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Laser pulse modulation instabilities in plasma channels
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In this paper the modulational instability associated with propagation of intense laser pulses in a partially
stripped, preformed plasma channel is analyzed. In general, modulation instabilities are caused by the interplay
between~anomalous! group velocity dispersion and self-phase modulation. The analysis is based on a system-
atic approach that includes finite-perturbation-length effects, nonlinearities, group velocity dispersion, and
transverse effects. To properly include the radial variation of both the laser field and plasma channel, the
source-dependent expansion method for analyzing the wave equation is employed. Matched equilibria for a
laser beam propagating in a plasma channel are obtained and analyzed. Modulation of a uniform~matched!
laser beam equilibrium in a plasma channel leads to a coupled pair of differential equations for the perturbed
spot size and laser field amplitude. A general dispersion relation is derived and solved. Surface plots of the
spatial growth rate as a function of laser beam power and the modulation wave number are presented.

PACS number~s!: 52.40.Nk, 52.40.Fd, 42.79.Gn, 42.65.Re
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I. INTRODUCTION

Ultrahigh intensity lasers@1–4# are being developed for
wide range of applications. Intense laser beam propagatio
plasma channels@5–28# has applications in such areas
ultrabroadband radiation generation@29–32#, optical har-
monic generation@33–38#, x-ray generation@39,40#, inertial
confinement fusion@41–45#, and laser driven acceleratio
@46–74#. These and other applications provide a motivat
for studying the physics of intense laser fields interact
with matter @75–88#. The propagation characteristics of a
intense laser pulse in a medium can be markedly differ
from those in a vacuum@89–93#. For example, intense lase
beams propagating in plasmas are subject to numerous i
bilities @48,75,83,86,94,95#. In a vacuum the refractive inde
is unity and the scale length for diffraction of a laser be
with waist ~minimum! spot sizer SO is the Rayleigh length
ZR5pr SO

2 /l, wherel is the wavelength. In a dielectric me
dium there are additional contributions to the refractive
dex that lead to significant departures from free space pro
gation @29,48,76,77#. The additional contributions includ
effects due to the relativistic motion of free electrons
plasma and the nonlinear motion of atomic electrons in p
tially stripped plasma. Either one of these effects can lea
self-focusing that counteracts the diffractive tendency of
laser beam. Further, the diffraction of the laser beam can
be overcome by the presence of a preformed density cha
in the plasma.

Most analyses of laser propagation in dielectrics and p
mas have been based on the paraxial form of the wave e
tion; that is equivalent to assuming that the longitudin
variations along the laser pulse are long compared to a w
length. However, advancing technology has led to the de
opment of extremely short laser pulses, some of which are
longer than a few optical cycles. In this limit short pul
effects and nonparaxial propagation can become impor
@19–21,25#. In this paper the nonparaxial, axisymmetr
propagation of ultrashort, high intensity laser pulses in p
tially stripped plasmas is examined. The analysis allows
PRE 611063-651X/2000/61~4!/4381~13!/$15.00
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short pulse effects, nonlinear~relativistic and anharmonic
atomic electron! effects, and includes a preformed parabo
plasma channel.

Intense laser beams propagating in plasmas are subje
many instabilities, such as Raman and modulational in
bilities @48,78,83#. In Raman instabilities plasma waves pla
a fundamental role in scattering the primary laser beam
other frequencies or directions. Modulational instabilitie
which are the subject of this paper, do not require the ex
tation of plasma waves and can result in distortions of
laser beam envelope or self-focusing. The physical basis
modulational instability is group velocity dispersion in th
presence of self-phase modulation~also referred to as photo
acceleration@83#!. The modulational instability of lase
beams in plasmas and dielectrics has been the subjec
several publications@48,76,77,83,94,95#. Much of the early
work considered one-dimensional models in which the la
beam is represented as a plane wave. Extension of t
models to represent the finite transverse size of a laser b
has been effected by employing plane waves with a nonz
transverse wave number@76,77,95#.

In this paper an equilibrium~matched! solution for a laser
beam in a plasma channel is obtained. A dispersion rela
for axisymmetric modulational perturbations about the eq
librium is obtained and analyzed. The analysis of modu
tional instability of laser beams in plasmas presented h
marks a significant advance in various directions. First,
analysis allows for transverse variations of the laser field
the plasma channel. Thus, the finite transverse extent of
laser beam is self-consistently included in the formulat
and there is no need to introduce an arbitrary transverse w
number in the analysis. Second, since the analysis inclu
transverse variations as well as nonlinearities, relativistic
cusing and the notion of a critical power for self-focusin
automatically emerges in the calculations. Hence, the in
play between modulational instability and self-focusing
clarified by the analysis.

The organization of this paper is as follows. In Sec. II
reduced wave equation for the slowly varying envelope
4381 © 2000 The American Physical Society
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the laser electric field is derived that includes nonlinear~rela-
tivistic and ponderomotive! effects, nonparaxial~i.e., short
pulse! effects, and allows for the presence of a preform
plasma channel. The derivation employs a systematic
proach that, in principle, includes the dispersive effects
free ~plasma! electrons as well as of bound~atomic! elec-
trons to all orders. In Sec. III a reduced wave equation
derived and the linear refractive index and group veloc
dispersion parameter is defined. The reduced wave equa
is transformed to the group velocity coordinates for furth
analysis. The final form of the wave equation involves t
transverse coordinates, the propagation distance, and th
ordinate relative to the pulse centroid. The solutions of s
an equation can be parametrized in terms of amplitu
phase, radius of curvature of the phase fronts, and spot
of the laser beam. This parametrization is effected in Sec.
making use of the source dependent expansion approach
employing Laguerre-Gaussian eigenfunctions. The la
beam and channel are assumed to be axisymmetric. In Se
an equilibrium solution of an envelope equation for the s
size is obtained and related to the preformed plasma cha
parameters. A perturbed form of the envelope equation
also obtained and analyzed. A general stability analysis
the equilibrium solution is presented in Sec. VI. It is show
that perturbations on a uniform laser beam envelope are
ceptible to a modulational instability. The analysis presen
includes the effects of finite perturbation lengths. It is sho
that these effects modify the modulational instability qua
tatively by limiting the parameter space in which there is
instability. Surface plots displaying the growth rate of t
instability are given and concluding remarks are presente
Sec. VII.

II. DERIVATION OF REDUCED WAVE EQUATION

In this section we derive an equation describing the e
lution of the envelope of an electromagnetic field propag
ing in a preformed plasma channel. The approach adopte
this paper permits inclusion of dispersion, finite laser pu
length, and nonlinear effects. The propagation medium
described by a linear and nonlinear polarization field due
bound electrons as well as a linear and nonlinear pla
current due to free electrons. The electric field in the medi
is governed by the wave equation@76,77#

~¹22c22]2/]t2!E54pc22~]2P/]t21]Jp /]t !, ~1!

whereE(r ,t) is the electric field,¹25¹'
2 1]2/]z2, z is the

axial propagation direction,P(r ,t) is the total polarization
field, andJp(r ,t) is the plasma current density. In obtainin
Eq. ~1! we have neglected a small source term proportio
to the gradient of the high frequency component of
plasma density. The polarization field consists of a linear
nonlinear contribution, i.e.,P5PL1PNL where PL is first
order in the electric fieldE andPNL is nonlinear inE.

A. Linear source terms

The relationship between the Fourier transforms ofPL and
E is given by

P̂L~r ,v!5x̂L~r ,v!Ê~r ,v!, ~2!
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whereP̂L andÊ are the Fourier transforms ofPL andE and
xL(r ,v) is the frequency dependent linear scalar suscept
ity which may also be a function ofr in order to provide
optical guiding. The convention for the Fourier transfor
pairs is

P̂L~r ,v!5
1

A2p
E

2`

`

PL~r ,t !eivtdt, ~3a!

PL~r ,t !5
1

A2p
E

2`

`

P̂L~r ,t !e2 ivtdv. ~3b!

The relationship betweenPL andE is given by

PL~r ,t !5
1

A2p
E

2`

t

xL~ t2t8!E~r ,t8!dt8, ~4!

which in terms of Fourier transforms results in Eq.~2!. The
linear part of the plasma current density is given by

]Jp,L

]t
5

vP
2

4p
E~r ,t !, ~5!

where vp(r )5@4pq2np(r )/m#1/2 is the plasma frequency
andnp is the plasma density which may be spatially taper
i.e., have a minimum on axis, to optically guide the bea
The electric field is represented in the following form:

E~r ,t !5E~r ,t !~1/2!ei ~k0z2v0t !êx1c.c., ~6!

whereE(r ,t) denotes the amplitude and is a slowly varyin
function of z and t, k0 and v0 are, respectively, the wav
number and frequency of the carrier field, andêx is a unit
vector in thex direction denoting the polarization. To obta
an envelope equation describing the evolution ofE(r ,t) it is
convenient to first neglect the nonlinear contributions fro
both the polarization field as well as from the plasma curr
density. Taking a Fourier transform of Eq.~1! without the
nonlinear source terms gives

~¹21v2/c2!Ê~r ,v!524p~v2/c2!P̂L~r ,v!

1~vP
2 /c2!Ê~r ,v! ~7!

Since we will be considering Gaussian beams we introd
the spot sizer c , which will be defined later. Equation~7! can
now be written as

S ¹21
4

r c
2 1

v2

c2 nL
2~r ,v! D Ê~r ,v!50, ~8!

where

nL~r ,v!5@nb
2~r ,v!2vp

2~r !/v224c2/~vr c!
2#1/2, ~9!

is the linear part of the total refractive index, and

nb~r ,v!5@114px̂L~r ,v!#1/2, ~10!

is the refractive index due to both vacuum and bound e
trons. The effective transverse wave number for a Gaus
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beam having spot sizer c is k'52/r c . To obtain Eq.~8! the
term 4/r c

2 has been added and subtracted to the wave op
tor. In the analysis that follows this will emerge as an imp
tant step in identifying the slowly varying envelope of th
optical field.

1. Plasma channel

To form an optical channel the linear index of refracti
must be a maximum on axis and decrease radially. To o
cally guide a beam having a Gaussian transverse profile
square of the refractive index must decrease asr 2, i.e.,

nL
2~r ,v!5nL

2~v!~12r 2/Rch
2 !, ~11!

where nL(v)5nL(r 50,v) and Rch is the channel radius
Substituting the Fourier transform ofE(r ,t), together with
the representation forE(r ,t) in Eq. ~6!, into the wave equa-
tion, yields

S ¹21
4

r c
2 1

v2

c2 nL
2~r ,v! D Ê~r ,v2v0!exp~ ik0z!50.

~12!

Equation~12! can be rewritten as

F¹'
2 1

]2

]z2
12k0S i

]

]z
1K~v!1

2

k0r c
2D

2
v0

2

c2
nL

2~v0!
r 2

Rch
2 G Ê~r ,v2v0!50, ~13!

whereK(v)5@b2(v)2k0
2#/2k0>b(v)2k0 and

b~v!5
v

c
nL~v! ~14!

is the mode propagation constant~wave number!. In Eq. ~13!
the part ofnL(r ,v) which depends onr 2 has been evaluate
at v0 , this approximation is valid for a wide channel, i.e
r c

2/Rch
2 !1.

2. Mode propagation constant

SinceÊ(r ,v2v0) is the Fourier transform of the slowl
varying amplitudeE(r ,t) the frequency dependent functio
b(v) may be expanded aboutv0 @29#,

b~v!5
v

c
nL~v!'b01~v2v0!b11

1

2
~v2v0!2b21¯

~15!

where

bn5@dnb~v!/dvn#v5v0
. ~16!

In Eq. ~15!, b2 is related to group velocity dispersio
~GVD!. Substituting Eq.~15! into Eq. ~13! and taking the
inverse Fourier transform yields
ra-
-

ti-
he

F¹'
2 1

]2

]z2 12k0S i
]

]z
1b02k01

2

k0r c
2 1 ib1

]

]t

2
b2

2

]2

]t22
i

6
b3

]3

]t3D 2b0
2 r 2

Rch
2 GE~r ,t !50. ~17!

In obtaining Eq.~17! we have used the relationship,

E
2`

`

~v2v0!nÊ~r ,v2v0!e2 i ~v2v0!tdv

5A2p~ i !n
]nE~r ,t !

]tn . ~18!

B. Nonlinear source terms

The effects of the nonlinear polarization field and plas
current are assumed small and can be included in the e
lope equation approximately. The channel as well as the
tical beam is assumed broad. This implies, among ot
things, that the linear refractive index varies little from th
axis, r 50, to the optical spot size,r 5r c , i.e., r c

2/Rch
2 !1.

1. Nonlinear polarization field

The nonlinear polarization field due to bound electrons
given by

PNL~r ,t !5xNL^E•E&E~r ,t !, ~19!

wherexNL is the scalar third-order susceptibility of the ne
tral gas and the brackets^ & denote a time average. In thi
approximation the third harmonic component of the nonl
ear polarization field is neglected and the nonlinear respo
is assumed to be instantaneous. Equation~19! can be ex-
pressed in terms of the nonlinear refractive indexn2 ,

PNL~r ,t !5
1

4p
@2nL0n2I ~r ,t !#E~r ,t !, ~20!

wherenL05nL(0,v0) is the linear index evaluated atr 50
andv5v0 , n25(8p2/nL0

2 c)xNL is the nonlinear refractive
index, I (r ,t)5(c/4p)nL0^E•E& is the intensity, andun2I u
!nL021 has been assumed. The refractive index is the s
of the linear and nonlinear contributions and in the abse
of relativistic effects is

n~r ,v!5nL~r ,v!1n2I . ~21!

2. Nonlinear plasma current

The nonlinear contribution to the plasma current dens
originates from plasma waves and relativistic effects. T
plasma waves, i.e., wakefields, can be generated by the
deromotive force, i.e., radiation pressure, associated with
electromagnetic field envelope. The relativistic contributi
to the plasma current density is due to relativistic change
the mass of the oscillating electrons. The nonlinear par
the plasma current density is given by

]Jp,NL

]t
5

vp
2

4p S dnp

np
2

dm

m DE~r ,t !, ~22!
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wherednp is the perturbed plasma density due to the gen
ated plasma wave anddm is the change of the electron’
mass due to relativistic effects. This paper is devoted to
analysis of self-phase modulation, due to relativistic a
nonlinear atomic electron effects. Analysis of wakefield e
citation is postponed to a forthcoming paper; hereafterdnp is
neglected.

To second order in the field amplitude the fraction
change in the electron’s mass isdm/m5a•a/2, wherea is
the unitless normalized vector potential associated with
electromagnetic field, i.e., the vector potential multiplied
q/mc2. In terms ofa, the electron momentum in the osci
lating electromagnetic field isamc. The magnitude ofa is
often referred to as the laser strength parameter. For m
relativistic electron oscillationsuau!1 and for a linearly po-
larized laser beam,uau58.6310210l@mm#I 1/2@W/cm2#. Us-
ing the electric field representation in Eq.~6!, we find that

a~r ,t !>2 iq
E~r ,t !

mcv0

ei ~k0z2v0t !

2
ex1c.c. ~23a!

and, neglecting harmonics,

a•a>
1

2 S q

mcv0
D 2

uE~r ,t !u2, ~23b!

where we have assumedu] ln(E)/]tu!v0.
Substituting Eqs.~20! and ~22! into Eq. ~17!, with the

nonlinear source terms reinstated, and using Eq.~23a!, the
equation for the complex amplitude becomes

F¹'
2 1

]2

]z2
12k0S i

]

]z
1b02k01

2

k0r c
2

1 ib1

]

]t

2
b2

2

]2

]t2
2

i

6
b3

]3

]t3
1¯ D 2b0

2 r 2

Rch
2 Gb~r ,t !

>2S vp0

2c D 2

~11R!ubu2b~r ,t !, ~24!

where

b~r ,t !5
uqu
mc

E~r ,t !

v0
, ~25a!

R5
4pq2c

l0
2r e

2

v0
2

vp0
2 nL0

2 n2 , ~25b!

r e5q2/mc2 is the classical electron radius,l052pc/v0 is
the vacuum wavelength, andvp05vp(0) is the on-axis
plasma frequency in terms of the on-axis densitynp0
5np(0). Note thatb(r ,t) is proportional to the electric field
amplitude and is only approximately equal to the magnitu
of the normalized vector potential. The quantityR is the ratio
of the critical powers for relativistic focusing in a plasma a
nonlinear focusing in a gas@76,77#, i.e. R5Pp /Pa where

Pp52c~q/r e!
2nL0~v0 /vp0!2, ~26a!

Pa5l0
2/~2pnL0n2!. ~26b!
r-

e
d
-

l

e

ly

e

The linear refractive index appears in the definition ofPp in
Eq. ~26a! since the laser intensity is proportional tonL0E2.
In general, when the laser power exceeds either of th
critical powers, focusing occurs@21,76,77#. The total nonlin-
ear focusing power consists of contributions from bothPp
andPa and is given by

Pcrit5PpPa /~Pa1Pp!. ~27!

The quantityR in Eq. ~25b! is also equal to the ratioPp /Pa ,
which in practical units@76,77# is given by

R5Pp /Pa5
1.2231040nL0

2 n2@cm2/W#

l0
4@mm#np@cm23#

. ~28!

III. NONLINEAR REDUCED WAVE EQUATION

The nonlinear reduced wave equation becomes, neg
ing b3 and higher order dispersion terms,

F¹'
2 1

]2

]z2
12k0S i

]

]z
1b02k01

2

k0r c
2

1 ib1

]

]t
2

b2

2

]2

]t2D
2b0

2 r 2

Rch
2

1kNL
2 ub~r ,t !u2Gb~r ,t !50, ~29!

where

kNL
2 5

vp0
2

4c2 ~11R!, ~30!

in which the first term represents relativistic effects and
second term bound electron effects.

It is convenient at this point to change variables from~z,t!
to ~h, j! whereh5z, j5(z2vgt), andvg is the group ve-
locity. In terms of these new variables]/]z5]/]h1]/]j
and ]/]t52vg]/]j. Setting vg51/b1 and k05b0
5v0nL(v0)/c, Eq. ~29! reduces to

F¹'
2 12k0S i

]

]h
2

1

2
b2vg

2 ]2

]j2
1

2

k0r c
2D

12
]2

]h]j
2k0

2 r 2

Rch
2

1kNL
2 ub~r ,j,h!u2Gb~r ,j,h!50,

~31!

where we have neglected 1/k0 compared tob2vg
2 and]2/]h2

compared to 2k0]/]h; this approximation is valid for the
case of interest here. Note that the conditionk05b0 defines
the dispersion relationk05v0nL(v0)/c.

A. Linear refractive index

The total refractive indexnL(v) is given by

nL~v!5@nb
2~v!2V2/v2#1/2, ~32!

where nb(v) is the refractive index associated with th
bound electrons,V25vp0

2 14c2/r c
2 and V2/v2 represents

the square of the refractive index associated with the f
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electrons~plasma! and finite spot size effects. Assumin
V2/v2!1, the total index can be written as

nL~v!>nb~v!2
1

2nb0

V2

v2 , ~33!

wherenb05nb(v0). With this approximate form for the in
dex the dispersion parametersb1 andb2 are

b15
1

c S nb~v!1v
]nb

]v
1

1

2nb0

V2

v2 D
v5v0

, ~34a!

b2>
1

c S 2
]nb

]v
1v

]2nb

]v2 2
1

nb0

V2

v3 D
v5v0

. ~34b!

The phase and group velocities on axis (r 50) are, respec-
tively, vph5v0 /k05c/nL(v), andvg51/b1 ,

vph>
c

nb0
S 11

1

2nb
2

V2

v2 D
v5v0

, ~35a!

vg>
c

nb0
S 12

v

nb

]nb

]v
2

1

2nb
2

V2

v2 D
v5v0

. ~35b!

B. Group velocity dispersion „GVD…

The GVD parameterb2 has units of see2/cm and is given
by

b25
]b1

]v0
5

]

]v0
~vg

21!52
1

vg
2

]vg

]v0
. ~36!

The GVD parameter can also be written as the sum of c
tributions from bound electrons, free, i.e., plasma, electro
and finite spot size effects,

b25b2b1b2p1b2' , ~37!

where

b2b5
1

c S 2
]nb

]v
1v

]2nb

]v2 D
v5v0

, ~38a!

is due to bound electrons and can be either less tha
greater than zero,

b2p52
1

nb0c

vp
2~0!

v0
3 , ~38b!

is due to plasma electrons and is always negative, and

b2'52
1

nb0c

4c2

v0
3r c

2
, ~38c!

is due to the finite spot of the optical beam and is also alw
negative. The group velocity near the frequencyv0 is
n-
s,

or

s

vg~v!>vg~v0!1S ]vg

]v D
v5v0

dv,

5vg~v0!2vg
2~v0!b2dv, ~39!

where dv5v2v0 . Note that for nb051, i.e., no bound
electrons, the GVD parameter is negative and given by

b2>2
1

v0c S vp
2~0!

v0
2 1

4c2

v0
2r c

2D . ~40!

IV. ANALYSIS OF WAVE EQUATION

Equation~31! is the model equation and forms the bas
for the subsequent analysis in this paper. It is a partial
ferential equation for the complex-valued, slowly varyin
normalized electric field amplitudeb(j,h). Equation ~31!
describes the propagation of a finite-pulse-length laser b
in a partially stripped plasma channel. To analyze this eq
tion it is useful to first separate the radial variation from t
axial propagation characteristics. This can be convenie
accomplished by employing the source dependent expan
method.

Source-dependent expansion solution

The following analysis is based on the source-depend
expansion~SDE! method developed in Ref.@96#. Assuming
axisymmetry, in the SDE method the representation for
amplitude of the Gaussian beam is

b~r ,j,h!5a~j,h!eic~j,h!e2@12 ia~j,h!#r 2/r s
2
~j,h!, ~41!

wherea, c, a, andr s are real functions ofj andh. Herea is
inversely proportional to the wavefront radius of curvatu
andr s is the spot size. In the SDE method the wave equat
is written in the form

~¹'
2 12ik0]/]h!b~r ,j,h!5S~r ,j,h!, ~42!

where ¹'
2 5r 21](r ]/]r )/]r , r is the radial coordinate

S(r ,j,h)5Sg(r ,j,h)1Sl (r ,j,h), and

Sg~r ,j,h!5S k0
2 r 2

Rch
2 2

4

r c
22kNL

2 ub~r ,j,h!u2Db~r ,j,h!,

~43a!

Sl ~r ,j,h!5~k0b2vg
2]2/]j222]2/]h]j!b~r ,j,h!.

~43b!

The source termSg contains the contributions from chann
guiding, finite spot size and nonlinearities while the sou
term Sl contains finite pulse length effects including grou
velocity dispersion. In the SDE method the equations g
erninga, c, a, andr s are given by

] ln~ars!

]h
5~F ! I , ~44a!

]c

]h
1

~11a2!

k0r s
2 2

a

r s

]r s

]h
1

1

2

]a

]h
52~F !R , ~44b!
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]r s

]h
2

2a

k0r s
52r s~G! I , ~44c!

]a

]h
2

2~11a2!

k0r s
2 52~G!R22a~G! I , ~44d!

where«(j,h)5a(j,h)exp@ic(j,h)# and the subscriptsR, I
denote real and imaginary parts, respectively, and

F~j,h!5
1

2k0«~j,h!
E

0

`

dxS~x,j,h!e2~11 ia!x/2,

~45a!

G~j,h!5
1

2k0«~j,h!
E

0

`

dxS~x,j,h!~12x!e2~11 ia!x/2,

~45b!

with x52r 2/r s
2. Combining Eqs.~44a!, ~44b!, and~44c! we

find that

]c

]h
52

2

k0r s
22~F1G!R . ~46!

To proceed with the analysis we substitute the sou
function S(r ,j,h)5Sg(r ,j,h)1Sl (r ,j,h), given by Eqs.
~43! into Eq.~45! and evaluate the integrals. The functionsF
andG are found to be

F~j,h!5
1

2k0
S k0

2r s
2~j,h!

2Rch
2 2

4

r c
22kNL

2 a2~j,h!

2

1A~j,h!1
1

2
B~j,h!1

1

2
C~j,h! D , ~47a!

G~j,h!52
1

2k0
S k0

2r s
2~j,h!

2Rch
2 1kNL

2 a2~j,h!

4

1
1

2
B~j,h!1C~j,h! D . ~47b!

In obtaining Eqs.~47! the source functionSl (r ,j,h) was
expressed in the following form, displaying ther dependen-
cies explicitly,

Sl ~r ,j,h!5@A~j,h!1B~j,h!~r /r s!
21C~j,h!

3~r /r s!
4#b~r ,j,h!, ~48!

where

A~j,h!5k0b2vg
2S ]2 ln~«!

]j2 1S ] ln~«!

]j D 2D
22S ]2 ln~«!

]h]j
1

] ln~«!

]h

] ln~«!

]j D , ~49a!

B~j,h!5r s
2~j,h!k0b2vg

2S ]2q

]j2 12
]q

]j

] ln~«!

]j D22r s
2~j,h!

3S ]2q

]h]j
1

]q

]j

] ln~«!

]h
1

]q

]h

] ln~«!

]j D , ~49b!
e

C~j,h!5r s
4~j,h!k0b2vg

2S ]q

]j D 2

22r s
4~j,h!

]q

]j

]q

]h
,

~49c!

andq(j,h)52@12 ia(j,h)#/r s
2(j,h).

V. LASER ENVELOPE EQUATION
IN PLASMA CHANNEL

Combining Eqs.~44c! and ~44d! we obtain an equation
for the laser spot size

]2r s

]h22
4

k0
2r s

32
4

k0r s
~G!R1S 2a

k0r s
1

]r s

]h D ~G! I1r s

]

]h
~G! I50.

~50!

This is a differential equation for the spot sizer s , involving
]/]h and]/]j derivatives and other laser beam paramete
It includes the effects of a plasma channel, nonlinearit
and dispersion. Equation~50! can be reduced to an envelop
equation for the spot size alone in various limits. These w
be discussed in a forthcoming paper. Here, we shall con
the presentation to a simple but important limit.

In the absence of finite pulse length effects, i.e., negle
ing Sl , we find that

F~j,h!5
1

2k0
S k0

2r s
2~j,h!

2Rch
2 2

4

r c
22kNL

2 a2~j,h!

2 D ,

~51a!

G~j,h!52
1

2k0
S k0

2r s
2~j,h!

2Rch
2 1kNL

2 a2~j,h!

4 D . ~51b!

Substituting Eq.~51b! into Eq. ~50! we obtain an envelope
equation, in the long pulse limit@21#

]2r s

]h22
4

k0
2r s

3 F12 P̂0~j!2S r s

r c
D 4G50, ~52!

whereP̂05P0 /Pcrit is the normalized power,P0 is the laser
power,Pcrit is the critical laser power for nonlinear focusin
i.e.,

P̂0~j!5kNL
2 a2~j,h!r s

2~j,h!/8, ~53!

and r c is defined as

r c521/2S Rch

k0
D 1/2

. ~54!

In the absence of a plasma channel (Rch→`) Eq. ~52! pre-
dicts catastrophic focusing forP0.Pcrit . This is an artifact
of the third order nonlinearity in the wave equation, Eq.~24!.
Mode conversion, higher order nonlinearities and ionizat
effects will prevent the beam from focusing down inde
nitely.

The Rayleigh length associated with the spot sizer c is

ZR05k0r c
2/25nL~v0!pr c

2/l0 . ~55!
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A. Plasma channel

If the optical channel is formed by the plasma electro
and not the bound atomic electrons the depth of the pla
density necessary to optically guide a beam with matc
spot sizer c is @97#

Dn>~pr er c
2!21, ~56!

where we have assumed a plasma density variation of
form

np~r !5np01Dnr2/r c
2, ~57!

and r e5e2/mc2 is the classical electron radius. In the lon
pulse limit

]„a~j,h!r s~j,h!…

]h
50, ~58a!

]c

]h
52

2

k0r s
2 S 12

3

2
P̂0~j! D1

2

k0r c
2 . ~58b!

From Eq.~58a! we find that in the absence of finite leng
effects the laser power profile does not change with pro
gation distanceh.

B. Matched pulse

For a matched pulse in a channel each of the quantitiea,
r s , and a are independent of the propagation distanceh.
However, the phasec can be a function ofh. For a matched
beam Eqs.~44! yield

r s0~j!5r c~12 P̂0~j!!1/4, ~59a!

c0~j,h!5m0~j!h5S 12
12~3/2!P̂0~j!

~12 P̂0~j!!1/2
D h

ZR0

,

~59b!

a050. ~59c!

C. Perturbed envelope equation

The envelope equation for a nearly matched pulse
found by setting

r s~j,h!5r s0~j!1r 1~j,h!, ~60!

whereur 1 /r s0u!1, andr s0 is given by Eq.~59a!. Substitut-
ing Eq. ~60! into the envelope equation in Eq.~52! gives

]2r 1

]h2
1

4

ZR0
2

r 150, ~61!

where the period of the envelope oscillation for a nea
matched pulse ispZR0 .

VI. ANALYSIS OF MODULATION INSTABILITY

In this section, the modulation instability of an initiall
uniform laser beam in a plasma channel is considered. F
a simple one-dimensional~1D! model is employed in orde
s
a
d

he

a-

is

y

st,

to illustrate the effects of finite-perturbation-length term
The modulation instability is then examined using the SD
formalism, which accounts for the Gaussian profile of t
beam. For an infinitely wide beam, we show how the SD
reduces to the one-dimensional limit.

A. One-dimensional modulation instability

The longitudinal modulation instability for a long lase
pulse can be analyzed by taking the 1D~plane wave! limit of
Eq. ~31!,

F2k0S i
]

]h
2

1

2
b2vg

2 ]2

]j2D 12
]2

]h]j

1kNL
2 ub~r ,j,h!u2Gb~r ,j,h!50. ~62!

The equilibrium for a long beam, i.e.,]/]j50, is

b0~h!5a0 expS 2i P̂0

h

ZR0
D , ~63!

wherea0 is independent ofj and

kNL
2 ub0u25

4k0

ZR0
P̂0 , ~64!

@cf. Eq. ~53!#. The perturbed equilibrium is given by

b~j,h!5b0~h!1a1~j,h!expS 2i P̂0

h

ZR0
D , ~65!

whereua1u!ub0u. Substituting Eq.~65! into Eq. ~62! gives

i
]a1

]h
2

b2

2
vg

2 ]2a1

]j2 1 i
2

k0ZR0
P̂0

]a1

]j

1
1

k0

]2a1

]j]h
1

2

ZR0
P̂0~a11a1* !50. ~66!

Since the equilibrium is independent ofj, the perturbed am-
plitude can be written as

a1~j,h!5a1~h!exp~ ikj!1a2~h!exp~2 ikj!. ~67!

Substituting Eq.~67! into Eq. ~66! yields

F S 12
k2

k0
2D ]2

]h2 6 i S 8

ZR0
P̂01b2vg

2k2D k

k0

]

]h
1

b2
2

4
vg

4k4

1
2

ZR0
P̂0b2vg

2k22
4

ZR0
2 P̂0

2 k2

k0
2 Ga6~h!50. ~68!

Taking a6 to vary with h as exp(6iKh), the following dis-
persion relation is obtained:

~12 k̂2!K̂218~ P̂01b̂2k̂2!k̂K̂

216~ b̂2
2k̂21 P̂0b̂22 P̂0

2/4!k̂250, ~69!
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where the unitless quantities arek̂5k/k0 , K̂5ZR0K, and
b̂25(1/8)vg

2k0
2ZR0b2 . Substituting the expression forb2 ,

i.e., Eq.~37!, into the definition ofb̂2 gives

b̂2.
vg

2

8
k0

2ZR0b2b2
1

4 S 11
vp

2~0!r c
2

4c2 D , ~70!

where the last term in the expression forb̂2 is due to plasma
electrons and finite spot size effects andvg'c/nb0 has been
assumed.

The dispersion relation in Eq.~69! can be readily solved
to show that the modulation instability is excited provid
b̂2 is sufficiently negative, i.e.,

b̂213P̂0/4,0, ~71!

with the range of unstable wave numbers given by

k̂2<2
P̂0~3P̂0/41b̂2!

~ P̂0/21b̂2!2
. ~72!

The maximum growth rate occurs at

k̂56S 2~ P̂0/21b̂2!2

P̂0u3P̂0/41b̂2u
21D 21/2

, ~73!

and has the value

Gmax5~KI !max52P̂0u3P̂0/41b̂2u@~ P̂0/21b̂2!2

2 P̂0u3P̂0/41b̂2u] 21/2. ~74!

Equation~71! defines a cutoff power for the one-dimension
modulation instability, given by (Pcutoff)1D /Pcrit5

2(4/3)b̂2 . If the mixed derivative term representing finite
perturbation-length effects, i.e.,]2/]j]h in Eq. ~62! is ne-
glected the dispersion relation in Eq.~69! reduces to@29#

K̂2516~ b̂2
2k̂41 P̂0b̂2k̂2!. ~75!

A modulation instability exists ifb̂2,0 and k̂2< P̂0 /ub̂2u,
with spatial growth rate, i.e.,G5K̂ I ,

G54ub̂2k̂u~ P̂0 /ub̂2u2 k̂2!1/2. ~76!

The growth rate is symmetric with respect tok̂ and has a
maximum value of Gmax52P̂0 which occurs at k̂5

6@ P̂0 /(2ub̂2u)#1/2.
The parameter space stability boundary described by

~72! is shown as the solid curve in Fig. 1. The appearanc
a cutoff power defined by Eq.~71!, above which the pulse is
stable, is due to the inclusion of the mixed derivative term
Eq. ~62!, i.e., a finite-perturbation-length effect. Without th
term, the stability boundary is given by the dashed curve
Fig. 1 which is described byk̂2< P̂0 /ub̂2u.
l

q.
of

n

n

B. Modulation instability of a Gaussian beam

Equations~44a!–~44d! together with Eqs.~47a!, ~47b! de-
scribe a laser pulse propagating in a plasma channel.
propagation model contains relativistic and finit
perturbation-length effects, GVD, as well as atomic elect
nonlinearities. We now analyze the modulational instabil
associated with the laser beam amplitude and spot size.
laser beam equilibrium is assumed to be uniform (]/]j

50) with arbitrary power (P̂0,1). Although the equilib-
rium is independent ofj the perturbed quantities are func
tions of bothj andh ~and are assumed to be nonlocal, i.
extend over allj and h!. The equilibrium~matched beam!
solution to Eqs.~44! is given by Eq.~59!.

To analyze the stability of the laser pulse, the pulse a
plitude, a(j,h), the phase,c~j, h!, the spot size,r s(j,h),
and the curvature parameter,a~j, h!, are perturbed about th
uniform equilibrium values given by Eqs.~59!, that is,
a(j,h)5a01a1(j,h), c(j,h)5c0(h)1c1(j,h), r s(j,h)
5r s01r 1(j,h) and a(j,h)5a01a1(j,h). The equilib-
rium quantities have subscripts 0 and are independentj
and the small, perturbed quantities have subscripts 1. S
larly, the functionsF and G are perturbed,F(j,h)5F0
1F1(j,h), andG(j,h)5G01G1(j,h). The equations de-
scribing the perturbed laser beam quantitiesr 1 , a1 , a1 , and
c1 , from Eqs.~44! are

1

r s0

]r 1

]h
1

1

a0

]a1

]h
5~F1! I , ~77a!

]c1

]h
2

2

k0r s0
3 r 11

1

2

]a1

]h
52~F1!R , ~77b!

]r 1

]h
2

2

k0r s0
a152r s0~G1! I , ~77c!

]a1

]h
1

4

k0r s0
3 r 152~G1!R . ~77d!

The forms forF0 , G0 , F1 , andG1 are given in the Appen-
dix.

FIG. 1. Stability boundaries of the one-dimensional model in

parameter space (k,P̂0 /b̂2) calculated with~solid curve! and with-
out ~dashed curve! the mixed derivative term in Eq.~62!.
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C. Dispersion relation

The full dispersion relation for the modulation instabili
is obtained by taking the perturbed quantities to vary l
exp(iKh1ikj) in the full set of perturbed equations, Eq
~77!. An intermediate step in the derivation of the dispers
relation is the coupled equations for the Fourier transfor
of r 1(j,h) anda1(j,h), these are

S D~ k̂,K̂ !2
4~12 P̂0/4!

~12 P̂0!1/2
E~ k̂,K̂ !2

4~12 P̂0/2!

~12 P̂0!
D r̃ 1~ k̂,K̂ !/r c

~12 P̂0!1/4

5
P̂0

~12 P̂0!
@21~12 P̂0!1/2E~ k̂,K̂ !#

ã1~ k̂,K̂ !

a0

, ~78a!

S D~ k̂,K̂ !1
2P̂0

~12 P̂0!1/2
E~ k̂,K̂ !D ã1~ k̂,K̂ !

a0

52S D~ k̂,K̂ !1
P̂0

~12 P̂0!1/2
E~ k̂,K̂ !D r̃ 1~ k̂,K̂ !/r c

~12 P̂0!1/4
,

~78b!

where

D~ k̂,K̂ !5~12 k̂2!K̂212~4b̂2k̂21m̂0!k̂K̂216b̂2
2k̂41m̂0

2k̂2,
~79a!

E~ k̂,K̂ !5~K̂24b̂2k̂!k̂, ~79b!

and m̂05ZR0m0512(123P̂0/2)/(12 P̂0)1/2, k̂5k/k0 , K̂

5ZR0K, ZR05k0r c
2/2, and b̂25(1/8)vg

2k0
2ZR0b2 . In Eqs.

~78! r̃ 1 and ã1 are the Fourier amplitudes ofr 1 anda1 . The
full dispersion relation is obtained by combining Eqs.~78! to
give

@~12 P̂0!D~ k̂,K̂ !2~42 P̂0!~12 P̂0!1/2E~ k̂,K̂ !2412P̂0#

3@~12 P̂0!1/2D~ k̂,K̂ !12P̂0E~ k̂,K̂ !#

1 P̂0@21~12 P̂0!1/2E~ k̂,K̂ !#@~12 P̂0!1/2D~ k̂,K̂ !

1 P̂0E~ k̂,K̂ !#50. ~80!

The quantity (12 P̂0)1/2 appears in various terms througho
the dispersion relation in Eq.~80!. This is related to the fac
that P̂051 has a physical significance associated with foc
ing, as indicated in the envelope equation, Eq.~52!. The 1D
model cannot take into account self-focusing associated
the equilibrium of the laser beam.

1. Low power limit (P̂0Ä0)

For P̂050 the full dispersion relation in Eq.~80! reduces
to

@D~ k̂,K̂ !24E~ k̂,K̂ !24#D~ k̂,K̂ !50. ~81!

The dispersion relation in Eq.~81! has stable roots, i.e., th
imaginary part ofK̂ is zero fork̂ real.
n
s

-

th

2. 1D limit (rc\`)

The dispersion relation in the one-dimensional limit
obtained by letting the spot size of the laser beam appro
infinity ( r c→`) in Eqs. ~78!. In this limit two dispersion
relations are obtained. It is straightforward to show that
the first one, 21(12 P̂0)1/2E( k̂,K̂)50, the single root is
stable. The other dispersion relation is

~12 P̂0!1/2D~ k̂,K̂ !12P̂0E~ k̂,K̂ !50. ~82!

In the low power limit, i.e., to orderP̂0
2, this simplifies to

~12 k̂2!K̂218~ P̂0/217P̂0
2/321b̂2k̂2!k̂K̂216~ b̂2

2k̂2

1 P̂0b̂2/22 P̂0
2/161 P̂0

2b̂2/4!k̂250, ~83!

which becomes identical to Eq.~69! to order P̂0 with the
substitutionP̂0/2→ P̂0 .

Figures 2 and 3 compare the spatial growth rates,
Im K, obtained from the 1D limit (r c→`) of the SDE dis-
persion relation@Eq. ~82!# and from the formalism including

FIG. 2. Spatial growth rate (ImK̂) versus scaled wave numberk̂

and powerP̂0 calculated from Eq.~82! ~a!, and Eq.~80! ~b! for

b̂2520.5.
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transverse variations@Eq. ~80!#. Figure 2 displays ImK as a
function of scaled wave numberk̂ and powerP̂0 for b̂25
21/2. In the 1D limit@Fig. 2~a!#, there exists a cutoff power

P̂cutoff5
Pcutoff

Pcrit
5

3

8
2b̂2~112b̂2!2

1

8
~114b̂2!

3A918b̂2~112b̂2!, ~84!

above which the modulation is stable. The scaled cu
power, P̂cutoff , tends towards unity asb̂2→2` and is zero
when b̂250. The solutions of Eq.~80!, however, show in-
stability even whenP̂0. P̂cutoff . As seen in Fig. 2~b!, for
P̂0, P̂cutoff , the peak growth rate increases and tends tow
larger k̂ as the power increases, while forP̂0. P̂cutoff ~in the
full SDE model! the peak growth rate shifts to smallerk̂ as
the power increases. For larger values ofub̂2u such that
P̂cutoff→1 Fig. 3 shows that the 1D limit@Eq. ~82!# and the
full SDE dispersion relation@Eq. ~80!# yield similar growth
rates forP̂0,1.

FIG. 3. Spatial growth rate (ImK̂) versus scaled wave numberk̂

and powerP̂0 calculated from Eq.~82! ~a!, and Eq.~80! ~b! for

b̂2522.
ff

rd

VII. CONCLUSIONS

In this paper the modulational instability associated w
propagation of intense, short laser pulses in a partia
stripped, preformed plasma channel has been analyzed.
analysis is based on a systematic approach that inclu
finite-perturbation-length effects, nonlinearities, group velo
ity dispersion~GVD! and transverse effects. To properly in
clude the radial variation of both the laser field and plas
channel, the source-dependent expansion method has
employed. Matched equilibria for a laser beam propagat
in a plasma channel are obtained and analyzed. It is sh
that modulation of a uniform~matched! laser beam equilib-
rium in a plasma channel leads to a coupled pair of differ
tial equations for the perturbed spot size and laser field
plitude. A general dispersion relation is derived and solv
It is shown that in some instances finite-perturbation-len
effects quench the instability above a cutoff power. Surfa
plots of the spatial growth rate as a function of laser be
power and the modulation wave number are presented.
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APPENDIX

The source-dependent expansion approach to the solu
of the wave equation requires the evaluation of the over
integralsF and G in Eqs. ~45a! and ~45b!. For the equilib-
rium,

F05
1

2k0
S 2r s0

2

r c
4 2

4

r c
22

4P̂0

r s0
2 D , ~A1!

G052
1

2k0
S 2r s0

2

r c
4 1

2P̂0

r s0
2 D , ~A2!

while the perturbed integrals are given by

F1~j,h!5
1

2k0
S 4r s0

r c
4 r 1~j,h!2

8P̂0

r s0
2

a1~j,h!

a0

1A1~j,h!1
r s0

2

2
B1~j,h!D , ~A3!

G1~j,h!52
1

2k0
S 4r s0

r c
4 r 1~j,h!1

4P̂0

r s0
2

a1~j,h!

a0

1
r s0

2

2
B1~j,h!D , ~A4!

where

A1~j,h!5S k0b2vg
2 ]2

]j222
]2

]h]j
22i

]c0

]h

]

]j D S a1

a0
1 ic1D ,

~A5!
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B1~j,h!5
2

r s0
2 S k0b2vg

2 ]2

]j222
]2

]h]j
22i

]c0

]h

]

]j D S r 1

r s0
1 i

a1

2 D , ~A6!

and P̂05P0 /Pcrit .
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