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Amplification of a magnetic field in systems with a finite electric conductivity
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In this study we investigated the kinematics of electromagnetic fields with various configurations of the
magnetic and electric fields in systems with spherical and cylindrical symmetry using the exact solutions to the
diffusion equation for the electromagnetic field in systems with moving boundaries. In the class of self-similar
solutions we determined analytically conditions for the amplification of the electromagnetic field as functions
of material velocity and electric conductivity. We investigated also the effects of the amplification of an
electromagnetic field during propagation of a spherical shock wave in a dielectric material whereby the shock
wave causes transformation of a material into a conductor.

PACS numbd(s): 03.50.De, 41.20.Gz

I. INTRODUCTION In systems with a finite electric conductivity, condition
(1) is not sufficient since in this case the power of pondero-
One of the most efficient methods for generating strongmotive forces must be larger than a joule dissipation (fate

and ultrastrong magnetic fields is the compression of magdetails see Ref.7]). Another problem arising when investi-
netic flux in conducting systems. Examples of such systemgating the feasibility of generating a magnetic field is that in
are conducting metallic shellsee, e.g., Refl1] and refer-  many cases a compression of a magnetic flux is caused by a
ences therein conducting liquids or strongly ionized medi- shock wave which transforms a material into a conducting
ums, e.g., plasma produced after the shock wave fi#®, state(see, e.g., Ref§2,3]). Here before the shock wave front
e.g., Refs.[2,3]). A mechanism of the amplification of a 5 material is dielectric while after the shock wave front it
magnetic field is associated with a negative work performegyecomes a conductor. The velocity of a shock wave differs
by ponderomotive forces. Thus, the necessary condition fof,, the material velocity while the power of the pondermo-
an amplification of a magnetic field readfor details see tive forces is determined by a material velocity and not by

Refs.[4-6]): the velocity of a shock wave. Therefore, the condition for an
a . . amplification of a magnetic field under a given shock wave
f E~(j X H)dr<0, (1)  velocity implies a certain relation between the velocity of a

shock wave and a material velocity.

Since theoretical and experimental studies on generating
strong and ultrastrong magnetic fields by compressing mag-
netic flux inside have been performed for many years, there
is a large number of publications in this figlske, e.g., Refs.
1,8] and references therginrHowever, most of the theoret-
al studies employ electrotechnical approximations or sim-
lified electrodynamic schemes which are not satisfactory as

where u(r,t) is a local velocity of a conducting medium,
f(F,t) is a density of an electric current, amﬁj(F,t) is a
magnetic field.

Although the physical nature of these phenomena is quit
transparent, it is not always easy to determine the condition;
for the amplification of a magnetic field. The reason is tharl?
the boundary conditions together with the symmetry of arg,, o5 5 self-consistent solution of the corresponding bound-

electr_o_magne_:tic field yield ‘?eftai” kinematic re&_‘,trictio_ns.ary value problem for the electromagnetic fields is concerned
Condition(1) is not always satisfied for a given configuration (see, e.g., Ref$9,10))

.Of an e_Iectromagn(_atic ﬁeld’ €.9., i.t is not V?“d ina case O_f an Among the studies where this problem is considered self-
imploding conducting cylinder with electric current distrib- consistently, we must mention the studies in REfd, 17

uted across the whole cross section and directed along thg,e g4,4y in Ref[12] investigates the dynamics of an azi-
axis of the cylinder. For an electric current with an a2|muthalmuthal magnetic fieldH, in an ideally conducting plasma

i = i i i ¢
symmetryaj;/()?(p—o .Wher?‘p IS an aZImgthaI coordinate, with z-pinch symmetry while in Ref[11] a finite electric
this conclusion is quite evident. Indeed, it follows from the conductivity plasma with the geometry oféapinch is ana-
effect ofz-pinch of plasma or of a cylindrical conduct®®ee, | ;64 |y both cases plasma occupies a cylindrical domain

.g., Ref[7]) whereb d tive f tt — o ) .
€.g., Ref{7]) whereby ponderomotive forces act to compress <p(t) [p(t) is a boundary of a cylindrical domdiand its

a conductor and, therefore, perform a positive work during}"I i ductivity is determined b i ¢ h
its implosion. In a case without an azimuthal symmetry, con-< ECUIC conauctivity IS determined by a temperature with a

dition (1) does not allow to predetermine the feasibility of self—s?milar_ d_istribgtion. On the other hand, for_p_rac.tical ap-
generating a magnetic field plications it is of interest to consider an amplification of a

magnetic field when plasma occupies a domain p(t)

while a regionp<<p(t) is occupied by a stationary dielectric
*Electronic address: yuli@menix.bgu.ac.il material. Solution of the latter problem will allow us to an-
"Electronic address: elperin@menix.bgu.ac.il swer a number of questions, e.g., the dependence of the con-
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ditions for the amplification of a magnetic field on the elec- Hereafter we will consider only solenoidal fields, i.e., the
tric conductivity of plasma, on the velocity of a jump of following conditions are satisfied:

electric conductivity, on the fluid velocity at the moving

front of the electric conductivity jump, and on the symmetry V.E=0,

of a magnetic field. On the other hand, an exact analytical (5)
solution to the problem of an amplification of magnetic fields - -

in systems with distributed parameters can be obtained only V-H=0.

in the class of self-similar solutions. In the case of the system . _
with a finite electric conductivity the latter implies the con- EAuations(2,3) must be supplemented with the boundary

stant magnetic Reynolds numbésee Refs.[4,5,11,12). conditjons which for the systems with a fi_nitg electric con-
Note that when in a problem with moving boundaries a conductivity redyce_ to the conditions of continuity of electric
dition for self-similarity is not satisfied, evolution of such a @1d magnetic fields at the surfaégx,y,z,1)=0 and re-
system is accompanied by variation of spatial and time scalgduirement for the absence of the external sources of electro-
which renders a very involved description of the system. magnetic field at infinity:

In this study we still remain in the framework of the self-

similar problem but consider a broader class of the magnetic = 2 5 g > 1

: : ) E+_E71H+_H7=E(r1t)oc_ay

fields and take into account the difference between the ve- r

locity of the front of an electric conductivity jump and a fluid (6)
velocity at this front. We will restrict ourselves to a kine- . 1

matic level of description whereby thermodynamic processes H(r,t)e B at r—o,a,=1,

associated with the variation of temperature, magnetic, and
thermodynamic pressures are not considered. The main goal
of the present study is to determine the thresholds for a flui
velocity and a velocity of the front of electric conductivity

which are required for the amplification of the electromag-
netic field with different configurations in systems with dif-

ferent geometries.

Ihere subscripts- and — denote values at different sides of
he surface. The latter two conditions follow from the re-
quirement for a vanishing flux of the electromagnetic energy
at infinity.

Equationd2,4) together with boundary conditiori6) and
the condition of self-similarity of a solution, which will be
specified below, completely determitwith an accuracy of a
Il. FORMULATION OF THE PROBLEM constant multipliera set of possible self-similar solutions. A

The general scheme of the solution of the problem dePoundary condition(6) yields a transcendental equation
scribed above is as follows. Let a surfaBéx,y,z,t)=0  Which allows to determine a condition for amplification of an

separate a region occupied by a conducting material from §l€ctromagnetic field for a given configuration of the electro-

region with an electric conductivity = 0. LetJF be a veloc- magnetic field and geometry of the system.

ity of a front F(x,y,z,t)=0 which is determined by the
equation l1l. AMPLIFICATION OF MAGNETIC
FIELDS IN CONFIGURATIONS
oF . . WITH A CYLINDRICAL SYMMETRY
— + Vg VF = 0,
at Consider a case with a cylindrical symmetry. Amplifica-
. . tion of a magnetic field in systems with a cylindrical sym-
and u is a material velocity at the frontu  metry was investigated in the above mentioned studié}
=u(r,t)|r(xy.z-0- Then with the accuracy of the order of [12] and also in Ref44,5,13. In Ref.[13] we considered an

max{v2/c?,u?/c?} we can write the equation for a magnetic  infinitely long ideal conducting shell moving with a constant

and electricE fields in the domain withr=0 as follows: radial velocityp(t). o .
For the completeness of the exposition in the following
V2H=0. (2) Wwe present briefly the results obtained in Ref3]. In the

latter study we had considered a case when a magnetic field
Inside the domain occupied by a conducting material insteafas onlyz-componenH, directed along the axis of symme-

of Eq. (2) we have try and the electric field has only an azimuthal component
E,. In physics of plasmas such a configuration is called

4w . 1 9H #-pinch symmetry(see Ref[7], Chap. 8, Sec. 68 At the
VXH= Tj’ VXE=— el (3 surface of an ideally conducting shell the first two conditions

in Eq. (6) must be replaced by another condition

Equations(2,3) must be supplemented with the Ohm’s law
for a moving medium which in the framework of the simple
magnetohydrodynamic model can be written as foll¢gsese,
e.g., Ref[7]):

. (7)

[eRR=-18

E,—BH,=0, B=

The latter condition follows from Eq4) at o— 0.
The fieldsE, andH, in Ref.[13] are determined from the
following relations:

(4)
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1 0A A, A Let us writeA, as follows:
E,=———F, Hy=""+-—75, (8)
c ot ap p — .\
A = & 1)) L (11)
where a formula for a vector potential reads ¢ Po L p(t)
A (;(t)) _lq) p ( and for® , using Egs(3), (4), and(8) we obtain the follow-
:a _— =, H H .
¢ =8| “\ (0 ing equation:
: - — e, 10, P,
where a, is a normalization constanp(t) and py are an 2 + IV
instantaneous and the initial radii of the ideally conducting XX ox X
shell, DU(X) - oD,
3 ) =v(x)|| v+ ®¢+[DU(X)—X]W :
® = xF|=,1;2;8? 2), ==,
o= XF| 5128 X -0 (12)

andF (@, 8. 7:2) is a hypergeometric functiofsee, e.g., Ref. Here »(x) = (47/c?) a(x)p() p(t) 7o(t), D=[uo(t)/p(t)].

[14]). Using Egs.(8,9) electric E, and magnetidH, fields Equation (12) was derived under an assumption that a
can be presented as follows: magnetic Reynolds number for a front velocity is constant,
ie.,
E(p:BXHZ'
4o
®, <z P(Dp(1)og(t) =const vy, (13

3 o p2.2
HZ‘2wlop?<t>[F(§’1'2’B X ) _

and electric conductivity is given by(p,t) =oo(t) o(x).

(10) Equation(13) implies the existence of a self-similar solu-

' tion. Certainly the feasibility of such solution depends upon

various physical parameters. When the behavior of the sys-
where @ is magnetic flux which remains constant in the tem is determined mainly by a motion of the boundary sepa-
case of compression by an ideally conducting steale, e.g., rating between the regions with different electric conductiv-
Ref.[1]). I, is a constant which is determined by the follow- ity the solution at enough large times approaches the self-

3 5
Y 2.2k Y hq.p2.2
+2BXF<2,2,3,BX)

ing formula: similar solution with magnetic Reynolds numbeg. It is
) 3 3 c conceivable to suggest that in a more general case the system
| = El21:2:82,2| + = g2 ZF(—Z' .22 2) _ can be descrlb_ed by matched self-S|m|Iar_squt|on§ W|th dif-
0 JonX (2’ 128X 2'8 X2 3B X ferent magnetic Reynolds numbers at different time inter-

vals. In addition, the self-similar solutions allow us to deter-

The latter expression can be easily calculated as a powenine the main parameters affecting the behavior of a system
series of the parametgd?. In the zeroth approximation in and validate the numerical solutions of the governing equa-
the parameted? magnetic fieldH, remains homogeneous tions[Egs.(2)—(6) in this study.
and A,=[®y/2mp(t)]x. The above solution describes the  Consider now a case when after the shock wave front a
amplification of a magnetic field in the cylindrical cavity material becomes incompressible, i.e., the sound velocity af-
with ideally conducting walls which implodes with a con- ter the shock wave front is much larger than a material ve-
stant velocity. These “walls” can be of a different nature, locity. Assume that the ratiD of the material velocity at the
e.g., a shock wave front. The latter case is considered in th@ave front to the velocity of the wave does not change with
present study. Since the approximation of an ideal conductdime and that the temperature after the wave front does not
implies that the dissipation processes are neglected in thishange. The essence of the latter assumptions is that the
study we considered a more general case with a finite electricariations of the parameters after the shock wave front are
conductivity. small compared with the jump of the thermodynamic param-

Taking into account the above resulsee Eq(10)] con-  eters at the shock wave front. This assumption and the pre-
sider now a system with a finite electric conductivity. Firstvious assumption about the incompressibility of the material
we will study a case when a cylindgr p(t) is occupied by ~ after the shock wave front are valid for strong shock waves.
a stationary dielectric material and a space outside the cylinfherefore o(y)=1 and for the incompressible material

der p>p(t) is occupied by a conducting material, e.g., (V-u=0) after the wave fronti(x)=1/x. The solution of

plasma or conducting liquid, and(t) is the location of a EQ. (12) which tends to zero wheg—c can be written as
shock wave front. Under the effect of the shock wave whichfollows:

moves with a spee@(t) a material is transformed into a ao y+1  vD  wex?
conducting state due to ionization. Material velocity after the D (x)=—V| - - i

front of a shock waveu(p,t)=u0(t)U(X) where ug(t) is X 2 2 2

material V8|0City at the wave fron_t, IGT(].): 1 and before Where\lf(g,az) can be expressed through Kummer’s func-
the frontu=0. Note thatuy(t)=u(p(t),t)# p(t). tions (see, e.g., Ref.15]):

(14
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FIG. 1. The dependence of the exponerim Eq. (18) vs magnetic Reynolds numbeg for various values of the ratio of a fluid velocity
at the front to a front velocityp. 1-D=1;2—-D=0.8;3—D=0.6;4—-D=0.4.

_— F 1_€ _— — — —_ Vo JRE— Vo

\If(alc;z)z g@(a,c;z) avlia+1lc+1,— ?)_ V| a,c, ?),

I'(a—c+1) 0
o (19
F(C—l) [ o - ’y+1 - VOD
+ ———7zVP(a—c+1,2-c;z). (15 a=-—7% =75
I'(a)

) ) — The dependence of the exponepntvs a magnetic Rey-
I'(2) IS the gamma function and f@#0,~1,—2,... Kum- 5|45 numbew, andD obtained from the numerical solution
mers’s functions can be written as power series of Eq. (19) is shown in Fig. 1. Intersection of the curve with

w — vy axis determines the threshold value mf which is re-
d(aciz)= z " an=1 _%n1 atn-1 quired for an amplification of a magnetic field, i.e., an in-

1Yy n l 0 l an — i . . . .

n=0 N \c+n—-1 crease of the total energy of a magnetic field in the domain

p<p(t). At the threshold value of, the rate of a mechani-
n=12;-. (16)  cal work performed against the ponderomotive forces equals
_ _ the joule dissipation rate. Since the rate of a mechanical
For [z|>|al,[c|, function W¥(a,c,z) has the following work performed against ponderomotive forces is determined
asymptotic behaviofsee, e.g., Ref.15]): by a fluid velocity and not by the propagation speed of a
front, a parameter which determines this workviD. For
(17) small values ofD (see Fig. 1, curve }4 amplification of a
magnetic field does not occur evenigt—«, i.e., propaga-
) tion of the electric conductivity front without a fluid flow is
Thus according to Eq(14) ®,(x)x”. Therefore, the re- ot accompanied by the amplification of a magnetic field.

— 1
Y(a,c;z)~ .
z

quirement that a vector potential vanishes)fer =, yields a Another case of an amplification of a magnetic field that
COhdltlon ’)/<0 For ’y>0 the EIGCtromagneUC field does not can be realized with the same symmetry of an e|ectromag_
vanish aty—c°. netic field which is determined by Eqg$8,11) is when a

In the regionp<p(t), a vector potentiah,, is determined  conducting fluid(e.g., plasmpoccupies an internal region

by Egs.(2,8) and can be represented as follows: p<p(t). In this case in the internal region an electromag-

O netic field is determined by Eq$3,4 and in the external
p )

Po

A(p:ao( (18) region one can assunie=0 similar 'gq thg case of an infinite
solenoid. Thus the boundary condition in this case reads:
The continuity of electric and magnetic fields at the H,(p(t),t)=0. (20)
boundaryy=1 [Eq. (6)] reduces to the condition of the con-
tinuity of the function ¢/Jx)(logA,) and yields the follow- Under the assumptions that the temperature dependence
ing transcendental equation which determines a dependencoé the electric conductivity can be described by Spitzer's
of the parametery on v, andD: formula o T*?2, such a problem was studied in R¢L2].
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For comparison consider here a case when an electric coelectric field does not depend an and when there is only
ductivity during implosion does not change and plasma denene nonzero component of a magnetic fielg. The second
sity u(t) is spatially homogeneous. Using a continuity equa-case is when an electric field does not have an azimuthal
tion w+V-(uu)=0 we find that u(x)=x, pm(t) symmetry and there are two componeris, andH,,. Am-

_ 2,2 ; ; _ plification of a magnetic field in a configuration with azi-
= /p<(t), where uq is density att=0. Then Eq.(12 i X ; :
yiélfggo () Ho y a2 thal symmetry of electric field was investigated in Ref.

[4] where a condition for a spontaneous excitation of a mag-
gzq)¢ 10, . netic field was determined. In a linear problem a condition
(?_XQ_"' Y ox 2 vo(y+1)P,,. (21)  for an excitation of a magnetic field does not depend upon

the magnitude of a magnetic field and, therefore, a condition
In deriving Eq.(21) we assumed for simplicity that the for & spontaneous excitation of a magnetic field and a con-

velocity of an electric conductivity jump and a velocity of dition for an amplification of a magnetic field are equivalent.
fluid at the front are equal, i.eD=1. Nonsingular ay=0 [N Ref.[4] it was shown that an amplification of a magnetic
solution of Eq.(21) is given by a Bessel function of the first field occurs not during implosion of a cylindrical conductor

order (see, e.g., Ref14]): but during its expansion. The physical mechanism for such
behavior is as follows. When a conducting material occupies
Do (x)=di(ay), a’*=—wo(y+1). (22 a regionp<p(t), and electric current inside it is directed

along thez axis, ponderomotive forces act to compress a
conductor. Since for an amplification of a magnetic field a
work must be performed against ponderomotive forces, an

;(t) T amplification of a magnetic field occurs during expansion of
Hz(X):ao(_) ——Jo(ax) (23) @& conductor.

Po / p(t) Consider now an amplification of a magnetic field in con-
o figurations with azimuthal dependence of an electric field.
and electric field When in systems withz-pinch, the electric field depends
— Ay 5 upon the azimuthal coordinate, i.e., whei,/de+0, a
@ i “_J tavd magnetic field in addition to a componeht, has also a
po | p(t)| vo (@) + axdo(@y) |, radial componenti ,. In Ref.[13] a configuration of such an

(29 electromagnetic field was determined and its dynamics inside

_ . ) an imploding ideally conducting shell was analyzed. The ob-
whereJ, is a Bessel function of zero order. A requirementgined results are briefly summarized in the following. An

[Eqg. (20)] H,(1)=0 according to Eq(23) can be met only . 2
for real values of the argument of a Bessel function, andXPression for a vector potential=(0,0A;) reads

thus, a®>0. Let oy be roots of equatiody(a)=0. Then

A magnetic field according to E@8) is given by the follow-
ing formula:

Eqo(X) :,Bao(

according to Eq(22) a growth rate of a magnetic field is A,=a, exp(imq;)q)m(_i), p<;(t),
given by p(t)
(26)
2
yz_%_l (25) 1) P :Xnu:(m_—i—1 T'm+1',32)(2> X:L
VO . m ;(t) 2 1 2 1 H ’ _(t) 1

Note that whervy>0, p(t)/po>1, and Eqs(23,24 show . = . . _ )
that y>0 corresponds to amplification of the electromag—ytvr;ere;E(Eeﬂl'%s)lﬁ_p(r:)/c (p(t) is ta_n :cmpltt)_smnsvellotg
L . — e ity) andF(«,B;y;2) is a hypergeometric function. Solution
netic field while forvy<O0, p(t)/po<1, and amplification of - - T )
the electromagnetic field correspondsyte:O. (26) satisfies boun_dary conditiopnd (1)=0 which can be

Then Eq.(25) shows that there exist three characteristicderived from E,+ p(t)/cH,=0 [compare with condition
regions of parameter,. A regionvo>0 corresponds to an (7)]. Magnetic fieldsH, andH,, are determined by the equa-
expansion, and since ther<0 amplification does not occur. tions
In the region— < 1y<0 according to Eq(25) y>0, and
there is also no amplification. Thus an amplification of a H :}5_Az H A, @27
magnetic field occurs only in the regiop<— «Z (note that Pp g’ ¢ ap
a minimum value of a rooky~2.40J). In this region the rate
of the work performed against the ponderomotive forces i€nd electric fielde, by Eq. (8). Thus we find that
sufficiently large to compensate joule losses.

p Y,

_ agmy™ Tt (m+1 m
p(t) 2

—;m+1;,82)(2)sin(mcp),
IV. AMPLIFICATION OF A MAGNETIC FIELD 2

DEPENDING ON AZIMUTHAL COORDINATE

: . I . agmy™ ! B2x?
Another configuration of a magnetic field which can be H,=————|A(x)+ B(x)
realized in systems with a cylindrical symmetry is when an p(t) 2
electric field is directed along theaxis (z-pinch symmetry.

Two cases must be considered here. The first case is when an E,=—BxH,cogme),

cogme),
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where =¢(v) can be obtained. Skipping a case wilh# 1, con-
sider a solution when a fluid velocity at the front of an elec-
tric conductivity jump and a speed of the front propagation
are equal. Similar to the previous analysis assume that a
solution forA, is given by Eq.(28), density of fluid is spa-
m+3 m+2 o tially homogeneous and an electric conductivity of fluid does
2 ' 2 m+2;8%7 . not change during implosion. Then Eq29) becomes
, o . ~ [(U)=x, D=1k
Now consider a case with a finite electric conductivity. ,
Assume first that a region inside a cavity< p(t) is occupied 9P n E a‘bm_ m _
by a stationary dielectric while a space outside the cavity > x dx ?(bm VoY Pm- (3Y)
>p(t) is occupied by a conducting material. Then vector
potential inside the cavity is determined by Eg) and out-
side the cavity by Eqs(3)—(5). In both regions it can be

m+1 m
A(X)=F(T.§;m+1;/32)(2),

2

Nonsingular aty=0 solution of Eq.(21) is ®,=Jn(ax),
where J,,(z) is a Bessel function of thenth order, o?

written as follows: =—pyyandm=12.... Acondition®(x)—0 at y—o
yields that parameteat is real and thereforey<O0.
__[p()}7 . p In the region p>p(t) a vector potential A,
Az=| =] expime) | T (28 —agexpime)x p(®)/pol”.

Continuity of electric and magnetic fields yields a condi-
Egs.(3)—(5) yield an equation fo (). In the case of an tion
incompressible conducting material, the equation of continu-

ity (V-G=0) yieldsu(y)=1/y and Pl 3 (e
x| _ '
POy 1oy m? D oD, Xt
x> + X ox Fq)m_ vol YPmt Y X ox | For a given value of the root of the latter equatiep,

(29 y=— afn/v. For small values o, a magnetic field attenu-

] ] o ates very quickly independently on the direction of motion of
Solution of the latter equation vanishing gt-% can be 3 shell since sgnl=—sgn(). For v— =, y— ¥ 0 and the
written as follows: dynamics of an electromagnetic field is the same as in the

2 case of an ideally conducting shell which was analyzed in
_ 14
ac— X ) (30  Ref.[13] . o .
This completes our analysis of configurations with a cy-
lindrical symmetry. In the following we analyze amplifica-
where tion of electromagnetic fields in spherical geometry.

D (x)=xV

— S— Yy — VoD 2
=——" ¢c=1— m2+| —— , V. AMPLIFICATION OF MAGNETIC FIELDS
2 BY A SPHERICAL SHOCK WAVE

vD voD 2 Consider an amplification of an electromagnetic field by a
2 (T) spherical shock wave. It is known that at the advanced stage
of the implosion, the converging spherical shock wave can
be described by a self-similar solutigsee Ref[16], Chap.
10, Sec. 10). Assume that after the shock wave front a fluid
 scen Tt ()0 ey~ provded thaty<0. & "arSIOTEd e 8 conducing st wit 8 coneet e
This condition implies that the self-similar solution which R(1) is occupied by a stationary nonconducting fluid. As
satisfies the boundary conditions exists only in the case of an O P y y 9 '
T was pointed out above, the stronger the shock wave the less
expanding dielectric domairp<p(t),p(t)>0]. In the latter  significant is the variation of the electric conductivity after
case a conditioy<<0 corresponds to the attenuation of elec-the shock wave front in comparison with a jump of the elec-
tromagnetic field. The existence of the self-similar solutiontric conductivity at the shock wave front.
) According to Ref[16] the self-similar solution for a fluid
velocity after the shock wave is given by the following ex-
pression:

and ¥ (a,c,2) is determined by Eq(15).
Taking into account an asymptotic behavi@r) it is eas-

for p(t)<0 and y<O0 is impossible. Indeed, its existence
would imply that in the case with a finite conductivityith
joule lossepsthe vector potential, grows faster than in the
case of the ideal conductor where according to €§) y
=0. Since in this case a transcendental equation for a growth e a-Die L_ o YoM
: ; u(r,t)=DR(t)x . X= , D=- , (32

rate does not allow to obtain the analytical dependepce R(t) R(t)
=¢(vg), it is not presented here.

Consider now another case when a field depends upohereR(t) is the speed of a shock wave fromt(t) is a
azimuthal coordinate, and a conducting material occupies fiyid velocity at the shock wave front, and the powede-
region p<p(t). In this case the analytical dependenge pends upon the ratio of specific heats/cy, .
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Consider an excitation of an electromagnetic field with aor (y+1)d ,(1)=0. (There is a misprint in Ref.13] in Eq.
magnetic dipole symmetry. This field is determined by a vec{26). The correct Eq(26) is (\—/)® ,(1)=0.) The oscil-

tor potentialA=(0,0A,) where

Y

RO ®,(x)PJ(cosh)

Ry (33

A‘P: _a.o

and P}(cose) are associated Legendre polynomials.
Expressions for electric fielﬁ=(0,OE‘P) and a magnetic

field ﬁz(Hr,Hﬁ,O) can be obtained using the following

equations:
1A,
ST
1A, A,
Hr—rﬁ‘l'COtaT,
A, A,
Hg——<7+7>.
Then
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where® /() is determined by the following equation:

Pb, 2 b, /(/+1)CD
ax> " x dx x>
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Equation(35) is derived from Eqs(3,34).

Amplification of a magnetic field inside an imploding ide-

ally conducting spherical shell was considered in R&8].

latory modes satisfy a conditio® (1)=0 while the static
modes describing an amplification of a magnetic field satisfy
a conditiony= —1. In the latter case with an accuracy of the
order of B2x?< B2, ®,(x)=x", and it can be easily seen

thatA,, is a solution of equatioﬁ2A¢=0.
In a case with a finite electric conductivity a vector po-
tential A,(r,t) in the regiony<1 can be written as

Y
@) x’ PL(cosh).

Ry (37

A‘p: _ao

In order to solve Eq(35) analytically we selectedv=1/2
which is close to the valua~0.7 for a shock wavésee Ref.
[16], Chap. 10, Sec. 107In this case a solution of E¢35)
which vanishes whely—o can be written as follows:

®,(x)=x"V|a,c;—

VoX 2
|

1— oD (1+voD)?
s=-— 1 +/(/+1), (39

— 1+ voD)? — s—
c=1—\/—( ZO ) +/(/+1), a=—52y,

where ¥ (a,c;z) is determined by Eq(16). Condition of
continuity d(/n®)/dx at y=1 yields a transcendental equa-
tion for a parametey= y(vq,D,/):

— — Vo
a+1,c+1,—? . (39

- Vo J—
(/=s)¥|a,c,— ?) =ypoaW
Since aty—», ® (x)xx?, a requirement for the realizabil-
ity of this model isy<<0 [see Eq.(6)]. The limiting value
v=—1 corresponds tayD—o. Thus it can be assumed
that in the range of physical realizability of this modell

< y<0, voD>1. When the valueg” are such that condition
/?<yD is satisfied, in the leading order of the parameter
/2(voD)

(40

In the latter study we analyzed a more general problem abouthen instead of Eq(39) we have
the eigenmodes of a spherical ideal resonator with radially

expanding or converging wall. It was shown that there exist
two types of eigenmodes, namely, static eigenmodes which

coincide with the solution of equatioﬁ2A¢=0 when a ve-

locity of a shell tends to zero, and oscillatory eigenmode
which coincide with the eigenmodes of a spherical resonato

when a velocity of a shell vanishgsee Ref.[7]). Both

(36)

L LY
at ar r

r=R(t)
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§ince for/=1 EQgs.(40,4]) coincide with Eq.(19) the plots
shown in Fig. 1 correspond also to this case. The dependence
ﬂf the exponenty in Eq. (37) vs magnetic Reynolds number
vo for /=1,2,3,4 and =1 is shown in Fig. 2. Inspection of
these plots shows that an amplification of a magnetic field
with a higher value of a parametét requires larger veloci-
ties of implosion.
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FIG. 2. The dependence of the exponenin Eqg. (37) vs magnetic Reynolds numbeg for various values of a wave numbet. 1
—/=1,2—/=2,3—/=3;4—/=A4.

VI. CONCLUSIONS It was found that although a condition for an amplification

We considered various geometries where amplification on .the electrqmagnetic figld Is differ(_a_nt fpr various geom-
the electromagnetic field can occur. Since our goal was tgtne; the sufficient condition for ampln‘.lcatlon fog a_nly geom-
derive analytical results we studied only simple geometriesStrY 1S thatro~10. For a conductor withro~10"s™* and
Using the same approach it is possible to study an amplifi©’ ~1 cm, a material velocity must be of the order lof
cation of the electromagnetic field in a gap between two~10*cm/s. Certainly the above estimate igf may become
infinite conducting plates. Since the solution of the lattersomewhat larger if one takes into account heating and the
problem is only slightly different from the solutions obtained dependence of the electric conductivity upon temperature

in this study we did not present it here. (see Ref[12)).
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