those atn'0.7704. The corresponding null vector of E
~34! is

u'S 20.392i
0.427

20.294
1.769
0.402

21.443

D . ~42!

Similarly, nc520.7704 yields the complex conjugate of th
solution vectorū. The corresponding solution is then

Aue@§~0.7704!t10.7704is#1Āūe@§~0.7704!t20.7704is#, ~43!

and the last three components of this vector forma.
Examples of perturbed binormal naturally straight heli

strips follow in Fig. 6. In all cases, we useA51, R52
5P, andd5 1

2 . Two periods are shown. For different valu

FIG. 6. Binormal helix, a51/2, b52/3, t515k, k2
(0)50

5k3
(0) , perturbed modes:nc560.7704,e50.1, 0.2, and 0.5.
l

of b, two unstable wavelengths can be excited. For instan
for a5 1

2 and b5 1
10 , the dispersion relation~Fig. 4! shows

two maxima aroundnc560.6685 andnc561.797. The re-
constructed unstable binormal helix is shown in Fig. 7.

B. The naturally straight normal helix

Takingz5z15p/2 andk1
(u)50 in the dispersion relation

we find the solution§(n) associated with the naturall
straight normal helix. Typical graphs of this solution a
shown in Fig. 8 for fixedk, t, and a, and varyingb. As
indicated there, there is a band of unstable modes arounn
50, and this band grows as the valueb2a increases. Setting
n50 in det(M) and solving fors2, we get the three roots 0
0, and @(12a2)(t2k21t4)1(12a)(k41t2k21k2)1(t2

1k2)21k2#/@t2(k21t211)(a11)#. The first two roots

FIG. 7. Binormal helix,a51/2, b51/10, t515k, k2
(0)50

5k3
(0) , perturbed modes:nc560.6685, 61.797, e50.1, 0.2,

and 0.3.
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FIG. 8. The solution§(n) for normal helices withk515t, b53/4, anda51/20, 1/2, 3/4, 7/8, and 1.
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appear in the solutionss2
2 ands3

2, and the last appears in th
solution§(n)5s3

2. Sincea<1 the last root is always posi
tive. Hence there is always a band of unstable modes a
n50 in the solution§(n). We conclude that, as for the natu
rally straight binormal helix, the naturally straight norm
helix is always unstable.

VII. THE FREE-STANDING HELICES

For the casek(u)5k we have only two neutral modes
which are

n150, ~44a!

6n256
At21k2

t
. ~44b!

These neutral modes all appear as roots of the solution§(n).
A local perturbation analysis around the points (n,s)
5(0,0),(6At21k2/t,0) as performed for the naturall
straight binormal helix shows that the curve§(n) always has
negative concavity around these points. Hence, there ar
unstable modes, and we conclude that the free-standing
lices are always~linearly! stable.

VIII. HELICES THAT ARE NEITHER NATURALLY
STRAIGHT NOR FREE STANDING

Let r 5t/k be the aspect ratio of a helix;r .1 are long
helices whereasr ,1 are ‘‘fat’’ helices. Stationary helica
solutions are such thatkt (u)5tk (u). Let R be the ratio

R5
t~u!

t
5

k~u!

k
. ~45!

For a given intrinsic torsion and curvature the one-param
family of helices defined byR corresponds to similar helice
of different size~helices with constant ratio of torsion t
curvature!. The natural size is defined as the size of the he
with R51. The radius of such a helix isr (u)
ut

no
e-

er

x

5k(u)/@(k(u))21(t(u))2#. For RÞ1 the radius of the helix isr
5Rr (u). HenceR describes the relative size of similar he
ces. ForR.1 the helices are smaller than the natural si
and bigger forR,1. In the preceding sections we studied t
case R50 ~naturally straight helices! and R51 ~free-
standing helices!. We now consider values ofR different
from 0 and 1. If we start atR51, the helix is stable. As we
vary this parameter, the helix might become unstable. T
question is to locate the bifurcation pointRc for givena and
b and to describe the instability.

Again, we need only consider the real part of one solut
to the dispersion relation since the other two solutions
ways have nonpositive real parts, and we call this real par
a solution§(n). For example, a graph of§(n) corresponding
to the normal helix with fixed values ofk, t, a, andb, and
varying R is shown in Fig. 9. Note that, for example, ifR
51

2, b5 3
2 , anda, 3

4 , then there are no unstable modes f
the normal helix; a helix must not be free standing to
stable. An analysis of the neutral modes6n3 and6n4 given
in Eq. ~44! allows for the finding of the values of the param
eters that characterize stable forms. Forr 51 in the normal
case we have the situation indicated by Fig. 10, where st
regions are those in which6n3 and 6n4 are not neutral
modes, and the solution§(n) is similar to theR51 case of
Fig. 9. The stability of a stationary helix~normal or binor-
mal! depends onr, R, a, andb. For both helices, the picture
is similar to the one in Fig. 9. We setc51 for the normal
helix and c5a for the binormal helix. We find that forb
,c, the helix is stable only for 1<R<R8, and forb.c the
helix is stable only forR8<R<1, where the values ofR8 are
given by the positions of the different roots. We have co
sidered that all modes can be excited~short, middle, and long
wavelength instabilities!.

Most helical strips are such thatb,1 ~see Fig. 2!; hence,
all normal helices behave the same way. They are stabl
long as 1<R,R8; when the size is such thatR.R8 a short
wavelength instability develops~the unstable modesnc
.1); and smaller helices (R,1) are all unstable with a long
wavelength instability.



4516 PRE 61ALAIN GORIELY AND PATRICK SHIPMAN
FIG. 9. Normal helix:§(n) with k515t, a53/4, andb53/2 and varyingR.
or

e
u

ize
so
th
,

ur

id-
e-

is-

able

her
le

all
of

nd

ble.
if

he
or-

(
ears
ly
e

of
The situation for binormal helices is slightly different. F
b,a, the helix is stable only for 1<R<R8, and forb.a
the helix is stable only forR8<R<1, So, depending on th
cross section anisotropy, binormal helices can become
stable. Indeed, for a givenb and flat cross sections~such that
a,b) small helices can be stable~for R8,R,1), whereas
helices with thick cross sections (a,b) behave like normal
helices.

IX. INSTABILITY OF CIRCULAR STRIPS

In order to show how boundary conditions can stabil
instabilities, we study the case of elastic rings with ani
tropic cross sections. This case is of particular interest in
theory of DNA rings Ref.@22#. In the case of elastic rings
t50, hence we do not scale the moden with t and we let
R5k (u)/k. The filament is periodic~of period 2p/k) and
with periodic boundary conditions on the force and curvat

FIG. 10. Bifurcation curves (R-b plane! for the normal helix
with k515t, a53/4. The different regions indicate the zones
stability and instability.
n-

-
e

e

vectors as well as the position vector. This restricts cons
erably the type of instabilities since modes with long wav
lengths~with n/k,1) cannot become unstable and only d
crete modes can be unstable~with n/k.1 and integer!. Due
to this fact, small binormal rings~with R<1) are always
stable and large rings of increasing size first become unst
when n/k52. The moden/k5m becomes unstable forR
.Rm , where

Rm5
2a2~11b!1A~b21!214bm2

2a
.1. ~46!

Surprisingly, normal rings can become unstable when eit
R,1 or R.1. Indeed, themth mode becomes unstab
whenever 0<R,Rm

(1) or R.Rm
(2).1 with

Rm
~1!512 1

2 ~a1b!2 1
2 A~b2a!214m2ab, ~47!

Rm
~2!512 1

2 ~a1b!1 1
2 A~b2a!214m2ab. ~48!

Note that Rm
(1).0 only if a,(12b)/@(m221)b11#.

Hence, the cross section has to be sufficiently flat for sm
normal rings to become unstable. In the particular case
circular cross sections one finds thatRm5Rm

(2) and Rm
(1),0

and we recover the solution given in Ref.@23#.

X. CONCLUSIONS

In this paper, we have studied the stability of normal a
binormal helices. The first conclusion is that all~infinitely
long! naturally straight strips shaped as helices are unsta
This might seem contradictory to one’s intuition. Indeed,
one plays with a belt~or a very flat strip of paper!, it is easy
to create a binormal helical strip by twisting one end. In t
same way, it is next to impossible to shape a strip as a n
mal helix. However, if one considers flat enough stripsa
,b), one sees on Fig. 4 that the unstable mode app
between 0 and&. These are long wavelength modes on
~& is the mode associated with the helical repeat, hencn
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,& correspond to wavelengths longer than the helical
peats!. We conclude that afinite helical binormal strip
clamped at both ends is stable if its cross section is
enough. In the case of a normal helix, there always e
unstable modes withn.& and these modes become mo
important as the cross sections become flatter~see Fig. 8!.
Therefore, we conclude that normal helices with flat cro
sections are always unstable even for finite strips.

Our second conclusion is that free-standing helices
always stable. This is not surprising as these helices co
spond to minima of the elastic energy and we do not exp
them to become dynamically unstable. The analysis p
formed here can be used in this case to provide all the vi
tion modes of the stable helix; these are the~imaginary! time
exponents associated with the modes~40!. Depending on the
type of constraints imposed, one can easily obtained the
responding descriptions of the vibrations. In particular,
spring constants of Hooke’s law can be obtained toge
with higher order corrections and coupling to other mode

The effect of size on the stability of helices was al
studied. Depending on the ratioR that measures the size of
.

-

t
st

s

re
e-
ct
r-
a-

r-
e
er
.

stationary helix with respect to the corresponding fre
standing helix and the aspect ratior, we showed that smal
normal helices are always unstable. Moreover, depending
the anisotropy of the cross sections, small binormal heli
can be stable~for flat cross sections! or unstable~thick cross
sections!. The analysis of stability becomes quite intricate
general, and a detailed analysis of the roots of the disper
relation has to be performed.

Finally, we studied circular strips. Whereas only lar
~with R.1) binormal circular strips may be unstable, sm
normal circular strips with flat cross sections may also ha
instabilities.
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