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Plane-wave superpositions defined by orthonormal scalar functions
on two- and three-dimensional manifolds

G. N. Borzdov*
Department of Theoretical Physics, Belarusian State University, Fr. Skaryny avenue 4, 220050 Minsk, Belarus

~Received 1 September 1999; revised manuscript received 16 November 1999!

Vector plane-wave superpositions defined by a given set of orthonormal scalar functions on a two- or
three-dimensional manifold—beam manifold—are treated. We present a technique for composing orthonormal
beams and some other specific types of fields such as three-dimensional standing waves, moving and evolving
whirls. It can be used for any linear fields, in particular, electromagnetic fields in complex media and elastic
fields in crystals. For electromagnetic waves in an isotropic medium or free space, unique families of exact
solutions of Maxwell’s equations are obtained. The solutions are illustrated by calculating fields, energy
densities, and energy fluxes of beams defined by the spherical harmonics. It is shown that the obtained results
can be used for a transition from the plane-wave approximation to more accurate models of real incident beams
in free-space techniques for characterizing complex media. A mathematical formalism convenient for the
treatment of various beams defined by the spherical harmonics is presented.

PACS number~s!: 03.50.De, 41.20.Jb, 04.30.2w, 62.30.1d
th
th
th

-
la

a

,

ru
m

ur
c

r-
et
um

p

o
ec

e
x-

iso-
nd

h-
ng
the
are
e-
wo
set
m-

a-

f an
ro-

of
ane

e in
pli-

sig-
co-

ce

the
ly for

nic
ua-
tes,
nd
I. INTRODUCTION

Natural and artificial complex media~anisotropic, chiral,
bianisotropic! are of considerable current interest to bo
theorists and experimentalists. Bianisotropic media are
most general linear media in electromagnetics, in which
electric displacementD and the magnetic field strengthH
depend on both the electric field strengthE and the magnetic
displacementB @1–3#. In the case of motionless bianisotro
pic media, it is convenient to use also the constitutive re
tions, whereD and B are expressed in terms ofE and H,
since the tangential components ofE andH are continuous
across the interfaces.

In the 1970s, the concept of bianisotropic medium w
mostly used in electrodynamics of moving media@1,2# and
optics of gyrotropic crystals@3#. Beginning in the mid-1980s
the field of applications has expanded considerably@4#. Huge
advances in material sciences have come up with const
ing new chiral composite materials with technological pro
ise at microwave frequencies@5,6#. Recently, helicoidal bi-
anisotropic media have been fabricated and the sculpt
thin film concept for use in many areas of science and te
nology has been proposed@5,7#. Magnetostatically controlled
bianisotropic materials@8# is another class of promising pa
ticulate composites. This provides new impetus for theor
cal studies concerning calculations of effective medi
properties of composite materials@9–13# and the develop-
ment of new techniques for measuring electromagnetic
rameters of complex media@14–17#.

There exists a variety of techniques for the analysis
wave propagation in complex media and for solving dir
and inverse scattering problems for such media@18–34#, in
particular, the characteristic matrix method@19#, covariant
impedance methods@20–25#, the vector circuit theory@26#,
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Green’s functions techniques@27–33#, and invariant embed-
ding and wave-splitting approaches@25,31–34#. In recent
years, the conception of refractive index tensor@35#,
Beltrami-Maxwell formalism@36#, and fractional calculus
@37,38# provided new promising tools for investigating wav
propagation in isotropic, chiral, and anisotropic media. E
tensive lists of references on research in the field of bian
tropic and chiral media and their applications can be fou
elsewhere@4#.

In Refs. @23,24# the Lorentz-covariant impedance met
ods in electrodynamics of motionless and uniformly movi
linear media are developed, and the exact solutions of
direct and the inverse scattering problems for such media
found, which can form a basis for the development of fre
space techniques for characterizing complex media. T
such techniques, with different ways to extract the whole
of constitutive parameters, as well as the results of their co
puter modeling are presented in Refs.@16,17#. Computer
modeling of them, which included the simulation of me
surement errors, has shown@16,17# that both techniques
make it possible to calculate all constitutive parameters o
anisotropic, chiral, or general bianisotropic medium, p
vided that the reflection and the transmission coefficients
planar samples under normal and oblique incidence of pl
harmonic waves are measured with sufficient accuracy.

In recent years, considerable progress has been mad
the development of measurement facilities to describe am
tude, phase, and polarization properties of microwave
nals, and to measure the reflection and the transmission
efficients of planar samples@14,15#. This forms a
groundwork for practical implementation of the free-spa
techniques presented in Refs.@16,17#. However, in many
cases the plane-wave approximation of beams, used in
measurement setups, proves to be inadequate, especial
thick samples.

In the last decade, some new types of time-harmo
waves with degenerate evolution operators and linear, q
dratic, and cubic dependence of amplitude on coordina
which can be excited in complex media, have been fou
4462 © 2000 The American Physical Society
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and studied@22,39#. As in the case of conic refraction, i
investigating possible physical phenomena caused by s
degeneracy, the plane-wave model of the incident beam
also inadequate.

On the basis of various techniques, electromagnetic fie
in free space~i.e., vacuum!, isotropic media, and some sp
cial cases of anisotropic media have been studied extens
in recent decades and many interesting solutions of
Helmholtz equation such as fractional solutions@37#,
nondiffracting—Bessel and Bessel-Gauss—beams@40#, fo-
cus wave modes, localized wave transmission, and elec
magnetic missiles@41#, have been suggested.

In contrast to various beams in isotropic media, Gre
functions and plane harmonic waves—eigenwaves—in
ral, anisotropic, and bianisotropic media, investigated
many details, electromagnetic beams in complex media
been insufficiently investigated. Among the techniqu
which are the most general and effective tools in the anal
of linear fields, Green’s functions and angular-spectrum r
resentations seems to hold the lead. Works@27,42# provide
prominent examples of the versatility of these approach
Angular-spectrum representations become especially us
in the case of complex media, since eigenwaves are the
waves in these media, which have relatively simple and w
understood properties. Since any superposition of eig
waves in a linear medium is an exact solution of the cor
sponding wave equation, two questions naturally arise:~1!
Which superpositions should be considered?~2! How can the
corresponding integral representations be transformed
quickly converging or analytic expressions for the field?
course, there are no unambiguous answers to them. We
pose just one version from the whole host of possible
swers.

The purpose of this paper is as follows.
~1! We present a technique for composing a set of ort

normal beams and some other specific types of fields
general linear medium or free space, defined by a se
orthonormal scalar functions on a two- or three-dimensio
manifold.

~2! We also present the relations for the calculation
eigenwaves parameters necessary to apply the proposed
nique to electromagnetic waves in bianisotropic media.

~3! We illustrate this technique by calculating fields, e
ergy densities, and energy fluxes of electromagnetic be
with wide angular spectrum~with solid anglesV52p and
V54p), defined by the spherical harmonics.

~4! We show that the proposed approach provides
means to generalize the free-space technique for charac
ing complex media@16,17#, the covariant impedance meth
ods @20–25#, and the wave-splitting technique@25#, formu-
lated for the plane incident wave, to the case of incid
beams with finite angular spectrum.

The outline of the paper is as follows. In the next secti
basic equations for orthonormal beams and some other
cific linear fields, defined by a given set of scalar orthon
mal functions, are presented. In Sec. III, relations for
calculation of the parameters of eigenwaves, required
beam composition, are presented. Some details of beam
rametrization and representation are discussed in Sec. IV
way of illustration of the general theory, electromagne
beams, defined by the spherical harmonics, are present
ch
is

s

ly
e

o-

n
i-
n
as
s
is
-

s.
ful
ly
ll
n-
-

to
f
ro-
-

-
a

of
l

f
ch-

-
s

a
riz-

t

,
e-
-
e
r
a-
y

in

Sec. V. In Sec. VI, the solutions, describing moving elect
magnetic whirls, are presented. Two examples of fields w
three-dimensional beam manifold are presented in Sec.
In Sec. VIII, we treat the general beam, which can be
panded into a series of orhonormal beams, and sugge
procedure to find the coefficients of this series, providing
means to generalize the techniques, developed in R
@16,17,20–25#, to the case of incident beams. In the Appe
dix, some scalar and vector functions, defined by the sph
cal harmonics and extensively used in this paper, are
sented.

II. BASIC EQUATIONS

A. Eigenwaves

The plane harmonic vector wave~eigenwave!

W~r ,t !5W0ei (k•r2vt) ~2.1!

is one of the primary and extremely fruitful notions in ele
trodynamics and elastodynamics of homogeneous an
tropic media, and many other branches of field theory. Si
the phasek•r2vt is Lorentz invariant, it is convenient to
rewrite Eq.~2.1! in terms of the four-dimensional vectorsx
5r1cte4 and K5k1(v/c)e4, wherec is the velocity of
light in vacuum, (ei) is an orthonormal basis in Minkowsk
vector spaceV (ei

251,i 51,2,3,e4
2521), i.e.,

W~x!5W0eix•K. ~2.2!

Electromagnetic, elastic, and other types of plane wave
linear media can be treated in the frame of similar ma
ematical techniques@27#. Therefore, we shall specify below
the physical meaning of the oscillating quantityW only in
those cases where it is essential. In particular,W can be any
of the following quantities: the electric~magnetic! field
strengthE (H), the electric~magnetic! displacementD (B),
the six-dimensional vectors col(E,B) and col(D,H), and the
four-dimensional field~induction! tensorF (G)—for electro-
magnetic waves; the displacement vectoru—for elastic
waves, and so on. LetW be the corresponding complex ve
tor space (WPW).

In a homogeneous linear medium substitution ofW @Eq.
~2.2!# into the appropriate field equations results in an eig
value equation of the form

C~K !W050, ~2.3!

whereC(K ) is a linear operator depending on the consti
tive parameters and the four-dimensional wave vectorK or,
in other terms, the three-dimensional wave vectork and the
frequencyv. If the determinant ofC(K ) vanishes, i.e.,

detC~K !50, ~2.4!

Eq. ~2.3! has a nonzero solutionW0. The scalar dispersion
equation ~2.4!, relating k and v, specifies a three-
dimensional hyperspaceKC in the four-dimensional wave
vector spaceK.

The kernelWK5kerC(K )PW, i.e., the set of solutions
W0 of Eq. ~2.3!, where K is an arbitrary solution of Eq.
~2.4!, defines the amplitude subspace of the eigenwaveW
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4464 PRE 61G. N. BORZDOV
@Eq. ~2.2!#. If this kernel is one-dimensional, Eq.~2.3! speci-
fies W0 up to a complex scalar factor, in other words, t
eigenwave polarization is uniquely defined. Otherwise,WK
is two dimensional, and the polarization is defined by
arbitrary complex vectorW0PWK , i.e., the eigenwave
propagates along an optic~or acoustic! axis and may have
any polarization. In particular, this is the case for elect
magnetic waves in an isotropic medium.

B. Beam manifold, beam base, and beam state

Let u:B→C1 be a complex scalar function on a re
manifold B ~beam manifold!. Let us consider an eigenwav
superposition~termed below the ‘‘beam’’ for the sake o
brevity!

W~x!5E
B
eix•K (b)u~b!W~b!dB, ~2.5!

wheredB is the infinitesimal element ofB, K (b)PKC , and
W(b)PWK (b)[kerC„K (b)… for everybPB. The mapping
b:B→K3W by b°„K (b),W(b)… specifies the set of the
eigenwaves involved in the beam~beam base!, whereas the
function u:B→C1 specifies the beam state. Owing to t
linearity of the medium,W(x) @Eq. ~2.5!# is an exact solu-
tion of the field equations, provided that the integral on
right side of Eq.~2.5! exists.

In analysis of electromagnetic fields radiated by giv
sources~dipoles, line, and surface currents, moving po
charges! @27,42#, the amplitude functionu is dictated by the
source properties such as a given distribution of surface
rent density flowing in a plane@42#. In this article, we treat a
different problem. We search for amplitude functionsu
which yield exact solutions of the homogeneous Maxw
equations with some prescribed property, for example,
orthonormality.

C. Beam types

Let us assume that there exists a set (un) of complex
scalar functionsun :B→C1, satisfying the orthogonality con
ditions

^umuun&[E
B
um* ~b!un~b!dB5dmn , ~2.6!

whereum* is the complex conjugate function toum , anddmn

is the Kroneckerd function. In this paper, emphasis is give
to the case of the two-dimensional manifoldB and time-
harmonic beamsW @Eq. ~2.5!#. However, two special case
of beams with three-dimensional manifoldB5B3 are treated
in Sec. VII.

Let us consider a set of beamsWn , which in a Lorentz
frameL with the basis (ei) can be written as

Wn~r ,t !5e2 ivtE
B
ei r•k(b)n~b!un~b!W~b!dB, ~2.7!

wheren:B→C1 is some complex function onB, which we
shall use for normalization or orthonormalization of the
beams. The mappingb3 :B→K33W specifies the beam bas
n

-

e
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e

by b°„k(b),W(b)…, where k(b)PK3,KC , W(b)
PWK (b) , and K3 is the wave vector surface, i.e.,K (b)
5k(b)1(v/c)e4PKC .

1. Scalar product smn

Since the beamsWn @Eq. ~2.7!# are composed by integrat
ing on the two-dimensional manifoldB, let us introduce a
scalar product

smn[^WmuQuWn&5E
s0

Wm
† ~r ,t !QWn~r ,t !ds0 , ~2.8!

whereQ is some Hermitian operator inW, Wm
† (r ,t) is the

Hermitian conjugate ofWm(r ,t), s0 is the plane with unit
normalq, passing through the pointr50. We assume here
that the tangential component

t~b!5Ik~b!5k~b!2q@q•k~b!# ~2.9!

of the wave vectork(b) is real for allbPB. Here,I 512q
^ q is the projection operator onto the planes0 , 1 is the unit
dyadic, and^ is the tensor product.

SubstitutingWn @Eq. ~2.7!# into Eq. ~2.8! results in

smn5~2p!2E
B
n* ~b!um* ~b!W†~b!dB

3QE
B8

n~b8!un~b8!W~b8!d@ t~b8!2t~b!#dB8,

~2.10!

whered is the Diracd function. In the general case, for eac
bPB, there exists a set@ba ,a51,2, . . . ,N(b);b1[b# of
points baPB, such that the wave vectorsk(ba) have the
same tangential components

t~ba!5t~b! @a51,2, . . . ,N~b!;b1[b#. ~2.11!

Therefore, calculating the integral onB8 by the change of
variablesb8→t, we obtain

smn5E
B
um* ~b! (

a51

N(b)

un~ba!Ta~b!dB, ~2.12!

where

Ta~b!5~2p!2n* ~b!n~ba!
g~ba!

J~ba!
W†~b!QW~ba!, ~2.13!

and J(b)5D(t j )/D(j i) is the Jacobian determinant of th
mappingb→t, calculated in terms of the local coordina
systems (j i ,i 51,2) onB and (t j , j 51,2) on thet plane, pre-
serving the orientation@J(b).0#, anddB5g(b)dj1dj2.

2. Normalized beams (beams I)

To normalize the beamsW @Eq. ~2.7!# to some constan
NQ , i.e., to provide the fulfilment of the conditionsnn
[^WnuQuWn&5NQ , let us assume that the functionn re-
duces to a normalizing constant factor@n(b)[nn5nn*
.0#. Then, from Eqs.~2.12! and ~2.13! follows
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nn5
1

2p F 1

NQ
E

B
un* ~b! (

a51

N(b)

un~ba!

3
g~ba!

J~ba!
W†~b!QW~ba!dBG21/2

. ~2.14!

In this case, one can use in Eq.~2.8! any Hermitian operator
Q ~for example, the unit operator inW) and an arbitrary
orientation of the planes0, for which an integral onB in Eq.
~2.14! is real and positive. Instead of Eq.~2.8!, one can use
any other convenient normalization ofWn @Eq. ~2.7!# with
the corresponding normalizing constantn(b)5nn . The nor-
malized beamsWn @Eq. ~2.7!# with n(b)5nn @Eq. ~2.14!#
~beams I for brevity sake! are closely related to the orthono
mal functions (un) @Eq. ~2.6!#, but they are not orthogona
themselves, i.e., in the general casesmnÞ0 for mÞn.

3. Orthonormal beams (beams II)

From Eqs.~2.6! and ~2.12! follows that the beamsWn
@Eq. ~2.7!# become orthonormal~let us denote them beam
II !, i.e.,

smn5^WmuQuWn&5NQdmn , ~2.15!

if

(
a51

N(b)

un~ba!Ta~b!5NQun~b! ~2.16!

for all bPB. In particular, this condition is satisfied, if

Ta~b!5NQd1a . ~2.17!

It is evident from Eq.~2.13! that the corresponding orthono
malizing functionn(b) is real and is given by

n~b!5
1

2p
A NQJ~b!

g~b!W†~b!QW~b!
. ~2.18!

The expression under the square root in Eq.~2.18! has to be
finite and positive almost everywhere, i.e., for allbPB with
the allowable exception of a set of measure zero inB. This
necessary condition is imposed on the mappingb3, the op-
eratorQ, and the normalq to the planes0 @Eq. ~2.8!#. As-
suming that it is met, there are two basic ways to compos
set of orthonormal beamsWn @Eq. ~2.7!#. The sufficient con-
dition ~2.17! is met, when either

N~b!51 ~2.19!

or

N~b!.1, W†~b!QW~ba!50, 1,a<N~b! ~2.20!

for all bPB andba given by Eq.~2.11!.
To compose the orthonormal beamsWn @Eq. ~2.7!# satis-

fying the condition~2.19! ~beams IIa!, it is necessary to se
the mappingb3 and the normalq such that the maping
b°t(b) is one-one~injective!. In other words, the beam IIa
base consists of eigenwaves with different tangential com
a

o-

nentst5Ik(b). This condition can easily be fulfiled for vari
ous types of fields and media.

For some sets of eigenwaves~see Sec. III C!, there exists
a Hermitian operatorQ, depending on the normalq, such
that the amplitudesW(ba) satisfy the condition~2.20!, pro-
vided that the wave vectorsk(ba), a51,2, . . . ,N(b) have
the same tangential componentt(b) @Eq. ~2.11!#. In this case,
in addition to beams IIa, one can compose the orthonor
beams with a noninjective mappingb°t(b) ~beams IIb!.
This is the main reason whŷWmuQuWn& is used above in-
stead of̂ WmuWn&.

For brevity, when^WmuQuWn&5NQdmn , we designate
Wn as orthonormal functions, whereas this term is more s
able for functionsVn5Q1/2Wn (^VmuVn&5NQdmn), where
Q1/2 is a square root of the Hermitian operatorQ. To elimi-
nate the need for calculatingQ1/2, we use the functionsWn
which have usually a more pronounced physical mean
thanVn . A similar situation exists with regard to the ampl
tude orthogonality condition~2.20!, which can be rewritten
as W†(b)QW(ba)[V†(b)V(ba)50, where V(b)
5Q1/2W(b).

Beams II remain orthonormal under the transformation

W~b!°W8~b!5a~b!eic(b)W~b!, ~2.21!

wherec and a are some real functions onB, anda(b).0
for all bPB. ReplacingW(b) by W8(b) @Eq. ~2.21!# in Eqs.
~2.7! and ~2.18!, we obtain the set of orthonormal beams

Wn8~r ,t !5e2 ivtE
B
ei [ r•k(b)1c(b)]n~b!un~b!W~b!dB, ~2.22!

i.e., ^Wm8 uQuWn8&5NQdmn . The beamsWn @Eq. ~2.7!# and
Wn8 @Eq. ~2.22!# may be treated as two different phase sta
of the same beam. The functionc specifies the phase
change. Naturally, all types of orthonormal beams are inv
ant under the eigenwaves amplitude transformat
W(b)°W8(b)5a(b)W(b). In particular, this makes it
possible to set a beam base using dimensionless vector

4. Beams III

Let us now consider a beam for which the necessary c
dition for orthonormalization is not met, i.e., there exist d
mainsB1 , B0, andB2 of the manifoldB5B1øB0øB2 ,
where the expression under the square root in Eq.~2.18! is
positive, zero, and negative, respectively. We assume
thatB0 is a set of measure zero inB. Let either the condition
~2.19! or ~2.20! be met. Setting again the functionn(b) in
Eq. ~2.7! by the formula~2.18!, from Eqs.~2.12! and ~2.13!
we obtain

n* ~b!56n~b!, ta~b!56NQd1a , bPB6 , ~2.23!

smn5NQS EB1

um* ~b!un~b!dB2E
B2

um* ~b!un~b!dBD .

~2.24!

The beamsWn @Eq. ~2.7!#, described by Eqs.~2.18!,
~2.23!, ~2.24! and satisfying the conditions~2.19! or ~2.20!
~beams IIIa and beams IIIb! are not orthogonal, i.e., in the
general case,smnÞNQdmn . However, their scalar product
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smn5^WmuQuWn& @Eq. ~2.24!# are also invariant under th
transformation~2.21!, since the latter does not change t
sign of the expression under the square root in Eq.~2.18!
and, hence, the domainsB1 ,B0, andB2 . As for beams II,
this transformation changes only the phase states of be
III. The set of phase states for all these beams, specifie
various phase functionsc, is infinite. One can normalize
beams III tosmn @Eq. ~2.24!#, by using the function

n~b!5
1

2p
AU NQJ~b!

g~b!W†~b!QW~b!
U . ~2.25!

However, beams III withn(b) @Eq. ~2.18!# and n(b) @Eq.
~2.25!# differ only in phase. The corresponding phase cha
is specified by

c~b!5H 0, bPB1øB0

p/2, bPB2 .

~2.26a!

~2.26b!

The orthonormal beams II can be treated as the spe
case (B25B) of beams III. It is essential that some beam
of type III can be composed from eigenwaves of all possi
propagation directions.

In addition to the parameters of eigenwaves themselve
the medium under study, there are three key elements d
ing the properties of the presented beams: the manifoldB,
the orthonormal base (un) of complex scalar functions onB,
and the beam base, i.e., the mappingb3 :B→K33W. By
setting these elements in various ways, one can compo
multitude of normalized and orthonormal beams with ve
interesting properties, some of which are presented in
subsequent sections. To compose the beams, it is nece
first to calculate parameters of eigenwaves. In the next
tion, we present the corresponding relations for electrom
netic waves.

III. EIGENWAVES PROPERTIES

Let us consider a linear medium which, at frequencyv in
its rest frameL0, is characterized by the constitutive equ
tions @1–3#

D5eE1aH, B5bE1mH. ~3.1!

In the general case, the permittivity tensore, the permeabil-
ity tensorm, and the magnetoelectric pseudotensorsa andb
are assumed to be complex nonsymmetric and frequency
pendent.

A. Wave vectors and amplitudes

For an eigenwave with wave vectork and frequencyv,
the Maxwell equations reduce to

D52m3H, B5m3E, ~3.2!

wherem5k/k0 is the refraction vector@3#, i.e., the dimen-
sionless ‘‘relative wave vector,’’k05v/c is the wave num-
ber in vacuum. By using Eqs.~3.1! and~3.2!, we obtain Eq.
~2.3! with
ms
by

e

ial

e

in
n-

a

e
ary
c-
g-

-

e-

C~K !5S e a1m3

b2m3 m D , ~3.3!

K5k0~m1e4!, W05S E

HD , ~3.4!

wherem3 is the antisymmetric tensor dual tom (m3E5m
3E). The equivalent equation can be written in terms ofE
field:

xE50, x5e1~m31a!m21~m32b!. ~3.5!

Hence, the dispersion equation~2.4! becomes

uxu[ue1~m31a!m21~m32b!u50, ~3.6!

whereuxu is the determinant ofx. The set of solutionsm of
Eq. ~3.6! defines the wave vector surfaceK3 by k5k0m and,
by virtue of Eq.~3.4!, the section of the hyperspaceKC ~see
Sec. II A!, corresponding to the frequencyv in the frameL0.
To find the wholeKC , one has to solve Eq.~3.6! at various
frequencies with taking into account the frequency dep
dence ofe, m, a, andb.

Let m be an arbitrary solution of Eq.~3.6!. Then, the
amplitudeW0 @Eq. ~3.4!# of the corresponding eigenwave
given by

E5x̄p, H5m21~m32b!E, ~3.7!

wherex̄ is the adjoint tensor (x̄x5xx̄5uxu1), andp is an
arbitrary vector. Ifx is a dyad, i.e.,x̄50 andx5cE^ nE ,
the amplitude subspaceWK5kerC(K ) becomes two dimen-
sional,E is an arbitrary vector normal tonE5px, andH is
given by Eq.~3.7! as before.

B. Wave vector surface parametrization by the tangential
component t of k

Let b5t/k0 and h be the tangential and normal comp
nents ofm (b•q50). Substitutingm5b1hq in Eq. ~3.6!,
we obtain the quartic equation@22#

uh2A1hB1Cu[ (
n51

4

anhn1uCu50, ~3.8!

where

a15~C̄B! t , a25~B̄C1C̄A! t , ~3.9a!

a35uBu1~ABC1CBA1ABtCt2AtBC2BtCA2CtAB! t ,
~3.9b!

a45~ĀC1B̄A! t , ~3.9c!

A5q3m21q3, ~3.10a!

B5~b31a!m21q31q3m21~b32b!, ~3.10b!

C5e1~b31a!m21~b32b!, ~3.10c!
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and At is the trace ofA. The roots (h j , j 51,2,3,4) of this
equation specify all four wave vectorsk j5t1k0h jq, which
have the same given tangential componentt5k0b.

C. Amplitude orthogonality in a nondissipative medium

In a nondissipative medium, the constitutive paramet
satisfy the condition@1–3#

e†5e, m†5m, a†5b. ~3.11!

For an eigenwave with the refraction vectormj5k j /k05b
1h jq and the amplitudeW j , Eqs.~2.3! and ~3.3! result in

RW j5h jQW j , ~3.12!

where

R5S e a1b3

b2b3 m D , Q05S 0 2q3

q3 0 D . ~3.13!

Sinceq is real, the matrixQ0 is Hermitian (Q0
†5Q0). As a

consequence of Eqs.~3.11!, the matrixR becomes Hermitian
(R†5R) at real values ofb. Therefore, from Eq.~3.12! im-
mediately follows

~h j2h i* !W i
†Q0W j50. ~3.14!

If h j2h i* Þ0, Eq. ~3.14! reduces to the well-known or
thogonality relation@27#

W i
†Q0W j[q•~Ei* 3H j1Ej3H i* !50, ~3.15!

which relates the amplitudes of eigenwaves with wave v
tors k i and k j , having the same real tangential compone
t5k0b5Ik i5Ik j , t* 5t. Hence, the electromagnetic beam
of types II and III can propagate in nondissipative line
media and free space.

For a time-harmonic field, the normal componentSq
5q•S of the time average Poynting vectorS can be written
as

Sq5
c

16p
q•~E* 3H1E3H* !5W†QW, ~3.16!

where Q5(c/16p)Q0. Therefore, for electromagneti
beamsWn @Eq. ~2.7!#, the condition^WnuQuWn&5NQ @see
Eq. ~2.8!# is in fact the normalization to the beam energy fl
NQ through the planes0:

^WnuQuWn&5E
s0

Sqds05NQ . ~3.17!

In particular, such normalization is used in analysis of wa
guide problems@27,43#.

In the composition of electromagnetic beams I~see Sec.
II C! the amplitude orthogonality is not warranted. Hen
these beams can propagate in any linear medium.
rs

-
t

r

-

,

IV. BEAM PARAMETRIZATION AND REPRESENTATION

A. Two main ways to set the beam base

There are two main ways to set the beam baseb3 :B
→K33W, i.e., to specify the wave vectorsk and amplitudes
W of eigenwaves composing the beam as functionsk
5k(b) andW5W(b) on the manifoldB.

One can set first the unit wave normals of these eig
waves by a functionk̂5 k̂(b). Then, in the case of electro
magnetic waves, one has to calculate the refractive ind
nj (b)5nj„k̂(b)… of all isonormal waves from Eq.~3.8! (h j
5nj at t5k0b50) and, by choosing some branchnj (b), to
specify the wave vector function k(b)5k0m(b)
5k0nj (b) k̂(b) and the amplitude function W(b)
5col„E(b),H(b)… in Eq. ~3.4! as well.

The alternative is to set first the tangenial components
wave vectors by a real vector functiont5t(b) @q•t(b)50
for all bPB]. Then, the normal componentj j (b)
5j j„t(b)… of k(b)5t(b)1j j (b)q is chosen from the roots
of Eq. ~3.8!; j j5k0h j . The amplitude functionW5W(b) is
calculated fromk5k(b) as described above.

Both the normalk(b)5k(b) k̂(b) and tangentialk(b)
5t(b)1j(b)q parametrizations have advantages and dis
vantages. The wave numberskj are determined by more
readily solved equations than the normal componentsj j ,
such as, for example, a bicubic equation and a full si
order equation in the case of elastic waves in crystals. Th
fore, in nondissipative media, the normal parametrization
more convenient than the tangential one. However, in
sorbing media, when a beam is composed from inhomo
neous eigenwaves with complex normalj(b)5q•k(b) and
real tangential componentst(b)5Ik(b) of wave vectors
k(b), the tangential parametrization is more appropria
This parametrization is also very useful in the analysis
fields radiated by a given point, line, or surface sour
which are composed of both homogeneous and inhomo
neous plane waves@42#.

B. Beam expansion into series

If the beamW in Eq. ~2.5! consists of homogeneou
eigenwaves of frequencyv, i.e., k̂* (b)5 k̂(b) for all b
PB, it may be of advantage to expand it into a series
using the formula@44#

eik•r54p(
l 50

1`

i l j l~kr ! (
m52 l

l

Yl
m* ~ k̂!Yl

m~ r̂ !, ~4.1!

where

k̂5k/k5sinu1~e1cosw11e2sinw1!1e3cosu1 , ~4.2!

r̂5r /r 5sing~e1cosc1e2sinc!1e3cosg , ~4.3!

Yl
m~ k̂![Yl

m~u1 ,w1!, Yl
m~ r̂ ![Yl

m~g,c!, ~4.4!

Yl
m~u,w!5NlmPl

umu~cosu!eimw, ~4.5!

Nlm5A~2l 11!~ l 2umu!!
4p~ l 1umu!!

, ~4.6!

Yl
m(u,w) are the spherical harmonics,Pl

m(cosu) and j l(kr)
are the spherical Legendre and Bessel functions@44,45#.

Substituting the expansion~4.1! into Eq. ~2.5!, we obtain
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W~r ,t !5e2 ivt(
l 50

1`

i l (
m52 l

l

Yl
m~ r̂ !W l

m~r !, ~4.7!

where

W l
m~r !54pE

B
j l„k~b!r …Yl

m* „k̂~b!…n~b!u~b!W~b!dB.

~4.8!

Within the framework of this description, the beam is ch
acterized by a set of radial vector functionsW l

m5W l
m(r ). In

an isotropic medium, these relations become

W~r ,t !5e2 ivt(
l 50

1`

i l j l~kr ! (
m52 l

l

Yl
m~ r̂ !W l

m , ~4.9!

where the coordinate independent vector coefficients

W l
m54pE

B
Yl

m* „k̂~b!…n~b!u~b!W~b!dB ~4.10!

completely characterize the beam. Equation~4.9! illustrates
in effect the well-known and fruitfully used@44,45# fact that
the functionsj l(kr)Yl

m(g,c)exp(2iwt) are particular solu-
tions of the scalar wave equation.

V. BEAMS DEFINED BY SPHERICAL HARMONICS

The general relations presented in Sec. II make it poss
to compose beams related with various sets of orthonor
functions, in particular, orthogonal polynomials and sphe
cal harmonics. As an illustration let us consider the latter
this case, the manifoldB ~see Sec. II! is a unit sphere (B
5S2), and the spherical harmonicsYl

m(u,w) @Eq. ~4.5!# sat-
isfy the relations

^Yl
muYl 8

m8&[E
0

2p

dwE
0

p

Yl
m* ~u,w!Yl 8

m8~u,w!sinu du

5d l l 8dmm8 , ~5.1!

i.e., dB5sinu du dw and g5sinu @see Eq.~2.18!#. Hence,
Eq. ~2.7! becomes

W j
s~r ,t !5e2 ivtE

0

2p

dwE
0

p

ei r•k(u,w)n~u,w!Yj
s~u,w!

3W~u,w!sinu du. ~5.2!

It is essential that, in the general case, the coordinatesu and
w on B5S2 do not coincide with the spherical coordinat
u1 and w1 of k̂ @Eq. ~4.2!#. In particular, using the norma
parametrization, one can set the angular spectrum of ei
waves byk̂5 k̂(u,w)[ k̂„u1(u,w),w1(u,w)… @Eq. ~4.2!#. Al-
ternatively, one can set the functiont5t(u,w) in the frame-
work of tangential parametrization~see Sec. IV A!.

The beamW j
s @Eq. ~5.2!# can be expanded into the seri

W j
s(r ,t)5W(r ,t) @Eq. ~4.7!#, where the radial functions ar

given by
-

le
al
-
n

n-

W l
m~r !54pE

0

2p

dwE
0

p

j l„k~u,w!r …Yl
m* „k̂~u,w!…

3Yj
s~u,w!n~u,w!W~u,w!sinu du. ~5.3!

In an isotropic medium, Eqs.~4.7! and ~5.3! result in
W j

s(r ,t)5W(r ,t) @Eq. ~4.9!# with the coefficients

W l
m54pE

0

2p

dwE
0

p

Yl
m* „k̂~u,w!…Yj

s~u,w!n~u,w!

3W~u,w!sinu du. ~5.4!

In this article, we shall restrict our further consideration
some specific types of electromagnetic beams, defined by
spherical harmonics, in isotropic media and free space.
applications of the suggested approach to beams in com
media will be presented separately. Let us consider two ty
of beams composed of eigenwaves with wide angular sp
trum V, specified by

w15wP@0,2p#, u15uP@0,p/2#, ~5.5!

w15wP@0,2p#, u15uP@0,p#, ~5.6!

i.e., with the solid angleV52p and V54p, respectively.
These beams can be expressed in terms of scalar functioU j

s

and vector functionsRj
s , M j

s , and A j
s , defined by the

spherical harmonicYj
s , the radial, the meridional, and th

azimuthal basis vectors

er~u,w!5sinu~e1 cosw1e2 sinw!1e3 cosu,
~5.7a!

eu~u,w!5cosu~e1 cosw1e2 sinw!2e3 sinu,
~5.7b!

ew~w!52e1 sinw1e2 cosw. ~5.7c!

The definitions and the properties of these functions are
sented in the Appendix.

A. Orthonormal beams with VÄ2p

Let us consider a beam in an isotropic medium or fr
space, composed of eigenwaves with wave vectors given
Eqs. ~4.2! and ~5.5! and defined by the spherical harmon
Yj

s . In this case, the beam manifoldB is the northern hemi-
sphere N given by Eq. ~5.5!, and the mappingb
[(u,w)°t(b)5Ik(b) is injective ~one—one!, i.e., N(b)
51 for all bPN. Since Yj

s(p2u,w)5(21) j 1usuYj
s(u,w),

the spherical harmonicsYj
s andYj 8

s are orthogonal onN, i.e.,

E
0

2p

dwE
0

p/2

Yj
s* ~u,w!Yj 8

s
~u,w!sinu du50, ~5.8!

if j 1 j 8 is even. Hence, using the beam manifoldN, we can
compose two different sets of orthonormal beams~beams
IIa! defined by the spherical harmonicsYj

s with even j ( j
50,2, . . . ;s50,61, . . . ,6 j ) and oddj ( j 51,3, . . . ;s50,
61, . . . ,6 j ), respectively. The corresponding orthonorm
izing function is given by
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n5
1

2p
A 2NQJ

gW†QW
5

1

l
A2NQcosu

W†QW
, ~5.9!

where uP@0,p/2#,wP@0,2p#, and l52p/k is the wave
length. Here, we have taken into account thatg5sinu, and

t5k sinu~e1cosw1e2sinw!. ~5.10!

We shall show below that, for all beams treated in this s
tion, the orthonormalizing functionn @Eq. ~5.9!# reduces to a
constant. Therefore, the integral~2.7! becomes

W j
s~r ,t !5ne2 ivtE

0

2p

dwE
0

p/2

eikr•er (u,w)Yj
s~u,w!

ÃW~u,w!sinu du. ~5.11!

It should be emphasized that these beams are exact solu
of homogeneous Maxwell’s equations, which differ fund
mentally from the well-known approximate solutions~under
the paraxial approximation!—the Hermite-Gaussian an
Laguerre-Gaussian beams@46#.

Let us consider now a nondissipative isotropic medi
with refractive indexn5Aem and set two amplitude func
tions by

W~u,w![S E

HD 5S Z0eu

ew
D , ~5.12a!

5S Z0ew

2eu
D , ~5.12b!

whereZ05Am/e. By settingq5e3, from Eqs.~3.13!, ~3.16!,
and ~5.7!–~5.12! we obtain two types of beams defined b
the spherical harmonicYj

s :

E5n0Z0e2 ivtM jN
s0 @1#5n0Z0ei (sc2vt)$eI j

ss21@cos#

1e* I j
ss11@cos#2e3I j

ss@sin#%,

~5.13a!

H5n0e2 ivtA jN
s0 @1#

5 in0ei (sc2vt)$e* I j
ss11@1#2eI j

ss21@1#%, ~5.13b!

and

E5n0Z0e2 ivtA jN
s0 @1#, ~5.14a!

H52n0e2 ivtM jN
s0 @1#, ~5.14b!

where

n05
4

l
ApNQ

cZ0
, ~5.15!

e is given by Eq.~A14a!, andl52p/k52pv/v. The am-
plitude functionsM jN

s0 @1# and A jN
s0 @1# are given by Eqs.

~A12! and ~A13! with f 51. These two beam types,EM
beam orHA beam@Eq. ~5.13!#, andEA beam orHM beam
@Eq. ~5.14!#, correspond toW @Eq. ~5.12a!# and W @Eq.
-

ns
-

~5.12b!#, respectively. Ats50, these fields are described b
M jN

00 @Eq. ~A23c!# andA jN
00 @Eq. ~A23d!# with f 51.

The time average energy densitieswe andwm of electric
and magnetic fields and Poynting’s vectorS for EM andEA
beams are given by

we5
1

16p
euEu25H w0wM for EM2beam

w0wA for EA2beam,
~5.16a!

wm5
1

16p
muHu25H w0wA for EM2beam

w0wM for EA2beam.
~5.16b!

S5
c

8p
Re~E3H* !5S0~SR8eR1SA8eA1SN8 e3!,

~5.17!

where

wM5uM jN
s0 @1#u25 (

p50

1 H 1

2
~Jjp

ss21@cos# !21
1

2
~Jjp

ss11@cos# !2

1~Jjp
ss@sin# !2J , ~5.18a!

wA5uA jN
s0 @1#u25

1

2 (
p50

1

$~Jjp
ss21@1# !21~Jjp

ss11@1# !2%,

~5.18b!

SR85 (
p50

1

~21!pJj 12p
ss @sin#$b~2s!Jjp

ss21@1#

1b~s!Jjp
ss11@1#%, ~5.19a!

SA85 (
p50

1

Jjp
ss@sin#$b~s!Jjp

ss11@1#2b~2s!Jjp
ss21@1#%,

~5.19b!

SN8 5 (
p50

1

$Jjp
ss21@cos#Jjp

ss21@1#1Jjp
ss11@cos#Jjp

ss11@1#%,

~5.19c!

w05S0 /v, S05NQ /l2, ~5.20!

b~s!5H 21 ~s521,22, . . . !

1 ~s50,1,2, . . . !,
~5.21!

and the functionsJjp
sm are given by Eq.~A5!. Both energy

densitieswe @Eq. ~5.16a!# andwm @Eq. ~5.16b!# as well as the
componentsSR8 , SA8 , and SN8 are independent of the az
muthal anglec @see Eqs.~A14!#, for the beams defined by
the zonal spherical harmonics (s50), SA8[0. It is evident
from Eqs.~3.17! and~5.2! that the total energy flux through
any planez5r cosg5const is the same for all beams and
equal toNQ .

The energy characteristics of some beams are present
Figs. 1–5. They show that all these beams are well focu
in a very small core region with waist radius about 1.5l.
Only in this region are there high values of energy densi
of meridional~Fig. 1! and azimuthal~Fig. 2! fields @see also
Eqs. ~5.16a! and ~5.16b!#, as well as high values of norma



a

s
ing

4470 PRE 61G. N. BORZDOV
SN8 ~Figs. 3 and 4! and azimuthalSA8 ~for sÞ0, Fig. 5! com-
ponents of energy flux vectorS @Eq. ~5.17!#. All these values
rapidly decrease outside it. In the waist planez50, there are
both domains with positive and negative values of norm
componentSN8 (s50, Fig. 3!. Similarly, for some beams
~see, for example, curveD on Fig. 5!, there are domains with
positive and negative values of azimuthal componentSA8 .
For the beams defined by the zonal spherical harmonics
50, Fig. 3!, SN8 50 at the beam center (z50,R50),
whereas, for the beams illustrated by curvesA andB on Fig.
4, SN8 has a maximum at this point.

B. Standing waves and whirls withVÄ4p

Let now the wave vectorsk5k(u,w) be given by Eqs.
~4.2! and ~5.6!, and the amplitude functionsW(u,w) be de-
termined by expressions~5.12!. Let us setq5e3 and definen
by Eq. ~2.25! ~beams III with the angular spectrumV
54p). In this case,B1 and B2 are the northern (0<u
,p/2) and southern (p/2,u<p) hemispheres, and
J/(gW†QW) is uncertain on the equatorB0 (u5p/2). For
all these types of waves the functionn5n(u,w) @Eq. ~2.25!#
reduces to a constant, and condition~2.20! is met @b[b1
5(u,w), b25(p2u,w), N(b)52#. Hence, Eq.~2.24! be-
comes

^W j
suQuW j 8

s8&5@12~21! j 1 j 8#
dss8NQ

4pNj 8s

Pj j 8
ss

@1#,

~5.22!

FIG. 1. Normalized energy densitywM @Eq. ~5.18a!# as a func-
tion of cylindrical coordinatesR85R/l andz85z/l; j 5s50.

FIG. 2. Normalized energy densitywA @Eq. ~5.18b!#; j 5s50.
l

(

whereNj 8s andPj j 8
ss

@1# are given in Eqs.~4.6! and ~A3!. If

s8Þs or j 1 j 8 is even, the beamsW j
s andW j 8

s8 are orthogo-

nal, i.e., ^W j
suQuW j 8

s8&50. For each beam̂W j
suQuW j

s&50,
i.e., the total time average energy flux through the planes0
is zero. That is why such beams are essentially stand
waves.

SubstitutingW @Eq. ~5.12!# in Eqs. ~2.25! and ~5.2!, we
obtain two types of standing waves (EM wave orHA wave
andEA wave orHM wave!:

E5Z0

n0

A2
e2 ivtM j

s0@1#, ~5.23a!

H5
n0

A2
e2 ivtA j

s0@1#, ~5.23b!

E5Z0

n0

A2
e2 ivtA j

s0@1#, ~5.24a!

H52
n0

A2
e2 ivtM j

s0@1#, ~5.24b!

FIG. 3. Normal componentSN8 @Eq. ~5.19c!# of the normalized
energy flux vector as a function ofR8; z50; s50; (A) j 50;
(B) j 51; (C) j 52; (D) j 53.

FIG. 4. Normal componentSN8 @Eq. ~5.19c!# of the normalized
energy flux vector as a function ofR8; z50; (A) j 5s51; (B) j
52, s51; (C) j 5s52; (D) j 53, s51; (E) j 53, s52;
(F) j 5s53.
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where

M j
s0@1#5M jN

s0 @1#1M jS
s0@1#

52eisc$ei us21u1qJjq
ss21@cos#

1e* i us11u1qJjq
ss11@cos#2e3i usu1pJjp

ss@sin#%, ~5.25!

A j
s0@1#5A jN

s0 @1#1A jS
s0@1#

52ieisc$e* i us11u1pJjp
ss11@1#2ei us21u1pJjp

ss21@1#%.

~5.26!

Here and in the following sectionsp512q50 if j 1usu is
even,p512q51 if j 1usu is odd.

The beams, defined by the zonal spherical harmonics
50), are described by

M j
00@1#52~eRi q11Jjq

01@cos#2e3i pJjp
00@sin# !, ~5.27a!

A j
00@1#52eAi p11Jjp

01@1#. ~5.27b!

The time average energy densitieswe andwm of electric
and magnetic fields ofEM wave @Eq. ~5.23!# and EA wave
@Eq. ~5.24!# are given by Eqs.~5.16! and ~5.20! with

wM5
1

2
uM j

s0@1#u2

5~Jjq
ss21@cos# !21~Jjq

ss11@cos# !212~Jjp
ss@sin# !2, ~5.28a!

wA5
1

2
uA j

s0@1#u25~Jjp
ss21@1# !21~Jjp

ss11@1# !2. ~5.28b!

The time average Poynting’s vector for the both stand
waves has the form

S5S0SA8eA , ~5.29!

where

SA852Jjp
ss@sin#$b~s!Jjp

ss11@1#2b~2s!Jjp
ss21@1#%. ~5.30!

FIG. 5. Azimuthal componentSA8 @Eq. ~5.19b!# of the normal-
ized energy flux vector as a function ofR8; z50; (A) j 5s51;
(B) j 52, s51; (C) j 5s52; (D) j 53, s51; (E) j 53, s
52; (F) j 5s53.
(

g

The energy densitieswe andwm as well as the only nonva
nishing componentSA8 of S are independent of the azimuth
anglec. For the beams defined by the zonal spherical h
monics,S(r )50 for all r .

Since the beams under consideration are composed
eigenwaves of all possible propagation directions, they ar
effect the three-dimensional standing waves with rather
volved structures of interrelated electric and magnetic fie
specified by functionsM j

s0@1# @Eq. ~5.25!# andA j
s0@1# @Eq.

~5.26!# ~see also the Appendix and Figs. 6 and 7!. Beams
with sÞ0 are essentially electromagnetic whirls with az
muthal energy fluxes. For any of these waves, i.e., at
values j 50,1, . . . ;s50,61, . . . ,6 j , the time average out
going energy fluxes are vanishing everywhere:e3•S(r )
50,er•S(r )50. Sincee3•S(r )50 for all r , the normaliza-
tion of the form~3.17! is inapplicable in this case. The no
malization parameterNQ specifies the azimuthal energy flu
and the energy density by virtue ofS0 andw0 @Eq. ~5.20!#,
which are the same for all standing waves under consid
ation.

The electromagnetic beams, considered in this section
time harmonic in the Lorentz reference frameL with the
basis (ei ,i 51,2,3,4). In this frame, the intensity of field os
cillations is time independent. It depends only onr andg and
tends to zero asr approaches infinity. In other Lorent
frames such waves will be observed as a moving locali
field with a rather involved dependence of its components

FIG. 6. Normalized azimuthal componentEA8 of the instanta-
neous electric field ofEA-wave as a function ofR85R/l and z8
5z/l; j 5s50; vt5p/4.

FIG. 7. Azimuthal componentSA8 @Eq. ~5.30!# of the normalized
energy flux vector as a function ofR8 andz8; j 53, s51.
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spatial and temporal coordinates. Since the time-average
ergy flux of an electromagnetic three-dimensional stand
wave with sÞ0 is azimuthal in the rest frameL @see Eq.
~5.29!#, in other frames it will be observed as a kind of mo
ing electromagnetic whirl or electromagnetic ‘‘missile.’’
s50, its Poynting vector is identically zero inL, but the
term ‘‘whirl’’ still can be used to emphasize the peculiariti
of the field structure~see Fig. 6!.

VI. MOVING ELECTROMAGNETIC WHIRLS

The parameters of electromagnetic whirls~see Sec. V B!
are calculated in the Lorentz frameL with the basis (ei) and
the space-time coordinates (r ,t). Let L8 be a Lorentz frame
with the basis (ei 8) and the space-time coordinates (r 8,t8),
in which a whirl and, hence, the frameL are uniformly mov-
ing at velocityV. The three-dimensional localization of th
field is a characteristic feature for both the whirls presen
here and the focus wave modes@41#. However, they differ
fundamentally: all moving whirls, treated in this paper, s
isfy the conditionV,c, whereas the focus wave modes@41#
are moving at light velocity.

The electromagnetic whirls, presented in Sec. V B,
described by the twice-contravariant antisymmetric field t
sors

F~r ,t !5
n0

A2
e2 ivt$E•A j

s0@1#~r !1e4`M j
s0@1#~r !%, ~6.1a!

F~r ,t !5
n0

A2
e2 ivt$2E•M j

s0@1#~r !1e4`A j
s0@1#~r !%, ~6.1b!

where

E5e1`e2^ e31e3`e1^ e21e2`e3^ e1 , ~6.2!

and F[E•B1e4`E, the exterior and dot products@23,47#
are given by ei`ej5ei ^ ej2ej ^ ei and (ei`ej ^ ek)•B
5ei`ej (ek•B). In the analytical investigating of moving
whirls, it is convenient to use the intrinsic tensor techniqu
developed in Ref.@23# on the basis of the exterior algeb
@47#. Since

x5r1cte45r 81ct8e48 , ~6.3a!

e45g~b1e48!, ~6.3b!

where r•e45r 8•e485b•e4850, g5(12b2)21/2, b5V/c,
the tensor fieldsFi 8 j 8(r 8,t8) of the moving electromagneti
whirls can be readily calculated from Eq.~6.1! by the Lor-
entz transformaton. By way of illustration, the normaliz
energy density of the electromagnetic whirlF @Eq. ~6.1a!#,
moving with the velocityV50.95ce18 with respect toL8, is
presented in Fig. 8.

It seems that similar moving electromagnetic whirls c
also propagate in dispersive linear media. The correspon
solutions of wave equations can be found as follows. LetL8
and L be the rest frame of the medium and the uniform
moving frame in which the whirl to be found is time ha
monic with frequency v. By substituting K5kk̂(u,w)
1e4v/c @k̂(u,w) is given by Eq.~4.2! with u15u and w1
n-
g

d

-

e
-

,

ng

5w] in the four-dimensional dispersive equation~2.4! and
solving it for the unknown wave numberk at all uP@0,p#
andwP@0,2p#, one can obtain the three-dimensional wa
vectork5k(u,w) k̂(u,w) in the frameL as well as the four-
dimensional oneK5k(u,w)1e4v/c as functions ofu and
w. Then, by solving Eq.~2.3! with K5K (u,w), one can find
the amplitude functionW(u,w). Finally, substitution of
k(u,w) and W(u,w) in Eqs. ~2.25! and ~5.2! results in a
beam defined by the spherical harmonicYj

s , which will be
observed as a time-harmonic standing wave in the framL
and as a moving whirl in the frameL8 related with the me-
dium. Naturally, to perform all this, the dispersive properti
of the medium should be specified in an explicit form.

VII. BEAMS WITH THREE-DIMENSIONAL BASE

A. Orthonormal beams

The presented above technique can be readily extende
the case of fields with three-dimensional beam manifoldB3.
One can replace Eqs.~2.7! and ~2.8! by

W̆n~x![W̆n~r ,t !5E
B 3

eix•K (b)n~b!un~b!W~b!dB3 ,

~7.1!

s̆mn[^W̆muQuW̆n&

5E
2`

1`

dtE
s0

W̆m
† ~r ,t !QW̆n~r ,t !ds0 . ~7.2!

This provides a natural way to generalize the time-harmo
beams, presented in Sec. V A, to beams with more invol
time dependence:

W̆n~r ,t !5E
v1

v2
f n~v!Aw~v!Wn~r ,t !dv, ~7.3!

where Wn(r ,t) is given by Eq. ~2.7! with the two-
dimensional manifoldB, i.e.,B35B3@v1 ,v2#, and (f n) are
real orthonormal functions, for example, orthogonal polyn
mials @45#, with the weight functionw.0, i.e.,

FIG. 8. Normalized energy densityw8 of an electromagnetic
whirl moving with the velocityV50.95ce18 with respect to the

frameL8; j 53, s51; x85x18/l; y85x28/l; x3850.
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E
v1

v2
f m~v! f n~v!w~v!dv5hmdmn , ~7.4!

and (hm) are the normalizing coefficients. In this case,

s̆mn52pE
v1

v2
f m~v! f n~v!w~v!smndv ~7.5!

with smn @Eq. ~2.8!#. For all beamsWn(r ,t) treated in Sec.
V A, smn is frequency independent. Hence Eqs.~7.4! and
~2.8! yield s̆mn52phmsmndmn . This enables the results, ob
tained in this paper, to be expanded to cover the be
W̆n(r ,t) @Eq. ~7.3!#. Since, for all orthonormal beam
Wn(r ,t) with the two-dimensional baseB, smn specifies the
energy flux through the planes0, for the corresponding or
thonormal beamsW̆n(r ,t) @Eq. ~7.3!#, s̆mn @Eq. ~7.2!# speci-
fies the total energy transmission through this plane. To
in an explicit form the beamsW̆n(r ,t) @Eq. ~7.3!# in a dis-
persive medium, the frequency dependence of constitu
parameters must be taken into account.

B. Quasimonochromatic beams

Quasimonochromatic beams

W̆ j
s~r ,t !5

1

v0
E

v2

v1

W j
s~r ,t !dv ~7.6!

with W j
s(r ,t) @Eq. ~5.2!#, defined by the spherical harmonic

is another interesting special case of beams with th
dimensional baseB35S23@v2 ,v1#. By way of illustra-
tion, let us consider electromagnetic beams in free sp
given by

F̆~r ,t !5
1

v0
E

v2

v1

F~r ,t !dv ~7.7!

with F(r ,t) @Eq. ~6.1!#, andv65v06Dv (Dv!v0). This
yields two types of beams uniquely defined by the vec
functions

M̆ j
s0@1#5

1

v0
E

v2

v1

e2 ivtM j
s0@1#dv

5eisc$~eR1 ieA!i us21u1qL jq
ss21@cos#

1~eR2 ieA!i us11u1qL jq
ss11@cos#

22e3i usu1pL jp
ss@sin#%, ~7.8!

Ă j
s0@1#5

1

v0
E

v2

v1

e2 ivtA j
s0@1#dv

5eisc$~eA2 ieR!i us21u1pL jp
ss21@1#

1~eA1 ieR!i us11u1pL jp
ss11@1#%, ~7.9!

where
s

d

e

e-

ce

r

L jp
sm@ f #5

1

v0
E

v2

v1

e2 ivtJjp
sm@ f #dv

5 (
n50

1`

~21!ngumu12n1p~r ,t !

3Pumu12n1p
umu

~cosg!Pj umu12n1p
sumu

@ f #, ~7.10!

gl~r ,t !5
1

v0
E

v2

v1

j l„k~v!r …e2 ivtdv. ~7.11!

The functionsM̆ j
s0@1# @Eq. ~7.8!# and Ă j

s0@1# @Eq. ~7.9!#
can be obtained from the amplitude functionsM j

s0@1# @Eq.
~5.25!# andA j

s0@1# @Eq. ~5.26!# of electromagnetic standing
waves by the replacement of the time-independent functi
Jjp

sm@ f #(r ,g) @Eq. ~A5!# by the time-dependent function

L jp
sm@ f #(r ,g,t) @Eq. ~7.10!#. To obtain the field tensorsF̆ for

the beams under consideration, it is sufficient to repla
e2 ivtM j

s0@1# and e2 ivtA j
s0@1# in Eq. ~6.1! by M̆ j

s0@1# @Eq.

~7.8!# andĂ j
s0@1# @Eq. ~7.9!#. These beams are composed

eigenwave packets radially moving in all possible directio
with the group velocityvg5]v/]k. In the case of electro-
magnetic beams in vacuum,k5v/c andvg5c.

The evolution of such beams is specified by functionsgl
@Eq. ~7.11!#, which can be approximated as follows. Th
spherical Bessel functionj l(z) can be written@45#

j l~z!5 f l~z!sinz1~21! l 11f 2 l 21~z!cosz, ~7.12!

where l 50,61,62, . . . , and thefunctions f l(z) are given
by the recurrence formula

f l 21~z!1 f l 11~z!5~2l 11!z21f l~z! ~7.13!

with f 0(z)5z21 and f 1(z)5z22. Using the conditionDv
!v0, from Eqs.~7.11! and ~7.12! we obtain

gl~r ,t !'
Dv

v0
e2 iv0t$eik0r@ f l~k0r !

1 i ~21! l 11f 2 l 21~k0r !# j 0@Dv~r /vg2t !#

1e2 ik0r@2 f l~k0r !

1 i ~21! l 11f 2 l 21~k0r !# j 0@Dv~r /vg1t !#%,

~7.14!

wherek052p/l05k(v0). The functiongl(r ,t) @Eq. ~7.14!#
tends to zero ast→6`. Hence, for the beams under consi
eration, whent→6`, W̆ j

s(r ,t) tends to zero at all pointsr .
The obtained solutions describe initiation and evolution o
whirl, which originates at the infinity att52` as infinitely
small converging wave propagating with the group veloc
vg . At Dvt!21, its amplitude profile can be roughly ap
proximated by the functionj 0@Dv(r /vg1t)#. It has an infi-
nite series of peaks, the highest of which is at the dista
r 52vgt. As t→0, this wave, growing in amplitude, ap
proches the originr50 and forms a whirl which varies in
intensity as different ‘‘peaks and valleys’’ reach the neig
borhood of the pointr50. At t50, the whirl reaches its
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maximum intensity. The total field can be described as
superposition of converging and expanding waves with e
changing proportion, given by the functionsj 0@Dv(r /vg
1t)# and j 0@Dv(r /vg2t)#, respectively. Att.0, the whirl,
still passing through maximums and minimums of activi
gradually transforms into an expanding wave which vanis
in the infinity as t→1`. Resuming, atDvt!21 and
Dvt@1, there are converging and expanding waves~see
Fig. 9!. In between, there is the oscillating whirl in the neig
borhood of the origin.

VIII. GENERAL BEAM

The general time-harmonic beam with two-dimensio
manifold B and the general beam with more involved tim
dependence and three-dimensional manifoldB can be written
as

W~r ,t !5e2 ivtE
B
ei r•k(b)n~b!u~b!W~b!dB, ~8.1a!

W~x!5E
B
eix•K (b)n~b!u~b!W~b!dB, ~8.1b!

whereu:B→C1 is a complex scalar function onB. Let (un)
be an orthonormal base of complex functions onB. Then,
the functionu can be expanded into a series as

u~b!5(
n

cnun~b!, ~8.2!

wherecn5^umuu&. Hence, from Eqs.~2.7!, ~8.1!, and ~8.2!
we obtain an expansion ofW @Eq. ~8.1!# into a series of
beamsWn @Eq. ~2.7!# or Wn @Eq. ~7.3!# as

W5(
n

cnWn , ~8.3!

which is valid for all types of beams. It is essential that,
the orthonormal beams~beams II!, the coefficientscn can be
extracted from the beamW as follows:

cn5
1

NQ
^WnuQuW&. ~8.4!

FIG. 9. Radial componentSR8 of the normalized energy flux
vector as a function ofR85R/l0 ; z50; j 5s50; Dv/v0

50.05; (A) v0t5240l0 ; (B) v0t550l0.
e
r

,
s

l

r

What is even more important, they are measurable val
provided that there exists a source of orthonormal bea
Wn . As shown in Secs. V A and VII A,I5^WuQuW& is the
energy flux through the planes0 in the case of time-
harmonic beams with two-dimensional manifoldB, and it is
the total energy transmitted through this plane in the cas
beamsWn @Eq. ~7.3!# with three-dimensionalB. In both
cases,I can be measured.

Each of the complex coefficientscn of the beamW @Eq.
~8.3!# can be calculated from the results of three measu
ments as

cn5
I22I11 i ~I32I1!

2aNQ
, ~8.5!

where

I15^WuQuW&, ~8.6a!

I25^~W1aWn!uQu~W1aWn!&, ~8.6b!

I35^~W1 iaWn!uQu~W1 iaWn!&, ~8.6c!

anda* 5a is a real parameter specifying the amplitude of
auxiliary beamWn . In the second and third measuremen
the energy flux or the total energy is measured for super
sitions ofW with the auxiliary beamsaWn andeip/2aWn ,
respectively, i.e., in the third measurement the additio
phase shiftp/2 or p/212mp, m51,2, . . . isinserted.

This provides a means to generalize the solutions of
direct and inverse scattering problems, obtained in R
@16,17,20–25# for the case of plane harmonic incide
waves, to the case of time-harmonic beams obliquely in
dent onto a general bianisotropic slab. To this end, the fie
of reflected and transmitted waves can be expanded in
series of orthonormal beams. The presented techniques m
it possible to calculate the complex scalar coefficients
these series. Assuming that they are given~or measured!, it is
possible to reconstruct the reflection and the transmiss
coefficients of the slab for partial incident plane waves a
then, using the techniques developed in Refs.@16,17,23#, to
extract the whole set of constitutive parameters of the m
dium under study.

IX. CONCLUSION

In this paper, linear fields defined by a set of orthonorm
scalar functions on a two-dimensional or three-dimensio
beam manifoldB are treated. The presented technique ma
it possible to compose a set of orthonormal beams, norm
ized to either the energy flux through a given planes0
~beams with two-dimensionalB) or to the total energy trans
mitted through this plane~beams with three-dimensionalB),
as well as some other specific exact solutions of wave eq
tions such as three-dimensional standing waves, moving
evolving whirls.

By applying this approach to electromagnetic waves
isotropic media, unique families of exact solutions of Ma
well’s equations are obtained. Each family consists of n
malized or orthonormal vector, functions which have integ
expansions in eigenwaves with wave normals lying in
same given solid angleV.
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The families of orthonormal beams withV52p, i.e., the
superpositions of eigenwaves propagating into a given
space, and the families of three-dimensional standing wa
with V54p, i.e., the superpositions of eigenwaves prop
gating in all directions, are of particular interest. The form
owing to the orthonormality conditions, forms convenie
functional bases for more complex fields and provides
helpful technique for modeling the beams now in use a
invesigating their scattering and propagation in various m
dia. The later provides a unique global description of
complex medium under study, which is supplementary to
eigenwave description. Whereas each eigenwave spec
the properties of the medium for one particular direction
propagation, the field value of a three-dimensional stand
wave in any point is defined by all eigenwaves. Moreov
even in free space or/and isotropic media they possess
interesting properties and rather involved field structure. T
high energy density in a very small core region of be
~about several wavelengths of composing eigenwaves! is an
inherent feature of all beams treated in the paper by wa
illustration.

A mathematical formalism, facilitating analytical and n
merical analysis of beams, defined by the spherical harm
ics, is developed and illustrated by calculating fields, ene
densities, and energy fluxes of various electromagn
beams.

The obtained results provide a means to generalize
free-space techniques for characterizing complex media
well as the covariant wave-splitting technique to the case
beams.

The presented approach was also applied to elastic be
sound waves in isotropic media, and weak gravitatio
waves. The obtained results for elastic, sound, and w
gravitational orthonormal beams, three-dimensional stand
waves, and moving and evolving whirls will be present
elsewhere.

The solutions are found, which describe electromagn
and weak gravitational whirls moving without dispersio
with speed 0,V,c. The solutions are also found, whic
describe evolving electromagnetic and gravitational wh
with finite time of observable activity. This brings up th
question of whether such whirls exist in nature and, if
how do they enter in physics and, in particular, astrophys

APPENDIX: SOME FUNCTIONS DEFINED
BY THE SPHERICAL HARMONICS

In solving the scalar and vector inhomogeneous He
holtz equations as well as various problems with spher
symmetry, the mathematical techniques based on the us
the vector spherical functions and Hansen’s multipole fu
tions @44# play a very important role. In particular, by usin
these functions, the radiated electromagnetic fields outsid
a source region can be found by calculating the multip
moments@44#. In this paper, we treat the specific solutions
the homogeneous Helmholtz equations—the beams defi
by the spherical harmonics. In this particular case, instea
the vector spherical functions and Hansen’s multipole fu
tions, it is more convenient to use another set of scalar
vector functions which are differently, but also closely, r
lated with the scalar spherical harmonics. In this paper,
lf
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potentialities of the proposed technique are illustrated by
culating fields, energy densities, and energy fluxes of vari
electromagnetic beams. However, it is also very useful in
analysis of sound, elastic, and weak gravitational fields
fined by the spherical harmonics.

1. Function UjN
sn

Let f 5 f (u) be a scalar, vector, or tensor function of th
polar angleu. Let us introduce a functionU jN

sn of r , defined
by f and the spherical harmonicYj

s through the integration
over the northern hemisphere as follows:

U jN
sn5U jN

sn@ f #~r !

[U jN
sn~r ,g,c!

5E
0

2p

dwE
0

p/2

eikr•er (u,w)Yj
s~u,w! f ~u!einwsinu du

5ei (s1n)cI j
ss1n@ f #~r ,g!, ~A1!

wheren is an integer,er(u,w) is given by Eq.~5.7a!, r ,g,c
are the spherical coordinates@r5r (r ,g,c), Eq. ~4.3!# and

I j
sm5I j

sm@ f #~r ,g!

5 (
l 5umu

1`

i l j l~kr !Pl
umu~cosg!P j l

sm@ f #, ~A2!

P j l
sm5P j l

sm@ f #

58p2NjsNlm
2 E

0

p/2

Pj
usu~cosu!Pl

umu~cosu! f ~u!sinu du.

~A3!

The above notations emphasize the fact thatP j l
sm @Eq. ~A3!#

and U jN
sn @Eq. ~A1!#, at fixed r5r (r ,g,c), and I j

sm @Eq.
~A2!#, at fixedr andg, are functionals regardingf. For any
given f, on the other hand,P j l

sm is a constant, whereasU jN
sn

and I j
sm are the functions ofr and r ,g, respectively. If it

cannot cause a misunderstanding, we shall omit the a
ments (r ), (r ,g), or @ f #, in particular, when all terms o
equations refer to the same arbitrary point (r ) or (r ,g), or
the same arbitrary function@f# @see Eqs.~A4!, ~A20!, and
~A21!#.

The real and imaginary parts ofI j
sm @Eq. ~A2!# can be

separated as

I j
sm5 i umu~Jj 0

sm1 iJ j 1
sm!, ~A4!

where

Jjp
sm5Jjp

sm@ f #~r ,g!

5 (
n50

1`

~21!n j umu12n1p~kr !

3Pumu12n1p
umu

~cosg!Pj umu12n1p
sumu

@ f #. ~A5!
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2. Function UjS
sn

Since Yj
s(p2u,w)5(21) j 1usuYj

s(u,w), the function
U jS

sn , defined by integrating over the southern hemisphe
can be expressed in terms ofU jN

sn @Eq. ~A1!# as

U jS
sn5U jS

sn@ f #~r !

[U jS
sn~r ,g,c!

5E
0

2p

dwE
p/2

p

eikr•er (u,w)Yj
s~u,w! f ~u!einwsinu du

5~21! j 1usuU jN
sn@ f 2#~R3r !

[~21! j 1usuU jN
sn@ f 2#~r ,p2g,c!, ~A6!

where f 25 f (p2u) and

Rm5122em^ em

5e1^ e11e2^ e21e3^ e322em^ em ~A7!

is the operator of mirror reflection in the plane normal
em@m51,2,3;R3r (r ,g,c)5r (r ,p2g,c)#.

If the function f satisfies the condition

f 2~u![ f ~p2u!5~21!qf ~u!, ~A8!

the functionsU jN
sn @Eq. ~A1!# andU jS

sn @Eq. ~A6!# have even
greater structural similarity

U jN
sn5 i us1nuei (s1n)c~Jj 0

ss1n1 iJ j 1
ss1n!, ~A9!

U jS
sn5~21! j 1usu1qi us1nuei (s1n)c~Jj 0

ss1n2 iJ j 1
ss1n!.

~A10!

3. Functions RjN
sn , M jN

sn , and AjN
sn

In this paper, we widely use vector functions defined b
scalar functionf 5 f (u), the spherical harmonicYj

s , and the
radial, the meridional, and the azimuthal basis vect
er , eu , andew @Eq. ~5.7!# as

RjN
sn5RjN

sn@ f #~r !

[RjN
sn@ f #~r ,g,c!

5E
0

2p

dwE
0

p/2

eikr•er (u,w)Yj
s~u,w!

3 f ~u!einwer~u,w!sinu du

5
1

2
~e11 ie2!U jN

sn21@ f + sin#

1
1

2
~e12 ie2!U jN

sn11@ f + sin#1e3U jN
sn@ f + cos#

5ei (s1n)c$eI j
ss1n21@ f + sin#1e* I j

ss1n11@ f + sin#

1e3I j
ss1n@ f + cos#%, ~A11!
e,

a

s

M jN
sn5M jN

sn@ f #~r !

[M jN
sn@ f #~r ,g,c!

5E
0

2p

dwE
0

p/2

eikr•er (u,w)Yj
s~u,w!

3 f ~u!einweu~u,w!sinu du

5
1

2
~e11 ie2!U jN

sn21@ f + cos#

1
1

2
~e12 ie2!U jN

sn11@ f + cos#2e3U jN
sn@ f + sin#

5ei (s1n)c$eI j
ss1n21@ f + cos#1e* I j

ss1n11@ f + cos#

2e3I j
ss1n@ f + sin#%, ~A12!

A jN
sn5A jN

sn@ f #~r !

[A jN
sn@ f #~r ,g,c!

5E
0

2p

dwE
0

p/2

eikr•er (u,w)Yj
s~u,w!

3 f ~u!einwew~w!sinu du

5
1

2
~e22 ie1!U jN

sn21@ f #1
1

2
~e21 ie1!U jN

sn11@ f #

5 iei (s1n)c$2eI j
ss1n21@ f #1e* I j

ss1n11@ f #%, ~A13!

where

e5~eR1 ieA!/2, ~A14a!

eR5e1 cosc1e2 sinc, ~A14b!

eA52e1 sinc1e2 cosc, ~A14c!

r5ReR1ze3 , R5r sing, z5r cosg, ~A14d!

and f +g denotes the composition of functionsf and g, i.e.,
( f +g)(u)5 f „g(u)….

4. Functions RjS
sn , M jS

sn , and AjS
sn

The similar vector functions, related with the southe
hemisphere (uP@p/2,p#), are given

RjS
sn5RjS

sn@ f #~r !

[RjS
sn@ f #~r ,g,c!

5E
0

2p

dwE
p/2

p

eikr•er (u,w)Yj
s~u,w!

3 f ~u!einwer~u,w!sinu du

5
1

2
~e11 ie2!U jS

sn21@ f + sin#

1
1

2
~e12 ie2!U jS

sn11@ f + sin#1e3U jS
sn@ f + cos#,

~A15!
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M jS
sn5M jS

sn@ f #~r !

[M jS
sn@ f #~r ,g,c!

5E
0

2p

dwE
p/2

p

eikr•er (u,w)Yj
s~u,w!

3 f ~u!einweu~u,w!sinu du

5
1

2
~e11 ie2!U jS

sn21@ f + cos#

1
1

2
~e12 ie2!U jS

sn11@ f + cos#2e3U jS
sn@ f + sin#,

~A16!

A jS
sn5A jS

sn@ f #~r !

[A jS
sn@ f #~r ,g,c!

5E
0

2p

dwE
p/2

p

eikr•er (u,w)Yj
s~u,w!

3 f ~u!einwew~w!sinu du

5
1

2
~e22 ie1!U jS

sn21@ f #1
1

2
~e21 ie1!U jS

sn11@ f #.

~A17!

It is evident from Eqs.~A1!, ~A6!, ~A11!, and~A15! that

¹U jN
sn5 ikRjN

sn , ¹U jS
sn5 ikRjS

sn . ~A18!

If the function f satisfies condition~A8!, the following
relations are valid@see also Eqs.~A6! and ~A7!#:

RjS
sn~r !5~21! j 1usu1qR3RjN

sn~R3r !, ~A19a!

M jS
sn~r !52~21! j 1usu1qR3M jN

sn~R3r !, ~A19b!

A jS
sn~r !5~21! j 1usu1qA jN

sn~R3r !. ~A19c!

5. Symmetry properties

Let f 5 f (u) be a scalar function. Then, the scalar a
vector functions defined above through the integration o
l

ix

o-
r

the northern and southern hemisphere, have the same
metry properties~so that we omit the subscriptsN andS):

U j
2s,2n~r !5U j

sn~R2r !, ~A20a!

Rj
2s,2n~r !5R2Rj

sn~R2r !, ~A20b!

M j
2s,2n~r !5R2M j

sn~R2r !, ~A20c!

A j
2s,2n~r !5R1A j

sn~R2r !, ~A20d!

U j
sn
„S~cs1n!r …5U j

sn~r !, ~A21a!

Rj
sn
„S~cs1n!r …5S~cs1n!Rj

sn~r !, ~A21b!

M j
sn
„S~cs1n!r …5S~cs1n!M j

sn~r !, ~A21c!

A j
sn
„S~cs1n!r …5S~cs1n!A j

sn~r !, ~A21d!

where R1 and R2 are given by Eq.~A7! @R1r (r ,g,c)
5r (r ,g,p2c), R2r (r ,g,c)5r (r ,g,2c)#, and

S~cs!5ecse3
3

5e3^ e31coscs~e1^ e11e2^ e2!

1sincs~e2^ e12e1^ e2! ~A22!

is the operator of rotation bycs52p/s(sÞ0) aboute3, i.e.,
S(cs)r (r ,g,c)5r (r ,g,c1cs). The functionsRj

00, M j
00,

and A j
00, defined by the zonal spherical harmonicYj

0 (s
50), also satisfy Eqs.~A20! and ~A21! with cs1n[c0 be-
ing an arbitrary angle.

6. Functions defined by the zonal spherical harmonics

If s5n50, Eqs.~A1!, and~A11!–~A13! reduce to

U jN
005I j

00@ f #, ~A23a!

RjN
005eRI j

01@ f + sin#1e3I j
00@ f + cos#, ~A23b!

M jN
005eRI j

01@ f + cos#2e3I j
00@ f + sin#, ~A23c!

A jN
005eAI j

01@ f #. ~A23d!
n.
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