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Effectiveness of rf phase modulation for increasing bunch length in electron storage rings

F. Orsini and A. Mosnier
CEA Saclay, Bément 701, 91191 Gif-sur-Yvette, France
(Received 25 March 1999

Aiming at increasing the apparent bunch length and hence the beam lifetime in electron storage rings, rf
phase modulation near one parametric resonance has been experimentally investigated. Since the possible
benefit of this technique depends greatly on the ring parameters, we studied the effect of such a modulation for
different rf parameters on the longitudinal emittance. Theoretical predictions and results of simulations are
compared and discussed. It is shown that synchrotron radiation tends to spoil the parametric resonance. In
particular, a criterion for island survival has been found.

PACS numbes): 29.20—c, 29.27-a, 41.60—m

[. INTRODUCTION Well below the bifurcation frequencw., two stable
fixed points (SFP’'9 define two well separated domains,
In order to reach very high brilliance, synchrotron radia-which particles fill in about the same proportions. Abayg
tion light sources demand intense bunches with very smalbnly the farthest stable fixed point is left and the particles
transverse and longitudinal emittances. However, the highliffuse toward this off-centered island.
density of electrons increases the Touschek effect €™ The three regimes of the integer resonance have been
collisions at large angjeand thus reduces the beam lifetime. simulated with the parameters of the SOLEIL storage ring.
In order to reduce the electron density, different approacheBigure 1 shows, for example, the gathering of particles, ini-
have been considered: a higher harmonic cavity operating itially uniformly distributed in phase space, into the islands
the bunch lengthening mode or a rf phase modulafibn  after a few damping times for different modulation tunes. As
which increases the apparent bunch length but also the esoon as the modulation amplitude is large enough so that the
ergy spread of the beam. This paper focuses on the secoiteger resonance takes place, dipole oscillations of large
method, especially near the third-integer resonance, more apiagnitude are created, whatever the regime. The integer
propriate than the integer resonance. The latter, widely exparametric resonance is definitely not an appropriate method
plained in previous papef&], is too strong to be useful in for decreasing the electron density of the bunch.
storage rings—distinct bunchlets with large spacing are
formed—and is briefly discussed in Sec. Il. The third-integer
resonance, more promising, can be controlled through the [ll. THIRD-INTEGER RESONANCE
two modulation parameters frequenay,, and amplitude
A, which must first be properly chosen. Analytical expres-
sions for fixed points and island widths are given in Sec. Il Only the main results are recalled hereafter and detailed
and help for the optimization of the modulation. For illustra- derivations can be found in the Appendix. We consider a
tion, three synchrotron light sources are compared: BESSY phase modulation with frequency close to three times the
SOLEIL, and SuperACO. Lastly, the combined effect of synchrotron frequency. The complete perturbed Hamiltonian,
both synchrotron radiation and parametric resonance is stu@s a function of the phas¢ and the energy deviatios of
ied in Sec. IV. Islands created by rf modulation tend to van-one particle, can be written as
ish as soon as radiation damping is introduced. A criterion
that guarantees islar)d formation_ i; then infer.red' from t.he H(,6)= Eéer wstangs[sind)cos(Am sinwpt)
Fokker-Planck equation. The validity of the criterion is fi- 2
nally tested with different parameters of the three machines.

A. Hamiltonian of the third-integer resonance: o ,,~3 w4

+c0s¢ SI(ApSinwpt) ]

IIl. INTEGER RESONANCE — ®C0S¢ COY A Sinwpt)

The integer resonance has been thoroughly analyzed in + wssing sin(Ap sinoyt) —wsp tands, (1)
[2]. The particle motion can be characterized by three re-
gimes according to the value of the modulation tune, with

respect to a bifurcation frequency, given by where ws is the synchrotron frequency and we defitrg
=7— ¢s With ¢ the synchronous angle.

3 We examine the Hamiltonian in the coordinate frame, ro-
1— _(4Am)2/3} tating at the modulation frequency, by using the action-angle
16 '

variables §,) defined as

W= Wg

with wg the synchrotron frequency amd, the amplitude of
the perturbation of the first harmonic. 5= — \/ECOS{ZH- wntl3), ¢=— \/ﬁsin(T/mL wntl3).
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FIG. 1. Particles in normalized phase spaged) with rf phase modulation at the integer resonarieg Well below the bifurcation
frequency;(b) just below the bifurcation frequencyg) above the bifurcation frequency.

Expanding into Bessel functions and assuming that we areesonance ¢,,— 3 ), and are bounded by the lower limit
close to the third-integer parametric resonance, the timea,,. Figure 2 illustrates this limit.
averaged Hamiltonian, representing the motion invariant,
takes the simple form C. Island width

2 3\ 312 The island width is given by the distance between the
Ol 0 WAL, (2) ~ . L ; .
(K)i=| wsg— —-]3— — coS 3 — ws. separatrices, the curves joining the unstable fixed points, and
3 16 48 the stable fixed points, where the Hamiltonian is maximum
2) [3]. The normalized widthiin o units) expressed in terms of

In addition to the first linear term of the third-integer reso- Storage ring parameters is given by
nance, the Hamiltonian includes higher order functiond.of
2( Qs
AS,=*16 3laoh

3/2 1
The cosine term provides thg periodicity of 27/3. The . h) (1-— w./3 w5)3’4\/_—R.
terms likew, that do not depend ahandy do not affect the ¢ AmRFp @
differential equations and hence can be ignored. In the new
phase space variabled, /), the stationary trajectories are ~ TheK-constant contours, calculated for the SOLEIL ring,
given by theK-constant contours. are shown in Fig. 3. At small amplitude, the motion is almost
The position and width of the three islands, which deter-unaffected by the resonance. Moving away from the origin,
mine the phase space occupied by the beam, are controllé@e circles become more and more distorted, until reaching
by the modulation parameters and must be properly adjustethe islands. The expressidd) reveals that the more,
tends to 3vg, the more the island width is reduced. The
B. Fixed points width is drawn in Fig. 4 as a function of the distance to the

resonance and scales as the poyeThere is then a trade-
The coordinates ¢, , ;) of the three stable fixed points o

are (for =0, 2m/3, 4m/3) 25.0) [y AT
5,= (L +Rep), — (1+Rep), — S (1+Rep), .
150 | .
= am am 100 | .
$,=0, \/§T(1+RFP)1 _\/§Z(1+RFP)1 () 2
5 sof ]
with the factor Rep s ~ ~ _
=1+ (64Q%/a5 (o ha)?) (1— wn/3ws), where a, is the 00 & M M 1
normalized modulation amplitudeA(, is in units of rms
bunch length, Qg is the synchrotron tuner, is the natural S0 ]
energy spready is the momentum compaction, ahds the 100 | ]
harmonic number.
The fixed point position depends on ring and rf modula- T O Y S SO AR S SNV EPRW R |
tion parameters. In order to depopulate the bunch center a O e e

much as possible, islands have to be large enough, on one

hand, and be placed close to the bunch core, on the other FIG. 2. SOLEIL: Evolution of the amplitudé, of the stable
hand. However, Eq3) shows that the stable fixed points can fixed point versus the third-integer resonance coefficient (1
never reach the origin, even for a vanishing distance to the- w/3w).
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FIG. 3. K-constant contours plotted in normalized phase space Ajl+ Ajz< 53, 6)
(¢,0) for SOLEIL ring parametergcurves surrounding the stable

fixed points are in solid lines and curves surrounding the unstabl@vhereAjl andAjz are the island widths of the third-integer

fixed points are in dashed lines o ) ~ )
and fifth-integer resonances, respectively, &@ddis the is-

b island . | qi land spacing in amplitude.
off between island positiondy, very close to &) and is- In the case of rf phase modulation, and possible interac-
land width (@, not too close to 3). tion between the third- and fifth- integer resonances, the cri-

terion becomes
D. Chirikov criterion

1/2
The Chirikov criterion[4] is used to estimate the onset of (ﬁ) 1
stochastic instability. In particular, chaotic behavior can oc- 6
cur when islands of two successive parametric resonances
are too close and the overlap of resonances begins when theiith A ws/w,=1/6m? and m=3 for the third-integer reso-
separatrices are in contact. As we will see later, this chaotioance.
motion has been observed in some simulations with SOLEIL Expressed in terms of the normalized modulation ampli-

3/4
0} Aw
o), 80,

Wsg

3 wg

parameters. tude, the condition on the modulation tune for nonchaotic
The Chirikov criterion is given by4] behavior can be written as
5 — 30
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FIG. 5. Single bunch tracking in normalized phase spafg, §,). Dark points represent the third-integer resonance effect, gray points
represent the fifth-integer resonance effect.
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TABLE I. Synchrotron light sources’ main parameters.
SOLEIL BESSY | SuperACO
Frequency(MHz) 352.2 499.2 100.0
Harmonic number 396 104 24
Momentum compaction 4371074 1.5x10°? 1.48<10°2
Nominal energy(MeV) 2500 800 800
Energy loss/turrikeV) 800 20 21.3
Total rf voltage(MV) 3.8 0.2 0.17
Longitudinal damping timéms) 4.33 10.0 8.5
Natural energy spread 9.2410 4 5.0x10* 5.5x 104
Bunchlength/wavelengthy /A r(%) 2 7.9 4.5
O 6w, 1243 nearly 3o for the three machines. A significant bunch length-
P81 g (6)  ening is therefore expected.
Wg WRE O'Eam

Figure 5 reproduces two numerical simulations for IV. SYNCHROTRON RADIATION EFFECT

SOLEIL (chaotic behavigrand BESSY Knonchaotic behav- In the previous analytical treatment, the synchrotron ra-
!or). In nonchaotic behawor,_ thg fifth-integer resonance ha%liation effect, including radiation damping and quantum ex-
islands very far from the third-integer one, more thamr15 Gjiation, has not been taken into account. However, this ef-

[Fig. S(b)] with widths small in comparison to the island fect cannot be neglected in storage rings, where these terms
spacing. The particles are then independently governed by, pe as jarge as the parametric resonance terms.
each resonance. Conversely, the fifth-integer islands hit the

separatrices of the third-integer islands in the case of chaotic
behavior[Fig. 5a)]. The particles can then diffuse from one
resonance to the next, leading to particle loss.

A. Fokker-Planck treatment

Due to the dissipative nature of the system, the previous
Hamiltonian treatment cannot be directly applied in the pres-
ence of synchrotron radiation. The present analysis is based

The modulation parameterS, frequemm and amp"tude on the Vlasov equation with the Fokker-Planck collision
A,,, have first been optimized with the help of the analyticalterm,
expressiong3) and (4), together with different storage ring
parameter$5]. Table | summarizes the relevant parameters
used for three light sources: SOLEIL, BESSY |, and Su-
perACO.

Both the parameters, amplitudg, and frequenc of . e . . .
b plitude, , ¥om where F( ¢, 6,t) is the distribution function of particles in

rf phase modulation, are given in Table Il after optimization. ! X e
The corresponding stationary trajectories are plotted in Figth® PUNChR=(9/36)(y4F 6+ xdF/d5) is the collision term

6. It is worth noting that thea,, value is moderate for pre- d€scribing the synchrotron radiation effect, apd -} de-
venting any coherent motion of the whole bunch and that th&0t€S the Poisson bracket termy=1/T 54 is the radiation
fixed points are close enough to the bunch core, while keepdampmg rate and is the quantic diffusion factor, related to
ing a sufficient island width. Ya by oe= Kl yq. . o

When the bunch is short compared to the rf wavelength, With the help of the four partial derivatives
especially for SOLEIL, the modulation frequency has to be
moved very close to @ in order to draw the fixed points to

E. Optimization of the rf phase modulation parameters

JF B
W+{H,F}—R, (7)

the origin. With these optimized parameters, we note that
particles initially located at & will be drawn out up to

FA|

— =—+2J cosy,

a6

d

33 .
—=—\2Jsiny,

TABLE Il. Final optimization of the rf phase modulation parameters and island characteristics for each

machine.
SOLEIL BESSY | SuperACO
onl wg 2.9995 2.9850 2.9950
A, (deg 1.48 5.68 3.24
SFP coordinates (8,2.54) (0;+3.39) (0;+3.43)
(¢y,64) (+2.20-1.27) (+2.94-1.69) (+2.97-1.71)
(—2.20-1.27) (—2.94-1.69) (=2.97-1.71)
Island width (@ units) 2.29 2.71 2.77
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FIG. 6. Separatrices and-constant contours in normalized phase spagg,,) with rf phase modulation of the third integei)
SOLEIL; (b) BESSY I;(c) SuperACO.

If the amplitude of the third-integer modulation is equal to

gy sing  dy  cosy _ ger mo
—_——_ — = zero, we find the well-known Haissinski steady state solu-
96 2 0 PN tion, whereh describes a Gaussian bunch:

the new Fokker-Planck equation, in terms dfif) variables, h(3)= e (/3 o h(¢,8)= Yd o= Gl + D12

. K K

IS

JF OF 9K 9F oK J ~ = Finally, the bun(ih stlaNpe, given by theﬂis_tributh(ﬂ), yvill

— = —= —==2—| yJF+kI—= (8)  get the form:A(J)e ") [where A(J) is an amplitude

ap ad  od dp dd dJ term coming from the solution of Eq10)].

. A . The relevant ternb(J), which contains the third-integer

whereK is the perturbgd~Ham|Iton|an. Replacihgin Eq. resonance perturbation with the synchrotron radiation effect,

(8) by its expression inJ, ) variables, and as this equation || determine the bunch Gaussian shape or the shape modu-

has now a stationary solutiow £/7t=0), then the problem |ated by island formation. Thus the rf phase modulation is

is reduced to still efficient if the magnitude of the first coefficient is larger
than the two last coefficients.

—+
at

0 0AnCOSI . .
(9—17/( (ws— on/3)— 8 1—6(2‘]) B. Island formation criterion

The three coefficients of the bracketed terrrb(ﬁ) are

sin 3yr+2y4d + 2k

:ijaZF ) f( wAn(23)32
FACA 16

wAL(2)%2 -
C1=$Sin3¢1, sz'yd\], C3:K.

+2y4F. 9
The C5 term, generally much smaller th&h andC,, can be

We are interested in the part that contains #éJ de- ~Neglected for phase space only. o
When the modulation parameters are optimized to catch

r|vat|ves.. The separation nfaeds 0 f'?( th.e Vi”i‘me l//1~'n the particles located in the bunch cores()1 it is particularly

the rotating frame, and using factorizatiph(J,#) =9(¥)  interesting to estimate if the particles are attracted into the
X h(J)], the equation can be written as islands or if they remain near the origin. With physical phase
space variablesd, 5), and the assumption thawvlparticles
are treated, then the coefficients can be written as

~ #h . oh
a(J) =, +b(J) = +c(I)h=0, (10

JJ J _wSAm<ah o\ 1 [ah 0'5)2

where ! 16 Qs ’ 2 Trad Qs .
~ ~ Expressing the perturbation amplitude, in o units of the

a(J)=2«J, bunch, i.e.,Ap=ano,, Whereay, is an integer, we find a
limit value of the radiation damping time for the formation
- wAR(20)%2 - of islands:
b(J)=2 32 Sin 3!//1+ ’de+K y
16Q 1

Trad™>——— —- (11)

c(I)=2yq. wrra’hay, of
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FIG. 7. Snapshots (20particle$ in normalized phase space(,8,) with island destructior(left) and island formatior{right) for
SOLEIL. (a) SOLEIL: natural value ofr,=9.24x 10 *. (b) SOLEIL: o= 15.0< 102 modified for island formation in agreement with the
criterion limit.

Whenever the radiation damping time is larger, third- 2 2
integer resonance dominates and islands will be formed. Sni1= ( 1— Sa+ o.R
TradFO \TradFO ‘
C. Simulations of formation or destruction of islands 21mQq e ) —
- —[SiN(¢s+ ¢Pni1+AnSinogt) —sings],
COSog

The validity of the island survival criterion has been
checked for various parameters of the three specified previ- (12
ously machines with the help of a multiparticle tracking
code, which simulates the motion of particles with rf phaseVhereR, is a random number of normal distribution aRg

modulation, synchrotron radiation, and quantum excitationthe revolution frequency. .
The simulation is based on the following recursive equa- FOr each calculation, the rf phase modulation parameters
tions: (wm,ay) have first been optimized to get well-shaped is-
lands. Furthermore, in order to shorten the simulation time
for the criterion checking, it is preferable to use the energy
bns1= b+ 27Q46,, spread parameter, instead ofT,,q. Thus the criterion is
now written aso > \(1/T,.q) (16Qs/ wrra’hay).
For each machine, island formation and destruction were
looked for by using two values of energy spread: the natural

5 5
4 4
3 3
2 2
s 1 a1
) o]
=} o
3 0 3 0
) L
o -1 o -1
© «
-2 -2
-3 -3
-4 -4
-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
¢s (0 units) ds (o units)

FIG. 8. Snapshots (20particle$ in normalized phase space(,8,) with island destructior{left) and island formatior{right) for
BESSY I.(a) BESSY |:¢,=2.3x 10 * modified for island destruction in agreement with the criterion liitit. BESSY I: natural value of
0.=5.0x10%.
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FIG. 9. Snapshots (20particle$ in normalized phase space(,8,) with island destructior(left) and island formatior{right) for
SuperACO. SuperACO: natural value @f="5.5x 10" * for a bunch current equal to zero; there is island destruction in agreement with the
criterion limit. (b) SuperACO: natural value af.=18.33< 10 * for a bunch current equal to 60 mA; there is island formation in agreement
with the criterion limit.

one and a fictive one, giving the reverse situation. Figures the beam. However, the energy spread is also increased, by
8, and 9 give the particle distribution in phase space, showthe same bunch lengthening factor. The Touschek lifetime
ing the island destruction for SOLEI[Fig. 7(a)] and Su- can then be increased by a factor of 2, as has been observed
perACO[Fig. 9a)], and the island formation for BESSY | in BESSY | and ASTRID[6], but at the expense of beam
[Fig. 8b)] with their natural energy spread. Table Ill sum- quality, affecting in particular the brilliance in synchrotron
marizes the energy spread values, which were tested, as wéht sources. In addition, the synchrotron radiation effect
as the limit valugnatural energy spreads are in bold charac-ca@n prevent island formation in some cases, which can be
ters. The energy spread of SuperACO, that was chosen fopredicted by a criterion on the minimum required energy
island creation, is larger than the natural one, but correSPréad:
spon_ds nevertheless to a real S|tugt|on, when the beam cur- APPENDIX
rent is well above the turbulent regime.

It is worth noting that the required energy spread for is- The properties of the Hamiltonian for synchrotron motion
land formation is much higher for the SOLEIL ring than for With rf phase modulation are discussed. The longitudinal
the other ones, due mainly to the low value of the momenphase space will be transformed to action-angle coordinates,

larger than the limit value, chaotic motion and particle loss"/€ €xplain why odd resonances only are considered and the
.complete perturbed Hamiltonian is calculated. Fixed point

can be observed in Fig. 7, as predicted by the Chirikov cri- . - . ” .

terion (cf Tab\lle ”ll) '9 predi y Irikov Icoordlnates and island widths are derived in both frames
Finally, Fig. 10 shows the enlarged charge distributions af #.9) and {,4).

different times, as well as the initial Gaussian distribution for

comparison. Except for SOLEIL, the net bunch length has

been increased by a factor between 2 and 3, but at the ex-

pense of a similar widening in energy spread, since islands

1. The action-angle variables of the perturbed
Hamiltonian (rf phase modulation with amplitude A, and
frequency w.,)

are rotating in phase space at the modulation frequengy do
E =wgX d,
V. CONCLUSION
dé wg o — . —
With properly chosen parameters, the rf phase modulation ———=— ——=[siN(¢s+ ¢+ Ay sinwt) —sineg].

method allows enlargement of the phase space occupied by dt COS¢s

TABLE Ill. o, parameter of island formation or island absence due to the strong damping force.

SOLEIL BESSY | SuperACO
Telim 11.13x10°3 4.14x10°4 14.02< 104
Island formation 0.=15.0x103 o, =5.0x10"* 0,=18.33x 10 *
©m chaod @m modul 1.05 0.93 0.96
No island 0.=9.24X107* 0. =2.3x10"% 0.=5.5%10"*

®m chaod @m modul 0.81 0.89 0.89
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FIG. 10. Distribution in charge versus the normalized angleof a bunch of 100 000 particles in situations where islands are formed.
(a) SOLEIL: o, modified.(b) Bessy I.(c) SuperACO.

The complete perturbed Hamiltonian i (5) variables is  The first canonical tranformation in action-angle coordinates
given by (J,¢) gives the new Hamiltonian

H,(J,4) = wdd sin g+ wtan g sin 2J cosyr
+Ansin(wt) 1} — og cog V2 cosys

+c0s¢ Sin(Ap Sinwt)] + A, Sinwnt)]— wstandy(\2d cosy).

— w4 COS CO A SiNwt) (A2)

Wg

Hi(.8)= 5 82+ wstang sing cog A, Sinwt)

+ wgSi i i - be. e )
s SIN ¢ SIN(Ap Sinwnt) ~ wsd tands The perturbed Hamiltonian is much more complicated

(A1) and the perturbed part is not clearly defined. The Hamil-
tonian expanded into Bessel functions is written as

H1(J,4) = wgd sin g2 — 0 Jo( @)—Zwsk; (— 1)K 354(1/23)cog 2k¢h) — ws tan 23 cosy

©

+wstangs A SiN@pt) Jo(123) + 2wstands >, (—1)Ip; 1(123)cog (2k+1) 4]

k=0

+ wsAmkEO (— 1)k‘]2k+ 1( \/E){S”{ omt*(2k+ 1) #logq resonanc}s”' Wsg tangsAm

X I(Zl ( - 1) kJZk( \/ﬁ)[s"’( wmt * 2kltb) even resonancgs

All resonances appear: the odd resonancesogta-(2k wJ? weJ
+1)y] and the even resonances sip(—2ki) (terms with H1(J,¢) = wsd— — 5=~ ws— —— COS 2~ 2ws
plus signs are nonresonant teymall the terms containing

tang¢g are neglected in the following, because generally in ~ ‘

storage rings bunches are placed for the maximum rf accep- XI(Zl (—1)X3(+/23) cog 2k )
tance, so the synchronous phase-0. For this reason even

resonances can be neglected compared to the odd ones. — wAnJ3(V2I)SIN it —3¢).

2. Study of the third-integer resonance:wny™~3ws H, is time dependent again. A new canonical transformation

Assuming that we are close to the third-integer resonanc® a rotating system in phase space eliminates this depen-
(k= 1) and that all nonresonant terms in the Hamiltonian cardence. A generating function of the second type is used for
be neglected, then the Hamiltonian becomes the new transformation:
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~ o~ ot m\o a a a
F2<J.w>=(¢— = §>J == (1=Rep), — 7 (1=Rep), — 7 (1=Rep),
with I=J and = — wt/3— /2. am m
The new HamiltoniarK is independent of time; thus it is $,=0, \3 72 (17Rep), — J3 2 (1~ Rep),
a constant of motion: (AB)
DORTYILLL ST O ﬁ)ﬁ with the factor Rep
1Tt 1 3 /)7 =1+ (64Q3/a;(oha)?) (1— 0, /3ws), where a,, is the

normalized modulation amplitudeA(, is in units of rms
In the rotating frame, the particle trajectories are describeéunch length Q. is the synchrotron tuner, is the natural

by the total time-averaged Hamiltonidh energy spready is the momentum compaction, ahds the
_ ~ harmonic number. Whew, tends to 3, the UFP coordi-
« ©m|~ 0’  wAR(23)%? - nates are canceled.
(Kh=|ws— 59— g~ —2g— Cos—os.
(A3) 4. Island width calculation

The boundaries of the stable islands are formed by curves
joining the unstable fixed points. A§ is a constant of the
curve, we can writ (3, %) =K (Juep , urp) Whered ep is
the action at the unstable fixed points; also on the separatrix

Terms in the Hamiltonian that are not functionsJdoéind s

do not affect the differential equations fdrandy and thus
can be ignored in the followingaf, is also neglected

we find
3. Fixed point calculation
_ 312 Y
These fixed points are obtained by the following condi-  (3_73 _ )2~ Anl 16(1— 0p/3ws) |71+ COS &p).
tions: VFP 3
(A7)

dJ B oK _

dt ﬁ_o’ The island widthAJ is given by the distance between the
separatrix and the stable fixed points, where the Hamiltonian

~ is maximum[3]:
W_* o (A4)
dat - &5 — n
3d Ao sg \/Am2(1 (gm/:sws) |

With both equations, six fixed points are found for which the

sign of cos 3 determines their staPiIity or the instabilitt) For the easiest stable fixed point, whare 0, and with a
Three stable fixed poin{SFP$ fgr =0, 273, 47/3. They change in variable, AJ=(Jsrp—Jurp) = ((%FP_ 56FP)/2

are stable because the term cgs8 positive and the poten- gp( 83kp— 05p=(8sep— Ourp) (Osept Surp) =A &(Ssep

tial has a minimum(2) Three unstable fixed pointJFPS 4 5.y then the island width in phase space coordinates is
for y==/3, 7, 57/3. They are unstable because the term

cos 3 is negative and the potential has a maximum. An2(1— wy/3ws)®? 1
The trajectories surrounding the stable fixed points are Ao==16 3 Ssept Surp
closed and form islands of stability for particles, whereas the
trajectories surrounding the UFPs are hyperbolic and these 114 isiand width, normalized i units and expressed
curves are separatrices, which are the boundaries of thg;, storage ring parameters, is
stable islands. In the new phase spaégjj, the stationary

trajectories correspond to th&constant contours. 2/ Q
S
AS,==*16 —(

The coordinates ¢, ,5,) of the three stable fixed points
are (for ¥=0, 27/3, 47/3)

3/2 1
) (1— oy/3ws)¥——.
VanRep

(A8)

ao,
am am am

8o=% (1+Rep), = (1+Rep),  — = (1+Rep), Generally, (6Q%a2(0ha)?)(1— wn/3ws)>1, thus we

can approximate EqA8), so we obtain

am am
¢y=0, V3 "(1+Rep), —\3 1 (1+Rep).
(AS)

2 Q 1/2
AS,==*2 \[5( > ) (1— w30 ay,. (A9)

aoh

The coordinates ¢,.,5,) of the three unstable fixed The island width grows witfa,,, but it is reduced whew,
points are tends to 3o [A S, (1— wy/3we) 4.
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