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Magnetic field generation from self-consistent collective neutrino-plasma interactions
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A Lagrangian formalism for self-consistent collective neutrino-plasma interactions is presented in which
each neutrino species is described as a classical ideal fluid. The neutrino-plasma fluid equations are derived
from a covariant relativistic variational principle in which finite-temperature effects are retained. This formal-
ism is then used to investigate the generation of magnetic fields and the production of magnetic helicity as a
result of collective neutrino-plasma interactions.

PACS numbd(s): 52.25.Kn, 95.30.Lz, 95.30.Qd, 13.15

. INTRODUCTION v o—EM. (1.2
Photons, neutrinos, and plasmas are ubiquitous in the Uni-

verse[1,2]. Dunng_ the _early Umverse, Itis expe_cted that_ In the first process, the neutrine’) dynamics is influenced

photons and neutrinos interacted quite strongly with hot pri-

. . by an electromagnetic fiel(EM) with a plasma §) back-
mordial plasma$3]. Although photons and neutrinos decou- . ' : .
oled from plasmas relatively early after the big bafigg], ground acting as an intermediary, even though neutrinos are

there are still conditions today where neutrino-plasma inter?har(‘:]e'eSS particles. In the second process, electromagnetic
. , . y 0-p fields are generated as a result of plasma currents produced
actions might be important. For example, during a supernov.

explosion[4—6], intense neutrino fluxes are generated as re-%y neutrino ponderomotive effects. The problem of magnetic

surt) of the rav,itational collapse of the steIIa? core. Itis er]_field generation associated with self-consistent collective

> 9 P . ' 9 neutrino-plasma interactions is thus investigated here within

erally believed that the outgoing neutrino flux needs to trans:

. “the context of the proced4.2).

fer energy and momentum to the surrounding plasma in
order to produce the observed explosion.

The self-consistent collective interaction between photons A. Notation

and plasmas is traditionally treated classicdllg., without

guantum-mechanical effe¢tswhere plasma particles are

treated within either a fluid or a kinetic picture, while pho- s=uv refers to neutrinos while the subscrigt o refers to
tons are described in terms of an electromagnetic field. For 8omp0nents of the plasma other than photons and neutrinos.
self-consistent treatment of collective electromagnetic--l-O avoid confusion, we use the Greek letters3 for
plasma interactiongsee Ref[7], for examplg, one considers | i gicas rat’her than traditional, ! for ex-
both the influence of electromagnetic fields on plasma dyé\mple, the flux four-vector ig%=Nu®, Wit'h ,p.rc.)b(,ar density

namics and the generation of electromagnetic fields b)N (Lorentz scalar and normalized ~four-velocity u®
pl_asma currents. The Interaction between photons and r_1eu:-(uo u). In certain cases, objects with Lorentz indices may
trinos, on the other hand, requires a full quantum-mechanical T '

H . H H sy )0
treatment and has been the subject of recent intEBgst not be coyanant, for instance, the ﬂu'(.j ve_loovtsyz_ u®/u”is
. . i ; not covariant and the number density in a given frame
Neutrino-plasma interactions involve charged and neutral ", o . .
) . =Nu" is not a Lorentz scalar. The symbols in boldface are
currents associated with the weak fof&10] (through the X . . . .
5 0 . . three-vectors while those in sans serif are four-dimensional
exchange oW~ andZ” bosons, respectivelyThe collective

interactions studied here apply to the case of intense neutrir{xgnsors (such asF for the electromagnetic field strength

fluxes. Discrete(i.e., collisiona) neutrino-plasma interac- ap). The dot- describes the contraction of a Lorentz index

tions, on the other hand, involve scattering of individual par_or an inner product of two three-vectors if in boldface. Here,

ticles; such discrete neutrino-plasma particle effects will be'"< employ the metrig,;=diag(1-1,~1,~1) and, hence,

omitted in the present work. a-b=a’b’-a-b.

The purpose of the present work is to investigate the self- ) o , ,
consistent collective interaction between neutrinos and plas- B- Neutrino descriptions for collective neutrino-plasma
mas in the presence of electromagnetic fields. The inclusion Interactions
of electromagnetic effects is a departure from conventional To study collective neutrino-plasma interactions, neutri-
hydrodynamic models used in investigating neutrino interacnos can be described in terms of Dirac spinor fi¢Ris13],
tions with astrophysical plasmgs]. Here, we investigate the Klein-Gordon scalar field§14,15, classical nonrelavistic

In the present paper, the Latin subscspefers to differ-
ent components of the neutrino-plasma fluid: the subscript

collective processes fluids [16], or relativistic quasiparticleEl7,18. In all these
descriptions, the interaction between neutririof type v)
EM—o—v (1.)  and plasma particle®f speciess) is described in terms of
an effective weak-interaction chargg,,. In general,G,,
and has the following property11]:
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G,,=— Gy,=— G,;=G,7, (1.3 For a self-consistent description of collective neutrino-
plasma interactions in which neutrino ponderomotive effects

whereo (;) denotes a mattgantimattef species and (j) on the background medium are included, we now use a simi-
denotes a neutrindantineutring species. The effective lar classical-fluid correspondence for the neutrinos. The
chargeG,, depends on the Fermi weak-interaction constanPropagation of a plasma test particle of spectesvith elec-

Ge (=9X 1038 eVcn?), the Weinberg angléy, (SirfGy tric chargeq,,) in a background medium composed of a neu-
~0.23[10]), and the species andv. For example, for neu- trino fluid of type » and an electromagnetic field is deter-
trinos interacting with unpolarized electrong)( protons Mined by the potential

(p), and neutronsi(), one findg[11]

Vv V)= o t GO’V v it
G = V2 [ 3,00, + (1,20, SO, (19 sr={ 00+ 2 Grntss)

where |, is the weak isotopic spin for particle species —(qUA(X,t)+E GUVJV(x,t))~
(le=ly=—1/2 andl,=1/2) andQ,=q,/e is the normal- v
ized electric charge. Here, the first term in EQj4) is due to (1.9
charged weak current@nd thus applies only to electrons
and electron-neutringswhile the remaining terms are due to wheren, andJ,=n,v, /c are the neutrino density aridor-
neutral weak current&@nd thus apply to all species malized neutrino flux in the laboratory reference frame, re-
To assist us in investigating self-consistent collectivespectively,¢» andA are the electromagnetic potentials, and
neutrino-plasma interactions in the present work, all neutringx,v) denote the plasma particle’s position and velocity. It is
and particle species are treated as ideal classical fluids. Férteresting to note how the right side of Ed..9) links the
this purpose, we proceed with the classical fluid limit for electrostatic scalar potentigl and the neutrino density,,,
plasma particles in the Dirac description expressed in termsn the one hand, and the magnetic vector poteAtiahd the

o<

of the correspondence neutrino flux vectord,, on the other hand. We will hence-
L forth refer to the approximation wherely andJ, are omit-
Vo(y*le)p,—I%=(n,,dy,), (1.5 tedin Egs.(1.6) and(1.8) as theweakelectrostatiqor non-
relativistic) approximation.
where ¢, is the Dirac spinor field for particle species Although we assume that each neutrino flavor has a finite

(with y* denoting Dirac matricgs while n, and J,  Mass, this assumption is not crucial to the development of

Eno_vglc are the partic|e density arﬁmormalized partic'e our mOdel, See. Sec. Il fOI‘. a discussion of neutrino-fluid dy'
flux for each plasma-fluid speciesin the laboratory refer- namics for arbitrary neutrino masses. Eurthe_rmore we shall
ence frame, respectively. In this limit, the propagation of aignore all quantum-mechanical effects, including effects due
neutrino test particle of type in a background plasma is 0 strong magnetic field$25] (i.e., we assumeB/Bqy
determined by the effective potentfdl9] =1Q./mec’<1, whereQl,=eB/m is the electron gyrof-
requency an®Bqy~4x 10" G). Hence, although magnetic
v fields appear explicitly in our model, they are not considered
V,(xv,)=2> G,, Ny(X,0) = Jo(X,0) -], (1.6)  strong enough to modify the form of the interaction poten-
7 tials (1.6) and(1.8).

where ,v) denote the neutrino’s position and velocity. We o _ _
note that neutrino propagation in matter is a topic at the heart ~ C- Magnetic field generation due to neutrino-plasma
of the problem of neutrino oscillations in matf@0—-22 and Interactions

the solar neutrino problef23]. Although the terml,,- v/c is An important application of the proceék.2) involves the
a relativistic correction tm, in Eq. (1.6), we keep it for the  prospect of generating magnetic fields in an unmagnetized
following reason. For a primordial plasma with a single fam-plasma as a result of collective neutrino-plasma interactions.
ily of particles (s= o) and antiparticles{= o), we find from  This application may be of importance in investigating mag-
Eqg. (1.3 netogenesis in the early univer@eg., see Ref.2]). A simi-
lar process of magnetic field generation occurs in laser-
2 G 0 plasma interactions whereby an intense laser pulse
— B Ns=U, propagating in a nonuniform plasma generates a quasistatic
ST 1.7 magnetic field. This process was first studied theoretically
' [26—29 and was recently confirmed experimentdIBg].
2 Gs,J=G,, (J,—J5), The generation of magnetic fields by collective neutrino-
s=o,0 plasma interactions was first contemplated in the nonrelativ-
istic (weak electrostaticlimit by Shuklaet al.[30,31. The
and thus the effective neutrino potentidl.6) becomesV,  covariant (relativistic Lagrangian approach introduced by
=G,, (J,—J,)-Vic, for each ¢,o) family. Hence, keeping Brizard and Wurtelg¢15], however, revealed the presence of
this relativistic correction is necessary for the description ofadditional ponderomotive terms missing from previous
collective neutrino interactions with a primordial plasmaanalysis[14,30,3]. These additional ponderomotive terms
[24]. The model presented here therefore retains all relativinvolve the time derivative of the neutrino fluxJ, and the
istic effects associated with the neutrino and plasma fluids.curl of the neutrino fluX¥ X J, (henceforth referred to as the
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neutrino-flux vorticity, which are shown here to lead to sig-  Since the mass constraif2.3) cannot be derived from the
nificantly different predictions regarding neutrino-induced primitive Lagrangian(2.2), we explicitly introduce it by
magnetic field generation. In fact, we show that magnetianeans of a Lagrange multiplier:
field generation due to neutrino-plasma interactions is not
possible without these terms. B 1 > 4 )
Lp=_pacva_ﬁ( m=c _papac )l (24)
D. Organization

The remainder of this paper is organized as follows. InWhere " is the Lagrangian multiplier and the factor 1/2 is
Sec. II, the Lagrangian formalism for ideal fluids is intro- @dded for convenience. Since the Lagrandia) is inde-

duced. In Sec. Ill, a variational principle for collective pendent ofp,,, the Euler-Lagrange equation fpy, yields
neutrino-plasma interactions in the presence of an electro-

magnetic field is presented. This Lagrangian formalism is dlp o pacz_

fully relativistic and covariant and can thus be generalized to p, —CvT+ Y =0, (2.9

include general relativistic effects.g., see Ref$32,33). In
Sec. IV, the nonlinear neutrino-plasma fluid equations androm which we obtain
the Maxwell equations for the electromagnetic field are de-
rived. Through the Noether methofB4-36, an exact p¥=\uv?/c. (2.6)
energy-momentum conservation law is also derived and the
process of energy-momentum transfer from the neutrinos t@sing the mass constraif®.3) and the identity -v="vy"?,
the electromagnetic field and the plasma is discussed. In Sethe relation(2.6) yields
V, magnetic field generation, magnetic helicity production,
and magnetic equilibrium involving neutrino-plasma interac- A=ymc, 2.7
tions are investigated. Here, we find that neutrino-flux vor-
ticity (VXJ,) plays a fundamental role in all three pro- i.e., \ is the energy of a single particle of mass
cesses. We summarize our work in Sec. VI and discuss If we now substitute Eq(2.6) into the primitive Lagrang-
future work. ian (2.4) (i.e., by constraining the physical motion to take
place on the mass shgle find the physical Lagrangian
Il. LAGRANGIAN DENSITY FOR A FREE IDEAL FLUID
2-4

.The present s_ection is_ dedicated to.the deri_vation of a L(v;\)=L,(x;p=\v/C;\)=— 20 _LZ. 2.9
suitable Lagrangian density for a free ideal fluid from an N2y
existing single-particle Lagrangian for a free particle of ar-
bitrary mass(including zerg. The difficulty with dealing This Lagrangian now depends only off and\ (for a free
with the case of free neutrinos as particles is that their masgarticle, there is no space-time dependence in the Lagrang-
may be zero. Since the relativistic Lagrangiarfor a free ian). The Euler-Lagrange equation farnow yields
single particle of masmis [37]

L 1 ( m2c* 1 )
=0, (2.9

1/2 - = — -
—“) , 2.1) IN 21 N7 2
which gives Eq.(2.7). Substituting Eq(2.7) into Eq. (2.8
yields the standard Lagrangi#®.l).

For a massless particle, on the other hand, the condition
(2.9 yields

it is not obvious how to handle the limiting case of zero
mass. This difficulty is resolved if88] as follows(see also
Ref. [2]).

A. Single-particle Lagrangian 7_2=vav“50, (2.10
Consider the primitive Lagrangian ) )
which states that massless particles travel at the speed of
L,=p- x—Et=—p,cv® (2.2)  light. Here,\ is still the massless particle’s energy since Eq.
(2.6) gives p’=\/c. For a massless particle, the single-
for a particle of arbitrary rest mass (including zerg, where ~ particle Lagrangian is therefore simply given by the last term
(x,p) are coordinates in the eight-dimensional phase spac® Eq.(2.9), i.e.,

in which the particle moves and*= (c,v)=cv“. Although
the particle’s space-time locatiotf = (ct,x) is arbitrary, its L(vin)=— fv 0. 2.11
four-momentump®=(E/c,p) is not, since the particle’s ' 27
physical motion is constrained to occur on the mass shell
This Lagrangian appears in the bosonic part of the Lagrang-
p,p%=m?c?. (2.3 ian for a spinning particlg38]. The Lagrange multipliex ~*
corresponds to the “einbein” which describes the square-
Here, u“=+yv® is the normalized four-velocity angt=(1 root metrice= \/g along the world line in a particular gauge
+|u|?)¥? is the relativistic factor. where the world line is parametrized by time.
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B. Lagrangian density for a free ideal fluid deg=T.dS— psts—l' (3.2

We now discuss the passage from the finite-dimensional
single-particle Lagrangian formalism based on E21) to  whereTs is the proper temperature apd is the scalar pres-
an infinite-dimensional fluid Lagrangian formalism. To ob- sure for fluid species. In what follows we use the chemical
tain a Lagrangian density for a fluid composed of such parpotential for each fluid species
ticles, we multiply Eq.(2.1) by the reference-frame density
n, noting that the proper density K=ny . The Lagrang- ps=0(gsNg)/INg= g4+ ps/Ng, (3.3
ian for a cold ideal fluid is therefore
which represents the total energy required to create a particle
Lo=—mcN=-men\vv,=-mcyIJ,, of speciess and inject it into a fluid sample composed of
(2.12  Dparticles of the same species. Associated with the definition

. _ . for the chemical potential3.3), we also use the identity
where J*=nv*={yy*ylc) is the flux four-vector with a

suitable ensemble average- -). The Lorentz invariance is 9 pe=Ts %S+ N L 9*ps. (3.4)
manifest in the last expression.

Another contribution to the Lagrangian density of an idealgte that the independent fluid variables for each fluid spe-
fluid is the. term-— Ne(N’.S) _assomated with the mtern_al eN- cies areN, ug, and Sg although other combinations are
ergy density of the fluid in its rest frame, where the 'memalpossible[32]

energye(N,S) is a function of the proper fluid density and
its entropy S (a Lorentz scalar By combining these two be
terms, the Lagrangian density for a free relativistic fluid is
therefore written as

The Lagrangian formulation for the nonlinear interaction
tween neutrino and plasma fluids in the presence of an
electromagnetic field is expressed in terms of the Lagrangian
density

Lo=— N[mc®+€e(N,S)]=— N&(N,S), (2.13
L=— 2 NSSS_Z ‘](r' q(rA+2 G(rv‘]v)

where the total internal energy <o p
e(N,S)=mc*+€(N,S) (2.14 1
+ E F:F, (35)

includes the particle’s rest energy.
As discussed above, the single-particle Lagrangian for a hereF-F=F®F .  The first t i1 Ea(3.5 denotes th
free massless particle is given by Eg.11). The Lagrangian wherer F= po- The first term in Eq(3.5 denotes the

density for a cold ideal fluid composed of massless neutrinoEOtal internal energy den;ity of fluisl The second term.de—
is therefore given as notes the standard coupling between a chatgisma fluid

and an electromagnetic field. The third term denotes the cou-
N Y pling between the neutrino-fluid speciesand the plasma-

Lo=——3,d,=——"0v,v,, (2.19  fluid speciess. Note that the second and third terms can be
written as>  n,V,, where the single-particle velocity in
Eq. (1.8 is replaced with the fluid velocity,,. The fourth
term is the familiar electromagnetic field Lagrangian.

In the variational principlg3.1), the variationsL is ex-
plicitly written as

where\ |, is a Lorentz-scalar Lagrange multiplier field. The
last expression is equivalent upon changing the variahle
=n,\,.

IIl. CONSTRAINED VARIATIONAL PRINCIPLE ar oL

The self-consistent nonlinear neutrino-plasma fluid equa- OL= oA oA 5F:(9_F

tions presented in this paper are derived from the variational
aL aL aL

principle il Riad el
+§ SN aNS+5”S ausmss 75" (3.6

4 a Caf. a —
5J X LIATF NS Us 59 =0, @9 wheredF ,z=3,0A,—d,0A, so that the second term in Eq.
) . ) (3.6) can also be written as296A:dL/JF. In constrast to
where, in addition to its dependence on the electromagnetiginer variational principle§32,42, the Eulerian variations
four-potentialA® and the Faraday tensé&*?, the Lagrang- SN, dug and 8S; in Eq. (3.6) are not arbitrary but are in-
ian densityL depends on the proper densMgEnsy;l, the  steadconstrained
normalized fluid four-velocityug=(ys,Us), and the proper To obtain the correct Eulerian variation, recall that the
internal energyper particlg  for each fluid species(here,  variation of the fluid motion is an infinitesimal displacement
s=o denotes a plasma-fluid species asid v denotes a of the fluid elements. With a fluid elemesitlescribed by the

neutrino-fluid specigs four-coordinatex?, the normalized velocity four-vector is
The proper internal energys(Ns,Ss) includes the parti-  given by

cle’s rest energysee Eq(2.13] and depends on the proper

densityNg and the entropyS; (a Lorentz scalar The first dxg’(dxs dxs) -12 ~1dx?

dr’

dXs
dr

law of thermodynamic$39-41] is written as ug(x)= gl Bl

(3.7
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where 7 parametrizes the world line of the fluid element. alternative variational principle would introducé Js=0
Under the infinitesimal displacememnt; —xg+ 8ég [with =Ug- dS; explicitly in the Lagrangian density by means of
6¢2=(6¢2,6&)], the apparent variation at a position fol- Lagrange multiplier§32].
lowing a fluid element along its world line is

IV. SELF-CONSISTENT NONLINEAR NEUTRINO-

do&Ed|dxg ™ dx¢|dxg 3dsEs dxg PLASMA FLUID EQUATIONS
dr [dr dr |dr dr dr We now proceed with the variational derivation of the
= (Ug- 9) 8E5— U2 [Ugp(Us- ) 555] dynamical equations for self-consistent neutrino-plasma fluid
interactions. In deriving these equations, we use the thermo-
Ehgﬁ(us-a) désp, (3.8 dynamic relationg3.2—(3.4) as well as the continuity and
entropy equation$3.13 and(3.15 for each fluid species.
whereug- 9=|dxg/d7| ! d/d7 and By rearranging terms in the variational equati@®6) so
as to isolate the variation four-vectofg and /A, we find
h#f=g*f—uZuf (3.9
L aL
is a symmetric projection tens¢#0] (i.e., hy-us=0). The 555(7%7_25 O8s:| dsLtd-| Us - -hs=Ns—o- hs)
Eulerian variation at a fixed space-time location is therefore s s
given by[33] (aﬁ &L‘)
+OA| o2 =20 =], 4.1

ug(x)=hgf(us- 9) 6ésp— (865 d)ug.  (3.10
where 9sL= N (dL/INg) + dug- (AL dug) + IS (LI ISs),

It is easy to check that this variation preserudsi,=1. and the Noether four-density is expressed in terms @,
The variation of the proper densilys can be obtained by 5,4 5A as

the requirement that the quantity

dxs dxg| 12 NE
s(d_:’d_:> d*x (3.11) zs:

( oL oL

oL
Ug (9_Us -hg— N507_N5 hs) - 0ést+ 2(9_F - 6A\.

4.2

should be kept intadi.e., mass is conservedrhe factor in - when performing the variational principlé8.1), with 52
parentheses is the induced metric along the world line. Thigiven by Eq.(4.1), we consider only variationé, and 5A
requirement fixes the variation at a position following athat vanish on the integration boundary. Hence, the Noether
fluid element along its world line as—Ng(d-6&s)  density7in Eq. (4.1) does not contribute to the dynamical
—Ugg(Us 9) 8€8]=—Ns[hePd,8&¢4], and hence the Eule- equations.
rian variation is given by
SN = — (84 9)Ng—Ng h:9Sé, . (3.12 - A. Plas-ma fluid momer-m{m- equation -

First, we derive the relativistic plasma-fluid four-
It is straightforward to check that the above variations Eqsmomentum equation. Upon variation with respeci, in
(3.10 and(3.12 are consistent with the conservation law Eq. (3.1), we obtain

9,d¢=0 (3.13 _ L L L
0=|dN, aNU”“"' &ug+ﬁS,, 7S,
of the flux four-vectordg=Ngug . It is useful to know its
variation, which can be easily calculated using E@s10 oL 9L
and(3.12: T\ Yo U hy N"&N(, o |- “.3
6J§=63(J§6§§—J§5§§), (3.19 By substituting appropriate derivatives of the Lagrangian
density £ and using the constraint equatio3.13) and
where the conservation lai8.13 has been used. (3.15 and the thermodynamic relation8.2)—(3.4), this
Finally, the nondissipative flow conserves entropy alongequation becomes the relativistic plasma-fluid four-
the world line, momentum(covarianj equation
Ug- d)Se=0. 3.1
( s )SS ( 5) UO.'O"(/.L(, ulr):N(;lap(r—i_ q(rF+E G(rva Uy,
To be consistent with the variation E.10), we find ' (4.4
0Ss= — (65 9)Ss. (3.16  where
The expression$3.10), (3.12, and (3.16 give the correct Mgﬁzaajf_aﬁjj (4.5

relativistic generalizations of th@onrelativisti¢ constrained
Eulerian variationd43]; see the Appendix for a geometric is an antisymmetric tensor that represents the influence of the
interpretation of Eqs(3.10), (3.12, (3.14), and(3.16. An neutrino background mediufi@4]. This tensor satisfies the
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Maxwell-like equationd”M *f+ g*MAP+ 5sMP*=0 and its  forces (4.5 and (4.10 is a result of the symmetry of the
divergence is9,M*#=[1J#, where[1=4-¢ and the conti- neutrino-plasma interaction tern&(>,G,,J,-J,) in the
nuity equationd-J,=0 for the neutrino fluid was used. Lagrangian density3.5).

Separating the space and time components in (Ed) Using the 3+1 notation, the spatial components of
(i.e., using the 31 notation, the spatial components of the neutrino-fluid four-momentum equatid#.9) yield
plasma-fluid four-momentum equatidf.4) yield

(V- V), 7V, 1€2)==—n, Vp,+f,, (41D

(at+vo' V)( Mo YUVU/CZ )
wheref, is the plasma-induced ponderomotive fofemer-

Vv, -parti i ino-flui -
- nolVp,tq, | E+ZxB|+f,, (4.6 aged over_plasma particle spegies the neutrino-fluid spe
v c ciesv, defined as
wheref  is the neutrino-induced ponderomotive foresrer- _2 143, Y
aged over neutrino specjesn the plasma-fluid specias, f,= = Gy —| VNot c at +?><V><J(, :
defined as (4.12
_ 14J,) v, The plasma-induced ponderomotive foffgeon the neutrino
f"=EV G| ~ (VnV+EW T XX @D fuid is composed of three terms: an electrostaticlike term

Vn,, an inductivelike ternv,J,, and a magneticlike term
The neutrino-induced ponderomotive forteis composed VXJ,.
of three terms: an electrostaticlike tef¥n,, an inductive- We now discuss the case of a cold ideal fluid composed of
like term 4,J,, and a magneticlike ter¥ X J,. This termi-  massless neutrinos. Variation of the neutrino part of the La-
nology is obviously motivated by the similarities with the grangian density
electromagnetic force on a charged particle. In previous

work by Silvaet al.[17], only the electrostaticlike term was _ 1 o )
retained in the neutrino-induced ponderomotive force, i.e., L==z2nhusn, ; Cordo-Jy
the neutrino particle flud, was discarded under the assump-
tion of isotropic neutrino and plasma fluids. with respect tos¢, yields
B. Neutrino-fluid momentum equation 8L, =— nyhv5vy~v,,—z G, J,-81,, (413

Next, we derive the relativistic neutrino-fluid four-
momentum equation; the limiting case of zero neutrino

masses is treated below E@.12. Upon variation with re- Where we used the constraint,-v,=0. Using 4J,
spect tos¢, in Eq. (3.1), we obtain =d-(3,6¢,-6¢,J,) and év,-J,=9-(J,6¢,)-v,, the
v variation equatior(4.13 becomes

0 JN oL +0 oL + S &E)
= v oNl u,~— v o
&NV &uv (?SV 5£an'»7+nV5§v'(Uv'ﬁ()\vvv)_z GU'V MU'.UV)’
aL aL 7 (4.14
+4d- UVE-hV—NVa—NV h,,). 4.9

where the tenso¥l,, is defined in Eq(4.10 and the Noether
On substituting derivatives of and using the thermody- density is
namic relationg3.2)—(3.4), this equation becomes the rela-

tivistic neutrino-fluid four-momentum equation J=5¢,. [g GUVJV‘JU—JV<)\VUV+E GWJU) }

uv‘a(/'l“v UV):N;lapV_’_E GO’V MU'UVI (49) (415)
From Eq.(4.14) the variational principlg 5£, d*x=0 yields
where the cold neutrino fluid equation
af_ qa1B_ 1B«
MU J JU J Jg (41@ UV'O’)()\VUV)ZE GO'VMO"Uv- (416

is another antisymmetric tensor which represents the influ-

ence of the background medium. This tensor satisfies thg the cold-fluid limit, on the other hand, E¢4.9) yields
Maxwell-like equationd”M &P+ g*M~°+ gPM#*=0 and its  u,-d(y, \,u,)==,G,,M,-u,, wherex, is the neutrino
divergence is,M*#=[1J# where the continuity equation energy. By substitutingi,=y,v, into this expression, we

d J,=0 for the plasma fluid was used. In E4.9), we note  readily check that Eq94.9) and (4.16) are identical in the
that the neutrino fluid is thus under the influence of an elecmassless-neutrino cold-fluid limit and that E¢.9) can in
tromagneticlike force induced by nonuniform plasma flows.fact be used to describe neutrino-fluid dynamics with arbi-
We also note that the symmetry between the ponderomotivigary neutrino mass.
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C. Maxwell equations where we have used the identibg-hg=hg in writing the
The remaining equations are obtained from the variationaf€cond and third terms. Making use of the Maxwell equation
principle (3.1) upon variations with respect to the four- (4:18, the last term in Eq(4.23 can be rearranged as
potential SA“. One thus obtains

L oL oL
20(A- 5X) - Eza-(z (A-6X) ﬁ) —(A-6X) A
o:ﬂ—za-ﬁ. (4.1 (4.249

We now note that the expression fér.7 in Eq. (4.20 is
invariant under the transformatiqfi— 7+ d- K, whereK is
an antisymmetric tensdfor which aiﬂ K*f=0) which van-
ishes on the integration boundary in E§.1). Since the first
9-F=4m, q,J,. (4.189  term on the right side of Eq4.24) is such a term, it can be

o transformed away, and the final expression for the Noether

. _ _density is therefore
Using the 3+ 1 notation, we recover one-half of the familiar

With substitution of derivatives of, this equation becomes
the Maxwell equation

Maxwell equations from Eq(4.18. The other half is ex- L oL FYs oL
pressed in terms of the Faraday tensor alone as J=|2--F—¢ A+§S: Us 20 hs— Nsm hs) - OX.
PEB+ goFBp 4 gBEPa=0), (4.19 (4.29

] ) ) ) Substituting Eq(4.2]) into Eq. (4.20), the Noether equa-
Wh'ET’ using the 31 notation, yieldsV-B=0 andVXE  {jon pecomesd- (J+ dx £)=0. We define the symmetric
+c 9B=0. energy-momentum tensar from the expression

D. Energy-momentum conservation laws J+ 66X L=—T-6X, (4.26

Since the dynamical equatio.3), (4.8), and(4.17) are
true for arbitrary variations &, ,40¢,) and 6A (subject to
boundary conditions the variational equatiot#.1) becomes

where, using Eq(4.295, the energy-momentum tensoris
explicitly given as

_ aL aL
oL=4-T, (4.20 - I St~
T gL (2 oF F A A)
which we henceforth refer to as the Noether equation. We I Ir
now discuss Noether symmetries of the Lagrangian density _2 (Us — -hg—Ng=—h ) 4.27
(3.5) based on the Noether equatioh20). s dUs INs

For this purpose, we consider infinitesimal translations
X“—Xx*+ 8x* generated by the infinitesimal displacementFOr & constant translatiodx, the Noether equatiot4.20
four-vector fieldsx. Under this transformation, the Lagrang- then becomes
ian densityL changes by
0=9-T, (4.28
OL=0-(X L), .29 where using the Lagrangian densi8.5 and its derivatives

Next, we introduce the following explicit expressions for in Eq. (4.27), we find

(6¢,,6¢,) and SA in terms of the infinitesimal generating 1 geh
four-vector x: T“B:E Fapeh— 5 FF +§S: (Ngus USUZ—pg®h)
5§SE hs' 5)(,
(4.22 +2 2 Gy (3530+3535-93,-3,). (429

SA=F- 5x— d(A- ),

This energy-momentum tensor contains the usual terms as-
sociated with an electromagnetic field and a free relativistic
ideal fluid [39—-41. It also contains the energy-momentum

where the symmetric tensag is defined in Eq(3.9). (These
expressions are given geometric interpretations in the Ap,

pendix) , _ terms associated with collective neutrino-plasma interactions
Substituting Eq.(4.22 in the Noether density4.2), we (third set of terms
find The energy-momentum  transfer  between the
electromagnetic-plasma background and the neutrinos can
J= 2%~F+2 (u E-h N ﬁ h ”5)( now be investigated. Such a process is relevant to supernova
JF S Sdug  °  SdNg explosions, for example, where approximately 1% of the

s neutrino energy needs to be transferred to the surrounding
+20(A- 6%)- =, 4.23 plasma. First, we define the electromagnetic-plasEidP)
JF energy-momentum tensor:
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g where for a given plasma-particle species[using Eq.
Temp= yp= FF=7 FiF) +2 (Ngity Ugly— Py Q) (4.7)], the electric fieldE is expressed as
=Tey+T (4.30 _1 Vo
EmT Ip, . E=q—(FU—fU)—F><B, (5.2

and, using the exact energy-momentum conservation law
(4.28 as well as the dynamical equatiof.4), (4.9, and  Wheref, is the neutrino-induced ponderomotive force given
(4.18, we find by Eqg.(4.7) and

P, B
9 Temp= 2, (Z G,,,,M,,) J,. (4.31) Fo=— tVo: VP, + n,'Vp,, (5.3
g 14

This equation describes how energy and momentum ar&ith PUE(MU/CZ),%VU the generalized momentum for
transferred from the neutrinos to the electromagnetic field?lasma-fluid species. .
and the background plasma. Note how the transfer of energy- Since the electric field is common to all chargzzad-
momentum between an electromagnetic plasma and neutfarticle species, we multiply E45.2) on both sides by,
nos is very much like the transfer of energy between zand sum over all charged-particle species present in the
plasma (P) and an electromagnetic fieldie., -Tp  Plasma. DefiningS,q5=Q? the electric fieldE is then
=X, q,F-J,) in the absence of neutrinos. given as

We note that in addition to energy and momentum, wave
action[15] can be transferred between the neutrinos and the E_E 9o (F.—f )— ( 2
electromagnetic-plasma background. In this case, electro- - Q2 o o ~
magnetic waves and/or plasma waves can be excited by reso-

nant three-wave processes. Substituting explicit expressions fét, andf,, we obtain

quU)XB 5.4
0 . (5.9

V. MAGNETIC FIELD GENERATION AND HELICITY
PRODUCTION BY COLLECTIVE NEUTRINO-

E=D, q—;[&tHG—VUXVXHU+VXU+SUV(7;1TU)]
PLASMA INTERACTIONS 7 Q

2
An important application of .the process of energy- _ ( 2 q(,va) X B, (5.5
momentum  transfer  associated  with  collective s cQ?

electromagnetic-plasma—neutrino interactions is the possibil-

ity of generating magnetic fields in an unmagnetized plasmavherey, 'T, is the temperature in the laboratory reference
as a result of collective neutrino-plasma interactions. Suclframe and

process might be relevant to the problem of magnetogenesis

and the production of magnetic helicity in the early universe -
e Y Ir . Mm,=P,+> G,,J,/c,
[45-47. A similar process of magnetic field generation has ”
been observed in laser-plasma interacti26-29. (5.6)
According to our neutrino-plasma fluid modddased on _E 1
Egs. (4.4), (4.9, and (4.18], the strength of the magnetic Xo— < Cov Mot Yo lto™ Yo ToSs-

field generated by neutrino-plasma interactions scales as the

first power in the Fermi weak-interaction consta®t. In Equation(5.5 can then be substituted for the electric field
what follows, we thus refer to magnetic fields generated byinto Faraday’s law(5.1) to give

classical plasma process@sg., the Biermann battery effect

and the nonlinear dynamo effeets zeroth-order fields while JB cq,
those generated by collective neutrino-plasma interactions 5220‘4 ?
are first-order fields. Second-order fields, for example, might

be produced by processes suchods— v— o— EM, where —VX(0Pr—V,XVXP,)]
the first plasma-particle species’() need not be charged

[V(y,'T,)xXVS,

(e.g., neutrons In this section, we investigate the role (21(2r
played by collective neutrino-plasma interactions in generat- + ; & VX(vyXB)
ing magnetic fields and magnetic helicity as well as magnetic
equilibrium. 4,G.,
-> > VX (9d,~ VXV Xd,). (57
A. Magnetic field generation tr Q

An equation describing magnetic field generation result-The first collection of terminear ing,,) on the right side of
ing from collective neutrino-plasma interactions is derived ag=d. (5.7) includes the so-called Biermann battery term

follows. We begin with Faraday’s law (Vn;lx VT,) [27,28,48 while the second terngpropor-
tional to g2) represents the nonlinear dynamo effect. These
_B: _CVXE (5.1) classical(zeroth-ordey terms have been known to play im-
at ' ' portant roles in the generation of magnetic fields during
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laser-plasma interactiofi26—29 as well as the evolution of is a unit vector normal to the surfaé®. Magnetic helicity is
cosmic and galactic magnetic fielp483]. a measure of knottednesgsr flux linkage in the magnetic
The last collection of termgproportional toq,G,,) in  field [50]; hence a uniform magnetic fieldr more generally
Eq. (5.7) is associated with collective neutrino-plasma inter-a magnetic field that has a global representation in terms of
actions. Here, the neutrino-flux vorticityv(xJ,) plays a Euler potentialsx and8 asB=V a XV ) has zero helicity.
fundamental role in generating first-order magnetic fields;The production of magnetic helicity is therefore an indica-
such terms are completely missing from previous workstion that the spatial structur@nd topology of the magnetic
[30,31. field is becoming more complex. It is expected that this fea-
According to Eq. (5.7), the electrostatic part of the ture in turn plays a fundamental role in the formation of
neutrino-induced ponderomotive force E@.7) does not large-scale structure in the univelsy.
play any role in generating magnetic fields. Indeed, for each The time evolution of the magnetic helicit.9 leads to
neutrino-fluid species, we haveV X[ (2,qsGs,) Vn,]=0,  the equation
independent of the plasma-fluid composition. The neutrino-

induced ponderomotive force on plasma particles of species dH 5 ~
o actually given in[14,30,31 is —n, ! (24 Gy, ng) VN, ar-2%¢ fv E-Bd°x—c LV (¢ B+ EXA)-nd?x,
=f{®) this expression improperly involves a sum of plasma- (5.10

particle speciesX) instead of the sum over neutrino spe-
cies €,) as it appears in Eq4.7). Shuklaet al.[31] then g0 \yhere integration by parts was performed in obtaining the
on to develop a r?B?deI for magnetic field generation based 0gyrface term. Taking the integration volunve arbitrarily
tsr;)ici?ecst thS?;Vc; ftﬁei%nf10roeepr)la;)slg]s%\;mphag:jllgpsk:)epgggl(e large (or requiring thatE be parallel ton in addition to
S e . i *B-n=0), we find that the surface term vanishes and we are
appearing inf;”) is inappropriate, however, the conclusion left onl))/ with the first term in Eq(5.10. If we now substi-
drawn by Shuklaet al.[31] that magnetic fields can be gen- . I
; tute Eq.(5.5 into Eq. (5.10, we obtain
erated in a plasma composed of neutroas=f1) and elec-
trons (c=e) by terms such a¥(n,,/ng) X Vn, is incorrect

[49]. d—H:—Z Zq—"CJ B-[91,— Vv, X VXII,+V

For a primordial plasma, we note that the Biermann- dt s Q% Jv o T o ¥ Xe
battery term could be small unless the terM$7;1T(,) .
XVS, and V(y-'T,)x VS, are in opposite directions, +S, V(y,'T,) 1d%, (5.1

whereas the nonlinear dynamo requires net plasma flow. Us- _ ) )
ing the identities(1.7), on the other hand, we note that par- Wherell, and x,, are defined in Eq(5.6). Since the term

iles (r) and antiparticles ) of the same famiy ¢.o) STt 18 26 U B8 A Bl R e ar
contribute equally to the generation of first-order magneticmore since tem Srature radients %lon the mg. netic field
fields in a primordial plasma since ' p 9 g g ,

B-V(y, 1T ), vanish in the absence of dissipative effects the
last term in Eq.(5.11) drops out. Hence, magnetic helicity

> 6sGs,=20,G,,, production is governed by the equation
s=o,0
5.8
68 dH 2q,C
27 qSGSvVSZQUG(rv(V(r—i_v;)- dt T ; Q2 fV B.( &tH"_VUXVXHU)'
S=o0,0

(5.12
This remark is especially relevant to the problem of magne-
togenesis in the early universe. Conversely, we note frondhis equation states that helicity production can occur in the
Eq. (5.7) that a time-dependent magnetic figldtomatically ~ presence ofzeroth-order nontrivial flows[50] and/or(first-
generates neutrino-flux vorticit¥ x J,. Hence, the usual ordep nonuniform neutrino flux.
assumption that the neutrino distribution is isotroii&] ap- It has been pointed out that magnetic helicity plays an
pears to be inconsistent with first-order magnetic field genimportant role in allowing energy to be transferred from
eration by first-order collective neutrino-plasma interactionssmall to large scales by a process called inverse cascade.
Thus neutrino-flux vorticity leads to the generation of small-
B. Magnetic helicity production scale magnetic fields, first, and then to the production of
o ] ] ~ magnetic helicity. The production of magnetic helicity, on
Another quantity intimately associated with magneticihe other hand, converts the small-scale magnetic fields to

field generation is the generation of magnetic helicity large-scale magnetic fields, which are expected to play a fun-
damental role in the problem of structure formation in the
Hzf A-B d3x, (5.9 early Universe. The magnetic helicity production described
\Y

by Eg. (5.12 involves a multispecies fluid picture. A more

standard description is based on the magnetohydrodynamic
whereV is the three-dimensional volume that encloses thE(MHD) equations in which p|asma flows are a\/eraged over
magnetic field |il’les; to ensure that this defl[]ltlon of magnetiCparti(ﬂe Species_ Future work will proceed by deriving ideal
helicity be gauge invariant, we require tli&n=0, wheren neutrino-MHD equations.
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C. Magnetic equilibrium in a magnetized plasma derived from a variational principle based on the relativistic
and neutrino fluid covariant Lagrangian densitf3.5. An exact energy-

When gravitational effects can be ignored, plasmas can b1OMentum conservation la.28 is obtained by the Noet-
confined by magnetic fields. Such an equilibrium is estab!®r Method with the energy-momentum tensor for self-
lished by balancing théoutward kinetic pressure gradient consistent collective neutrino-plasma interactions in the
with the (inward) magnetic pressure gradient. We now inves-Presence of an electromagnetic field given by E429.

tigate how magnetic equilibria are modified by the presencé& Onderomotive forces acting on the plasma-neutrino fluids,
of neutrino fluxes. which are absent from previous works4,30,31, are given

The equation for magnetic equilibrium involving mag- 2Y Eas.(4.5 and (4.10 [or Egs.(4.7) and (4.12), respec-
netic fields associated with neutrino-plasma interactions cafvelyl- In Egs.(5.7) and(5.13, we have demonstrated the
be obtained by multiplying Eq(5.2) with q,n, and sum- crucial role played by ngutrlno—ﬂux \(ortlcnyV{xJV) in the .
ming over the charged-particle species only. In a timeProcesses (_)f magnetic field generation and magnetic helicity
independent equilibriumd(dt=0) involving a quasineutral Preduction in neutrino-plasma fluids. . .
plasma(where S _q,n,=0), a static magnetic fiel®, and In future work, we plan to further investigate the impor-

time-independent neutrino fluids, we find the following equi-tance (_)f the ne_utrlno-lnduced p_onderomotn(e terms associ-
librium condition: ated with neutrino fluxes. For this purpose, it might also be

useful to derive ideal neutrino-magnetohydrodynamic equa-
tions from Egs.(4.4), (4.9, and (4.18. Using the mecha-
EXB=V'(2 (NgVP,+1 pg)) nisms for magnetic field generation and magnetic helicity
7 production proposed in Eq$5.7) and (5.12), respectively,
we plan to investigate the problem of magnetogenesis in the
early Universe. As another application, we plan to investi-
gate neutrino-plasma three-wave interactions leading to the
excitation of various plasma waves in unmagnetized and
, (513 magnetized plasmas; such transfer processes could be impor-
tant during supernova explosions.

+EV H; nUGU,,>VnV

XVxJ,

S|[3 e

where J=(c/47) VXB=%_,q,J, is the current density
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of Eq. (5.13. For a primordial plasma, using E(L.7), we

note that the neutrino-induced electrostaticlike term once APPENDIX: DIFFERENTIAL GEOMETRIC
again vanishes from the magnetic field generation picture. FORMULATION OF CONSTRAINED
Hence, whereas the second term in Exj13 vanishes for a VARIATIONS

primordial plasma, the third term on the right side of Eq. | this Appendix, the geometric interpretation of the con-
(5.13). does not. Magnetic (_aqumbnum in a prlmordl_al strained variation€3.10), (3.12, (3.14, and(3.16 is given
neutrino-plasma is thus described by the balance equationiy terms of Lie derivatives along the virtual displacement

3 four-vector 8¢. Since the variation of a fluid field is only its
E 7w infinitesimal displacement, all covariant quantities are varied
a C by their Lie derivatives with respect to the virtual displace-
) ment four-vectoé. Here, we use the following definition of

q,B+>, G,, VxJ,

(5.14  the Lie derivative on thé-form « along the four-vectob¢,

=V.[ X (nvPt1py)
denotedL 5. [51]:

s=o0,0

where summation over species on the left side of (Bdl4) Lsca=ise-da+d(is a). (A1)
involves only particle species, while the summation on the

right side involves particle and antiparticle species. Oncélere, da is a (k+1)-form while iz is a (k—1)-form
again, neutrino-flux vorticity X J, plays a fundamental role representing the contraction of the four-vectd with the
in collective neutrino-plasma interactions in the presence ok-form «. By definition, if a=¢ is a scalar field(i.e., a

an electromagnetic field. zero-form, iz ¢=0.
The constrained variatiodS= — §¢- dS for the entropyS
VI. SUMMARY AND FUTURE WORK [Eq (316)] is consistent with its geometric interpretation as
a scalar field:
We now summarize our work and discuss future work.
The model for collective neutrino-plasma interactions pre- 0S=—L 5:S=—6§-0S, (A2)

sented in this work is based on the nonlinear dissipationless
fluid equations(4.4), (4.9), and(4.18. These equations are whereis;- S=0 andis-dS=(5¢-7)S.
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The geometric interpretation of the particle flux*
=Nu® is given as the components of the three-fodm
=(1/3!)eaﬁm\]“dxﬁdx”dx”. The constrained variation of
the particle-flux four-vector is defined as

SLO=—L5(LQ), (A5)

where L 5, is the Lie derivative with respect téx. Here,
usingig-d(£ Q)=0 and

8J=— L. (A3)

dlige (LQ)]=d(L X - w)=3-(6x L) Q, A6
Since dJ=(9-J) Q@ with the volume four-formQ=dx° Lo € J=dl @) ( ) (A6)
AdxtAdx?/Adx3, and hencedJ=0 due to the continuity

equation, we obtaidJ=—d(is-J), or we easily recover Eq4.21).

Next, the expression fofA is given in Eq.(4.22). Here,
the electromagnetic four-potentidlappears as the the com-

o ) . o _ ponents of the one-form-dx. Thus
which is Eq.(3.14) itself. From this variation, one can easily

compute the variations dfl=+J*J, andu®=J%/N leading
to Egs.(3.12 and(3.10), respectively.

In Sec. IV D, we consider infinitesimal translation$
— X%+ 6x* generated by the infinitesimal displacement four-Since is-d(A-dx)=—(F-6x)-dx and d[is:(A-dx)]
vector 8x. Under this transformation, the Lagrangian density=d(A-dx), we easily recover Eq(4.22 for the four-
L changes by L= —g- (x L£). This expression is consistent potentialA. We note that the expressigiE=h- 6x given in
with the geometric interpretation af as a density in four- Eq. (4.22 is consistent with the expression§= — L ;5=
dimensional space, i.e., —LxSanddl=—Ls(J)=—L5(J).

81%=d4(IP5E“— J*5EP), (A4)

SA-dx=—L 5(A-dx). (A7)

[1] E.W. Kolb and M.S. TurnerThe Early Universe(Addison-
Wesley, Redwood City, CA, 1990

[21] H.A. Bethe, Phys. Rev. Letg6, 1305(1986.

[22] R. Bingham, R.A. Cairns, J.M. Dawson, R.O. Dendy, C.N.

[2] P.J.E. PeeblePrinciples of Physical Cosmolog§Princeton Lashmore-Davies, and V.N. Tsytovich, Phys. Lett232 257
University Press, Princeton, NJ, 1993 (1997).

[3] A primordial plasma is defined here as a quasineutral plasm@23] For a review, see A.B. Balantekin, Phys. R8p5 123(1999.
composed of particles and antiparticles of the same family. [24] We note that the relativistic correctidy- v, /c scales ag,3,,

[4] S.L. Shapiro and S.A. Teukolskflack Holes, White Dwarfs, relative to the density term, . Higher-order terms not shown
and Neutron Star$Wiley, New York, 1983, Chap. 18. in Eq. (1.6) [12] involve terms that scale aEVE(,/m\ZNc“,

[5] J. Cooperstein, L.J. van der Horn, and E.A. Baron, Astrophys.  wheremy,c? (=80 Ge)) is the rest energy of thé&/ boson and

J. 309 653(1986.

[6] J. Copperstein, Phys. Rep63 95 (1988.

[7] A.J. Brizard, Phys. Plasmds 1110(1998.

[8] D.A. Dicus and W.W. Repko, Phys. Rev. Let9, 569(1997);
D. Seckel,jbid. 80, 900(1998; R. Shaisultanovipid. 80, 1586
(1998.

[9] J.C. Taylor,Gauge Theories of Weak Interactiof@ambridge
University Press, Cambridge, 197€hap. 8.

[10] S. Weinberg;The Quantum Theory of Field€ambridge Uni-
versity Press, Cambridge, 1996/0l. Il, Sec. 21.3.

[11] P.B. Pal and T.N. Pham, Phys. Rev.4D, 259 (1989.

[12] D. Notzold and G. Raffelt, Nucl. Phys. B07, 924(1988.

[13] S. Esposito and G. Capone, Z. Phys7@ 55 (1996.

E; is the typical particle energy for speciesNote that since
Ggx m\x,z [9], the higher-order corrections can also be called
second-order corrections. Singe is expected to be close to
unity, we find that the relativistic correction kept in Ed.6) is
dominant over the second-order correction providgg
>EVE(,/m\2Nc4; for neutrino and plasma characteristic energies
less than 100 MeV, this condition is well satisfied4f,3,,
>104

[25] P. MeszarosHigh-Energy Radiation From Magnetized Neu-

tron Stars (University of Chicago Press, Chicago, 1992
Chap. 2.

[26] L. Gorbunov, P. Mora, and T.M. Antonsen, Phys. Rev. Lett.

76, 2495(1996; Phys. Plasma4d, 4358(1997).

[14] R. Bingham, H.A. Bethe, J.M. Dawson, P.K. Shukla, and J.J[27] M.G. Haines, Phys. Rev. Letf8, 254 (1997.

Su, Phys. Lett. A220, 107 (1996.
[15] A.J. Brizard and J.S. Wurtele, Phys. Plasr6ag323(1999.
[16] C.H. Lai and T. Tajimgunpublished This work appears in T.
Tajima and K. Shibata,Plasma Astrophysics(Addison-
Wesley, Reading, MA, 1997 Sec. 5.4.

[17] L.O. Silva, R. Bingham, J.M. Dawson, and W.B. Mori, Phys.

Rev. E59, 2273(1999.

[18] L.O. Silva, R. Bingham, J.M. Dawson, J.T. Mendonca, and

P.K. Shukla, Phys. Rev. Let83, 2703(1999.

[28] R.J. Mason and M. Tabak, Phys. Rev. L&®, 524 (1998.
[29] M. Borghesi, A.J. Mackinnon, R. Gaillard, O. Willi, A.

Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. L&®, 5137
(1998.

[30] P.K. Shukla, L. Stenflo, R. Bingham, H.A. Bethe, J.M. Daw-

son, and J.T. Mendqag Phys. Lett. A233 181(1997).

[31] P.K. Shukla, R. Bingham, J.T. Mendancand L. Stenflo,

Phys. Plasmas, 2815(1998.

[32] J.D. Brown, Class. Quantum GralQ, 1579(1993.

[19] See, e.g., H. Nunokawa, V.B. Semikoz, A.Y. Smirnov, and[33] A. Achterberg, Phys. Rev. &8, 2449(1983.

J.W.F. Valle, Nucl. Phys. B501, 17 (1997; J.M. Laming,
Phys. Lett. A255 318(1999.
[20] L. Wolfenstein, Phys. Rev. 07, 2369(1978.

[34] G.B. Whitham, Linear and Nonlinear Wave$Wiley, New

York, 1974, Sec. 11.7.

[35] P.L. Similon, Phys. Lett. AL12, 33 (1985.



PRE 61 MAGNETIC FIELD GENERATION FROM SELF. .. 4421

[36] R. Mills, Am. J. Phys57, 493(1989. fine structure constant.
[37] H. Goldstein,Classical Mechanics2nd ed.(Addison-Wesley, [45] M. Christensson and M. Hindmarsh, Phys. Rev6@® 063001
Reading, MA, 1980 Chap. 7, Sec. 8. (1999.

[38] L. Brink, S. Deser, B. Zumino, P. Di Vecchia, and P. Howe, [46] J.M. Cornwall, Phys. Rev. 56, 6146(1997).
Phys. Lett. B64, 435(1976; S. Deser and B. Zuminabid. [47] M. Giovannini, Phys. Rev. 38, 124027(1998.

65, 369(1976. [48] R.M. Kulsrud, R. Cen, J.P. Ostriker, and D. Ryu, Astrophys. J.
[39] R.C. Tolman, Relativity, Thermodynamics and Cosmology 480, 481(1997.
(Oxford University Press, London, 1984Chap. V, Pt Il [49] It is true, however, that neutron-neutrino interactions can gen-
[40] S. WeinbergGravitation and CosmologyWiley, New York, erate electromagnetitEM) fields through the process— v
1972, Chap. 2, Sec. 10. —o—EM); since this process is a second-order prod@ss
[41] C.W. Misner, K.S. Thorne, and J.A. Wheeldgravitation powers ofGg), the electromagnetic fields thus produced are
(Freeman, San Francisco, 1978hap. 22. much smaller than the first-order fields considered here.
[42] R.L. Seliger and G.B. Whitham, Proc. R. Soc. London, Ser. A[50] H.K. Moffatt and R.L. Ricca, Proc. R. Soc. London, Ser. A
305, 1 (1968. 439, 411(1992.
[43] W.A. Newcomb, Nucl. Fusion Suppl. Part 2, 461962. [51] For more on Lie derivatives and applications of differential
[44] This tensor also appears in the Lagrangian formulation geometry, see R. Abraham, J.E. Marsden, and T. Ristani-
of nonlinear photon-neutrino interactions; the effective folds, Tensor Analysis, and Applicatioidddison-Wesley,
Lagrangian given i8] has the formGga®3a(M:F)(F:F) Reading, MA, 1988 Chap. 6; or B.N. Kuvshinov and T.J.

—b(M-F):(F-F)], wherea andb are constants and is the Schep, Phys. Plasmds 537 (1997).



