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Laser pulse modulation instabilities in plasma channels
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In this paper the modulational instability associated with propagation of intense laser pulses in a partially
stripped, preformed plasma channel is analyzed. In general, modulation instabilities are caused by the interplay
between@anomalousgroup velocity dispersion and self-phase modulation. The analysis is based on a system-
atic approach that includes finite-perturbation-length effects, nonlinearities, group velocity dispersion, and
transverse effects. To properly include the radial variation of both the laser field and plasma channel, the
source-dependent expansion method for analyzing the wave equation is employed. Matched equilibria for a
laser beam propagating in a plasma channel are obtained and analyzed. Modulation of a (médtrhed
laser beam equilibrium in a plasma channel leads to a coupled pair of differential equations for the perturbed
spot size and laser field amplitude. A general dispersion relation is derived and solved. Surface plots of the
spatial growth rate as a function of laser beam power and the modulation wave number are presented.

PACS numbse(s): 52.40.Nk, 52.40.Fd, 42.79.Gn, 42.65.Re

[. INTRODUCTION short pulse effects, nonlinedrelativistic and anharmonic
atomic electrop effects, and includes a preformed parabolic
Ultrahigh intensity lasergl—4] are being developed for a plasma channel.
wide range of applications. Intense laser beam propagation in Intense laser beams propagating in plasmas are subject to
plasma channelf5—28| has applications in such areas asmany instabilities, such as Raman and modulational insta-
ultrabroadband radiation generati¢@9-32, optical har- pilities [48,78,83. In Raman instabilities plasma waves play
monic generatiof33-38, x-ray generatiori39,4Q, inertial  a fundamental role in scattering the primary laser beam into
confinement fusior{41-45, and laser driven acceleration other frequencies or directions. Modulational instabilities,
[46—74. These and other applications provide a motivationwhich are the subject of this paper, do not require the exci-
for studying the physics of intense laser fields interactingation of plasma waves and can result in distortions of the
with matter[75-88. The propagation characteristics of an |laser beam envelope or self-focusing. The physical basis for
intense laser pulse in a medium can be markedly differeninodulational instability is group velocity dispersion in the
from those in a vacuurf89-93. For example, intense laser presence of self-phase modulati@iso referred to as photon
beams propagating in plasmas are subject to numerous instacceleration[83]). The modulational instability of laser
bilities [48,75,83,86,94,95In a vacuum the refractive index beams in plasmas and dielectrics has been the subject of
is unity and the scale length for diffraction of a laser beamseveral publication§48,76,77,83,94,95 Much of the early
with waist (minimum) spot sizer g is the Rayleigh length  work considered one-dimensional models in which the laser
Zg=mr54/\, where\ is the wavelength. In a dielectric me- beam is represented as a plane wave. Extension of these
dium there are additional contributions to the refractive in-models to represent the finite transverse size of a laser beam
dex that lead to significant departures from free space propdras been effected by employing plane waves with a nonzero
gation [29,48,76,77. The additional contributions include transverse wave numbgr6,77,95.
effects due to the relativistic motion of free electrons in  In this paper an equilibriunfmatched solution for a laser
plasma and the nonlinear motion of atomic electrons in parbeam in a plasma channel is obtained. A dispersion relation
tially stripped plasma. Either one of these effects can lead tfor axisymmetric modulational perturbations about the equi-
self-focusing that counteracts the diffractive tendency of thdibrium is obtained and analyzed. The analysis of modula-
laser beam. Further, the diffraction of the laser beam can alstional instability of laser beams in plasmas presented here
be overcome by the presence of a preformed density channelarks a significant advance in various directions. First, the
in the plasma. analysis allows for transverse variations of the laser field and
Most analyses of laser propagation in dielectrics and plasthe plasma channel. Thus, the finite transverse extent of the
mas have been based on the paraxial form of the wave equkser beam is self-consistently included in the formulation
tion; that is equivalent to assuming that the longitudinaland there is no need to introduce an arbitrary transverse wave
variations along the laser pulse are long compared to a wavewumber in the analysis. Second, since the analysis includes
length. However, advancing technology has led to the develtransverse variations as well as nonlinearities, relativistic fo-
opment of extremely short laser pulses, some of which are nousing and the notion of a critical power for self-focusing
longer than a few optical cycles. In this limit short pulse automatically emerges in the calculations. Hence, the inter-
effects and nonparaxial propagation can become importamlay between modulational instability and self-focusing is
[19-21,23. In this paper the nonparaxial, axisymmetric clarified by the analysis.
propagation of ultrashort, high intensity laser pulses in par- The organization of this paper is as follows. In Sec. Il a
tially stripped plasmas is examined. The analysis allows foreduced wave equation for the slowly varying envelope of
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the laser electric field is derived that includes nonlingeia- whereP, andE are the Fourier transforms & andE and
tivistic and ponderomotiveeffects, nonparaxiali.e., short (v, ») is the frequency dependent linear scalar susceptibil-
pulsg effects, and allows for the presence of a preformedty which may also be a function af in order to provide

plasma channel. The derivation employs a systematic apsptical guiding. The convention for the Fourier transform
proach that, in principle, includes the dispersive effects obhgirs is

free (plasma electrons as well as of boun@tomio elec-

trons to all orders. In Sec. Il a reduced wave equation is ) 1 (= .

derived and the linear refractive index and group velocity P._(r,w)=—j P.(r,t)e'“dt, (33
dispersion parameter is defined. The reduced wave equation Vam )

is transformed to the group velocity coordinates for further
analysis. The final form of the wave equation involves the 1 f‘”

transverse coordinates, the propagation distance, and the co- \/T_T, e

ordinate relative to the pulse centroid. The solutions of such

an equation can be parametrized in terms of amplitudeThe relationship betweeR, andE is given by

phase, radius of curvature of the phase fronts, and spot size

of the laser beam. This parametrization is effected in Sec. 1V, 1 [t

making use of the source dependent expansion approach and PL(r,t)= \/:f xL(t=t")E(r,t")dt’, (4)
employing Laguerre-Gaussian eigenfunctions. The laser 2 J

beam and channel are assumed to be axisymmetric. In Sec. \Vhich in terms of Eourier transforms results in E8). The

an equilibrigm solution of an envelope equation for the SPO%inear part of the plasma current density is given by
size is obtained and related to the preformed plasma channel

parameters. A perturbed form of the envelope equation is FAN w%

also obtained and analyzed. A general stability analysis of —= 4—E(r,t), (5)
the equilibrium solution is presented in Sec. VI. It is shown &
that perturbations on a uniform laser beam envelope are sugz,

ceptible to a modulational instability. The analysis presented, 4, is'the plasma density which may be spatially tapered,
includes the effects of finite perturbation lengths. It is shown, hpave a minimum on axis, to optically guide the beam.

that these effects modify the modulational instability quali--l-he electric field is represented in the following form:
tatively by limiting the parameter space in which there is an

instability. Surface plots displaying the growth rate of the E(r,t)=E(r,t)(1/2)e' oz~ »lp +c.c., (6)
instability are given and concluding remarks are presented in
Sec. VII. whereE(r,t) denotes the amplitude and is a slowly varying
function of z andt, ky and w, are, respectively, the wave
Il. DERIVATION OF REDUCED WAVE EQUATION number and frequency of the carrier field, a@dis a unit
vector in thex direction denoting the polarization. To obtain
_In this section we derive an equation de_scr_ibing the evoyp envelope equation describing the evolutiofEQf,t) it is
lution of the envelope of an electromagnetic field propagatzonvenient to first neglect the nonlinear contributions from
ing in a preformed plasma channel. The approach adopted ioth the polarization field as well as from the plasma current

|ength, and nonlinear effects. The propagatlon medium |$]on|inear source terms gives

described by a linear and nonlinear polarization field due to

P.(r,t)= P.(r,t)e “de. (3b)

ere wy(r)=[4m7q%n,(r)/m]¥? is the plasma frequency

bound electrons as well as a linear and nonlinear plasma (V24 02Ic?)E(r,w) = — 47 (0?2 PL (1, »)
current due to free electrons. The electric field in the medium
is governed by the wave equatifné,77] +(w3/c)E(r,0) 7

(V2—c 25?1 t*)E=4mc™ 2(9°Plat*+3J,/at), (1)  Since we will be considering Gaussian beams we introduce
the spot size ., which will be defined later. Equatidi@) can

whereE(r,t) is the electric fieldV2=V?+3%/dz% zis the  now be written as
axial propagation directionP(r,t) is the total polarization
field, andJy(r,t) is the plasma current density. In obtaining
Eqg. (1) we have neglected a small source term proportional
to the gradient of the high frequency component of the
plasma density. The polarization field consists of a linear andvhere
nonlinear contribution, i.e.P=P_+Py_ where P_ is first
order in the electric fiel& andPy, is nonlinear inE. N(r)=[N5(r, @) — wh(r)/w?—4c? (or)?1¥2  (9)

2, 4 0, o
Vit 2+ Zni(re) |E(re)=0, ®
c

. is the linear part of the total refractive index, and
A. Linear source terms
The relationship between the Fourier transform®,0and Ny(r,®)=[1+4mx (r,0)]"? (10
E is given by
. . . is the refractive index due to both vacuum and bound elec-
PL(r,w)=x (r,0)E(r,w), (2 trons. The effective transverse wave number for a Gaussian



PRE 61 LASER PULSE MODULATION INSTABILITIES IN . .. 4383

beam having spot size, is k, =2/r.. To obtain Eq.(8) the

term 4+2 has been added and subtracted to the wave opera-
tor. In the analysis that follows this will emerge as an impor-
tant step in identifying the slowly varying envelope of the

optical field.

1. Plasma channel

To form an optical channel the linear index of refraction

2

, 4
Vit gt 2k|i

&+,3 k+2 3&
+i
0 R0T or2 T Pt

2 H 3 2
Pz 77 ] ﬁ) 2 lern=0. a7

~% 2 6Pe —BoR—gh

In obtaining Eq.(17) we have used the relationship,

must be a maximum on axis and decrease radially. To opti- fx (0— o )né(r w—wg)e (@@t
cally guide a beam having a Gaussian transverse profile, the - 0 ' 0

square of the refractive index must decrease?as.e.,
nZ(r,w)=ni(w)(1—r2/R3), (1)

where n (w)=n_ (r=0,0) and R;, is the channel radius.
Substituting the Fourier transform &f(r,t), together with
the representation fdg(r,t) in Eq. (6), into the wave equa-
tion, yields

4 @2 2 A .
V2+r—z+anL(r"”) E(r,o—wg)expikyz)=0.
Cc

(12

Equation(12) can be rewritten as

2

V2 + i +2k
oz 70 of2

0 2
i —+K(w)+—
0z k

2 2

__nl_(wo) E(r,0—wy)=0, (13

ch

whereK () =[ B%(w)— kg]IZkOE B(w)—ky and

w
Blw)=_n (o) (14

is the mode propagation constdmnave number In Eq. (13)
the part ofn (r,w) which depends on? has been evaluated

at wq, this approximation is valid for a wide channel, i.e.,

r2/R3,<1.

2. Mode propagation constant

SinceE(r,w—wo) is the Fourier transform of the slowly
varying amplitudeE(r,t) the frequency dependent function
B(w) may be expanded about, [29],

,B(w)=%nL(w)%,Bo-i—(w—wo)ﬂl-i—%(w—wo)zﬂﬁ
(19
where
Bo=[d"B(w)/dw"],_,,. (16)
In Eq. (15), B, is related to group velocity dispersion

(GVD). Substituting Eq.(15) into Eg. (13) and taking the
inverse Fourier transform yields

" E(r t)

=\2m(i)"— (18)

B. Nonlinear source terms

The effects of the nonlinear polarization field and plasma
current are assumed small and can be included in the enve-
lope equation approximately. The channel as well as the op-
tical beam is assumed broad. This implies, among other
things, that the linear refractive index varies little from the
axis,r =0, to the optical spot size=r, i.e.,r2/R%,<1.

1. Nonlinear polarization field

The nonlinear polarization field due to bound electrons is
given by

PaL(r,t)=xn(E-E)E(r 1), (19

where y\. is the scalar third-order susceptibility of the neu-
tral gas and the brackets denote a time average. In this
approximation the third harmonic component of the nonlin-
ear polarization field is neglected and the nonlinear response
is assumed to be instantaneous. Equatit® can be ex-
pressed in terms of the nonlinear refractive inagx

1
Pr(r,t) = 7—[2ncona! (1 D ]E(r,Y), (20

wheren ,=n,(0,0p) is the linear index evaluated at=0

and w=wq, N,=(87?/n?,C) xn. is the nonlinear refractive
index, 1(r,t)=(c/4m)n_o(E-E) is the intensity, andn,l|

<n o—1 has been assumed. The refractive index is the sum
of the linear and nonlinear contributions and in the absence
of relativistic effects is

n(r,w)=n.(r,w)+nyl. (22)

2. Nonlinear plasma current

The nonlinear contribution to the plasma current density
originates from plasma waves and relativistic effects. The
plasma waves, i.e., wakefields, can be generated by the pon-
deromotive force, i.e., radiation pressure, associated with the
electromagnetic field envelope. The relativistic contribution
to the plasma current density is due to relativistic changes in
the mass of the oscillating electrons. The nonlinear part of
the plasma current density is given by

2
ﬁJp'NL _ &( 5np

5m)
Era — | E(r,1), (22

m
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where dn,, is the perturbed plasma density due to the generThe linear refractive index appears in the definitiorPgfin

ated plasma wave andm is the change of the electron’s Eq. (263 since the laser intensity is proportional gyE?2.
mass due to relativistic effects. This paper is devoted to thén general, when the laser power exceeds either of these
analysis of self-phase modulation, due to relativistic anccritical powers, focusing occuf&1,76,71. The total nonlin-
nonlinear atomic electron effects. Analysis of wakefield ex-ear focusing power consists of contributions from b&th
citation is postponed to a forthcoming paper; hereaftgyis  andP, and is given by

neglected.

To second order in the field amplitude the fractional
change in the electron’'s mass é/m=a- a/2, wherea is
the unitless normalized vector potential associated with th
electromagnetic field, i.e., the vector potential multiplied by
g/mc?. In terms ofa, the electron momentum in the oscil-

Perit= I:)ppa/(l:)a_" Pp)- (27

dhe quantityRin Eq. (25D is also equal to the ratiB, /P,
which in practical unit§76,77 is given by

lating electromagnetic field iamc. The magnitude of is

often referred to as the laser strength parameter. For mildly

relativistic electron oscillationga|<1 and for a linearly po-
larized laser beanja=8.6x 107 1%\ [ um]I Y4 W/cn?]. Us-
ing the electric field representation in E), we find that

E(r,t) ei(koszot)

a(r,t)y=—iq - 5 e +c.c. (23a
and, neglecting harmonics,
1/ q \? )
a-a= E(m—aoo> |E(r,t)| s (23b)

where we have assumedIn(E)/dt|<wy.

Substituting Eqs(20) and (22) into Eq. (17), with the
nonlinear source terms reinstated, and using (28a, the
equation for the complex amplitude becomes

Vit (92+2k '&—I—ﬁ ko+ 2 +ip i
a2 TNz T0 T kg2 Tlat
By, * i & , 12
——= ———Bg—+ | = B5—|b(r,1)
2 72 67 '8°R§h (
(Upo 2
=—|==| (1+R)|b|?b(r,1), (24
2c
where
lal E(r.t)
b(r,t)=— et (253
47TC|20 w% 5
= — 2
NP2 wﬁonwnz’ (25b

re=02/mc is the classical electron radiusy=2c/wg is
the vacuum wavelength, an@dp,=w,(0) is the on-axis
plasma frequency in terms of the on-axis density,
=n,(0). Note thatb(r,t) is proportional to the electric field

amplitude and is only approximately equal to the magnitude

of the normalized vector potential. The quantys the ratio

of the critical powers for relativistic focusing in a plasma and

nonlinear focusing in a gd¥'6,77, i.e. R=P,/P, where
(269
(26b)

Pp=2c(q/re)’nio(wg/ wpo)?,

P.=\3/ (27N oNy).

1.22x 10n? yn,[ cm?/W]
Nol wminglem ]

R=P,/P,= (28)

IIl. NONLINEAR REDUCED WAVE EQUATION

The nonlinear reduced wave equation becomes, neglect-
ing B and higher order dispersion terms,

V2+(92+2k '(9+B kot 2 +iB I B 7
a2 TN oz T T kg2 et 2 a2
2
r
~Bo=5 + rulb(r,H|?|b(r,t)=0, (29)
Rch
where
2
Wpo
K,z\“_=4—22(1+R), (30)

in which the first term represents relativistic effects and the
second term bound electron effects.

It is convenient at this point to change variables fr@
to (n, & wheren=z, £é=(z—vg4t), andv is the group ve-
locity. In terms of these new variable8dz=d/dn+ dl 9¢

and d/dt=—-vgydld¢. Setting vy=1/8, and ko=
=won(wg)/c, Eq.(29) reduces to
V24 2ko| i~ 1,3 262+ 2
i ——=Bui—+—
LR gy 2779582 kor?
2 |’2
+2 —kK3—-+ k3. |b(r,&7)|?|b(r,£7)=0,
Indé °R§h NL| ( 577)| (r.é&m
(31

where we have neglectedkg/compared tg8,v; andd?/ 9,
compared to Ryd/d7; this approximation is valid for the
case of interest here. Note that the conditige B, defines
the dispersion relatioky= wgn (wg)/c.

A. Linear refractive index

The total refractive index, (w) is given by

n(w)=[nj(w) - Q% w?]*?, (32
where ny(w) is the refractive index associated with the
bound electrons)?= w2, +4c?/r; and Q% w? represents
the square of the refractive index associated with the free
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electrons(plasma and finite spot size effects. Assuming g
02/ w?<1, the total index can be written as vg(@)=vg(wo) +| ——= dw,
—wg
B 1 0? ,
N (w)=ny(w)— Tbo et (33 =vg(wo) —vg(wo) B20w, (39

where Sw=w— wy. Note that forny,,=1, i.e., no bound

whereny=np(wo). With this approximate form for the in- electrons, the GVD parameter is negative and given by

dex the dispersion parametgs and 8, are

1 [0%(0) 4c?
1 n, 1 Q2 /32;——(p—+— : (40)
,31:E<nb(w)+w%+my) e (349 woC| g wgre
wfwo
) 2 IV. ANALYSIS OF WAVE EQUATION
dNy in, 1 Q

Bo= ° Zmﬂvﬁ— P . (34b Equation(31) is the model equation and forms the basis
b0 =g for the subsequent analysis in this paper. It is a partial dif-

N . ferential equation for the complex-valued, slowly varying,
The phase and group velocities on axis=0) are, respec- pormalized electric field amplitudb(&, 7). Equation(31)
tively, vph=wo/ko=c/n (w), andvy=1/81, describes the propagation of a finite-pulse-length laser beam
) in a partially stripped plasma channel. To analyze this equa-
Dope= c I i Q_ (359 tion it is useful to first separate the radial variation from the
ph 2 w? ' axial propagation characteristics. This can be conveniently
accomplished by employing the source dependent expansion
method.

(A)=(A)o

(35b
Source-dependent expansion solution

The following analysis is based on the source-dependent
expansion(SDE) method developed in Ref96]. Assuming
B. Group velocity dispersion (GVD) axisymmetry, in the SDE method the representation for the

. L amplitude of the Gaussian beam is
The GVD parametep, has units of seécm and is given

by b(r,& 7)=a(£, n)e Ene [1-iaEnIiiEn (47
l[gzza_ﬁl = i( = % ﬂ_ (36) wherea, i, «, andr g are real functions of and ». Herea is
dwg  dwg 9 vg dwg inversely proportional to the wavefront radius of curvature

andr is the spot size. In the SDE method the wave equation
The GVD parameter can also be written as the sum of conis written in the form

tributions from bound electrons, free, i.e., plasma, electrons,

and finite spot size effects, (VE+2ikodlan)b(r,&,7)=S(r,&,7), (42)
B2= Bav+ Bap+ By (37) where V2=r"1g(raldr)/or,r is the radial coordinate,
S(r, & 1) =Sy(r,& ) +S,(r,& ), and
where 2
1( on,  d°ny Sy(r,&,m)= kSR—z— r—z—Kﬁnle(f,&n)lz)b(r,é,n),
Ba=g|2 t0 7| (383 oo
c Jw Jw _ (4339

wfa)o

_ 242 2 2
is due to bound electrons and can be either less than or S/(r’g'n)_(k(’ﬂzvga 19§°=25"19mdg)b(r, &, 7]).(43b)
greater than zero,

) The source terngy contains the contributions from channel
1 wp(0) guiding, finite spot size and nonlinearities while the source
Bop=————7—, (38b ' S : )
2p NpoC gy term S, contains finite pulse length effects including group
velocity dispersion. In the SDE method the equations gov-
is due to plasma electrons and is always negative, and  erninga, ¢, «, andrg are given by

1 4c? dln(ary)
- 38¢ ——=(F), (449
B2 NpoC w§r§ (380 an
2
is due to the finite spot of the optical beam and is also always a_¢ + (Ite”) adrs 1da =—(F)g, (44b

Rl el it
negative. The group velocity near the frequengyis dn  Kofs  Tsdn 297
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ars 2o

n Kate —1s(G)y, (440
da 2(1+a?)
—— 7 =2(G)r—2a(G),, (449

wheree(&,n7)=a(&,n)exdiv(& n)] and the subscriptR, |
denote real and imaginary parts, respectively, and

XS(X’g’ 77)9_(1+ia))(/2,
(459

P& =5 e (@ n)f

1 * .
G(gv 7]) = m jo dXS(X,g, n)(l—X)e_(l‘Ha)X/Z,

(45b)
with X=2r2/r§. Combining Eqgs(443a, (44b), and(44¢) we
find that

W _ 2 F+G 46
an kgl ( R- (46)
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e =ri(emkopnd] 2| ~2ri(em 09
(499

andq(&,7)=—[1—ia(&n)r2(&n).

V. LASER ENVELOPE EQUATION
IN PLASMA CHANNEL

Combining Egs.(44¢ and (44d) we obtain an equation
for the laser spot size
( 2a
Ors

This is a differential equation for the spot sizg involving
dldn anddl 9¢ derivatives and other laser beam parameters.
It includes the effects of a plasma channel, nonlinearities,
and dispersion. Equatiob0) can be reduced to an envelope
equation for the spot size alone in various limits. These will
be discussed in a forthcoming paper. Here, we shall confine
the presentation to a simple but important limit.

Prs 4 4 s
a7 K ks O

s a B
T (G)|+fs%(G)|—0-
(50)

To proceed with the analysis we substitute the source In the absence of finite pulse length effects, i.e., neglect-

function S(r,¢,7)=Sy(r,&,7) +S,(r,€ 1), given by Egs.

(43) into Eq.(45) and evaluate the integrals. The functidhs

andG are found to be

1 [kors(€m) 4 a(£,m)
R

1 1
A(é,n)+ EB(«‘; )+ 50(5,77)), (479

1

Kara(é, m) 2(&,
G(¢ 77)__2k 0 Ui a“(&,n)

+
2RZ, Mg

1
+§B(§,77)+C(§,77))- (47b)

In obtaining Eqs.(47) the source functiorS,(r,&,7) was
expressed in the following form, displaying thelependen-
cies explicitly,

where

3% In(e) (zﬂn(s))Z)

9E° * P
(r?zln(s) dln(e) dIn(e)

-2 IngE o 0F

A(¢,n)= koﬁzvé(

) (493

9q a9 dln(e)
B(£,7)=r2(6, mkoBaw (ﬁéﬁz i )

(&Zq dq dln(e) aq aln(e)
noE " 9E an om0

2r2(&,m)

) , (49b)

ing S,, we find that

1 (K3ri(&m) 4 a’(¢,m)
FE&m =25, Oszhn_r_z_"NL 277 !
(513
rs(f ) a2 L] )
G(é,n)=—2—k0( °2th7’ KA (f”). (51b

Substituting Eq{(51b) into Eq. (50) we obtain an envelope
equation, in the long pulse limj21]

Prg 4 re\4
Fr 1-Py(&) - (C) =0,

(52)
wherePo=P,/P; is the normalized poweR, is the laser
power, P is the critical laser power for nonlinear focusing,
ie.,

Po(é)=rK{La®(&,mri(& )8 (53
andr. is defined as
R 1/2
re=212 - (54)
Ko

In the absence of a plasma chann@l{— =) Eq. (52) pre-
dicts catastrophic focusing fd?>P,;;. This is an artifact
of the third order nonlinearity in the wave equation, E24).
Mode conversion, higher order nonlinearities and ionization
effects will prevent the beam from focusing down indefi-
nitely.

The Rayleigh length associated with the spot sizés

ZRozkorglzan(wo)’ﬁrgl)\o. (55)
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A. Plasma channel to illustrate the effects of finite-perturbation-length terms.
If the optical channel is formed by the plasma electrons! € modulation instability is then examined using the SDE

and not the bound atomic electrons the depth of the plasm@malism, which accounts for the Gaussian profile of the

density necessary to optically guide a beam with matche§€2m- For an infinitely wide beam, we show how the SDE
spot sizer is [97] reduces to the one-dimensional limit.

Anz(ﬂ-rerg)*l, (56) A. One-dimensional modulation instability
where we have assumed a plasma density variation of the The longitudinal modulation instability for a long laser
form pulse can be analyzed by taking the (@ane wave limit of
Eq. (3D,
No(r)=ngo+Anr?/r2, (57)
P PO ¢ a1 P 92
andr.=e?mc? is the classical electron radius. In the long 2ko L 532095_52 +20,, Py
pulse limit K 7
(9(a(§a77)rs(§177)):0 (589 + k3 |b(r,&,7)|?|b(r,&7)=0. (62
an '
Y 2 3. The equilibrium for a long beam, i.ed/9¢{=0, is
—=——|1-= +—.
I (L CI N )
. . - bo(7)=ag eXF{ ZiPo_), (63
From Eq.(589 we find that in the absence of finite length Zro
effects the laser power profile does not change with propa-
gation distance,. wherea, is independent of and
4kg .
B. Matched pulse K,%“_|b0|2=z— Po, (64)
RO

For a matched pulse in a channel each of the quantties
rs, and a are independent of the propagation distantce
However, the phase¢ can be a function of. For a matched
beam Eqgs(44) yield

[cf. Eq. (53)]. The perturbed equilibrium is given by

i b(¢,7) =Dy n>+a1<§,n>exp(2iﬁ>oz—" NG
reo(£)=rc(1—Po(£)™, (593 RO
PN - (32)Py(&) K where|a,|<|b,|. Substituting Eq(65) into Eq.(62) gives

R 931 Bp oA L 2 o 04
(590 dn 2 99E  KoZro ° 9
~o. (599 172 2. -~
%o ke 7E07 + 7 Po(a;+af)=0.  (66)

C. Perturbed envelope equation Since the equilibrium is independent §fthe perturbed am-

The envelope equation for a nearly matched pulse iglitude can be written as
found by setting

a,(é,m)=a,(nexpiké)+a_(n)exp —iké). (67)

rS(EI”):rSO(§)+r1(§!7])1 (60)
where|r,/rg|<1, andrg is given by Eq.(593. Substitut- Substituting Eq(67) into Eq. (66) yields
ing Eq. (60) into the envelope equation in E(p2) gives K2\ 52 kK o /2
{( ——2)—2ii(—l50+,82v2k2)——+—zv4k4
ﬁzrl 4 ko (977 ZRO 9 kO (97’ 4 9
—+ —r1,=0, 61
an®  Zi ' e z

a.(7)=0. (68)

. 4 |
Tt PoBov 5k~ 77 Pg?
where the period of the envelope oscillation for a nearly RO RO 0

matched pulse isrZgo. Taking a. to vary with » as exp(iK 7), the following dis-

persion relation is obtained:
VI. ANALYSIS OF MODULATION INSTABILITY
In this section, the modulation instability of an initially (1-k*)KR2+8(Po+ B,k?)kK
uniform laser beam in a plasma channel is considered. First, T U SO
a simple one-dimension&lD) model is employed in order —16(B5k"+PoB,— Po/4)k*=0, (69
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where the unitless quantities ake=k/ky, K=ZgoK, and 2
B2=(1/8)vik5ZroB2. Substituting the expression fg8,,
i.e., Eq.(37), into the definition of3, gives

.ol 1/ wX0)r? < ’
Ba=g KoZroB2v— 7| 1+ 42— | (70 =~ unstable
0.5 stable

where the last term in the expression oy is due to plasma
electrons and finite spot size effects ang=c/ny, has been 02 04 06 08 1 12 14
assumed. i
The dispersion relation in Eq69) can be readily solved
to show that the modulation instability is excited provided FIG. 1. StabilityAbouAndaries of the one-dimensional model in the
,}__;2 is sufficiently negative, i.e., parameter space&(P,/B3,) calculated with(solid curve and with-
out (dashed curvethe mixed derivative term in Eq62).

o

B2+3P/4<0, (77) o . .
B. Modulation instability of a Gaussian beam
with the range of unstable wave numbers given by Equationg4439—(44d) together with Eqs(47a), (47b) de-
scribe a laser pulse propagating in a plasma channel. The
. Po(3Py/4+ By) propagation model contains relativistic and finite-
Ke<s— ———. (72 perturbation-length effects, GVD, as well as atomic electron
(Pol2+ B,)? nonlinearities. We now analyze the modulational instability
associated with the laser beam amplitude and spot size. The
The maximum growth rate occurs at laser beam equilibrium is assumed to be uniforaidg
1 =0) with arbitrary power Py<1). Although the equilib-
. ( 2(Po/2+ B5)? ) rium is independent of the perturbed quantities are func-
=\ —F——1 , (73 tions of both¢ and » (and are assumed to be nonlocal, i.e.,
Pol3Po/4+ B, extend over allé and 7). The equilibrium(matched beain
solution to Eqs(44) is given by Eq.(59).
and has the value To analyze the stability of the laser pulse, the pulse am-
plitude, a(&, ), the phasey(¢, 7), the spot sizery (¢, 7),
T = (K mas= 2Po| 3P o/4+ Ba|[ (Pol2+ B5)? and the curvature parametei(&, 7), are perturbed about the
uniform equilibrium values given by Eq959), that is,
_|50|3|50/4+B2|]_1/2_ (74) a(fiﬂ):ao+a1(§'77), ¢(§,ﬂ):1ﬁo(ﬂ)+¢1(§:ﬂ)u rs(fﬂ?)

=rstri(§n) and a(¢ 7)=aot+ai(€,7). The equilib-
rium quantities have subscripts 0 and are independerdt of
and the small, perturbed quantities have subscripts 1. Simi-
- ) o o larly, the functionsF and G are perturbedfF(&,7)=F,
—(4/3)B,. If the mixed derivative term representing finite- +F4(¢,7), andG(&, 7)=Gy+ G4(£, 7). The equations de-

perturbation-length effects, i.e9?/9&d» in Eq. (62) is ne- scribina the perturbed laser beam quantiti a,. and
glected the dispersion relation in E@9) reduces td29] " frogr]n qu_(44) are g gRas, A,

Equation(71) defines a cutoff power for the one-dimensional
modulation instability, given by Rcuo)1p/Perit=

K2=16( Bok*+ Po,K?). 75 19r; 1 9a
6(8; 0B2K) (79 SR (773
. o 'so 97 8g d7
A modulation instability exists if3,<0 andk®<P,/|B,|,

with spatial growth rate, i.e[[=K,, o 2 19
1 a1

A A A A - ——— it -—=—(Fr, (770
T =4|B,K|(Po/| o k)12 (76) 9n ks = 2 9m
The growth rate is symmetric with respect koand has a ar, 2
maximum value of I',,,=2P, which occurs atk= T Kore LT —TIs0(Ga)y, (7179
~ ~ S|
+[Po/(2]Ba]) 1M
The parameter space stability boundary described by Eq.
(72) is shown as the solid curve in Fig. 1. The appearance of daq
a cutoff power defined by E471), above which the pulse is Ty + mff 2(Gy)r- (779
S

stable, is due to the inclusion of the mixed derivative term in
Eq. (62), i.e., a finite-perturbation-length effect. Without this
term, the stability boundary is given by the dashed curve ||’T|'he forms forFO, Gy, Fq, andGl are given in the Appen-
Fig. 1 which is described bi?<Pg/|3,|. dix.
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C. Dispersion relation 2. 1D limit (re—)

The full dispersion relation for the modulation instability =~ The dispersion relation in the one-dimensional limit is
is obtained by taking the perturbed quantities to vary likeobtained by letting the spot size of the laser beam approach
exp(K n+iké) in the full set of perturbed equations, Egs. infinity (r.—) in Eqgs. (78). In this limit two dispersion
(77). An intermediate step in the derivation of the dispersionrelations are obtained. It is straightforward to show that for
relation is the coupled equations for the Fourier transformshe first one, 2-(1—P,)Y?E(k,K)=0, the single root is

of ry(&,») anda,(¢,7), these are stable. The other dispersion relation is
ok k)_4(1—ﬁ>0/4)E Pk _4(1—ﬁ>0/2) Tk, K)/re (1-Po)Y?D(k,K)+2PyE(k,K)=0. (82
1 ~ / ! A ey / ~
(1=Pg)* (1-Pg) | (1=Pg)¥* In the low power limit, i.e., to ordeP3, this simplifies to
__Po [2+(1— Py Y2k R)]ﬁl(k,K) (783 (1—k?)K2+8(Po/2+ 7P3/32+ B,k?)kK — 16( B5k?
(1=Po) 0 + PoBal2— PY16+ P23,/4)k2=0, (83
o a 2P, Ak K) which becomes identical to Eq69) to order P, with the
D(k,K)+ ————E(k,K) | ——— T . 0
(1—Pg)¥? ag substitutionPy/2— Py .
Figures 2 and 3 compare the spatial growth rates, i.e.,
o Po o\ Tk R/, ImK, obtained from the 1D limit(;— ) of the SDE dis-
=—| D(k,K)+ ———E(k,K) | ——, persion relatiof Eq. (82)] and from the formalism including
(17P )1/2 (17P )1/4

where

D(k,K)=(1—k?)K2+2(4B,K>+ jug) kK — 16B2k* + 2k?,

(793
E(k,K)=(K—4B,k)k, (79b) 4
g
and fip=Zromo=1—(1—3Po/2)/(1—Py)*? k=k/ky, K g 2
=ZpoK, Zro=Kor5/2, and Bo=(L/8)vk3ZroB2. In Egs. T | , =
(78) T, anda, are the Fourier amplitudes of anda,. The 0 "\Jm‘;ﬁ%m 2 %ﬁﬁ,:ﬁ&ﬁ
full dispersion relation is obtained by combining E¢g8) to B e .
R R LR K AT AT O . 4
gve ey R
[(1=Po)D(k,K) = (4= Pg)(1—Po)E(k,K) —4+2Pq] k

X[(1—Pg) 2D (k,K)+2PE(k,K)]

+Po[2+(1—Po)YE(k,K) [ (1—Pg) YD (k,K) ®)

T,

o A X N

3
X,
o

+PoE(k,K)]=0. (80)

A

o,
2
42

e
Y3

£
2%

¥
73
5

el

The quantity (1 P,)Y/? appears in various terms throughout
the dispersion relation in E¢80). This is related to the fact

thatP,=1 has a physical significance associated with focus- o 4
ing, as indicated in the envelope equation, E52). The 1D

model cannot take into account self-focusing associated with E 2
the equilibrium of the laser beam.

s

&
0
o

1. Low power limit (R=0)

For I50:O the full dispersion relation in Eq480) reduces
to

[D(k,K)—4E(k,K)—4]D(k,K)=0. (81) i A
FIG. 2. Spatial growth rate (1) versus scaled wave number
The dispersion relation in Eq81) has stable roots, i.e., the and powerP, calculated from Eq(82) (a), and Eq.(80) (b) for
imaginary part oK is zero fork real. B=—0.5.
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FIG. 3. Spatial growth rate (1) versus scaled wave number
and powerP, calculated from Eq(82) (a), and Eq.(80) (b) for

Bo=—2.

transverse variationEg. (80)]. Figure 2 displays InK as a

function of scaled wave numbér and powerP, for B,=
—1/2. In the 1D limit[Fig. 2(@)], there exists a cutoff power,

p _ Pcutoff _
cutoff— -
Pcrit

3 . R 1 R
g Bo(1+2B2)— 5 (1+4B,)

X N9+8B,(1+28,),

(84

above which the modulation is stable. The scaled cutoff

power, P, tends towards unity ag,— — and is zero
when 3,=0. The solutions of Eq(80), however, show in-
stability even whenPy> P . As seen in Fig. @), for

Po<P.uoft, the peak growth rate increases and tends toward

largerk as the power increases, while 8> P (in the
full SDE mode) the peak growth rate shifts to smallieras
the power increases. For larger values|@f| such that

Peuoii— 1 Fig. 3 shows that the 1D lim[tEq. (82)] and the
full SDE dispersion relatiofEq. (80)] yield similar growth

rates forP,<1.
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VII. CONCLUSIONS

In this paper the modulational instability associated with
propagation of intense, short laser pulses in a partially
stripped, preformed plasma channel has been analyzed. The
analysis is based on a systematic approach that includes
finite-perturbation-length effects, nonlinearities, group veloc-
ity dispersion(GVD) and transverse effects. To properly in-
clude the radial variation of both the laser field and plasma
channel, the source-dependent expansion method has been
employed. Matched equilibria for a laser beam propagating
in a plasma channel are obtained and analyzed. It is shown
that modulation of a unifornimatched laser beam equilib-
rium in a plasma channel leads to a coupled pair of differen-
tial equations for the perturbed spot size and laser field am-
plitude. A general dispersion relation is derived and solved.
It is shown that in some instances finite-perturbation-length
effects quench the instability above a cutoff power. Surface
plots of the spatial growth rate as a function of laser beam
power and the modulation wave number are presented.
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APPENDIX

The source-dependent expansion approach to the solution
of the wave equation requires the evaluation of the overlap
integralsF and G in Egs. (459 and (45h). For the equilib-

rium,

1 (2ry 4 4P
F°2ko(r§_ A "y
o 1 (2r3 2P, A
U Y "2
while the perturbed integrals are given by
1 [4rg 8P a1(£,m)
Fl(faﬁ)_zko<r§rl R
2
I'so
+A1(§,77)+251(§,77)), (A3)
i 1 [4rg 4Py a1(¢,7m)
Gl(éyﬂ)——%(rgfl(éﬂ)ﬂLré%
r%
+251(§,77)), (A4)
where
92 32 Ay 9\ [ay
_ VR, D, YR N B
Al(gln)_<koﬁ20g{9§2 2{97](96 I&n (?g a0+|¢1)1
(AS5)
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r2 92 92 -‘?_%i)(rl .al)' (A6)

Bi(&,7)= KoBov 25— 2 ——— 2i —4i—=
1(&,7) iz 0B2 PPy an 98\t 1 2

and I’:\)OZ POIPCI’it .
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