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Plane-wave superpositions defined by orthonormal scalar functions
on two- and three-dimensional manifolds
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Vector plane-wave superpositions defined by a given set of orthonormal scalar functions on a two- or
three-dimensional manifold—beam manifold—are treated. We present a technique for composing orthonormal
beams and some other specific types of fields such as three-dimensional standing waves, moving and evolving
whirls. It can be used for any linear fields, in particular, electromagnetic fields in complex media and elastic
fields in crystals. For electromagnetic waves in an isotropic medium or free space, unique families of exact
solutions of Maxwell's equations are obtained. The solutions are illustrated by calculating fields, energy
densities, and energy fluxes of beams defined by the spherical harmonics. It is shown that the obtained results
can be used for a transition from the plane-wave approximation to more accurate models of real incident beams
in free-space techniques for characterizing complex media. A mathematical formalism convenient for the
treatment of various beams defined by the spherical harmonics is presented.

PACS numbe(s): 03.50.De, 41.20.Jb, 04.36w, 62.30+d

I. INTRODUCTION Green’s functions techniqug¢7-33, and invariant embed-
ding and wave-splitting approach¢25,31-34. In recent
Natural and artificial complex medi@nisotropic, chiral, Yyears, the conception of refractive index tend@s],

bianisotropi¢ are of considerable current interest to bothBeltrami-Maxwell formalism[36], and fractional calculus
theorists and experimentalists. Bianisotropic media are thE37,38 provided new promising tools for investigating wave
most general linear media in electromagnetics, in which thd@ropagation in isotropic, chiral, and anisotropic media. Ex-
electric displacemend and the magnetic field strength  tensive lists of references on research in the field of bianiso-
depend on both the electric field strengttand the magnetic tropic and chiral media and their applications can be found
displacemenB [1—3]. In the case of motionless bianisotro- &/Sewherd4]. o
pic media, it is convenient to use also the constitutive rela- In_ Refs.[23,24) th_e Lorentz_—covarlant |mp_edance met_h-
tions, whereD and B are expressed in terms & and H, ods in electrodynamics of motionless and uniformly moving

since the tangential componentsBfandH are continuous linear media are developed, and the exact solutions of the
\ng P direct and the inverse scattering problems for such media are
across the interfaces.

I . . found, which can form a basis for the development of free-
In the 1970s, the concept of bianisotropic medium wasyp,ce techniques for characterizing complex media. Two
mostly used in electrodynamics of moving meflia2] and  g,ch techniques, with different ways to extract the whole set
optics of gyrotropic crystalg3]. Beginning in the mid-1980s, o constitutive parameters, as well as the results of their com-
the field of applications has expanded considerfblyHuge  puter modeling are presented in Refd6,17. Computer
advances in material sciences have come up with construcinodeling of them, which included the simulation of mea-
ing new chiral composite materials with technological prom-surement errors, has shown6,17 that both techniques
ise at microwave frequencig$,6]. Recently, helicoidal bi- make it possible to calculate all constitutive parameters of an
anisotropic media have been fabricated and the sculptureshisotropic, chiral, or general bianisotropic medium, pro-
thin film concept for use in many areas of science and techvided that the reflection and the transmission coefficients of
nology has been proposgs,7]. Magnetostatically controlled planar samples under normal and oblique incidence of plane
bianisotropic materialg3] is another class of promising par- harmonic waves are measured with sufficient accuracy.
ticulate composites. This provides new impetus for theoreti- In recent years, considerable progress has been made in
cal studies concerning calculations of effective mediumthe development of measurement facilities to describe ampli-
properties of composite materigl9—13 and the develop- tude, phase, and polarization properties of microwave sig-
ment of new techniques for measuring electromagnetic panals, and to measure the reflection and the transmission co-
rameters of complex med[d4—17. efficients of planar sampleg14,15. This forms a
There exists a variety of techniques for the analysis ogroundwork for practical implementation of the free-space
wave propagation in complex media and for solving directtechniques presented in Refd6,17. However, in many
and inverse scattering problems for such mdd&—34, in  cases the plane-wave approximation of beams, used in the
particular, the characteristic matrix methft9], covariant measurement setups, proves to be inadequate, especially for
impedance method®0-25, the vector circuit theory26], thick samples.
In the last decade, some new types of time-harmonic
waves with degenerate evolution operators and linear, qua-
*FAX: +375 172 20 62 51. dratic, and cubic dependence of amplitude on coordinates,
Electronic address: borzdov@phys.bsu.unibel.by which can be excited in complex media, have been found
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and studied22,39. As in the case of conic refraction, in Sec. V. In Sec. VI, the solutions, describing moving electro-
investigating possible physical phenomena caused by sudahagnetic whirls, are presented. Two examples of fields with
degeneracy, the plane-wave model of the incident beam ithree-dimensional beam manifold are presented in Sec. VII.
also inadequate. In Sec. VIII, we treat the general beam, which can be ex-
On the basis of various techniques, electromagnetic fieldganded into a series of orhonormal beams, and suggest a
in free spacdi.e., vacuun), isotropic media, and some spe- procedure to find the coefficients of this series, providing a
cial cases of anisotropic media have been studied extensivef)€ans to generalize the techniques, developed in Refs.
in recent decades and many interesting solutions of th&L6,17,20—2§ to the case of incident beams. In the Appen-
Helmholtz equation such as fractional solutiofig7] dix, some scalar and vector functions, defined by the spheri-
nondiffracting—Bessel and Bessel-Gauss—beda, fo- cal harmonics and extensively used in this paper, are pre-

cus wave modes, localized wave transmission, and electr"ted:
magnetic missile$41], have been suggested.

In contrast to various beams in isotropic media, Green Il. BASIC EQUATIONS
functions and plane harmonic waves—eigenwaves—in chi-
ral, anisotropic, and bianisotropic media, investigated in ; .
many details, electromagnetic beams in complex media has The plane harmonic vector waveigenwavg
been insufficiently investigated. Among the techniques W(r 1) =W,elkr—od 2.1)
which are the most general and effective tools in the analysis ’ 0 '
of linear fields, Green’s functions and angular-spectrum repig gne of the primary and extremely fruitful notions in elec-
resentations seems to hold the lead. WqiXg,42 provide  y5qynamics and elastodynamics of homogeneous aniso-
prominent examples of the versatility of these approaches,qnic media, and many other branches of field theory. Since
Angular-spectrum representations become especially usefr{e phasek-r— wt is Lorentz invariant, it is convenient to

%

A. Eigenwaves

in the case of complex media, since eigenwaves are the onf.vite £q.(2.1) in terms of the four-dimensional vectoxs

waves in these media, which have relatively s!mple and_weI:rJrcte4 and K =k + (w/c)e,, wherec is the velocity of

. | s ; r\|'ght in vacuum, @) is an orthonormal basis in Minkowski
waves in a linear medium is an exact solution of the corre-

sponding wave equation, two questions naturally ari&g: vector space (q2:1,.:1,2,3€§:_1), 1€
Which superpositions should be consideré™How can the W(x)=W,e* K. 2.2
corresponding integral representations be transformed to

quickly converging or analytic expressions for the field? Ofgjectromagnetic, elastic, and other types of plane waves in
course, there are no unambiguous answers to them. We prpnear media can be treated in the frame of similar math-
pose just one version from the whole host of possible anematical technique27]. Therefore, we shall specify below
Swers. the physical meaning of the oscillating quantity only in

The purpose of this paper is as follows. those cases where it is essential. In particildrcan be any

(1) We present a technique for composing a set of orthopf the following quantities: the electriémagnetig field
normal b_eams and_some other specific types of fields in trengthE (H), the electricimagnetig displacemenD (B),
general linear medium or free space, defined by a set ahe six-dimensional vectors c@(B) and colD,H), and the
orthonormal scalar functions on a two- or three-dimensionajgr-dimensional fieldinduction tensorF (G)—for electro-
manifold. magnetic waves; the displacement vectorfor elastic

(2) We also present the relations for the calculation Ofwaves, and so on. LéY be the corresponding complex vec-
eigenwaves parameters necessary to apply the proposed teghy space WeW).

nigue to electromagnetic waves in bianisotropic media. In a homogeneous linear medium substitutionofEq.

(3) We illustrate this technique by calculating fields, en- (5 2] into the appropriate field equations results in an eigen-
ergy densities, and energy fluxes of electromagnetic bearq,same equation of the form

with wide angular spectrunwith solid anglesQ)=2# and
QO =41), defined by the spherical harmonics. C(K)W,=0, (2.3
(4) We show that the proposed approach provides a
means to generalize the free-space technique for characterighere C(K) is a linear operator depending on the constitu-
ing complex medig16,17, the covariant impedance meth- tive parameters and the four-dimensional wave vektar,
ods[20-25, and the wave-splitting techniqu&5], formu-  in other terms, the three-dimensional wave ve&and the
lated for the plane incident wave, to the case of incidenfrequencyw. If the determinant of2(K) vanishes, i.e.,
beams with finite angular spectrum.
The outline of the paper is as follows. In the next section, detC(K)=0, (2.9
basic equations for orthonormal beams and some other spe-
cific linear fields, defined by a given set of scalar orthonor-Eg. (2.3 has a nonzero solutiow,. The scalar dispersion
mal functions, are presented. In Sec. lll, relations for theequation (2.4), relating k and o, specifies a three-
calculation of the parameters of eigenwaves, required fodimensional hyperspackc in the four-dimensional wave
beam composition, are presented. Some details of beam paector space.
rametrization and representation are discussed in Sec. IV. By The kernelW=kerC(K) e W, i.e., the set of solutions
way of illustration of the general theory, electromagneticW, of Eq. (2.3, whereK is an arbitrary solution of Eq.
beams, defined by the spherical harmonics, are presented (B.4), defines the amplitude subspace of the eigenwave
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[Eq. (2.2)]. If this kernel is one-dimensional, E.3) speci- by b (k(b),W(b)), where k(b)ek3CKc, W(b)
fies Wy up to a complex scalar factor, in other words, theEWK(b), and K3 is the wave vector surface, i.eK(b)

eigenwave polarization is uniquely defined. Otherwigé, =k(b)+ (w/c)ese K.
is two dimensional, and the polarization is defined by an
arbitrary complex vectorWg,e Wx, i.e., the eigenwave 1. Scalar product §,

propagates along an optior acousti¢ axis and may have
any polarization. In particular, this is the case for electro-
magnetic waves in an isotropic medium.

Since the beam¥/,, [Eq. (2.7)] are composed by integrat-
ing on the two-dimensional manifol8, let us introduce a
scalar product

B. Beam manifold, beam base, and beam state

Smn=(W szw’fr,tWr,tda, 2.8
Let u:B—C! be a complex scalar function on a real mn= (Wl Q[W) a0 m(FHQWn(r.t)doo 28

manifold 5 (beam manifolgl Let us consider an eigenwave

superposition(termed below the “beam” for the sake of WhereQ is some Hermitian operator i, W/ (r,t) is the
brevity) Hermitian conjugate oW (r,t), o is the plane with unit
normalg, passing through the poimt=0. We assume here
that the tangential component

t(b)=1k(b)=k(b)—q[q-k(b)] (2.9

of the wave vectok(b) is real for allbe B. Here,I=1—q¢q
®(q is the projection operator onto the plamg, 1 is the unit
dyadic, and® is the tensor product.

SubstitutingW,, [Eq. (2.7)] into Eq. (2.8) results in

W(x)= JBe‘X'K(b)u(b)W(b)dB, (2.5

wheredB is the infinitesimal element d8, K(b) e K¢, and
W(b) e Wy y=kerC(K(b)) for everybe B. The mapping
B:B— KXW by b—(K(b),W(b)) specifies the set of the
eigenwaves involved in the beafheam base whereas the
function u: B—C? specifies the beam state. Owing to the
linearity of the mediumW(x) [Eqg. (2.5)] is an exact solu-
tion of the field equations, provided that the integral on the Smn=(277)2f v*(b)u*m(b)WT(b)dB
right side of Eq.(2.5) exists. B

In analysis of electromagnetic fields radiated by given

sources(dipoles, line, and surface currents, moving point XQI v(b")u,(b")W(b") s t(b")—t(b)]dB5’,
charge$[27,47, the amplitude functiom is dictated by the B’
source properties such as a given distribution of surface cur- (2.10

rent density flowing in a plangt2]. In this article, we treat a ) ) )
different problem. We search for amplitude functions Wheredis the Diracs function. In the general case, for each
which yield exact solutions of the homogeneous Maxwellb € B, there exists a setb,,a=1,2,... N(b);b;=b] of

equations with some prescribed property, for example, th@oints b, e B, such that the wave vectoigb,) have the
orthonormality. same tangentlal components

C. Beam types t(b,)=t(b) [@=1,2, ... N(b);b;=b].  (2.1D

Let us assume that there exists a sef)(of complex  Therefore, calculating the integral dff by the change of
scalar functionsi,, : B— C?, satisfying the orthogonality con- Variablesb’—t, we obtain

ditions N(b)
R = J Un(D) 2 Un(b,) To(b)d (2.12
<Um|Un>EfBum(b)un(b)dB= Omn; (2.6
where
whereu?, is the complex conjugate function tg,, and &y, o(b.)
is the Kroneckels function. In this paper, emphasis is given 2 %
to the case of the two-dimensional manifoRland time- Ta(0)=(2m)%" (b) (b J(b,) (213

harmonic beam¥V [Eqg. (2.5]. However, two special cases
of beams with three-dimensional manifdi B; are treated and J(b)=D(t/)/D(&") is the Jacobian determinant of the

in Sec. VII. mappingb—t, calculated in terms of the local coordinate
Let us consider a set of bearWg,, which in a Lorentz  systems §',i=1,2) onB and (',j =1,2) on thet plane, pre-
frameL with the basis ¢) can be written as serving the orientatiopJ(b)>0], anddB=g(b)d&td&2.

WCrt 7iwtf k) BW(bdB. (2 2. Normalized beams (beams I)
(rh)=e Be v(b)us(L)W(b)dB, (2.7 To normalize the beamd/ [Eq. (2.7)] to some constant

Ng, i.e., to provide the fulfilment of the conditios,,
wherev:B—C?! is some complex function o, which we ~ =(W,|Q|W,)=Ng, let us assume that the functionre-
shall use for normalization or orthonormalization of theseduces to a normalizing constant factw(b)=v,=v;
beams. The mapping;: B— K3 X W specifies the beam base >0]. Then, from Egs(2.12 and(2.13 follows
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1 N(b) nentst=1k(b). This condition can easily be fulfiled for vari-
Vn=5 N_f us (b) 21 Un(by) ous types of fields and media.
Q7B “ For some sets of eigenwavesee Sec. Il ¢ there exists
g(b,) —12 a Hermitian c_)peratoQ, depe.nding on thg .normaj, such
xmwf(b)QW(bQ)dB (2.19 that the amplitude®V(b,) satisfy the conditior(2.20), pro-
a vided that the wave vectoigb,), «=1,2,... N(b) have

. . . the same tangential compone(t) [Eq.(2.11)]. In this case,
In t?'s case, olne fr?n us_(: in E(q.tS) ann)()Herrgltlan o%e_trator in addition to beams lla, one can compose the orthonormal
Q (for example, the unit operator i) and an arbitrary beams with a noninjective mappirg—t(b) (beams IIb.

orientation of the plane, for which an integral o5 in Eq. - . . .
(2.149 is real and positive. Instead of E(.8), one can use This is the main reason whig'| Q|Wy) is used above in
stead of(W |W,).

any other convenient normalization @, [Eq. (2.7)] with
the corresponding normalizing constar{b) = v, . The nor-
malized beamd&V, [Eq. (2.7)] with v(b)=v, [Eq. (2.14)]
(beams | for brevity sakeare closely related to the orthonor-
mal functions (1) [Eq. (2.6)], but they are not orthogonal
themselves, i.e., in the general cagg#0 for m#n.

For brevity, when(W,|Q|W,)=Nqgdy,, we designate
W,, as orthonormal functions, whereas this term is more suit-
able for functionsV,=QYAW, ((Vy|Vn)=Nqdm), where
QY2 is a square root of the Hermitian opera@r To elimi-
nate the need for calculating? we use the functionsV,,
which have usually a more pronounced physical meaning
thanV, . A similar situation exists with regard to the ampli-
tude orthogonality conditiori2.20, which can be rewritten

From Egs.(2.6) and (2.12 follows that the beam&V, as  WT'(b)QW(b,)=VT(b)V(b,)=0, where V(b)
[Eg. (2.7] become orthonormallet us denote them beams =QYAw/(b).

3. Orthonormal beams (beams 1)

I, i.e., Beams Il remain orthonormal under the transformation
Smn™ <Wm|Q|Wn>: NQ5mn: (2.19 W(b)HW,(b):a(b)ei *ﬂ(b)W(b)' (2.21
if where ¢y anda are some real functions 0B, anda(b)>0
for all be B. ReplacingW(b) by W'(b) [Eq.(2.2D] in Egs.
N(b) (2.7) and(2.18, we obtain the set of orthonormal beams
2, Un(D,)Ta(b)=Nqun(b) (2.18

W/ (r,t) =e‘i“"J e lr kO 9y, hyy (b)W(b)dB, (2.22

for all be B. In particular, this condition is satisfied, if B

To(b)=Ngdy,. (2.17 -6, (W|QIW)=Nqép,. The beamsV, [Eq. (2.7] and
W/ [Eg. (2.22] may be treated as two different phase states
It is evident from Eq(2.13 that the corresponding orthonor- of the same beam. The functioir specifies the phase

malizing functionv(b) is real and is given by change. Naturally, all types of orthonormal beams are invari-
ant under the eigenwaves amplitude transformation
1 \/ NoJ(b) 218 W(b)—W’(b)=a(b)W(b). In particular, this makes it
(b)=2= : 2.1 ossible to set a beam base using dimensionless vectors.
27 N g(b)W'(b)QW(b) P g

. . 4. Beams Il
The expression under the square root in 2918 has to be

finite and positive almost everywhere, i.e., for lak B with _Let us now consider a beam for which the necessary con-
the allowable exception of a set of measure zerdirfThis dition for orthonormalization is not met, i.e., there exist do-
necessary condition is imposed on the mappiag the op- MainsB.., By, andB_ of the manifold5=5,UB,UB_,
eratorQ, and the normat to the planeos, [Eq. (2.8)]. As- Whgr_e the expression un(_JIer the square root in(Bd.8 is
suming that it is met, there are two basic ways to compose BOSitive, zero, and negative, respectively. We assume here
set of orthonormal beanW,, [Eq. (2.7)]. The sufficient con-  thatB is a set of measure zero B Let either the condition

Eq. (2.7) by the formula(2.18, from Egs.(2.12 and(2.13
N(b)=1 (2.19  we obtain
or V*(b):iV(b), ta(b):iNleav bEBt, (223

> T = <a< .

NEZL WADIQWIB) =0, d=a=Nb) 220 o NQ< fB Ur(b)un(b)dB~ fB u:n<b)un<b)d3>.
for all be B andb,, given by Eq.(2.12. ’ - (2.24)

To compose the orthonormal beais, [Eq. (2.7)] satis- '
fying the condition(2.19 (beams I3, it is necessary to set The beamsW, [Eq. (2.7)], described by Eqs(2.18),
the mappingB; and the normalg such that the maping (2.23), (2.24 and satisfying the condition®.19 or (2.20
b—1t(b) is one-ong(injective). In other words, the beam lla (beams llla and beams llikare not orthogonal, i.e., in the
base consists of eigenwaves with different tangential compogeneral casesy,# Nqdy,. However, their scalar products
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€ a+m*
B—m*  u

Smn={W|Q|W,) [Eq. (2.24] are also invariant under the

transformation(2.21), since the latter does not change the C(K)Z(
sign of the expression under the square root in ql8

and, hence, the domaiits, ,By, andB_ . As for beams I, E
this transformation changes only the phase states of beams K=Ko(m+e,), WoZ( ) (3.4)
lll. The set of phase states for all these beams, specified by H

various phase functiong, is infinite. One can normalize

, (3.3

beams IIl tosy,, [Eq. (2.24], by using the function wherem” is the antisymmetric tensor dual to (m*E=m
X E). The equivalent equation can be written in termgeof
1 NgJ(b) field:
v(b)= o - ) (2.2H « 1, x
™ ¥ [g(b)W'(b)QW(b) XE=0, x=e+(Mm"+a)u "(Mm"—p). (3.9

However, beams Il withw(b) [Eq. (2.18] and »(b) [Eq.  Hence, the dispersion equati¢24) becomes
(2.25)] differ only in phase. The corresponding phase change

is specified by |x|=le+(m*+a)u™ (m*~pB)[=0, (3.6
0, beB,UB, (2.26a where| x| is the determinant of. The set of solutionsn of

Y(b) :[ o b Eq. (3.6) defines the wave vector surfakg by k=kym and,

w2, beB-. (2.26b by virtue of Eq.(3.4), the section of the hyperspat®. (see

ec. Il A), corresponding to the frequenayin the framel .

S
The orthonormal beams II'can be t_reated as the specigly find the wholeK¢, one has to solve EG3.6) at various
case B_=J) of beams IIl. It is essential that some beamsgequencies with taking into account the frequency depen-
of type Ill can be composed from eigenwaves of all possiblejence ofe w, a, andp.
propagation directions. Let m be an arbitrary solution of Eq3.6). Then, the

In addition to the parameters of eigenwaves themselves iamplitudewo [Eq. (3.4)] of the corresponding eigenwave is
the medium under study, there are three key elements deﬁ@]ven by

ing the properties of the presented beams: the manifold
the orthonormal basauf) of complex scalar functions of,
and the beam base, i.e., the mappjgg B— K3 XW. By
setting these elements in various ways, one can compose a  —. . - — i
multitude of normalized and orthonormal beams with veryWherex is the adjoint tensorxx=xx=|[x|1), andp is an
interesting properties, some of which are presented in tharbitrary vector. Ify is a dyad, i.e.x=0 and y=cg®ng,
subsequent sections. To compose the beams, it is necess#ig amplitude subspadé) =kerC(K) becomes two dimen-
first to calculate parameters of eigenwaves. In the next sesional,E is an arbitrary vector normal tog=py, andH is
tion, we present the corresponding relations for electromaggiven by Eq.(3.7) as before.

netic waves.

E=xp, H=u Ym*-p)E, 3.7

B. Wave vector surface parametrization by the tangential
I1l. EIGENWAVES PROPERTIES component t of k

Let us consider a linear medium which, at frequencin Let b=t/k, and » be the tangential and normal compo-

its rest frameL,, is characterized by the constitutive equa-"€Nts ofm (b-q=0). Substitutingm=b-+7q in Eq. (3.6),
tions[1-3] we obtain the quartic equatid22]

4
D=eE+aH, B=BE+uH. (3.9 | A+ 7B+C|= > a,7"+|C|=0, (3.9
n=1

In the general case, the permittivity tensgrthe permeabil-
ity tensory, and the magnetoelectric pseudotensemndg ~ Where
are assumed to be complex nonsymmetric and frequency de-

pendent. a,=(CB),, a,=(BC+CA),, (3.93
A. Wave vectors and amplitudes az=|B|+(ABC+CBA+AB,C,—ABC-B,CA-CAB),,
(3.9

For an eigenwave with wave vectkrand frequencyw,

the Maxwell equations reduce to a4=(KC+§A)t, (3.99

D=-mxH, B=mxE, (3.2
A=q*pn g, (3.108
wherem=k/kg is the refraction vectof3], i.e., the dimen-
sionless “relative wave vector,ky,= w/c is the wave num- B=(b*+a)u 'g*+q*u " '(b*—pB), (3.100
ber in vacuum. By using Eq$3.1) and(3.2), we obtain Eq.
(2.3) with C=e+(b"+a)u Y (b —p), (3.100
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and A, is the trace ofA. The roots f;,j=1,2,3,4) of this
equation specify all four wave vectoks=t+kg7;q, which
have the same given tangential comportenkgb.

C. Amplitude orthogonality in a nondissipative medium
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IV. BEAM PARAMETRIZATION AND REPRESENTATION

A. Two main ways to set the beam base

There are two main ways to set the beam bgseB3
— KC3XW, i.e., to specify the wave vectoksand amplitudes
W of eigenwaves composing the beam as functidns

In a nondissipative medium, the constitutive parameters=k(b) andW=W(b) on the manifolds.

satisfy the conditioff1—3]

e =¢,

p'=un, o'=p. (3.11)

For an eigenwave with the refraction vectoF=k; /ky=b
+ 779 and the amplitud&V; , Egs.(2.3) and(3.3) result in

RW;=7,QW;j,

e )
’ QO_ q>< 0 "

Sinceq is real, the matriQq is Hermitian Q,=Qq). As a
consequence of EgE3.11), the matrixR becomes Hermitian
(R'=R) at real values ob. Therefore, from Eq(3.12 im-
mediately follows

(3.12
where

a+b*

rR=| ¢ 3.1
(ﬁ—bx © (313

(7= 7 )W/ QoW,=0. (3.19

If 7,—#+0, Eq. (3.14 reduces to the well-known or-

thogonality relatior{ 27]

W/QoW,=q- (Ef XH,+E;xH*)=0,  (3.15

which relates the amplitudes of eigenwaves with wave vec
tors k; andk;, having the same real tangential component
t=kob=1kj=Ik;, t*=t. Hence, the electromagnetic beams
of types Il and Il can propagate in nondissipative linear

media and free space.

For a time-harmonic field, the normal compone®y
=(- S of the time average Poynting vect8rcan be written
as

One can set first the unit wave normals of these eigen-

waves by a functiotk=Kk(b). Then, in the case of electro-
magnetic waves, one has to calculate the refractive indices

nj(b)znj(R(b)) of all isonormal waves from Eq3.8) (7
=n; att=kob=0) and, by choosing some brano{(b), to
specify the wave vector function k(b)=kym(b)
=k0n-(b)R(b) and the amplitude function W(b)
— col(E(b),H(b)) in Eq. (3.4 as well,

The alternative is to set first the tangenial components of
wave vectors by a real vector functiar-t(b) [g-t(b)=0
for all beB]. Then, the normal component;(b)
=§&;(t(b)) of k(b)=t(b)+¢;(b)q is chosen from the roots
of Eq. (3.8); §;=Kq7; . The amplitude functioW =W(b) is
calculated fromk=Kk(b) as described above.

Both the normalk(b)=k(b)k(b) and tangentialk(b)
=t(b) + £(b)q parametrizations have advantages and disad-
vantages. The wave numbeks are determined by more
readily solved equations than the normal components
such as, for example, a bicubic equation and a full sixth
order equation in the case of elastic waves in crystals. There-
fore, in nondissipative media, the normal parametrization is
more convenient than the tangential one. However, in ab-
sorbing media, when a beam is composed from inhomoge-
neous eigenwaves with complex norngb)=q-k(b) and
real tangential componentgb)=I1k(b) of wave vectors
k(b), the tangential parametrization is more appropriate.
This parametrization is also very useful in the analysis of
fields radiated by a given point, line, or surface source,
which are composed of both homogeneous and inhomoge-

neous plane waveg#?2].

B. Beam expansion into series

If the beamW in Eqg. (2.5 consists of homogeneous

eigenwaves of frequency, i.e., k*(b)=Kk(b) for all b
e B, it may be of advantage to expand it into a series by
using the formuld44]

+ o |

c el r=4m2 i'ji(kn X Y™ (YD), (4D
Sq= 10 (E* XH+ExH*)=WiQW, (3.16 (=0 m=—-1
where

where Q=(c/16m)Q,. Therefore, for electromagnetic o/l — i tesi n
beamsW,, [Eq. (2.7)], the condition(W,|Q|W,)=Ng, [see K=k/k=sin61(€,c0Sp1 +&;iNey) +€5c086;, (4.2
Eqg.(2.8)]is in fact the normalization to the beam energy flux F=r/r=sinv(e cosy+ e.sin )+ e.cos 4.3
N through the planer: y(@icoSyt&sing) +egcosy, (4.9
YI(K)=Y"(01,01), YI()=Y"(y,4), (4.9
<Wn|Q|Wn>:LOSquo: Ng- (3.1 YM(6,0)=N;,P|"(coss)e™e, (4.5
. o . . NN CEEGS LI e
In particular, such normalization is used in analysis of wave- Im= W (4.6)

guide problemg$27,43.
In the composition of electromagnetic beami&ée Sec.

Y"(60,¢) are the spherical harmonicB{"(cos6) and j,(kr)

I1C) the amplitude orthogonality is not warranted. Hence,are the spherical Legendre and Bessel funct[dds45.

these beams can propagate in any linear medium.

Substituting the expansioi@.l) into Eqg. (2.5, we obtain
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t ! 27 T R
W(r,t)=e’i‘”tlz il EI YM(r)WM(r), 4.7 W{“(r)=47rfo dsoJOj|(k(9,go)r)Y{“*(k(0.qo))
=0 m=-—
where XY;(0,0)v(0,0)W(0,¢)sin6do. (5.3
In an isotropic medium, Eqs(4.7) and (5.3) result in
W|m(r)=47-rf j1(k(b))Y™ (k(b))v(b)u(b)W(b)dB. W3(r,t)=W(r,t) [Eq. (4.9] with the coefficients
B

(4'8) m 2m i Mx (o S
Within the framework of this description, the beam is char- 0 0
acterized by a set of radial vector functiong"=W{"(r). In XW(6,¢)sindde. (5.9

an isotropic medium, these relations become
In this article, we shall restrict our further consideration to

oI ! R some specific types of electromagnetic beams, defined by the

W(r,Hy=e > i'ji(kr) X YW, (4.9  spherical harmonics, in isotropic media and free space. The

=0 m=-1 applications of the suggested approach to beams in complex

media will be presented separately. Let us consider two types

of beams composed of eigenwaves with wide angular spec-
trum Q, specified by

where the coordinate independent vector coefficients

W, =4WJBY| *(K(b))v(b)u(b)W(b)dB (4.10 o= 0c[0.2n], 1= 0c[0m/2]. 5.5

completely characterize the beam. Equatidrd) illustrates ¢1=¢e[0,27], 6,=0€[0,m], (5.6)
in effect the well-known and fruitfully usef#4,49 fact that . _ _
the functionsj,(kr)Y"(y,)exp(~iwt) are particular solu- I-€., With the solid angld) =2 and ) =4, respectively.

tions of the scalar wave equation. These beams can be expressed in terms of scalar fumtfion
and vector functionsRy, M}, and A}, defined by the
V. BEAMS DEEINED BY SPHERICAL HARMONICS spherical harmonicr$, the radial, the meridional, and the

azimuthal basis vectors
The general relations presented in Sec. Il make it possible

to compose beams related with various sets of orthonormal €(6,0)=sinf(e, cosep+e, Sing)+e; cosh,
functions, in particular, orthogonal polynomials and spheri- (5.7a
cal harmonics. As an illustration let us consider the latter. In ) )
this case, the manifol# (see Sec. )lis a unit sphere ey(6,¢) =cosb(e, cosp+e, sing)—ez sing,
=S?), and the spherical harmonid§'(,¢) [Eq. (4.5)] sat- (5.7
isfy the relations .

fy e,(¢)=—¢; sinp+e, cose. (5.70

, 2 ™ ' . . .
<Y|'“|Y|“j >Ef d(pf Y|m*(0,<p)Y,"? (0,¢)sin0d6o The definitions and the properties of these functions are pre-
0 0 sented in the Appendix.

=66 ’ oy 51
I “mm 6.1 A. Orthonormal beams with Q=24
i.e., dB=sinfdfde and g=sinf [see EQq.(2.18]. Hence, Let us consider a beam in an isotropic medium or free
Eqg. (2.7) becomes space, composed of eigenwaves with wave vectors given by

Egs. (4.2 and (5.5 and defined by the spherical harmonic
Y]-S. In this case, the beam manifolflis the northern hemi-
sphere N' given by Eg. (5.5, and the mappingb

. =(0,p)—t(b)=1k(b) is injective (one—ong, i.e., N(b)
XW(6,p)singdé. (52 =1 for all be . Since Y{(7— 6,¢)=(—1)"1Y5(6,¢),
the spherical harmonicéjS andY].s, are orthogonal owV, i.e.,

. 2 T
st(r,t):eflwtfo d¢J'0 ew-k(ﬁ,cp)v(a’()D)YjS(ey(P)

It is essential that, in the general case, the coordinatasd

¢ on B=S? do not coincide with the spherical coordinates 27 L s _
6, and ¢, of k [Eq. (4.2)]. In particular, using the normal fo dﬁ"fo Y (0.9)Y[(60,9)sin6d6=0, (5.8
parametrization, one can set the angular spectrum of eigen-

waves byk=k(6,¢)=k(0:(0,¢),¢1(0,¢)) [Eq. (4.2]. Al-  if j+j’ is even. Hence, using the beam manifald we can
ternatively, one can set the functiort(6,¢) in the frame-  compose two different sets of orthonormal beathsams

work of tangential parametrizatioisee Sec. IV A lla) defined by the spherical harmonid§ with evenj (]
The beaijS [Eq. (5.2] can be expanded into the series =0,2,...5=0,+1,...,%j) and oddj (j=1,3,...5=0,
Wf(r,t)zW(r,t) [Eq. (4.7)], where the radial functions are +1,...,+j), respectively. The corresponding orthonormal-

given by izing function is given by
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1 2NgpJ 1 2Npcosé
- ——\/ 2 (5.9

27 Ngwfow X V wiow '

where 0e[0,7/2],p[0,27r], and A\=2x/k is the wave
length. Here, we have taken into account thatsin ¢, and

t=ksinf(e,cose+e,sine). (5.10
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(5.12h], respectively. Ats 0, these fields are described by
MiN [Eq. (A230)] and Ay [Eq. (A23d)] with f=1

The time average energy densitigs andw,, of electric
and magnetic fields and Poynting’s vect®for E,, andE,
beams are given by

We shall show below that, for all beams treated in this sec-

tion, the orthonormalizing function [Eq. (5.9)] reduces to a

constant. Therefore, the integi@.7) becomes
. 2m w2
W(r,t) = ve*"”tf d(pJ ek e lboY3(9, )
0 0

XW(8,¢)singdo. (5.11)

£ wow,, for Eyy—beam 516
We=Tg, €IEI"= Wow, for Eo—beam, (5163
wow, for Eyy—beam 516
W= 16x Ton MIHI = wow)y, for E5—beam. (5.160
c
S= g RAEXH*)=Sy(Shen+ Speat Siies),
(5.17

where

It should be emphasized that these beams are exact solutions

of homogeneous Maxwell’'s equations, which differ funda-

mentally from the well-known approximate solutiofusxder

the paraxial approximation-the Hermite-Gaussian and

Laguerre-Gaussian bear#6].

Let us consider now a nondissipative isotropic medium
with refractive indexn=+/ex and set two amplitude func-

tions by

W(0,p)=

(5.123

37

( Zoeq,)
J— ee !

whereZ,=+/u/ €. By settingg=e;, from Egs.(3.13), (3.16),

(5.12b

and (5.7—(5.12 we obtain two types of beams defined by

the spherical harmonilz’js:
E=voZoe “'MR[1]= voZee' /" “{el > cos]

l .
+e* 155" cos| — el T sin]},

(5.133
H=wvoe "'AR[1]
=ivge' VT eN{e* 155 1]~ el 1]}, (5.130
and

E=wvoZoe '“'ARI1], (5.14a
H=—wvoe '“'MJ[1], (5.14h

where

4 [7Ng

Y=y C_ZO’ (5.15

e is given by Eq.(A14a) and\ = 27r/k 27v/w. The am-
plitude functionsM [1] and A [1] are given by Egs.
(A12) and (A13) W|th f=1. These two beam typegy,
beam orH, beam[Eq. (5.13], andE, beam orH,, beam
[Eq. (5.14)], correspond towW [Eq. (5.123] and W [Eq.

1

ML= 3,

[ ss l[COS])2+ (JSS+1[COS])2
+(J5pLsin]) ] (5.183

2 {35512+ (35512,
(5.18b

Wa= |A [1]|2_

2 (= 1)PI5_ [sinl{B(—9)I%5 '[1]

+B(s)355 11, (5.193

Sp= 2 Isinl{B(s) 355 11— B(— )35 [1]},
(5.19hH

Si= pgo {355 Mcos|I5s 1]+ 355 cod I8 1]},

(5.199

Wo=S/v, So=Ng/\?, (5.20
-1 (s=-1,-2,...)

B(s)= (5.21

1 (s=0,12...),

and the functions)?" are given by Eq(A5). Both energy
densitiesw, [Eq. (5.163] andw,, [Eq. (5.16D] as well as the
componentsS;, S,, and Sy are independent of the azi-
muthal angleys [see Egs(A14)], for the beams defined by
the zonal spherical harmonics=£0), S,=0. It is evident
from Eqgs.(3.17) and(5.2) that the total energy flux through
any planez=r cosy=const is the same for all beams and is
equal toNg

The energy characteristics of some beams are presented in
Figs. 1-5. They show that all these beams are well focused
in a very small core region with waist radius aboutXL.5
Only in this region are there high values of energy densities
of meridional(Fig. 1) and azimuthalFig. 2) fields[see also
Egs.(5.163 and(5.16B], as well as high values of normal
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FIG. 1. Normalized energy densityy [Eq. (5.183] as a func-
tion of cylindrical coordinate®’=R/\ andz’'=z/\; j=s=0.

S\ (Figs. 3 and #and azimuthaB, (for s#0, Fig. 5 com-
ponents of energy flux vect@[Eq. (5.17)]. All these values
rapidly decrease outside it. In the waist plare0, there are
both domains with positive and negative values of norma
componentSy; (s=0, Fig. 3. Similarly, for some beams

G. N. BORZDOV

PRE 61

——me—

2

R’

0.5 1 1.5 2.5

FIG. 3. Normal componertsy, [Eq. (5.199] of the normalized
energy flux vector as a function @&'; z=0; s=0; (A) j=0;
(B) j=1;(C) j=2; (D) j=3.

whereN; andeSjs,[l] are given in Eqs(4.6) and (A3). If

P’ #sorj+j' is even, the beaijS andeS: are orthogo-

nal, i.e.,(WJ-S|Q|WjS,’>=O. For each beandW$|Q|W?)=0,

(see, for example, curv@ on Fig. 5, there are domains with i.e., the total time average energy flux through the plage
positive and negative values of azimuthal compon®pt  is zero. That is why such beams are essentially standing
For the beams defined by the zonal spherical harmorsics (Waves.

=0, Fig. 3, Sy=0 at the beam centerz€0R=0),
whereas, for the beams illustrated by curgeandB on Fig.
4, S§, has a maximum at this point.

SubstitutingW [Eq. (5.12)] in Egs.(2.25 and(5.2), we
obtain two types of standing wavegy; wave orH, wave
andE, wave orHy, wave:

. ; ; - v )
B. Standing waves and whirls with -411- E=ZO—Oe_""thSO[1], (5.233
Let now the wave vectork=k(6,¢) be given by Egs. V2
(4.2 and(5.6), and the amplitude functiond/( 6, ¢) be de-
termined by expression(5.12. Let us sefj=e; and definev VO iuinso
by Eq. (2.25 (beams Il with the angular spectrurf H:Ee AL, (5.23b
=4). In this case, 5. and B_ are the northern (&6
<m/2) and southern #/2<f#<) hemispheres, and
J/(gWTQW) is uncertain on the equatdt, (6= m/2). For _ > Yo __iuntas0
all these types of waves the functier (6, ¢) [Eq. (2.29] E_ZO\/Ee AFTLL (5.243
reduces to a constant, and conditih20 is met[b=b;
=(60,¢), by,=(7—6,¢), N(b)=2]. Hence, Eq(2.24) be- y
comes H= — —e 1otM9[ 1], (5.240
2 i
s s’ o j+j, 6SS'NQ s
(WE[QIWS ) =[1—(—1)I "1 |==2p[1], Sy
4’7TNJ'/S B
(5.22
.4
1.2
1.0
A
0.8
0.6
0.4 E
D c
0.2
F
RI

FIG. 2. Normalized energy density, [Eq. (5.18D]; j=s=0.

1 1.5 2

FIG. 4. Normal componertsy [Eq. (5.199] of the normalized
energy flux vector as a function &'; z=0; (A)j=s=1; (B) j
=2,s=1; (C) j=s=2; (D) j=3, s=1; (E) j=3, s=2;
(F) j=s=3.
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R’

0.5 1 1.5 2

FIG. 6. Normalized azimuthal componeRf, of the instanta-

FIG. 5. Azimuthal componen®, [Eqg. (5.190] of the normal-
neous electric field oE,-wave as a function oR’=R/\ and z’

ized energy flux vector as a function Bf; z=0; (A) j=s=1;

(B) j=2, s=1; (C)j=s=2; (D) j=3,s=1; (E) j=3,s =2\ j=s=0; ot=mn/4.
=2; (F)j=s=3.
The energy densitiew, andw,, as well as the only nonva-
where nishing componens, of S are independent of the azimuthal
angle . For the beams defined by the zonal spherical har-
ML]=MiR[1]+Mjg[1] mogniclé/,S(r)=0 for allr. ’ P
:Zeisw{eﬂslequsqsfl[cos] _ Since the beams uqder conS|der_at|on. are composed frqm
eigenwaves of all possible propagation directions, they are in

+e*i\5+1\+l1\].5qs+l[cos]—e3i|3\+P\]_3pS[Sin]}, (5.25  effect the three-dimensional standing waves with rather in-
! . volved structures of interrelated electric and magnetic fields
specified by function$q$°[1] [Eq. (5.25] andAS°[ 1] [Eq.

AP[1]=ARI1]+Ag1] _ )
(5.26)] (see also the Appendix and Figs. 6 and Beams

= 2ies{exilstTPySstir ] —glsTPgS i) with s#0 are essentially electromagnetic whirls with azi-
(5.26 muthal energy fluxes. For any of these waves, i.e., at any
' valuesj=0,1,...5=0,%1,...,%], the time average out-
Here and in the following sections=1—q=0 if j+|s| is 90iNg energy fluxes are vanishing everywhems: S(r)
=0,6-5(r)=0. Sincee;-S(r)=0 for all r, the normaliza-

even,p=1—-qg=1 if j+|s| is odd. , 3 . i
The beams, defined by the zonal spherical harmorscs (tlon_of t_he form(3.17) is map_p_llcable in '.[hIS case. The nor-
malization parameteN specifies the azimuthal energy flux

=0), are described b ) .
) y and the energy density by virtue 8f andw, [Eq. (5.20],
M]QO[]_]ZZ(eRqurlJ?&[COS]_eSipJJQg[Sin]), (5.273 \é\{[?g%h are the same for all standing waves under consider-
. The electromagnetic beams, considered in this section, are
0 _ p+1 701, ) )
Ajo[l]_zeA' ‘]Jp[l]' (5.27H time harmonic in the Lorentz reference frarhewith the

. . , basis € ,i=1,2,3,4). In this frame, the intensity of field os-
The time average energy densities andwy, of electric  jaions is time independent. It depends onlyreandy and
and magnetic fields oEy wave[Eq. (5.23] andE, wave  enqgs to zero as approaches infinity. In other Lorentz
[Eq. (5.24] are given by Eqst5.16 and(5.20 with frames such waves will be observed as a moving localized
field with a rather involved dependence of its components on

1
WM:§|MJSO[1]|2

= (355 cod)2+ (I35 [ cos]) 2+ 2(J55sin))?,  (5.283

1
W= |AP[]12= (55 1D+ (351D (5.280 E

Tz
£ e
SRR,
[N\ o,
/l%y e
N/ T 7R T AT G TS
N SR ZRT LI ATT
) L . l'. ‘@ S e
The time average Poynting’s vector for the both standing 4,"»‘@%:,:.;.::;.?};;5::::
L7 L AT AT LT ATIFFS
waves has the form e
<a

S=SoShea. (5.29

where
FIG. 7. Azimuthal componers, [Eq. (5.30] of the normalized

S/’x:ZJJSS[Sin]{B(S)JjS;H[l]_ﬁ(_S)stps_l[l]}- (5.30 energy flux vector as a function & andz’; j=3, s=1.
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spatial and temporal coordinates. Since the time-average en-
ergy flux of an electromagnetic three-dimensional standing
wave with s#0 is azimuthal in the rest frame [see Eq.
(5.29], in other frames it will be observed as a kind of mov-
ing electromagnetic whirl or electromagnetic “missile.” If
s=0, its Poynting vector is identically zero ib, but the
term “whirl” still can be used to emphasize the peculiarities

SN

of the field structurdsee Fig. 6. SRR
10 ..;'.;.,,///l ‘ \

, et
VI. MOVING ELECTROMAGNETIC WHIRLS v 5 ##%’ﬂ"‘ “&"‘ /A v’
The parameters of electromagnetic whiigee Sec. V B 0 %”&%&% s
are calculated in the Lorentz franhewith the basis ¢) and Ry S, .{.‘;:&0.‘::?
. “'#Cr”
KA,

the space-time coordinates,{). LetL’ be a Lorentz frame
with the basis €¢,) and the space-time coordinates,(’),

in which a whirl and, hence, the frankeare uniformly mov-
ing at velocityV. The three-dimensional localization of the  F|G. 8. Normalized energy density’ of an electromagnetic
field is a characteristic feature for both the whirls presentedvhirl moving with the velocityV=0.95e,, with respect to the

here and the focus wave modgtl]. However, they differ  frameL’; j=3, s=1: x’=x¥'/x; y'=x2'/x; x3' =0.
fundamentally: all moving whirls, treated in this paper, sat-

isfy the conditionvV<c, whereas the focus wave moddd] =] in the four-dimensional dispersive equati¢®.4) and
are moving at light velocity. solving it for the unknown wave numbérat all #[0,7]

The electromagnetic whirls, presented in Sec. VB, areand ¢ [0,27], one can obtain the three-dimensional wave
described by the twice-contravariant antisymmetric field ten'vectork=k(0 ¢)R(0 ¢) in the frameL as well as the four-

Sors dimensional one&K =k(#6, ¢) +e,w/c as functions ofg and
” ¢. Then, by solving Eq(2.3) with K=K (8, ¢), one can find
F(rt)= —Oe‘iw‘{E.AjSO[l](rHe4/\MjS°[1](r)}, (6.1a  the amplitude functionW(#,¢). Finally, substitution of
V2 k(6,¢) and W(6,¢) in Egs. (2.25 and (5.2) results in a
beam defined by the spherical harmolvig, which will be
Vo i © © observed as a time-harmonic standing wave in the frame
F(r,t)= Ee {=&MJTL(N+eNATTLI(N} (6.1D and as a moving whirl in the framie’ related with the me-
dium. Naturally, to perform all this, the dispersive properties

where of the medium should be specified in an explicit form.
E=a/\geate/\e@ete/\e;0e, (6.2 VIl. BEAMS WITH THREE-DIMENSIONAL BASE
andF=&-B+e,/\E, the exterior and dot producf&3,47 A. Orthonormal beams

are given bye/\g=eoe—gog and @/\gxe) B The presented above technique can be readily extended to

=e/\g(e-B). In the analytical investigating of moving the case of fields with three-dimensional beam manifyd
whirls, it is convenient to use the intrinsic tensor techniquesgne can replace Eq&2.7) and(2.8) by

developed in Ref[23] on the basis of the exterior algebra

47). Si s A '
[ ] Ince Wn(X)EWn(r,t): f eIX'K(b)V(b)Un(b)W(b)dB3'

X=r+cte,=r'+ct'e,, (6.33 Bs 7.3

€= +ey), 6.3b . o o
e (©30 = (Wi QW)
wherer-e,=r'-e;=B-€,=0, y=(1- "2 B=VIc,
the tensor field$=' "1 (r’,t") of the moving electromagnetic
whirls can be readily calculated from E(.1) by the Lor-
entz transformaton. By way of illustration, the normalized
energy density of the electromagnetic whtlI[Eq. (6.138],
moving with the velocityV =0.95ce;, with respect td_’, is
presented in Fig. 8.

It seems that similar moving electromagnetic whirls can .
also propagate in dispersive linear media. The corresponding Wi (r,t)= f
solutions of wave equations can be found as follows.ll’et @
and L be the rest frame of the medium and the uniformly, .. W, (r.t) is given by Eq. (2.7 with the two-

moving frame in which the whirl to be found is time har- 4. cional manifolds, i.e., By= BX[wy,w,], and (f,) are

monic with frequency w. By substituting K= kk(6,¢)  real orthonormal functions, for example, orthogonal polyno-
+euw/c [K(6,¢) is given by Eq.(4.2) with ;=6 and¢,;  mials[45], with the weight functionrw>0, i.e.,

f+wdtf Wl (rHQW,(r.ydog. (7.2
— 0 oo

This provides a natural way to generalize the time-harmonic
beams, presented in Sec. V A, to beams with more involved
time dependence:

w

f (o)W@)W, (rhdw, (7.3
1
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[0 1 w .
f me(w)fn(w)w(w)dw=hm5mn, (7.9 Ljsg[f]zw—f +e—lwt‘]jsr')‘{f]dw
w7 0Jw_
+ 00
and (,,) are the normalizing coefficients. In this case, ZZO (= 1) G+ 205 p(T 1)
- w2
Smn=21 J Fn(@)fn(@)W(@)Spde (7.5 X Pl 204 p(COSY) P2, o[ 1, (7.10
@1
. . 1 @4 .
with s, [EQ. (2.8)]. For all beamsV (r,t) treated in Sec. gi(r,t)= w—f jikk(w)r)e “dw. (7.11
0Jw_

V A, s, is frequency independent. Hence E@8.4) and

(2.8) yield Spp=27hSmndmn. This enables the results, ob- A <50
tained in this paper, to be expanded to cover the beams The functionsM;"[1] [Eq. (7.8)] and Aj1] [Eq. (7.9)]

< . can be obtained from the amplitude functidmﬁo[l] [EqQ.

W, (r,t) [Eq. (7.3)]. Since, for all orthonormal beams . .
WnEr t; V\[/itr? th(e tv)v]o—dimensional basB, s,,, specifies the (5.23] and A?O[l] [Eq. (5.28] of electromagnetic standing
ennerg;y flux through the planey, for the, C(;nr?esponding or. \waves by the replacement of the time-independent functions

° . P (r, Eg. (A5)] by the time-d dent functi
thonormal beamsV,(r,t) [Eq. (7.3)], smn [EQ. (7.2)] speci- pLf1(r.7) [Eq. (AS)] by the time-dependent functions

S . . ~
fies the total energy transmission through this plane. To ﬁ”d["r{g[& (a:m);t)ugigr (erﬁ))s]idz?atci)g;alri‘tt?se zﬁrl‘(f]ilctizrrﬁotrog fr(;r lace
in an explicit form the beamV,(r,t) [Eq. (7.3] in a dis- ' P

persive medium, the frequency dependence of constitutivé thMiSO[lv] ande IthiSO[l] in Eq. (6.1) by Mjso[l] [Eq.
parameters must be taken into account. (7.8] andA{°[1] [Eq. (7.9)]. These beams are composed of
eigenwave packets radially moving in all possible directions
with the group velocityv y=dw/dk. In the case of electro-

B. Quasimonochromatic beams . .
magnetic beams in vacuurk= w/c andvy=c.

Quasimonochromatic beams The evolution of such beams is specified by functigns
1 [Eq. (7.11], which can be approximated as follows. The
Wf(r,t)= —fmsz(r,t)dw (7.6) spherical Bessel functiojj(z) can be writter{45]
WoJw_

i(2)=f(z)sinz+(—1)""*f_,_,(z)cosz, (7.12

with Wf(r,t) [Eq. (5.2)], defined by the spherical harmonics,
is another interesting special case of beams with thre
dimensional basé;=S*X[w_,w,]. By way of illustra-
tipn, Iit us consider electromagnetic beams in free space fi_1(2)+f41(2)=(21+ 1)z X, (2) (7.13
given by

wherel=0,=1,=2, ..., and thefunctionsf,(z) are given
eby the recurrence formula

with fo(z)=z"1 and f,(z)=z 2. Using the conditiorA w

Er)= wifmF(r,t)dw 7.7 <wg, from Eqgs.(7.12) and(7.12 we obtain
07~ Aw :
gi(r,H)~ ——e'*o{e" o[ f(kor)

with F(r,t) [Eq.(6.1)], andw+=wy=Aw (Aw<wg). This “o

yields two types of beams uniquely defined by the vector Fi(=D)" (koD jol Aw(r/vg—1)]
functions _ g

+e o' —f,(kor)
WS 1] = f‘“*emejso[l]dw Hi(=1)" L a(koD) ol Aw(r/ug+ D1},
W Jo_ (714)

— Qisy +i ils=1|+qp ss—1
e (& tien Lja Tcosl whereko=27/\ o= k(o). The functiong,(r.t) [Eq. (7.14]

+(er—i€a)ilST AL cog] tends to zero as— + . Hence, for the beams under consid-
eration, whert— * o, st(r,t) tends to zero at all points

— 261" PLi sin]}, (7.8 The obtained solutions describe initiation and evolution of a
whirl, which originates at the infinity dt= —o as infinitely
. 1 (o+ small converging wave propagating with the group velocity
Ajso[l]:w_o L e AP 1]dw vg. At Awt<—1, its amplitude profile can be roughly ap-
N proximated by the functiof[ Aw(r/vg+t)]. It has an infi-
=e‘SV’{(eA—ieR)i|5‘1|+pLjS§‘1[1] nite series of peaks, the highest of which is at the distance
L sralepp skl r=—vgt. As t—0, this wave, growing in amplitude, ap-
+(eatieg)i® HTPLITT 1]}, (7.9 proches the origin=0 and forms a whirl which varies in

intensity as different “peaks and valleys” reach the neigh-
where borhood of the pointr=0. At t=0, the whirl reaches its
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Sk What is even more important, they are measurable values,
B provided that there exists a source of orthonormal beams
0 00002 W, . As shown in Secs. V A and VII AT=(W|Q|W) is the
' energy flux through the plane in the case of time-
, harmonic beams with two-dimensional manifdd and it is
20 40 60 30 oo the total energy transmitted through this plane in the case of
beamsW,, [Eqg. (7.3)] with three-dimensional3. In both
-0.00002 casesZ can be measured.
Each of the complex coefficients, of the beamW [Eq.
-0.00004 (8.3)] can be calculated from the results of three measure-
ments as
A
FIG. 9. Radial componen$; of the normalized energy flux :ZZ_Il+I(Z3_Il) (8.5
vector as a function ofR'=R/\g; z=0; j=s=0; Aw/w, " 2aNg ' '
=0.05; (A) wot=—40\y; (B) wot=50\,.
where
maximum intensity. The total field can be described as the .
superposition of converging and expanding waves with ever Ti=(WIQIW), (8.69
changing proportion, given by the functiorjg[ A w(r/v _
+t)] andjo[Aw(r/vg—t)], respectively. At>0, the whirgll, Lp=((W+aW,)|Q|(W+aW,)), (8.60)
still passing through maximums and minimums of activity, Ta=((W+iaW,)|Q|(W+iaW,)), (8.60

gradually transforms into an expanding wave which vanishes

in the infinity ast—+c«. Resuming, atAwt<—1 and gnga* =« is a real parameter specifying the amplitude of an
Awt>1, there are converging and expanding wavese  yyxiliary beamW,, . In the second and third measurements,
Fig. 9. In betweer_l, _there is the oscillating whirl in the neigh- e energy flux or the total energy is measured for superpo-
borhood of the origin. sitions of W with the auxiliary beamsW, ande' ™2aW,,
respectively, i.e., in the third measurement the additional
VIIl. GENERAL BEAM phase shiftr/2 or w/2+2mm, m=1,2,... isinserted.

This provides a means to generalize the solutions of the
direct and inverse scattering problems, obtained in Refs.
[16,17,20-2% for the case of plane harmonic incident
waves, to the case of time-harmonic beams obliquely inci-
dent onto a general bianisotropic slab. To this end, the fields
of reflected and transmitted waves can be expanded into a
W(r’t):e—ith‘ e k®yb)yu(b)W(b)dB, (8.1a  series of orthonormal beams. The presented techniques make

B it possible to calculate the complex scalar coefficients of
these series. Assuming that they are git@measurey it is
possible to reconstruct the reflection and the transmission
coefficients of the slab for partial incident plane waves and
then, using the techniques developed in REI§,17,23, to
whereu: B—C! is a complex scalar function of. Let (u,) extract the whole set of constitutive parameters of the me-
be an orthonormal base of complex functions ®nThen,  dium under study.
the functionu can be expanded into a series as

The general time-harmonic beam with two-dimensional
manifold B and the general beam with more involved time
dependence and three-dimensional manit®lchn be written
as

W(x)=Le‘x'K(b)v(b)u(b)W(b)dB, (8.1b

IX. CONCLUSION

u(b)=2> couy(b), (8.2 In this paper, linear fields defined by a set of orthonormal
" scalar functions on a two-dimensional or three-dimensional
beam manifold3 are treated. The presented technique makes
it possible to compose a set of orthonormal beams, normal-
ized to either the energy flux through a given plamg
(beams with two-dimension#) or to the total energy trans-
mitted through this planéeams with three-dimension8),
W= 2 coW,,, (8.3 as well as some other specific exact solutions of wave equa-
n tions such as three-dimensional standing waves, moving and
evolving whirls.

By applying this approach to electromagnetic waves in
isotropic media, unique families of exact solutions of Max-
well's equations are obtained. Each family consists of nor-
malized or orthonormal vector, functions which have integral
Cn:Ni<Wn|Q|W>- (8.4) expansi.ons in _eigenwaves with wave normals lying in the

Q same given solid angl@.

wherec,=(uy,|u). Hence, from Eqgs(2.7), (8.1), and(8.2)
we obtain an expansion &V [Eq. (8.1)] into a series of
beamsW,, [Eq. (2.7)] or W, [Eq. (7.3)] as

which is valid for all types of beams. It is essential that, for
the orthonormal beam®eams 1}, the coefficients,, can be
extracted from the beaw as follows:
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The families of orthonormal beams with=27, i.e., the  potentialities of the proposed technique are illustrated by cal-
superpositions of eigenwaves propagating into a given hal€ulating fields, energy densities, and energy fluxes of various
space, and the families of three-dimensional standing waveslectromagnetic beams. However, it is also very useful in the
with Q =44, i.e., the superpositions of eigenwaves propa-analysis of sound, elastic, and weak gravitational fields de-
gating in all directions, are of particular interest. The former,fined by the spherical harmonics.
owing to the orthonormality conditions, forms convenient
functional bases for more complex fields and provides a
helpful technique for modeling the beams now in use and )
invesigating their scattering and propagation in various me- Let f=f(6) be a scalar, vector, or tensor function of the
dia. The later provides a unique global description of thePolar angled. Let us introduce a functiob);{ of r, defined
complex medium under study, which is supplementary to thdy f and the spherical harmoni¢; through the integration
eigenwave description. Whereas each eigenwave specifi@ver the northern hemisphere as follows:
the properties of the medium for one particular direction of
propagation, the field value of a three-dimensional standing ]N [f] (r)
wave in any point is defined by all eigenwaves. Moreover,

1. Function U{

— sn
even in free space or/and isotropic media they possess very N(F 7.4
interesting properties and rather involved field structure. The 27 w2 ,
high energy density in a very small core region of beam =f dsof ek ey 0,0)f(6)e"sing do
(about several wavelengths of composing eigenwaigean 0 0
inherent feature of all beams treated in the paper by way of =gl(stMy j55+n[f](r’,y), (A1)
illustration.

A mathematical formalism, facilitating analytical and nu- wheren is an integere. (6, ¢) is given by Eq.(5.78, 1,

merical analysis of beams, defined by the spherical harmo _
ics, is developed and illustrated by calculating fields, energr;?re the spherical coordinatps=r(r, y,#), £q. (4.3] and

densities, and energy fluxes of various electromagnetic

beams. IFT=15TTE](ry)
The obtained results provide a means to generalize the +o
free-space techniques for characterizing complex media as = Z i|j|(kr)p!m|(cos,y)'pjsln[f]’ (A2)
well as the covariant wave-splitting technique to the case of I=[m|
beams.

The presented approach was also applied to elastic beamg;sm P
sound waves in isotropic media, and weak gravitational ’
waves. The obtained results for elastic, sound, and weak
gravitational orthonormal beams, three-dimensional standing
waves, and moving and evolving whirls will be presented
elsewhere. (A3)

The solutions are found, which describe electromagnetic
and weak gravitational whirls moving without dispersion The above notations emphasize the fact tﬁﬁ’f‘ [Eqg. (A3)]
with speed B<V<c. The solutions are also found, which and U3y [Eq. (A1)], at fixed r=r(r,y,%), and I;™ [Eq.
describe evolving electromagnetic and gravitational whirls(A2)], at fixedr and y, are functionals regardinfy For any
with finite time of observable activity. This brings up the givenf, on the other handP;™ is a constant, where
guestion of whether such whirls exist in nature and, if sognd 5™ are the functions of andr,y, respectively. |f it

how do they enter in physics and, in particular, astrophysicscannot cause a misunderstanding, we shall omit the argu-
ments €), (r,y), or[f], in particular, when all terms of
equations refer to the same arbitrary point é6r (r,y), or
the same arbitrary functioff] [see Eqs(A4), (A20), and
(A21)].

In solving the scalar and vector inhomogeneous Helm- The real and imaginary parts ¢f™ [Eq. (A2)] can be
holtz equations as well as various problems with sphericaseparated as
symmetry, the mathematical techniques based on the use of
the vector spherical functions and Hansen’s multipole func- |sm_|lml(3 +,ij1) (A4)
tions[44] play a very important role. In particular, by using
these functions, the radiated electromagnetic fields outside %here
a source region can be found by calculating the multipole
momentg44]. In this paper, we treat the specific solutions of

/2
=8772NjSN|2mJ P!l(cosg)P|™(cose)f(0)sing do.
0

APPENDIX: SOME FUNCTIONS DEFINED
BY THE SPHERICAL HARMONICS

the homogeneous Helmholtz equations—the beams defined strgn:‘]jsg[f](r’w

by the spherical harmonics. In this particular case, instead of +o0

the vector spherical functions and Hansen’s multipole func- => (- L)%} i+ 20+ p(KD)
tions, it is more convenient to use another set of scalar and v=0

vector functions which are differently, but also closely, re- Im| m|
lated with the scalar spherical harmonics. In this paper, the X P/ 42,4 p(COSY)P, |m|+2v+p[f]' (A5)
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2. Function U¢

Since Y{(m—0,¢)=(—1)"15Y%(6,¢), the function
is, defined by integrating over the southern hemisphere,
can be expressed in terms 0Ofy [Eq. (A1)] as

js=Ujsl ()

in=MLfI(r)
=MjN[f](r!y! ¢)

2m w2
0 0 !

X f(60)e"¢e,(6,p)sin0do
= U3, ) (0) o(0,0)
2m T I sn—1
=f d¢f ek a0y g, o) (9)eesin 6 d o B (e1+|e2)U [fecod
0 /2
1
= (=11 FUSIf_1(Rar) +5 (e i) U fo cos| —eaUS[ fo sin]
=(= DI EURIEI0 7=y, (A6) — S %51 U o cog + €155 1 I fo cog
wheref _=f(7—#6) and — eyl $5 " fosin]}, (A12)
Rn=1-2e,®en in=ANLFI(r)
—e e +teeeteee 26,06, (A7) =A%)
2m w2
is the operator of mirror reflection in the plane normal to =j d(Pf ke 2y 9, ¢)
e[ M=1.23Rar (1,7, 9) =r(r, m=7,)]. o
If the functionf satisfies the condition X f(a)eiM’e@(@)Singdg
f_(9)=f(m—0)=(—1)%(0), (A8) :;( —ie)Us” 1[f]+ (e +ie)UST I f]
the functionsUjy [Eq. (A1)] andU;g [Eq. (A6)] have even =iel(s" MY $ST NI 4 e 1] (ALD)
greater structural similarity
where
Uj _I\s+n\e|(s+n)(//(‘]ss+n+IJss+n ' (A9) e=(eR+ieA)/2, (Al4a)
=(— 1)J+\s|+q||s+n|e.(s+n)¢(Jss+n IJss+n)_ er=e; CoSy+e, siny, (Al4b)
(A0) ey=—e; Sinyg+e, cosy, (Al4c)
3. Functions R, M3}, and A% r=Reg+ze;, R=rsiny, z=rcosy, (Al4d)

In this paper, we widely use vector functions defined by aand foeg denotes the composition of functiofisand g, i.e.,
scalar functionf = f(6), the spherical harmoni¥®, and the  (f°g)(68)=1(g(6)).
radial, the meridional, and the azimuthal basis vectors )
e, €, ande, [Eq. (5.7] as 4. Functions R¢', Mg, and A%
RSN = RS £](r) Tr_le similar vector functiong, related with the southern
INT TN hemisphere [ 7/2,7]), are given

=R{LTI(r,v.4)

=R{gLf1(r)
2m w2 e
- [Tap | Terrataviog =R 7.)
0 0
2w T
xf(6)e"¢e (6,¢)singdo =f0 dsof LEEIOY6,¢)
(el+|e2)US” o sin] Xf(&)ei”‘*’er(ﬁ,go)sinede

! e +ig)UiL [ fosin
+5(e- &) US"™ [ fo sin]+e;USN[ fo cos] (1 &) [fo sin]

(e,—ig) U [ fo sin] +e;Usg fo cos],
+el 7% " fo cog]}, (Al1) (A15)

I\)II—‘

i Ay o Iree o
=/ (" Mfel 55N fo sin] + e 155" A fo sin] +
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je=Mielf1(r)
=M1, 7,9)

2w k
0 2 !

X f(0)e"?e,(8,p)sin0de

sn—1

1 .
:E(el""ez)ujs [fo cos]

sn+ 1

+ is

N| -

(e1—i)Ujs" [ fo cos|—eyUid fe sin],
(A16)
je=ALI(r)
=ATFIr, v, )
= |, de [ oviime
xf(9)e"%e,(¢)sinodo

sn+1
iS

sn—1
iS

[f].

(A17)

1 ) 1 )
=5 (&~ie)Ujs [f]+ 5 (e +ie)u
It is evident from Eqs(Al), (A6), (All), and(A15) that
\Y jS{,‘=ikRjS,Q‘, \Y J-SS”=ikRj5§. (A18)

If the function f satisfies condition(A8), the following
relations are validsee also Eq9A6) and (A7)]:

PA(r)=(— 1)1 SHIRR(Ryr), (A193)
MP(r)=—(—=1)1*SFIRMEN(Ryr),  (A19D)
Sr)=(—1)I* s AASH(Ryr). (A190)

5. Symmetry properties
Let f=f(0) be a scalar function. Then, the scalar and

vector functions defined above through the integration over
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the northern and southern hemisphere, have the same sym-

metry propertiegso that we omit the subscripté and S):

U; s "(n=U"(Ryr), (A20a)

R ") =R,R{"(R,r), (A20b)
M5 7"(r)=RMS(Ryr), (A200)
AT =RAT(R,r), (A200)
UT(S(¢sn)1)=UT"(r), (A21a)
RE(S(#s1n)1) =S5+ ) RE(T), (A21b)
M3 US(4s+n)1) =S ) M(r), (A210)
AS(S(sr 1) =St AS(r),  (A21d)

where R; and R, are given by Eq.(A7) [Ryr(r,v,¢)

=r(r17177_¢)1 RZr(rv’Y!l//):r(rv’yv_lp)]v and
S('r/fs):elpse‘?

=e;® 63t CoSys(e e +teRe)

t+sinygye,0e—e®e,) (A22)

is the operator of rotation by = 27/s(s# 0) aboute;, i.e.,
S()r(r, v, ) =r(r,y,+4). The functionsR°, M{°,
and A, defined by the zonal spherical harmoni€ (s
=0), also satisfy Eq9.A20) and (A21) with ¢, ,= ¢ be-
ing an arbitrary angle.

6. Functions defined by the zonal spherical harmonics
If s=n=0, Egs.(Al), and(A11)—(A13) reduce to

ufR=179f1, (A23a)
RN =erl{ T fo sin] + el 7T fo cos], (A23b)
M{N=exl ] fo cos| — el T fo sin], (A230)
AfN=eal {11 (A23d)
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