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Magnetic field generation from self-consistent collective neutrino-plasma interactions

A. J. Brizard, H. Murayama and J. S. Wurtele
Department of Physics, University of California, Berkeley, California 94720

and Lawrence Berkeley National Laboratory, Berkeley, California 94720
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A Lagrangian formalism for self-consistent collective neutrino-plasma interactions is presented in which
each neutrino species is described as a classical ideal fluid. The neutrino-plasma fluid equations are derived
from a covariant relativistic variational principle in which finite-temperature effects are retained. This formal-
ism is then used to investigate the generation of magnetic fields and the production of magnetic helicity as a
result of collective neutrino-plasma interactions.

PACS number~s!: 52.25.Kn, 95.30.Lz, 95.30.Qd, 13.15.1g
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I. INTRODUCTION
Photons, neutrinos, and plasmas are ubiquitous in the

verse @1,2#. During the early Universe, it is expected th
photons and neutrinos interacted quite strongly with hot
mordial plasmas@3#. Although photons and neutrinos deco
pled from plasmas relatively early after the big bang@1,2#,
there are still conditions today where neutrino-plasma in
actions might be important. For example, during a supern
explosion@4–6#, intense neutrino fluxes are generated as
sult of the gravitational collapse of the stellar core. It is ge
erally believed that the outgoing neutrino flux needs to tra
fer energy and momentum to the surrounding plasma
order to produce the observed explosion.

The self-consistent collective interaction between phot
and plasmas is traditionally treated classically~i.e., without
quantum-mechanical effects!, where plasma particles ar
treated within either a fluid or a kinetic picture, while ph
tons are described in terms of an electromagnetic field. F
self-consistent treatment of collective electromagne
plasma interactions~see Ref.@7#, for example!, one considers
both the influence of electromagnetic fields on plasma
namics and the generation of electromagnetic fields
plasma currents. The interaction between photons and
trinos, on the other hand, requires a full quantum-mechan
treatment and has been the subject of recent interest@8#.

Neutrino-plasma interactions involve charged and neu
currents associated with the weak force@9,10# ~through the
exchange ofW6 andZ0 bosons, respectively!. The collective
interactions studied here apply to the case of intense neu
fluxes. Discrete~i.e., collisional! neutrino-plasma interac
tions, on the other hand, involve scattering of individual p
ticles; such discrete neutrino-plasma particle effects will
omitted in the present work.

The purpose of the present work is to investigate the s
consistent collective interaction between neutrinos and p
mas in the presence of electromagnetic fields. The inclus
of electromagnetic effects is a departure from conventio
hydrodynamic models used in investigating neutrino inter
tions with astrophysical plasmas@5#. Here, we investigate the
collective processes

EM→s→n ~1.1!

and
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n→s→EM. ~1.2!

In the first process, the neutrino (n) dynamics is influenced
by an electromagnetic field~EM! with a plasma (s) back-
ground acting as an intermediary, even though neutrinos
chargeless particles. In the second process, electromag
fields are generated as a result of plasma currents prod
by neutrino ponderomotive effects. The problem of magne
field generation associated with self-consistent collect
neutrino-plasma interactions is thus investigated here wi
the context of the process~1.2!.

A. Notation

In the present paper, the Latin subscripts refers to differ-
ent components of the neutrino-plasma fluid: the subsc
s5n refers to neutrinos while the subscripts5s refers to
components of the plasma other than photons and neutri
To avoid confusion, we use the Greek lettersa,b, . . . for
Lorentz indices rather than traditionalm,n, . . . ; for ex-
ample, the flux four-vector isJa5Nua, with proper density
N ~Lorentz scalar! and normalized four-velocity ua

5(u0,u). In certain cases, objects with Lorentz indices m
not be covariant; for instance, the fluid velocityva5ua/u0 is
not covariant and the number density in a given framen
5Nu0 is not a Lorentz scalar. The symbols in boldface a
three-vectors while those in sans serif are four-dimensio
tensors ~such asF for the electromagnetic field strengt
Fab). The dot• describes the contraction of a Lorentz ind
or an inner product of two three-vectors if in boldface. He
we employ the metricgab5diag(1,21,21,21) and, hence,
a•b[a0b02a•b.

B. Neutrino descriptions for collective neutrino-plasma
interactions

To study collective neutrino-plasma interactions, neu
nos can be described in terms of Dirac spinor fields@9–13#,
Klein-Gordon scalar fields@14,15#, classical nonrelavistic
fluids @16#, or relativistic quasiparticles@17,18#. In all these
descriptions, the interaction between neutrinos~of type n)
and plasma particles~of speciess) is described in terms o
an effective weak-interaction chargeGsn . In general,Gsn

has the following property@11#:
4410 © 2000 The American Physical Society
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Gsn52 Gs̄n52 Gsn̄5Gs̄n̄ , ~1.3!

wheres (s̄) denotes a matter~antimatter! species andn ( n̄)
denotes a neutrino~antineutrino! species. The effective
chargeGsn depends on the Fermi weak-interaction const
GF ('9310238 eV cm3), the Weinberg angleuW (sin2uW
'0.23 @10#!, and the speciess andn. For example, for neu-
trinos interacting with unpolarized electrons (e), protons
(p), and neutrons (n), one finds@11#

Gsn5A2GF @dsednne
1~ I s22Qs sin2uW!#, ~1.4!

where I s is the weak isotopic spin for particle speciess
(I e5I n521/2 andI p51/2) andQs[qs /e is the normal-
ized electric charge. Here, the first term in Eq.~1.4! is due to
charged weak currents~and thus applies only to electron
and electron-neutrinos!, while the remaining terms are due
neutral weak currents~and thus apply to all species!.

To assist us in investigating self-consistent collect
neutrino-plasma interactions in the present work, all neutr
and particle species are treated as ideal classical fluids.
this purpose, we proceed with the classical fluid limit f
plasma particles in the Dirac description expressed in te
of the correspondence

c̄s~ ĝa/c!cs→Js
a[~ns ,Js!, ~1.5!

where cs is the Dirac spinor field for particle speciess
~with ĝa denoting Dirac matrices! while ns and Js

[nsvs /c are the particle density and~normalized! particle
flux for each plasma-fluid speciess in the laboratory refer-
ence frame, respectively. In this limit, the propagation o
neutrino test particle of typen in a background plasma i
determined by the effective potential@19#

Vn~x,v,t ![(
s

Gsn S ns~x,t !2Js~x,t !•
v

cD , ~1.6!

where (x,v) denote the neutrino’s position and velocity. W
note that neutrino propagation in matter is a topic at the h
of the problem of neutrino oscillations in matter@20–22# and
the solar neutrino problem@23#. Although the termJs•v/c is
a relativistic correction tons in Eq. ~1.6!, we keep it for the
following reason. For a primordial plasma with a single fa
ily of particles (s5s) and antiparticles (s5s̄), we find from
Eq. ~1.3!

(
s5s,s̄

Gsn ns50,

~1.7!

(
s5s,s̄

Gsn Js5Gsn ~Js2Js̄!,

and thus the effective neutrino potential~1.6! becomesVn

5Gsn (Js̄2Js)•v/c, for each (s,s̄) family. Hence, keeping
this relativistic correction is necessary for the description
collective neutrino interactions with a primordial plasm
@24#. The model presented here therefore retains all rela
istic effects associated with the neutrino and plasma fluid
t

o
or

s

a

rt

-

f

v-
.

For a self-consistent description of collective neutrin
plasma interactions in which neutrino ponderomotive effe
on the background medium are included, we now use a s
lar classical-fluid correspondence for the neutrinos. T
propagation of a plasma test particle of speciess ~with elec-
tric chargeqs) in a background medium composed of a ne
trino fluid of type n and an electromagnetic field is dete
mined by the potential

Vs~x,v,t ![S qs f~x,t !1(
n

Gsn nn~x,t ! D
2S qs A~x,t !1(

n
Gsn Jn~x,t ! D • v

c
,

~1.8!

wherenn andJn[nnvn /c are the neutrino density and~nor-
malized! neutrino flux in the laboratory reference frame, r
spectively,f and A are the electromagnetic potentials, a
(x,v) denote the plasma particle’s position and velocity. It
interesting to note how the right side of Eq.~1.8! links the
electrostatic scalar potentialf and the neutrino densitynn ,
on the one hand, and the magnetic vector potentialA and the
neutrino flux vectorJn , on the other hand. We will hence
forth refer to the approximation wherebyJs andJn are omit-
ted in Eqs.~1.6! and ~1.8! as theweakelectrostatic~or non-
relativistic! approximation.

Although we assume that each neutrino flavor has a fi
mass, this assumption is not crucial to the developmen
our model; see Sec. II for a discussion of neutrino-fluid d
namics for arbitrary neutrino masses. Furthermore we s
ignore all quantum-mechanical effects, including effects d
to strong magnetic fields@25# ~i.e., we assumeB/BQM
[\Ve /mec

2!1, whereVe[eB/mec is the electron gyrof-
requency andBQM;431013 G!. Hence, although magneti
fields appear explicitly in our model, they are not conside
strong enough to modify the form of the interaction pote
tials ~1.6! and ~1.8!.

C. Magnetic field generation due to neutrino-plasma
interactions

An important application of the process~1.2! involves the
prospect of generating magnetic fields in an unmagneti
plasma as a result of collective neutrino-plasma interactio
This application may be of importance in investigating ma
netogenesis in the early universe~e.g., see Ref.@2#!. A simi-
lar process of magnetic field generation occurs in las
plasma interactions whereby an intense laser pu
propagating in a nonuniform plasma generates a quasis
magnetic field. This process was first studied theoretica
@26–28# and was recently confirmed experimentally@29#.

The generation of magnetic fields by collective neutrin
plasma interactions was first contemplated in the nonrela
istic ~weak electrostatic! limit by Shuklaet al. @30,31#. The
covariant ~relativistic! Lagrangian approach introduced b
Brizard and Wurtele@15#, however, revealed the presence
additional ponderomotive terms missing from previo
analysis@14,30,31#. These additional ponderomotive term
involve the time derivative of the neutrino flux] tJn and the
curl of the neutrino flux“3Jn ~henceforth referred to as th
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neutrino-flux vorticity!, which are shown here to lead to sig
nificantly different predictions regarding neutrino-induc
magnetic field generation. In fact, we show that magne
field generation due to neutrino-plasma interactions is
possible without these terms.

D. Organization

The remainder of this paper is organized as follows.
Sec. II, the Lagrangian formalism for ideal fluids is intr
duced. In Sec. III, a variational principle for collectiv
neutrino-plasma interactions in the presence of an elec
magnetic field is presented. This Lagrangian formalism
fully relativistic and covariant and can thus be generalized
include general relativistic effects~e.g., see Refs.@32,33#!. In
Sec. IV, the nonlinear neutrino-plasma fluid equations a
the Maxwell equations for the electromagnetic field are
rived. Through the Noether method@34–36#, an exact
energy-momentum conservation law is also derived and
process of energy-momentum transfer from the neutrino
the electromagnetic field and the plasma is discussed. In
V, magnetic field generation, magnetic helicity productio
and magnetic equilibrium involving neutrino-plasma intera
tions are investigated. Here, we find that neutrino-flux v
ticity (“3Jn) plays a fundamental role in all three pro
cesses. We summarize our work in Sec. VI and disc
future work.

II. LAGRANGIAN DENSITY FOR A FREE IDEAL FLUID

The present section is dedicated to the derivation o
suitable Lagrangian density for a free ideal fluid from
existing single-particle Lagrangian for a free particle of
bitrary mass~including zero!. The difficulty with dealing
with the case of free neutrinos as particles is that their m
may be zero. Since the relativistic LagrangianL for a free
single particle of massm is @37#

L52 mc2 g21[2 mcS dxa

dt

dxa

dt D 1/2

, ~2.1!

it is not obvious how to handle the limiting case of ze
mass. This difficulty is resolved in@38# as follows~see also
Ref. @2#!.

A. Single-particle Lagrangian

Consider the primitive Lagrangian

Lp5p• ẋ2E ṫ[2 pac va ~2.2!

for a particle of arbitrary rest massm ~including zero!, where
(x,p) are coordinates in the eight-dimensional phase sp
in which the particle moves andẋa5(c,v)[cva. Although
the particle’s space-time locationxa5(ct,x) is arbitrary, its
four-momentumpa5(E/c,p) is not, since the particle’s
physical motion is constrained to occur on the mass she

papa5m2c2. ~2.3!

Here, ua[gva is the normalized four-velocity andg5(1
1uuu2)1/2 is the relativistic factor.
c
t

n

o-
s
o

d
-

e
to
ec.
,
-
-

s

a

-

ss

ce

Since the mass constraint~2.3! cannot be derived from the
primitive Lagrangian~2.2!, we explicitly introduce it by
means of a Lagrange multiplier:

Lp[2pac va2
1

2l
~ m2c42papa c2 !, ~2.4!

wherel21 is the Lagrangian multiplier and the factor 1/2
added for convenience. Since the Lagrangian~2.4! is inde-
pendent ofṗa , the Euler-Lagrange equation forpa yields

]Lp

]pa
52cva1

pac2

l
[0, ~2.5!

from which we obtain

pa5l va/c. ~2.6!

Using the mass constraint~2.3! and the identityv•v[g22,
the relation~2.6! yields

l5gmc2, ~2.7!

i.e., l is the energy of a single particle of massm.
If we now substitute Eq.~2.6! into the primitive Lagrang-

ian ~2.4! ~i.e., by constraining the physical motion to tak
place on the mass shell!, we find the physical Lagrangian

L~v;l![Lp~x;p5lv/c;l!52
m2c4

2l
2

l

2g2
. ~2.8!

This Lagrangian now depends only onva andl ~for a free
particle, there is no space-time dependence in the Lagra
ian!. The Euler-Lagrange equation forl now yields

]L

]l
5

1

2 S m2c4

l2
2

1

g2D [0, ~2.9!

which gives Eq.~2.7!. Substituting Eq.~2.7! into Eq. ~2.8!
yields the standard Lagrangian~2.1!.

For a massless particle, on the other hand, the condi
~2.9! yields

g225va va[0, ~2.10!

which states that massless particles travel at the spee
light. Here,l is still the massless particle’s energy since E
~2.6! gives p0[l/c. For a massless particle, the singl
particle Lagrangian is therefore simply given by the last te
in Eq. ~2.8!, i.e.,

L~v;l![2
l

2
va va. ~2.11!

This Lagrangian appears in the bosonic part of the Lagra
ian for a spinning particle@38#. The Lagrange multiplierl21

corresponds to the ‘‘einbein’’ which describes the squa
root metrice5Ag along the world line in a particular gaug
where the world line is parametrized by time.
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B. Lagrangian density for a free ideal fluid

We now discuss the passage from the finite-dimensio
single-particle Lagrangian formalism based on Eq.~2.1! to
an infinite-dimensional fluid Lagrangian formalism. To o
tain a Lagrangian density for a fluid composed of such p
ticles, we multiply Eq.~2.1! by the reference-frame densit
n, noting that the proper density isN[ng21. The Lagrang-
ian for a cold ideal fluid is therefore

L052mc2N52mc2nAvava52mc2AJaJa,
~2.12!

where Ja5nva5^c̄ĝac/c& is the flux four-vector with a
suitable ensemble average^•••&. The Lorentz invariance is
manifest in the last expression.

Another contribution to the Lagrangian density of an ide
fluid is the term2 Ne(N,S) associated with the internal en
ergy density of the fluid in its rest frame, where the intern
energye(N,S) is a function of the proper fluid densityN and
its entropy S ~a Lorentz scalar!. By combining these two
terms, the Lagrangian density for a free relativistic fluid
therefore written as

L052 N@mc21e~N,S!#[2 N «~N,S!, ~2.13!

where the total internal energy

«~N,S![mc21e~N,S! ~2.14!

includes the particle’s rest energy.
As discussed above, the single-particle Lagrangian fo

free massless particle is given by Eq.~2.11!. The Lagrangian
density for a cold ideal fluid composed of massless neutri
is therefore given as

L0[2
ln8

2
Jn•Jn52

nnln

2
vn•vn , ~2.15!

whereln8 is a Lorentz-scalar Lagrange multiplier field. Th
last expression is equivalent upon changing the variableln

5nnln8 .

III. CONSTRAINED VARIATIONAL PRINCIPLE

The self-consistent nonlinear neutrino-plasma fluid eq
tions presented in this paper are derived from the variatio
principle

d E d4x L~Aa,Fab; Ns ,us
a ,Ss!50, ~3.1!

where, in addition to its dependence on the electromagn
four-potentialAa and the Faraday tensorFab, the Lagrang-
ian densityL depends on the proper densityNs[nsgs

21 , the
normalized fluid four-velocityus

a[(gs ,us), and the proper
internal energy~per particle! «s for each fluid speciess ~here,
s5s denotes a plasma-fluid species ands5n denotes a
neutrino-fluid species!.

The proper internal energy«s(Ns ,Ss) includes the parti-
cle’s rest energy@see Eq.~2.13!# and depends on the prope
densityNs and the entropySs ~a Lorentz scalar!. The first
law of thermodynamics@39–41# is written as
al

r-

l

l

a

s

-
al

tic

d«s5Ts dSs2ps dNs
21 , ~3.2!

whereTs is the proper temperature andps is the scalar pres-
sure for fluid speciess. In what follows we use the chemica
potential for each fluid speciess:

ms[]~«sNs!/]Ns5«s1ps /Ns , ~3.3!

which represents the total energy required to create a par
of speciess and inject it into a fluid sample composed
particles of the same species. Associated with the defini
for the chemical potential~3.3!, we also use the identity

]ams5Ts ]aSs1Ns
21 ]aps . ~3.4!

Note that the independent fluid variables for each fluid s
cies areNs , us

a , and Ss although other combinations ar
possible@32#.

The Lagrangian formulation for the nonlinear interacti
between neutrino and plasma fluids in the presence o
electromagnetic field is expressed in terms of the Lagrang
density

L52 (
s5s,n

Ns «s2(
s

Js•S qs A1(
n

Gsn JnD
1

1

16p
F:F, ~3.5!

whereF:F[Fab Fba . The first term in Eq.~3.5! denotes the
total internal energy density of fluids. The second term de
notes the standard coupling between a charged~plasma! fluid
and an electromagnetic field. The third term denotes the c
pling between the neutrino-fluid speciesn and the plasma-
fluid speciess. Note that the second and third terms can
written as(snsVs , where the single-particle velocityv in
Eq. ~1.8! is replaced with the fluid velocityvs . The fourth
term is the familiar electromagnetic field Lagrangian.

In the variational principle~3.1!, the variationdL is ex-
plicitly written as

dL[dA•
]L
]A

2dF:
]L
]F

1(
s

S dNs

]L
]Ns

1dus•
]L
]us

1dSs

]L
]Ss

D , ~3.6!

where]Fab5]adAa2]adAa so that the second term in Eq
~3.6! can also be written as12]dA:]L/]F. In constrast to
other variational principles@32,42#, the Eulerian variations
dNs , dus and dSs in Eq. ~3.6! are not arbitrary but are in
steadconstrained.

To obtain the correct Eulerian variation, recall that t
variation of the fluid motion is an infinitesimal displaceme
of the fluid elements. With a fluid elements described by the
four-coordinatexs

a , the normalized velocity four-vector is
given by

us
a~x!5

dxs
a S dxs

•

dxsD 21/2

[UdxsU21 dxs
a

, ~3.7!

dt dt dt dt dt
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where t parametrizes the world line of the fluid elemen
Under the infinitesimal displacementxs

a→xs
a1djs

a @with
djs

a[(djs
0 ,djs)], the apparent variation at a position fo

lowing a fluid element along its world line is

ddjs
a

dt Udxs

dt U
21

2
dxs

a

dt Udxs

dt U
23 ddjs

dt
•

dxs

dt

5~us•]!djs
a2us

a @usb~us•]!djs
b#

[hs
ab~us•]!djsb , ~3.8!

whereus•][udxs /dtu21 d/dt and

hs
ab[gab2us

aus
b ~3.9!

is a symmetric projection tensor@40# ~i.e., hs•us[0). The
Eulerian variation at a fixed space-time location is theref
given by @33#

dus
a~x!5hs

ab~us•]!djsb2~djs•]!us
a . ~3.10!

It is easy to check that this variation preservesuaua51.
The variation of the proper densityNs can be obtained by

the requirement that the quantity

NsS dxs

dt
•

dxs

dt D 21/2

d4x ~3.11!

should be kept intact~i.e., mass is conserved!. The factor in
parentheses is the induced metric along the world line. T
requirement fixes the variation at a position following
fluid element along its world line as2Ns@(]•djs)
2usb(us•])djs

b#52Ns @hs
ab]adjsb#, and hence the Eule

rian variation is given by

dNs52~djs•]!Ns2Ns hs :]djs . ~3.12!

It is straightforward to check that the above variations E
~3.10! and ~3.12! are consistent with the conservation law

]aJs
a50 ~3.13!

of the flux four-vectorJs
a5Nsus

a . It is useful to know its
variation, which can be easily calculated using Eqs.~3.10!
and ~3.12!:

dJs
a5]b~Js

bdjs
a2Js

adjs
b!, ~3.14!

where the conservation law~3.13! has been used.
Finally, the nondissipative flow conserves entropy alo

the world line,

~us•]!Ss50. ~3.15!

To be consistent with the variation Eq.~3.10!, we find

dSs52~djs•]!Ss . ~3.16!

The expressions~3.10!, ~3.12!, and ~3.16! give the correct
relativistic generalizations of the~nonrelativistic! constrained
Eulerian variations@43#; see the Appendix for a geometr
interpretation of Eqs.~3.10!, ~3.12!, ~3.14!, and ~3.16!. An
e

is

.

g

alternative variational principle would introduce]•Js50
5us•]Ss explicitly in the Lagrangian density by means
Lagrange multipliers@32#.

IV. SELF-CONSISTENT NONLINEAR NEUTRINO-
PLASMA FLUID EQUATIONS

We now proceed with the variational derivation of th
dynamical equations for self-consistent neutrino-plasma fl
interactions. In deriving these equations, we use the ther
dynamic relations~3.2!–~3.4! as well as the continuity and
entropy equations~3.13! and ~3.15! for each fluid speciess.

By rearranging terms in the variational equation~3.6! so
as to isolate the variation four-vectorsdjs anddA, we find

dL[]•J2(
s

djs•F]sL1]•S us

]L
]us

•hs2Ns

]L
]Ns

hsD G
1dA•S ]L

]A
22]•

]L
]FD , ~4.1!

where ]sL[]Ns (]L/]Ns)1]us•(]L/]us)1]Ss (]L/]Ss),
and the Noether four-densityJ is expressed in terms ofdjs
anddA as

J[(
s

S us

]L
]us

•hs2Ns

]L
]Ns

hsD •djs12
]L
]F

•dA.

~4.2!

When performing the variational principle~3.1!, with dL
given by Eq.~4.1!, we consider only variationsdjs anddA
that vanish on the integration boundary. Hence, the Noe
densityJ in Eq. ~4.1! does not contribute to the dynamic
equations.

A. Plasma-fluid momentum equation

First, we derive the relativistic plasma-fluid fou
momentum equation. Upon variation with respect todjs in
Eq. ~3.1!, we obtain

05S ]Ns

]L
]Ns

1]us•
]L
]us

1]Ss

]L
]Ss

D
1]•S us

]L
]us

•hs2Ns

]L
]Ns

hsD . ~4.3!

By substituting appropriate derivatives of the Lagrang
density L and using the constraint equations~3.13! and
~3.15! and the thermodynamic relations~3.2!–~3.4!, this
equation becomes the relativistic plasma-fluid fou
momentum~covariant! equation

us•]~ms us!5Ns
21]ps1S qs F1(

n
Gsn MnD •us ,

~4.4!

where

M n
ab[]aJn

b2]bJn
a ~4.5!

is an antisymmetric tensor that represents the influence o
neutrino background medium@44#. This tensor satisfies the
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Maxwell-like equation]rM n
ab1]aM n

br1]bM n
ra[0 and its

divergence is]aM n
ab[hJn

b , whereh[]•] and the conti-
nuity equation]•Jn50 for the neutrino fluid was used.

Separating the space and time components in Eq.~4.4!
~i.e., using the 311 notation!, the spatial components of th
plasma-fluid four-momentum equation~4.4! yield

~] t1vs•“ !~ ms gsvs /c2 !

52 ns
21 ¹ps1qs S E1

vs

c
3BD1fs , ~4.6!

wherefs is the neutrino-induced ponderomotive force~aver-
aged over neutrino species! on the plasma-fluid speciess,
defined as

fs[(
n

GsnF2 S“nn1
1

c

]Jn

]t D1
vs

c
3“3JnG . ~4.7!

The neutrino-induced ponderomotive forcefs is composed
of three terms: an electrostaticlike term“nn , an inductive-
like term ] tJn , and a magneticlike term“3Jn . This termi-
nology is obviously motivated by the similarities with th
electromagnetic force on a charged particle. In previo
work by Silvaet al. @17#, only the electrostaticlike term wa
retained in the neutrino-induced ponderomotive force, i
the neutrino particle fluxJn was discarded under the assum
tion of isotropic neutrino and plasma fluids.

B. Neutrino-fluid momentum equation

Next, we derive the relativistic neutrino-fluid four
momentum equation; the limiting case of zero neutr
masses is treated below Eq.~4.12!. Upon variation with re-
spect todjn in Eq. ~3.1!, we obtain

05S ]Nn

]L
]Nn

1]un•
]L
]un

1]Sn

]L
]Sn

D
1]•S un

]L
]un

•hn2Nn

]L
]Nn

hnD . ~4.8!

On substituting derivatives ofL and using the thermody
namic relations~3.2!–~3.4!, this equation becomes the rel
tivistic neutrino-fluid four-momentum equation

un•]~mn un!5Nn
21]pn1(

s
Gsn Ms•un , ~4.9!

where

Ms
ab[]aJs

b2]bJs
a ~4.10!

is another antisymmetric tensor which represents the in
ence of the background medium. This tensor satisfies
Maxwell-like equation]rMs

ab1]aMs
br1]bMs

ra[0 and its
divergence is]aMs

ab[hJs
b , where the continuity equation

] Js50 for the plasma fluid was used. In Eq.~4.9!, we note
that the neutrino fluid is thus under the influence of an el
tromagneticlike force induced by nonuniform plasma flow
We also note that the symmetry between the ponderomo
s

.,
-

-
e

-
.
ve

forces ~4.5! and ~4.10! is a result of the symmetry of the
neutrino-plasma interaction term ((s(n GsnJs•Jn) in the
Lagrangian density~3.5!.

Using the 311 notation, the spatial components
neutrino-fluid four-momentum equation~4.9! yield

~] t1vn•“ !~mngnvn /c2!52nn
21

“pn1fn , ~4.11!

where fn is the plasma-induced ponderomotive force~aver-
aged over plasma-particle species! on the neutrino-fluid spe-
ciesn, defined as

fn[(
s

GsnF2S“ns1
1

c

]Js

]t D1
vn

c
3“3JsG .

~4.12!

The plasma-induced ponderomotive forcefn on the neutrino
fluid is composed of three terms: an electrostaticlike te
“ns , an inductivelike term] tJs , and a magneticlike term
“3Js .

We now discuss the case of a cold ideal fluid composed
massless neutrinos. Variation of the neutrino part of the
grangian density

Ln[2 1
2 nnln vn•vn2(

s
GsnJs•Jn

with respect todjn yields

dLn[2 nnlndvn•vn2(
s

GsnJs•dJn , ~4.13!

where we used the constraintvn•vn[0. Using dJn

[]•(Jndjn2djnJn) and dvn•Jn5]•(Jndjn)•vn , the
variation equation~4.13! becomes

dLn[]•J1nndjn•S vn•]~lnvn!2(
s

Gsn Ms•vnD ,

~4.14!

where the tensorMs is defined in Eq.~4.10! and the Noether
density is

J[djn•Fg Gsn Jn•Js2JnS lnvn1(
s

Gsn JsD G .
~4.15!

From Eq.~4.14! the variational principle*dLn d4x50 yields
the cold neutrino fluid equation

vn•]~lnvn!5(
s

GsnMs•vn . ~4.16!

In the cold-fluid limit, on the other hand, Eq.~4.9! yields
un•](gn

21lnun)5(sGsnMs•un , where ln is the neutrino
energy. By substitutingun[gnvn into this expression, we
readily check that Eqs.~4.9! and ~4.16! are identical in the
massless-neutrino cold-fluid limit and that Eq.~4.9! can in
fact be used to describe neutrino-fluid dynamics with ar
trary neutrino mass.
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C. Maxwell equations

The remaining equations are obtained from the variatio
principle ~3.1! upon variations with respect to the fou
potentialdAa. One thus obtains

05
]L
]A

22]•
]L
]F

. ~4.17!

With substitution of derivatives ofL, this equation become
the Maxwell equation

]•F54p(
s

qs Js . ~4.18!

Using the 311 notation, we recover one-half of the familia
Maxwell equations from Eq.~4.18!. The other half is ex-
pressed in terms of the Faraday tensor alone as

]rFab1]aFbr1]bFra[0, ~4.19!

which, using the 311 notation, yields“•B50 and“3E
1c21] tB50.

D. Energy-momentum conservation laws

Since the dynamical equations~4.3!, ~4.8!, and~4.17! are
true for arbitrary variations (djs ,djn) and dA ~subject to
boundary conditions!, the variational equation~4.1! becomes

dL[]•J, ~4.20!

which we henceforth refer to as the Noether equation.
now discuss Noether symmetries of the Lagrangian den
~3.5! based on the Noether equation~4.20!.

For this purpose, we consider infinitesimal translatio
xa→xa1dxa generated by the infinitesimal displaceme
four-vector fielddx. Under this transformation, the Lagran
ian densityL changes by

dL[2]•~dx L!. ~4.21!

Next, we introduce the following explicit expressions f
(djs ,djn) and dA in terms of the infinitesimal generatin
four-vectordx:

djs[hs•dx,
~4.22!

dA[F•dx2]~A•dx!,

where the symmetric tensorhs is defined in Eq.~3.9!. ~These
expressions are given geometric interpretations in the
pendix.!

Substituting Eq.~4.22! in the Noether density~4.2!, we
find

J5F2
]L
]F

•F1(
s

S us

]L
]us

•hs2Ns

]L
]Ns

hsD G•dx

12]~A•dx!•
]L
]F

, ~4.23!
al

e
ty

s
t

-

where we have used the identityhs•hs5hs in writing the
second and third terms. Making use of the Maxwell equat
~4.18!, the last term in Eq.~4.23! can be rearranged as

2]~A•dx!•
]L
]F

5]•S 2 ~A•dx!
]L
]FD2~A•dx!

]L
]A

.

~4.24!

We now note that the expression for]•J in Eq. ~4.20! is
invariant under the transformationJ→J1]•K, whereK is
an antisymmetric tensor~for which ]ab

2 Kab[0) which van-
ishes on the integration boundary in Eq.~3.1!. Since the first
term on the right side of Eq.~4.24! is such a term, it can be
transformed away, and the final expression for the Noet
density is therefore

J5F2
]L
]F

•F2
]L
]A

A1(
s

S us

]L
]us

•hs2Ns

]L
]Ns

hsD G•dx.

~4.25!

Substituting Eq.~4.21! into Eq. ~4.20!, the Noether equa-
tion becomes]•(J1dx L)50. We define the symmetric
energy-momentum tensorT from the expression

J1dx L[2 T•dx, ~4.26!

where, using Eq.~4.25!, the energy-momentum tensorT is
explicitly given as

T52 g L2S 2
]L
]F

•F2
]L
]A

AD
2(

s
S us

]L
]us

•hs2Ns

]L
]Ns

hsD . ~4.27!

For a constant translationdx, the Noether equation~4.20!
then becomes

05]•T, ~4.28!

where using the Lagrangian density~3.5! and its derivatives
in Eq. ~4.27!, we find

Tab5
1

4p S F k
a Fkb2

gab

4
F:FD1(

s
~Nsms us

aus
b2ps gab!

1(
s

(
n

Gsn ~Js
a Jn

b1Jn
a Js

b2gab Js•Jn!. ~4.29!

This energy-momentum tensor contains the usual terms
sociated with an electromagnetic field and a free relativis
ideal fluid @39–41#. It also contains the energy-momentu
terms associated with collective neutrino-plasma interacti
~third set of terms!.

The energy-momentum transfer between t
electromagnetic-plasma background and the neutrinos
now be investigated. Such a process is relevant to supern
explosions, for example, where approximately 1% of t
neutrino energy needs to be transferred to the surroun
plasma. First, we define the electromagnetic-plasma~EMP!
energy-momentum tensor:
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TEMP[
1

4p S F•F2
g

4
F:FD1(

s
~Nsms usus2ps g!

[TEM1TP, ~4.30!

and, using the exact energy-momentum conservation
~4.28! as well as the dynamical equations~4.4!, ~4.9!, and
~4.18!, we find

]•TEMP5(
s

S (
n

Gsn MnD •Js . ~4.31!

This equation describes how energy and momentum
transferred from the neutrinos to the electromagnetic fi
and the background plasma. Note how the transfer of ene
momentum between an electromagnetic plasma and ne
nos is very much like the transfer of energy between
plasma ~P! and an electromagnetic field~i.e., ]•TP
5(s qsF•Js) in the absence of neutrinos.

We note that in addition to energy and momentum, wa
action@15# can be transferred between the neutrinos and
electromagnetic-plasma background. In this case, elec
magnetic waves and/or plasma waves can be excited by r
nant three-wave processes.

V. MAGNETIC FIELD GENERATION AND HELICITY
PRODUCTION BY COLLECTIVE NEUTRINO-

PLASMA INTERACTIONS

An important application of the process of energ
momentum transfer associated with collecti
electromagnetic-plasma–neutrino interactions is the poss
ity of generating magnetic fields in an unmagnetized plas
as a result of collective neutrino-plasma interactions. S
process might be relevant to the problem of magnetogen
and the production of magnetic helicity in the early unive
@45–47#. A similar process of magnetic field generation h
been observed in laser-plasma interactions@26–29#.

According to our neutrino-plasma fluid model@based on
Eqs. ~4.4!, ~4.9!, and ~4.18!#, the strength of the magneti
field generated by neutrino-plasma interactions scales as
first power in the Fermi weak-interaction constantGF . In
what follows, we thus refer to magnetic fields generated
classical plasma processes~e.g., the Biermann battery effec
and the nonlinear dynamo effect! as zeroth-order fields while
those generated by collective neutrino-plasma interact
are first-order fields. Second-order fields, for example, mi
be produced by processes such ass8→n→s→EM, where
the first plasma-particle species (s8) need not be charge
~e.g., neutrons!. In this section, we investigate the ro
played by collective neutrino-plasma interactions in gene
ing magnetic fields and magnetic helicity as well as magn
equilibrium.

A. Magnetic field generation

An equation describing magnetic field generation res
ing from collective neutrino-plasma interactions is derived
follows. We begin with Faraday’s law

]B

]t
52c“3E, ~5.1!
w

re
d
y-
tri-
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e
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where for a given plasma-particle speciess @using Eq.
~4.7!#, the electric fieldE is expressed as

E[
1

qs
~Fs2fs!2

vs

c
3B, ~5.2!

wherefs is the neutrino-induced ponderomotive force giv
by Eq. ~4.7! and

Fs[
]Ps

]t
1vs•“Ps1ns

21
“ps , ~5.3!

with Ps[(ms /c2)gsvs the generalized momentum fo
plasma-fluid speciess.

Since the electric fieldE is common to all charged
particle species, we multiply Eq.~5.2! on both sides byqs

2

and sum over all charged-particle species present in
plasma. Defining(sqs

2[Q2, the electric fieldE is then
given as

E5(
s

qs

Q2
~Fs2fs!2S (

s

qs
2vs

cQ2 D 3B. ~5.4!

Substituting explicit expressions forFs and fs , we obtain

E[(
s

qs

Q2
@] tPs2vs3“3Ps1“xs1Ss “~gs

21Ts!#

2S (
s

qs
2vs

cQ2 D 3B, ~5.5!

wheregs
21Ts is the temperature in the laboratory referen

frame and

Ps[Ps1(
n

GsnJn /c,

~5.6!

xs[(
n

Gsn nn1gs ms2gs
21TsSs .

Equation~5.5! can then be substituted for the electric fie
into Faraday’s law~5.1! to give

]B

]t
5(

s

cqs

Q2
@“~gs

21Ts!3“Ss

2“3~] tPs2vs3“3Ps!#

1(
s

qs
2

Q2
“3~vs3B!

2(
n

(
s

qsGsn

Q2
“3~] tJn2vs3“3Jn!. ~5.7!

The first collection of terms~linear inqs) on the right side of
Eq. ~5.7! includes the so-called Biermann battery ter
(“ns

213“Ts) @27,28,48# while the second term~propor-
tional to qs

2) represents the nonlinear dynamo effect. The
classical~zeroth-order! terms have been known to play im
portant roles in the generation of magnetic fields dur
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laser-plasma interactions@26–29# as well as the evolution o
cosmic and galactic magnetic fields@48#.

The last collection of terms~proportional toqsGsn) in
Eq. ~5.7! is associated with collective neutrino-plasma int
actions. Here, the neutrino-flux vorticity (“3Jn) plays a
fundamental role in generating first-order magnetic fiel
such terms are completely missing from previous wo
@30,31#.

According to Eq. ~5.7!, the electrostatic part of the
neutrino-induced ponderomotive force Eq.~4.7! does not
play any role in generating magnetic fields. Indeed, for e
neutrino-fluid speciesn, we have“3@((s qsGsn) “nn#50,
independent of the plasma-fluid composition. The neutri
induced ponderomotive force on plasma particles of spe
s actually given in@14,30,31# is 2ns

21 ((s8Gs8n ns8) “nn

[fs
(B) ; this expression improperly involves a sum of plasm

particle species ((s8) instead of the sum over neutrino sp
cies ((n) as it appears in Eq.~4.7!. Shuklaet al. @31# then go
on to develop a model for magnetic field generation based
the fact that“3fs

(B)Þ0 for a plasma with multiple particle
species. Since the sum over plasma-particle species ((s8)
appearing infs

(B) is inappropriate, however, the conclusio
drawn by Shuklaet al. @31# that magnetic fields can be gen
erated in a plasma composed of neutrons (s5n) and elec-
trons (s5e) by terms such as“(nn /ne)3“nn is incorrect
@49#.

For a primordial plasma, we note that the Bierman
battery term could be small unless the terms“(gs

21Ts)
3“Ss and “(gs̄

21
Ts̄)3“Ss̄ are in opposite directions

whereas the nonlinear dynamo requires net plasma flow.
ing the identities~1.7!, on the other hand, we note that pa
ticles (s) and antiparticles (s̄) of the same family (s,s̄)
contribute equally to the generation of first-order magne
fields in a primordial plasma since

(
s5s,s̄

qs Gsn52 qs Gsn ,

~5.8!

(
s5s,s̄

qs Gsnvs5qs Gsn ~vs1vs̄!.

This remark is especially relevant to the problem of mag
togenesis in the early universe. Conversely, we note fr
Eq. ~5.7! that a time-dependent magnetic fieldautomatically
generates neutrino-flux vorticity“3Jn . Hence, the usua
assumption that the neutrino distribution is isotropic@17# ap-
pears to be inconsistent with first-order magnetic field g
eration by first-order collective neutrino-plasma interactio

B. Magnetic helicity production

Another quantity intimately associated with magne
field generation is the generation of magnetic helicity

H[E
V
A•B d3x, ~5.9!

whereV is the three-dimensional volume that encloses
magnetic field lines; to ensure that this definition of magne
helicity be gauge invariant, we require thatB"n̂50, wheren̂
-

;
s

h

-
es

-

n

-

s-

c

-
m

-
.

e
c

is a unit vector normal to the surface]V. Magnetic helicity is
a measure of knottedness~or flux linkage! in the magnetic
field @50#; hence a uniform magnetic field~or more generally
a magnetic field that has a global representation in term
Euler potentialsa andb asB[“a3“b) has zero helicity.
The production of magnetic helicity is therefore an indic
tion that the spatial structure~and topology! of the magnetic
field is becoming more complex. It is expected that this fe
ture in turn plays a fundamental role in the formation
large-scale structure in the universe@2#.

The time evolution of the magnetic helicity~5.9! leads to
the equation

dH

dt
522c E

V
E"B d3x2c E

]V
~f B1E3A!"n̂ d2x,

~5.10!

where integration by parts was performed in obtaining
surface term. Taking the integration volumeV arbitrarily
large ~or requiring thatE be parallel ton̂ in addition to
B"n̂50), we find that the surface term vanishes and we
left only with the first term in Eq.~5.10!. If we now substi-
tute Eq.~5.5! into Eq. ~5.10!, we obtain

dH

dt
52 (

s

2qsc

Q2 E
V

B"@] tPs2vs3“3Ps1“xs

1Ss “~gs
21Ts! #d3x, ~5.11!

wherePs and xs are defined in Eq.~5.6!. Since the term
B"“xs can be written as an exact divergence, it does
contribute to the production of magnetic helicity. Furthe
more, since temperature gradients along the magnetic fi
B"“(gs

21Ts), vanish in the absence of dissipative effects t
last term in Eq.~5.11! drops out. Hence, magnetic helicit
production is governed by the equation

dH

dt
52 (

s

2qsc

Q2 E
V

B"~ ] tPs2vs3“3Ps!.

~5.12!

This equation states that helicity production can occur in
presence of~zeroth-order! nontrivial flows@50# and/or~first-
order! nonuniform neutrino flux.

It has been pointed out that magnetic helicity plays
important role in allowing energy to be transferred fro
small to large scales by a process called inverse casc
Thus neutrino-flux vorticity leads to the generation of sma
scale magnetic fields, first, and then to the production
magnetic helicity. The production of magnetic helicity, o
the other hand, converts the small-scale magnetic field
large-scale magnetic fields, which are expected to play a
damental role in the problem of structure formation in t
early Universe. The magnetic helicity production describ
by Eq. ~5.12! involves a multispecies fluid picture. A mor
standard description is based on the magnetohydrodyna
~MHD! equations in which plasma flows are averaged o
particle species. Future work will proceed by deriving ide
neutrino-MHD equations.
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C. Magnetic equilibrium in a magnetized plasma
and neutrino fluid

When gravitational effects can be ignored, plasmas ca
confined by magnetic fields. Such an equilibrium is est
lished by balancing the~outward! kinetic pressure gradien
with the~inward! magnetic pressure gradient. We now inve
tigate how magnetic equilibria are modified by the prese
of neutrino fluxes.

The equation for magnetic equilibrium involving ma
netic fields associated with neutrino-plasma interactions
be obtained by multiplying Eq.~5.2! with qsns and sum-
ming over the charged-particle species only. In a tim
independent equilibrium (]/]t[0) involving a quasineutra
plasma~where(sqsns50), a static magnetic fieldB, and
time-independent neutrino fluids, we find the following eq
librium condition:

J

c
3B5“•S (

s
~nsvsPs1I ps! D

1(
n

F S (
s

ns GsnD¹nnG
2(

n
F S (

s
Gsn

nsvs

c D 3“3JnG , ~5.13!

where J[(c/4p) “3B5(sqsJs is the current density
flowing in a time-independent magnetized plasma. The fi
term on the right side of Eq.~5.13! represents the classica
term associated with equilibrium in a magnetized plasm
The second and third terms denote first-order neutri
plasma contributions to magnetic field equilibrium.

Shuklaet al. @30# derived a similar equilibrium condition
with only the electrostaticlike term present on the right s
of Eq. ~5.13!. For a primordial plasma, using Eq.~1.7!, we
note that the neutrino-induced electrostaticlike term o
again vanishes from the magnetic field generation pictu
Hence, whereas the second term in Eq.~5.13! vanishes for a
primordial plasma, the third term on the right side of E
~5.13! does not. Magnetic equilibrium in a primordia
neutrino-plasma is thus described by the balance equati

(
s

Js

c
3S qs B1(

n
Gsn “3JnD

5“•S (
s5s,s̄

~nsvsPs1I ps!D , ~5.14!

where summation over species on the left side of Eq.~5.14!
involves only particle species, while the summation on
right side involves particle and antiparticle species. On
again, neutrino-flux vorticity“3Jn plays a fundamental role
in collective neutrino-plasma interactions in the presence
an electromagnetic field.

VI. SUMMARY AND FUTURE WORK

We now summarize our work and discuss future wo
The model for collective neutrino-plasma interactions p
sented in this work is based on the nonlinear dissipation
fluid equations~4.4!, ~4.9!, and ~4.18!. These equations ar
be
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derived from a variational principle based on the relativis
covariant Lagrangian density~3.5!. An exact energy-
momentum conservation law~4.28! is obtained by the Noet-
her method with the energy-momentum tensor for se
consistent collective neutrino-plasma interactions in
presence of an electromagnetic field given by Eq.~4.29!.
Ponderomotive forces acting on the plasma-neutrino flu
which are absent from previous works@14,30,31#, are given
by Eqs. ~4.5! and ~4.10! @or Eqs. ~4.7! and ~4.12!, respec-
tively#. In Eqs. ~5.7! and ~5.13!, we have demonstrated th
crucial role played by neutrino-flux vorticity (“3Jn) in the
processes of magnetic field generation and magnetic hel
production in neutrino-plasma fluids.

In future work, we plan to further investigate the impo
tance of the neutrino-induced ponderomotive terms ass
ated with neutrino fluxes. For this purpose, it might also
useful to derive ideal neutrino-magnetohydrodynamic eq
tions from Eqs.~4.4!, ~4.9!, and ~4.18!. Using the mecha-
nisms for magnetic field generation and magnetic helic
production proposed in Eqs.~5.7! and ~5.12!, respectively,
we plan to investigate the problem of magnetogenesis in
early Universe. As another application, we plan to inves
gate neutrino-plasma three-wave interactions leading to
excitation of various plasma waves in unmagnetized a
magnetized plasmas; such transfer processes could be im
tant during supernova explosions.
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APPENDIX: DIFFERENTIAL GEOMETRIC
FORMULATION OF CONSTRAINED

VARIATIONS

In this Appendix, the geometric interpretation of the co
strained variations~3.10!, ~3.12!, ~3.14!, and~3.16! is given
in terms of Lie derivatives along the virtual displaceme
four-vectordj. Since the variation of a fluid field is only its
infinitesimal displacement, all covariant quantities are var
by their Lie derivatives with respect to the virtual displac
ment four-vectordj. Here, we use the following definition o
the Lie derivative on thek-form a along the four-vectordj,
denotedL dja @51#:

L dja[ idj•da1d~ idj•a!. ~A1!

Here, da is a (k11)-form while idj•a is a (k21)-form
representing the contraction of the four-vectordj with the
k-form a. By definition, if a5w is a scalar field~i.e., a
zero-form!, idj•w[0.

The constrained variationdS52dj•]S for the entropyS
@Eq. ~3.16!# is consistent with its geometric interpretation
a scalar field:

dS[2L djS52dj•]S, ~A2!

whereidj•S[0 andidj•dS[(dj•])S.
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The geometric interpretation of the particle fluxJa

[Nua is given as the components of the three-formJ
5(1/3!)eabklJadxbdxkdxl. The constrained variation o
the particle-flux four-vector is defined as

dJ[2 L djJ. ~A3!

Since dJ[(]•J) V with the volume four-formV[dx0

`dx1`dx2`dx3, and hencedJ50 due to the continuity
equation, we obtaindJ52d( idj•J), or

dJa5]b~Jbdja2Jadjb!, ~A4!

which is Eq.~3.14! itself. From this variation, one can easi
compute the variations ofN5AJaJa andua5Ja/N leading
to Eqs.~3.12! and ~3.10!, respectively.

In Sec. IV D, we consider infinitesimal translationsxa

→xa1dxa generated by the infinitesimal displacement fo
vectordx. Under this transformation, the Lagrangian dens
L changes bydL[2]•(dx L). This expression is consisten
with the geometric interpretation ofL as a density in four-
dimensional space, i.e.,
sm
.
,

ys

.J

s.

nd

nd
-

dL V[2L dx~L V!, ~A5!

where L dx is the Lie derivative with respect todx. Here,
using idx•d(L V)50 and

d@ idx•~L V!#5d~L dx•v![]•~dx L! V, ~A6!

we easily recover Eq.~4.21!.
Next, the expression fordA is given in Eq.~4.22!. Here,

the electromagnetic four-potentialA appears as the the com
ponents of the one-formA•dx. Thus

dA•dx[2L dx~A•dx!. ~A7!

Since idx•d(A•dx)52(F•dx)•dx and d@ idx•(A•dx)#
5d(A•dx), we easily recover Eq.~4.22! for the four-
potentialA. We note that the expressiondj[h•dx given in
Eq. ~4.22! is consistent with the expressionsdS52 L djS[
2L dxS anddJ52L dj(J)[2L dx(J).
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