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Amplification of a magnetic field in systems with a finite electric conductivity

Yu. Dolinsky* and T. Elperin†

The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

~Received 5 October 1999!

In this study we investigated the kinematics of electromagnetic fields with various configurations of the
magnetic and electric fields in systems with spherical and cylindrical symmetry using the exact solutions to the
diffusion equation for the electromagnetic field in systems with moving boundaries. In the class of self-similar
solutions we determined analytically conditions for the amplification of the electromagnetic field as functions
of material velocity and electric conductivity. We investigated also the effects of the amplification of an
electromagnetic field during propagation of a spherical shock wave in a dielectric material whereby the shock
wave causes transformation of a material into a conductor.

PACS number~s!: 03.50.De, 41.20.Gz
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I. INTRODUCTION

One of the most efficient methods for generating stro
and ultrastrong magnetic fields is the compression of m
netic flux in conducting systems. Examples of such syste
are conducting metallic shells~see, e.g., Ref.@1# and refer-
ences therein!, conducting liquids or strongly ionized med
ums, e.g., plasma produced after the shock wave front~see,
e.g., Refs.@2,3#!. A mechanism of the amplification of
magnetic field is associated with a negative work perform
by ponderomotive forces. Thus, the necessary condition
an amplification of a magnetic field reads~for details see
Refs.@4–6#!:

E uW

c
•~ jW3HW !drW,0, ~1!

where uW (rW,t) is a local velocity of a conducting medium
jW(rW,t) is a density of an electric current, andHW (rW,t) is a
magnetic field.

Although the physical nature of these phenomena is q
transparent, it is not always easy to determine the condit
for the amplification of a magnetic field. The reason is th
the boundary conditions together with the symmetry of
electromagnetic field yield certain kinematic restriction
Condition~1! is not always satisfied for a given configuratio
of an electromagnetic field, e.g., it is not valid in a case of
imploding conducting cylinder with electric current distrib
uted across the whole cross section and directed along
axis of the cylinder. For an electric current with an azimuth
symmetry] j z /]w50 wherew is an azimuthal coordinate
this conclusion is quite evident. Indeed, it follows from t
effect ofz-pinch of plasma or of a cylindrical conductor~see,
e.g., Ref.@7#! whereby ponderomotive forces act to compre
a conductor and, therefore, perform a positive work dur
its implosion. In a case without an azimuthal symmetry, c
dition ~1! does not allow to predetermine the feasibility
generating a magnetic field.

*Electronic address: yuli@menix.bgu.ac.il
†Electronic address: elperin@menix.bgu.ac.il
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In systems with a finite electric conductivity, conditio
~1! is not sufficient since in this case the power of ponde
motive forces must be larger than a joule dissipation rate~for
details see Ref.@7#!. Another problem arising when invest
gating the feasibility of generating a magnetic field is that
many cases a compression of a magnetic flux is caused
shock wave which transforms a material into a conduct
state~see, e.g., Refs.@2,3#!. Here before the shock wave fron
a material is dielectric while after the shock wave front
becomes a conductor. The velocity of a shock wave diff
from the material velocity while the power of the ponderm
tive forces is determined by a material velocity and not
the velocity of a shock wave. Therefore, the condition for
amplification of a magnetic field under a given shock wa
velocity implies a certain relation between the velocity of
shock wave and a material velocity.

Since theoretical and experimental studies on genera
strong and ultrastrong magnetic fields by compressing m
netic flux inside have been performed for many years, th
is a large number of publications in this field~see, e.g., Refs
@1,8# and references therein!. However, most of the theoret
ical studies employ electrotechnical approximations or s
plified electrodynamic schemes which are not satisfactory
far as a self-consistent solution of the corresponding bou
ary value problem for the electromagnetic fields is concer
~see, e.g., Refs.@9,10#!.

Among the studies where this problem is considered s
consistently, we must mention the studies in Refs.@11,12#.
The study in Ref.@12# investigates the dynamics of an az
muthal magnetic fieldHw in an ideally conducting plasma
with z-pinch symmetry while in Ref.@11# a finite electric
conductivity plasma with the geometry of au-pinch is ana-
lyzed. In both cases plasma occupies a cylindrical dom
r, r̄(t) @r̄(t) is a boundary of a cylindrical domain# and its
electric conductivity is determined by a temperature with
self-similar distribution. On the other hand, for practical a
plications it is of interest to consider an amplification of
magnetic field when plasma occupies a domainr. r̄(t)
while a regionr, r̄(t) is occupied by a stationary dielectri
material. Solution of the latter problem will allow us to an
swer a number of questions, e.g., the dependence of the
4500 © 2000 The American Physical Society
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PRE 61 4501AMPLIFICATION OF A MAGNETIC FIELD IN . . .
ditions for the amplification of a magnetic field on the ele
tric conductivity of plasma, on the velocity of a jump o
electric conductivity, on the fluid velocity at the movin
front of the electric conductivity jump, and on the symme
of a magnetic field. On the other hand, an exact analyt
solution to the problem of an amplification of magnetic fiel
in systems with distributed parameters can be obtained
in the class of self-similar solutions. In the case of the sys
with a finite electric conductivity the latter implies the co
stant magnetic Reynolds number~see Refs.@4,5,11,12#!.
Note that when in a problem with moving boundaries a c
dition for self-similarity is not satisfied, evolution of such
system is accompanied by variation of spatial and time sc
which renders a very involved description of the system.

In this study we still remain in the framework of the se
similar problem but consider a broader class of the magn
fields and take into account the difference between the
locity of the front of an electric conductivity jump and a flu
velocity at this front. We will restrict ourselves to a kine
matic level of description whereby thermodynamic proces
associated with the variation of temperature, magnetic,
thermodynamic pressures are not considered. The main
of the present study is to determine the thresholds for a fl
velocity and a velocity of the front of electric conductivit
which are required for the amplification of the electroma
netic field with different configurations in systems with d
ferent geometries.

II. FORMULATION OF THE PROBLEM

The general scheme of the solution of the problem
scribed above is as follows. Let a surfaceF(x,y,z,t)50
separate a region occupied by a conducting material fro
region with an electric conductivitys50. LetvW F be a veloc-
ity of a front F(x,y,z,t)50 which is determined by the
equation

]F

]t
1vW F•¹W F50,

and uW is a material velocity at the front uW

5uW (rW,t)uF(x,y,z,t)50 . Then with the accuracy of the order o
max$vF

2/c2,u2/c2% we can write the equation for a magneticHW

and electricEW fields in the domain withs50 as follows:

¹W 2HW 50. ~2!

Inside the domain occupied by a conducting material inst
of Eq. ~2! we have

¹W 3HW 5
4p

c
jW , ¹W 3EW 52

1

c

]HW

]t
. ~3!

Equations~2,3! must be supplemented with the Ohm’s la
for a moving medium which in the framework of the simp
magnetohydrodynamic model can be written as follows~see,
e.g., Ref.@7#!:

jW5sFEW 1
1

c
~uW 3HW !G . ~4!
-
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Hereafter we will consider only solenoidal fields, i.e., t
following conditions are satisfied:

¹W •E50,
~5!

¹W •HW 50.

Equations~2,3! must be supplemented with the bounda
conditions which for the systems with a finite electric co
ductivity reduce to the conditions of continuity of electr
and magnetic fields at the surfaceF(x,y,z,t)50 and re-
quirement for the absence of the external sources of elec
magnetic field at infinity:

EW 15EW 2 ,HW 15HW 2 ,E~rW,t !}
1

r a ,

~6!

H~rW,t !}
1

r b at r→`,a,b>1,

where subscripts1 and2 denote values at different sides o
the surface. The latter two conditions follow from the r
quirement for a vanishing flux of the electromagnetic ene
at infinity.

Equations~2,4! together with boundary conditions~6! and
the condition of self-similarity of a solution, which will be
specified below, completely determine~with an accuracy of a
constant multiplier! a set of possible self-similar solutions.
boundary condition~6! yields a transcendental equatio
which allows to determine a condition for amplification of a
electromagnetic field for a given configuration of the elect
magnetic field and geometry of the system.

III. AMPLIFICATION OF MAGNETIC
FIELDS IN CONFIGURATIONS

WITH A CYLINDRICAL SYMMETRY

Consider a case with a cylindrical symmetry. Amplific
tion of a magnetic field in systems with a cylindrical sym
metry was investigated in the above mentioned studies@11#,
@12# and also in Refs.@4,5,13#. In Ref. @13# we considered an
infinitely long ideal conducting shell moving with a consta
radial velocityrG (t).

For the completeness of the exposition in the followi
we present briefly the results obtained in Ref.@13#. In the
latter study we had considered a case when a magnetic
has onlyz-componentHz directed along the axis of symme
try and the electric field has only an azimuthal compon
Ew . In physics of plasmas such a configuration is cal
u-pinch symmetry~see Ref.@7#, Chap. 8, Sec. 68!. At the
surface of an ideally conducting shell the first two conditio
in Eq. ~6! must be replaced by another condition

Ew2bHz50, b5
rG

c
. ~7!

The latter condition follows from Eq.~4! at s→`.
The fieldsEw andHz in Ref. @13# are determined from the

following relations:
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4502 PRE 61YU. DOLINSKY AND T. ELPERIN
Ew52
1

c

]Aw

]t
, Hz5

]Aw

]r
1

Aw

r
, ~8!

where a formula for a vector potential reads

Aw5a0S r̄~ t !

r0
D 21

FwS r

r̄~ t !
D , ~9!

where a0 is a normalization constant,r̄(t) and r0 are an
instantaneous and the initial radii of the ideally conduct
shell,

Fw5xFS 3

2
,1;2;b2x2D , x5

r

r̄~ t !
,

andF(ā,b̄;ḡ;z) is a hypergeometric function~see, e.g., Ref.
@14#!. Using Eqs.~8,9! electric Ew and magneticHz fields
can be presented as follows:

Ew5bxHz ,

Hz5
F0

2pI 0r2~ t ! FFS 3

2
,1;2;b2x2D

1
3

2
b2x2FS 5

2
,2;3;b2x2D G , ~10!

where F0 is magnetic flux which remains constant in th
case of compression by an ideally conducting shell~see, e.g.,
Ref. @1#!. I 0 is a constant which is determined by the follow
ing formula:

I 05E
0

1

x dxFFS 3

2
,1;2;b2x2D1

3

2
b2x2FS 5

2
,2;3;b2x2D G .

The latter expression can be easily calculated as a po
series of the parameterb2. In the zeroth approximation in
the parameterb2 magnetic fieldHz remains homogeneou
and Aw5@F0/2pr(t)#x. The above solution describes th
amplification of a magnetic field in the cylindrical cavit
with ideally conducting walls which implodes with a con
stant velocity. These ‘‘walls’’ can be of a different natur
e.g., a shock wave front. The latter case is considered in
present study. Since the approximation of an ideal condu
implies that the dissipation processes are neglected in
study we considered a more general case with a finite ele
conductivity.

Taking into account the above results@see Eq.~10!# con-
sider now a system with a finite electric conductivity. Fir
we will study a case when a cylinderr, r̄(t) is occupied by
a stationary dielectric material and a space outside the cy
der r. r̄(t) is occupied by a conducting material, e.g
plasma or conducting liquid, andr̄(t) is the location of a
shock wave front. Under the effect of the shock wave wh
moves with a speedrG (t) a material is transformed into
conducting state due to ionization. Material velocity after t
front of a shock waveu(r,t)5u0(t)ū(x) where u0(t) is
material velocity at the wave front, i.e.,ū(1)51 and before
the frontu50. Note thatu0(t)[u„r̄(t),t…ÞrG (t).
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Let us writeAw as follows:

Aw5S r̄~ t !

r0
D g

FwS r

r̄~ t !
D ~11!

and forFw using Eqs.~3!, ~4!, and~8! we obtain the follow-
ing equation:

]2Fw

]x2 1
1

x

]Fw

]x
2

Fw

x2

5n~x!F S g1
Dū~x!

x
DFw1@Dū~x!2x#

]Fw

]x
G .

~12!

Heren(x)5(4p/c2)s̄(x) ṙ(t) r̄(t)s0(t), D5@u0(t)/ ṙ̄(t)#.
Equation ~12! was derived under an assumption that

magnetic Reynolds number for a front velocity is consta
i.e.,

4p

c2 ṙ̄~ t !r̄~ t !s0~ t !5const[n0 , ~13!

and electric conductivity is given bys(r,t)5s0(t)s̄(x).
Equation~13! implies the existence of a self-similar solu

tion. Certainly the feasibility of such solution depends up
various physical parameters. When the behavior of the s
tem is determined mainly by a motion of the boundary se
rating between the regions with different electric conduct
ity the solution at enough large times approaches the s
similar solution with magnetic Reynolds numbern0 . It is
conceivable to suggest that in a more general case the sy
can be described by matched self-similar solutions with d
ferent magnetic Reynolds numbers at different time int
vals. In addition, the self-similar solutions allow us to dete
mine the main parameters affecting the behavior of a sys
and validate the numerical solutions of the governing eq
tions @Eqs.~2!–~6! in this study#.

Consider now a case when after the shock wave fron
material becomes incompressible, i.e., the sound velocity
ter the shock wave front is much larger than a material
locity. Assume that the ratioD of the material velocity at the
wave front to the velocity of the wave does not change w
time and that the temperature after the wave front does
change. The essence of the latter assumptions is that
variations of the parameters after the shock wave front
small compared with the jump of the thermodynamic para
eters at the shock wave front. This assumption and the
vious assumption about the incompressibility of the mate
after the shock wave front are valid for strong shock wav
Therefore s̄(x)51 and for the incompressible materi
(¹W •uW 50) after the wave frontū(x)51/x. The solution of
Eq. ~12! which tends to zero whenx→` can be written as
follows:

Fw~x!5
a0

x
CS 2

g11

2
,2

n0D

2
;2

n0x2

2 D , ~14!

whereC(ā,c̄;z) can be expressed through Kummer’s fun
tions ~see, e.g., Ref.@15#!:
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FIG. 1. The dependence of the exponentg in Eq. ~18! vs magnetic Reynolds numbern0 for various values of the ratio of a fluid velocit
at the front to a front velocityD. 12D51;22D50.8;32D50.6;42D50.4.
ot

he
-

en

n
h

n-
ain
-
als

ical
ned
f a

.
at
ag-

g-

:

ence
r’s
C~ ā,c̄;z!5
G~12 c̄!

G~ ā2 c̄11!
F̄~ ā,c̄;z!

1
G~ c̄21!

G~ ā!
z12 c̄F̄~ ā2 c̄11,22 c̄;z!. ~15!

G(z) is the gamma function and forc̄Þ0,21,22, . . . Kum-
mers’s functions can be written as power series

F̄~ ā,c̄;z!5 (
n50

`

anzn, a051, an5
an21

n S ā1n21

c̄1n21
D ,

n51,2,••• . ~16!

For uzu@uāu,uc̄u, function C(ā,c̄,z) has the following
asymptotic behavior~see, e.g., Ref.@15#!:

C~ ā,c̄;z!;
1

zā . ~17!

Thus according to Eq.~14! Fw(x)}xg. Therefore, the re-
quirement that a vector potential vanishes forx→`, yields a
conditiong,0. Forg.0 the electromagnetic field does n
vanish atx→`.

In the regionr,r(t), a vector potentialAw is determined
by Eqs.~2,8! and can be represented as follows:

Aw5a0S r̄~ t !

r0
D g

x. ~18!

The continuity of electric and magnetic fields at t
boundaryx51 @Eq. ~6!# reduces to the condition of the con
tinuity of the function (]/]x)(logAw) and yields the follow-
ing transcendental equation which determines a depend
of the parameterg on n0 andD:
ce

āCS ā11,c̄11,2
n0

2 D5
2

n0
CS ā,c̄,2

n0

2 D ,

~19!

ā52
g11

2
, c̄52

n0D

2
.

The dependence of the exponentg vs a magnetic Rey-
nolds numbern0 andD obtained from the numerical solutio
of Eq. ~19! is shown in Fig. 1. Intersection of the curve wit
n0 axis determines the threshold value ofn0 which is re-
quired for an amplification of a magnetic field, i.e., an i
crease of the total energy of a magnetic field in the dom
r, r̄(t). At the threshold value ofn0 the rate of a mechani
cal work performed against the ponderomotive forces equ
the joule dissipation rate. Since the rate of a mechan
work performed against ponderomotive forces is determi
by a fluid velocity and not by the propagation speed o
front, a parameter which determines this work isn0D. For
small values ofD ~see Fig. 1, curve 4!, amplification of a
magnetic field does not occur even atn0→`, i.e., propaga-
tion of the electric conductivity front without a fluid flow is
not accompanied by the amplification of a magnetic field

Another case of an amplification of a magnetic field th
can be realized with the same symmetry of an electrom
netic field which is determined by Eqs.~8,11! is when a
conducting fluid~e.g., plasma! occupies an internal region
r, r̄(t). In this case in the internal region an electroma
netic field is determined by Eqs.~3,4! and in the external
region one can assumeH50 similar to the case of an infinite
solenoid. Thus the boundary condition in this case reads

Hz„r̄~ t !,t…50. ~20!

Under the assumptions that the temperature depend
of the electric conductivity can be described by Spitze
formula s}T3/2, such a problem was studied in Ref.@12#.
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For comparison consider here a case when an electric
ductivity during implosion does not change and plasma d
sity m(t) is spatially homogeneous. Using a continuity equ
tion ṁ1¹W •(muW )50 we find that ū(x)5x, m(t)
5m0r0

2/ r̄2(t), wherem0 is density att50. Then Eq.~12!
yields

]2Fw

]x2 1
1

x

]Fw

]x
2

Fw

x2 5n0~g11!Fw . ~21!

In deriving Eq. ~21! we assumed for simplicity that th
velocity of an electric conductivity jump and a velocity o
fluid at the front are equal, i.e.,D51. Nonsingular atx50
solution of Eq.~21! is given by a Bessel function of the firs
order ~see, e.g., Ref.@14#!:

Fw~x!5J1~ax!, a252n0~g11!. ~22!

A magnetic field according to Eq.~8! is given by the follow-
ing formula:

Hz~x!5a0S r̄~ t !

r0
D g

a

r̄~ t !
J0~ax! ~23!

and electric field

Ew~x!5ba0S r̄~ t !

r0
D g

1

r~ t ! Fa2

n0
J1~ax!1axJ0~ax!G ,

~24!

whereJ0 is a Bessel function of zero order. A requireme
@Eq. ~20!# Hz(1)50 according to Eq.~23! can be met only
for real values of the argument of a Bessel function, a
thus, a2.0. Let ak be roots of equationJ0(a)50. Then
according to Eq.~22! a growth rate of a magnetic field i
given by

g52
ak

2

n0
21. ~25!

Note that whenn0.0, r̄(t)/r0.1, and Eqs.~23,24! show
that g.0 corresponds to amplification of the electroma
netic field while forn0,0, r̄(t)/r0,1, and amplification of
the electromagnetic field corresponds tog,0.

Then Eq.~25! shows that there exist three characteris
regions of parametern0 . A region n0.0 corresponds to an
expansion, and since theng,0 amplification does not occur
In the region2ak

2,n0,0 according to Eq.~25! g.0, and
there is also no amplification. Thus an amplification of
magnetic field occurs only in the regionn0,2ak

2 ~note that
a minimum value of a roota0;2.401!. In this region the rate
of the work performed against the ponderomotive forces
sufficiently large to compensate joule losses.

IV. AMPLIFICATION OF A MAGNETIC FIELD
DEPENDING ON AZIMUTHAL COORDINATE

Another configuration of a magnetic field which can
realized in systems with a cylindrical symmetry is when
electric field is directed along thez axis ~z-pinch symmetry!.
Two cases must be considered here. The first case is whe
n-
-

-

t

d

-

is

an

electric field does not depend onw, and when there is only
one nonzero component of a magnetic fieldHw . The second
case is when an electric field does not have an azimu
symmetry and there are two components,Hr andHw . Am-
plification of a magnetic field in a configuration with az
muthal symmetry of electric field was investigated in R
@4# where a condition for a spontaneous excitation of a m
netic field was determined. In a linear problem a conditi
for an excitation of a magnetic field does not depend up
the magnitude of a magnetic field and, therefore, a condi
for a spontaneous excitation of a magnetic field and a c
dition for an amplification of a magnetic field are equivale
In Ref. @4# it was shown that an amplification of a magne
field occurs not during implosion of a cylindrical conduct
but during its expansion. The physical mechanism for su
behavior is as follows. When a conducting material occup
a regionr, r̄(t), and electric current inside it is directe
along thez axis, ponderomotive forces act to compress
conductor. Since for an amplification of a magnetic field
work must be performed against ponderomotive forces,
amplification of a magnetic field occurs during expansion
a conductor.

Consider now an amplification of a magnetic field in co
figurations with azimuthal dependence of an electric fie
When in systems withz-pinch, the electric field depend
upon the azimuthal coordinate, i.e., when]Ez /]wÞ0, a
magnetic field in addition to a componentHw has also a
radial componentHr . In Ref.@13# a configuration of such an
electromagnetic field was determined and its dynamics ins
an imploding ideally conducting shell was analyzed. The o
tained results are briefly summarized in the following. A
expression for a vector potentialAW 5(0,0,Az) reads

Az5a0 exp~ imw!FmS r

r̄~ t !
D , r, r̄~ t !,

~26!

FmS r

r̄~ t !
D 5xmFS m11

2
,
m

2
;m11;b2x2D , x5

r

r̄~ t !
,

where as previouslyb5 ṙ̄(t)/c ~ṙ̄(t) is an implosion veloc-
ity! andF(ā,b̄;ḡ;z) is a hypergeometric function. Solutio
~26! satisfies boundary conditiongFm(1)50 which can be

derived from Ez1 ṙ̄(t)/cHw50 @compare with condition
~7!#. Magnetic fieldsHr andHw are determined by the equa
tions

Hr5
1

r

]Az

]w
, Hw52

]Az

]r
, ~27!

and electric fieldEz by Eq. ~8!. Thus we find that

Hr52
a0mxm21

r̄~ t !
FS m11

2
,
m

2
;m11;b2x2D sin~mw!,

Hw5
a0mxm21

r̄~ t !
FA~x!1

b2x2

2
B~x!Gcos~mw!,

Ez52bxHw cos~mw!,
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where

A~x!5FS m11

2
,
m

2
;m11;b2x2D ,

B~x!5FS m13

2
,
m12

2
;m12;b2x2D .

Now consider a case with a finite electric conductivi
Assume first that a region inside a cavityr, r̄(t) is occupied
by a stationary dielectric while a space outside the cavitr

. r̄(t) is occupied by a conducting material. Then vec
potential inside the cavity is determined by Eq.~2! and out-
side the cavity by Eqs.~3!–~5!. In both regions it can be
written as follows:

Az5a0S r~ t !

r0
D g

exp~ imw!FmS r

r~ t ! D . ~28!

Eqs.~3!–~5! yield an equation forFm(x). In the case of an
incompressible conducting material, the equation of conti
ity (¹W •uW 50) yields ū(x)51/x and

]2Fm

]x2 1
1

x

]Fm

]x
2

m2

x2 Fm5n0FgFm1S D

x
2x D ]Fm

]x G .
~29!

Solution of the latter equation vanishing atx→` can be
written as follows:

Fm~x!5xsCS ā,c̄;2
n0x2

2 D ~30!

where

ā5
s2g

2
, c̄512Am21S n0D

2 D 2

,

s5
nD

2
2Am21S n0D

2 D 2

andC(ā,c̄,z) is determined by Eq.~15!.
Taking into account an asymptotic behavior~17! it is eas-

ily seen thatFm(x)→0 when x→`, provided thatg,0.
This condition implies that the self-similar solution whic
satisfies the boundary conditions exists only in the case o

expanding dielectric domain@r, r̄(t), ṙ̄(t).0#. In the latter
case a conditiong,0 corresponds to the attenuation of ele
tromagnetic field. The existence of the self-similar soluti

for ṙ̄(t),0 and g,0 is impossible. Indeed, its existenc
would imply that in the case with a finite conductivity~with
joule losses! the vector potentialAz grows faster than in the
case of the ideal conductor where according to Eq.~26! g
50. Since in this case a transcendental equation for a gro
rate does not allow to obtain the analytical dependencg
5w(n0), it is not presented here.

Consider now another case when a field depends u
azimuthal coordinate, and a conducting material occupie
region r, r̄(t). In this case the analytical dependenceg
.

r

-

n

-

th

on
a

5w(n0) can be obtained. Skipping a case withDÞ1, con-
sider a solution when a fluid velocity at the front of an ele
tric conductivity jump and a speed of the front propagati
are equal. Similar to the previous analysis assume tha
solution forAz is given by Eq.~28!, density of fluid is spa-
tially homogeneous and an electric conductivity of fluid do
not change during implosion. Then Eq.~29! becomes

@(ū(x)5x, D51#:

]2Fm

]x2 1
1

x

]Fm

]x
2

m2

x2 Fm5n0gFm . ~31!

Nonsingular atx50 solution of Eq.~21! is Fm5Jm(ax),
where Jm(z) is a Bessel function of themth order, a2

52ng and m51,2 . . . . A condition Fm(x)→0 at x→`
yields that parametera is real and thereforeng,0.

In the region r. r̄(t) a vector potential Az
5a0 exp(imw)x2m@r(t)/r0#

g.
Continuity of electric and magnetic fields yields a cond

tion

]Jm

]x U
x51

52mJm~a!.

For a given value of the root of the latter equationam ,
g52am

2 /n. For small values ofn, a magnetic field attenu
ates very quickly independently on the direction of motion
a shell since sgn(g)52sgn(n). Forn→6`, g→70 and the
dynamics of an electromagnetic field is the same as in
case of an ideally conducting shell which was analyzed
Ref. @13#.

This completes our analysis of configurations with a c
lindrical symmetry. In the following we analyze amplifica
tion of electromagnetic fields in spherical geometry.

V. AMPLIFICATION OF MAGNETIC FIELDS
BY A SPHERICAL SHOCK WAVE

Consider an amplification of an electromagnetic field b
spherical shock wave. It is known that at the advanced st
of the implosion, the converging spherical shock wave c
be described by a self-similar solution~see Ref.@16#, Chap.
10, Sec. 107!. Assume that after the shock wave front a flu
is transformed into a conducting state with a constant elec
conductivitys while a space before the shock wave frontr
,R(t) is occupied by a stationary nonconducting fluid. A
was pointed out above, the stronger the shock wave the
significant is the variation of the electric conductivity aft
the shock wave front in comparison with a jump of the ele
tric conductivity at the shock wave front.

According to Ref.@16# the self-similar solution for a fluid
velocity after the shock wave is given by the following e
pression:

u~r ,t !5DṘ~ t !x~a21!/a, x5
r

R~ t !
, D5

u0~ t !

Ṙ~ t !
, ~32!

whereR(t) is the speed of a shock wave front,u0(t) is a
fluid velocity at the shock wave front, and the powera de-
pends upon the ratio of specific heatscP /cV .
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Consider an excitation of an electromagnetic field with
magnetic dipole symmetry. This field is determined by a v
tor potentialAW 5(0,0,Aw) where

Aw52a0S R~ t !

R0
D g

F l ~x!Pl
1 ~cosu! ~33!

andPl
1 (cosu) are associated Legendre polynomials.

Expressions for electric fieldEW 5(0,0,Ew) and a magnetic
field HW 5(Hr ,Hu,0) can be obtained using the followin
equations:

Ew52
1

c

]Aw

]t
,

Hr5
1

r

]Aw

]u
1cotu

Aw

r
,

Hu52S ]Aw

]r
1

Aw

r D .

Then

Ew5a0bS gF l ~x!2x
]F l ~x!

]x D S R~ t !

R0
D g

Pl
1 ~cosu!,

b5
Ṙ

c
,

~34!

Hr5a0

l ~ l 11!

R~ t !
Pl

0 ~cosu!S R~ t !

R0
D g F l ~x!

x
,

Hu5
a0

R~ t !
Pl

1 ~cosu!S F l ~x!

x
1

]F l ~x!

]x D S R~ t !

R0
D g

,

whereF l (x) is determined by the following equation:

]2F l

]x2 1
2

x

]F l

]x
2

l ~ l 11!

x2 F l

5n0F S g1
D

x1/aDF l 1~Dx~a21!/a2x!
]F l

]x G . ~35!

Equation~35! is derived from Eqs.~3,34!.
Amplification of a magnetic field inside an imploding ide

ally conducting spherical shell was considered in Ref.@13#.
In the latter study we analyzed a more general problem ab
the eigenmodes of a spherical ideal resonator with radi
expanding or converging wall. It was shown that there ex
two types of eigenmodes, namely, static eigenmodes w
coincide with the solution of equation¹W 2Aw50 when a ve-
locity of a shell tends to zero, and oscillatory eigenmod
which coincide with the eigenmodes of a spherical reson
when a velocity of a shell vanishes~see Ref.@7#!. Both
eigenmodes are determined by the same boundary cond

]Aw

]t
1nS ]Aw

]r
1

Aw

r D U
r 5R~ t !

50 ~36!
-

ut
ly
t
h

s
or

n:

or (g11)F l (1)50. „There is a misprint in Ref.@13# in Eq.
~26!. The correct Eq.~26! is (l2l )F l (1)50.… The oscil-
latory modes satisfy a conditionF l (1)50 while the static
modes describing an amplification of a magnetic field sati
a conditiong521. In the latter case with an accuracy of th
order of b2x2,b2, F l (x)5x l , and it can be easily see
that Aw is a solution of equation¹̂2Aw50.

In a case with a finite electric conductivity a vector p
tential Aw(r ,t) in the regionx,1 can be written as

Aw52a0S R~ t !

R0
D g

x l Pl
1 ~cosu!. ~37!

In order to solve Eq.~35! analytically we selecteda51/2
which is close to the valuea'0.7 for a shock wave~see Ref.
@16#, Chap. 10, Sec. 107!. In this case a solution of Eq.~35!
which vanishes whenx→` can be written as follows:

F l ~x!5xsCS ā,c̄;2
n0x2

2 D ,

s52
12n0D

2
2A~11n0D !2

4
1l ~ l 11!, ~38!

c̄512A~11n0D !2

4
1l ~ l 11!, ā5

s2g

2
,

where C(ā,c̄;z) is determined by Eq.~16!. Condition of
continuity](l nF)/]x at x51 yields a transcendental equ
tion for a parameterg5g(n0 ,D,l ):

~ l 2s!CS ā,c̄,2
n0

2 D5n0āCS ā11,c̄11,2
n0

2 D . ~39!

Since atx→`, F l (x)}xg, a requirement for the realizabil
ity of this model isg,0 @see Eq.~6!#. The limiting value
g521 corresponds ton0D→`. Thus it can be assume
that in the range of physical realizability of this model21
<g,0, n0D@1. When the valuesl are such that condition
l 2!n0D is satisfied, in the leading order of the parame
l 2/(n0D)

s521, c̄52
n0D

2
, ā52

11g

2
. ~40!

Then instead of Eq.~39! we have

~ l 11!CS ā,c̄,2
n0

2 D5n0āCS ā11,c̄11,2
n0

2 D . ~41!

Since forl 51 Eqs.~40,41! coincide with Eq.~19! the plots
shown in Fig. 1 correspond also to this case. The depend
of the exponentg in Eq. ~37! vs magnetic Reynolds numbe
n0 for l 51,2,3,4 andD51 is shown in Fig. 2. Inspection o
these plots shows that an amplification of a magnetic fi
with a higher value of a parameterl requires larger veloci-
ties of implosion.
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FIG. 2. The dependence of the exponentg in Eq. ~37! vs magnetic Reynolds numbern0 for various values of a wave numberl . 1
2l 51;22l 52;32l 53;42l 54.
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VI. CONCLUSIONS

We considered various geometries where amplification
the electromagnetic field can occur. Since our goal was
derive analytical results we studied only simple geometr
Using the same approach it is possible to study an amp
cation of the electromagnetic field in a gap between t
infinite conducting plates. Since the solution of the lat
problem is only slightly different from the solutions obtaine
in this study we did not present it here.
.

-

a-
f
to
s.
-

o
r

It was found that although a condition for an amplificatio
of the electromagnetic field is different for various geom
etries the sufficient condition for amplification for any geom
etry is thatn0;10. For a conductor withs0;1016s21 and

l ;1 cm, a material velocity must be of the order ofl̇
;104 cm/s. Certainly the above estimate ofn0 may become
somewhat larger if one takes into account heating and
dependence of the electric conductivity upon temperat
~see Ref.@12#!.
.
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