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Spinodal decomposition of off-critical quenches with a viscous phase using
dissipative particle dynamics in two and three spatial dimensions

Keir E. Novik*
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

Peter V. Coveney†

Centre for Computational Science, Department of Chemistry, Queen Mary and Westfield College, University of London,
Mile End Road, London E1 4NS, United Kingdom

~Received 16 July 1999!

We investigate the domain growth and phase separation of hydrodynamically correct binary immiscible
fluids of differing viscosity as a function of minority phase concentration in both two and three spatial
dimensions using dissipative particle dynamics. We also examine the behavior of equal-viscosity fluids and
compare our results to similar lattice-gas simulations in two dimensions.

PACS number~s!: 64.75.1g, 02.70.2c, 51.10.1y
ic
bl
ia
r
to

ys
pi

g
on
u

an
N
a
d

ap

ta
a

lem
ac
in
te

o
-
y-
to
g
o
ks

ues,

cs

ent

the
ns.
m-
o

,
har-
en
ain

in
ed
s in
a

ects

pa-
r
l-

ular-
sed
ant

ster
D
of
er
that
d

m
o
c-
I. INTRODUCTION

Over the past few years, the dissipative particle dynam
~DPD! model of complex fluids has received considera
attention. It has matured from its somewhat arbitrary init
formulation into a model with a solid theoretical basis. Fu
thermore, it has been applied with considerable success
large number of computer simulations of complex fluid s
tems such as colloidal suspensions, polymeric fluids, s
odal decomposition of binary immiscible fluids, and am
phiphilic fluids. DPD also looks promising for simulatin
multiphase flows and flow in porous media, and is now c
sidered a useful technique alongside the other complex fl
algorithms: molecular dynamics, lattice-gas automata,
techniques based on the lattice-Boltzmann equation.
single technique can yet be applied to all situations, and e
has different strengths and weaknesses. While molecular
namics is in principle the most accurate microscopic
proach, in practice it is too slow in both its quantum~Car-
Parinello! and classical forms because of its excessive de
Discrete mesoscopic methods developed from lattice-gas
tomata have had some success, but they too have prob
such as lacking Galilean invariance. The traditional appro
of continuum fluid dynamics has met with limited success
modeling behavior on the length and time scales charac
istic of complex fluids.

In this paper we investigate phase separation from b
symmetric~critical! and off-critical quenches in binary im
miscible fluids of generally differing viscosity using the h
drodynamically correct DPD model. Our motivation is
probe and extend knowledge of the behavior of differin
viscosity fluids, of application, for example, to the action
detergents and the extraction of oil from reservoir roc
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Phase separation inequal-viscositybinary immiscible fluid
systems has been simulated using a variety of techniq
including DPD @1–5#, molecular dynamics@6–9#, Monte
Carlo @6,10#, cell dynamical systems without hydrodynami
@11# and with Oseen tensor hydrodynamics@12#, time-
dependent Ginzburg-Landau models with@13–17# and with-
out hydrodynamics@17–19#, lattice-gas automata@20–27#,
and lattice-Boltzmann techniques@28–34#. Spinodal decom-
position of differing-viscosityimmiscible fluids has previ-
ously been simulated in two dimensions by a time-depend
Ginzburg-Landau model without hydrodynamics@35#. We
discuss the effect of the proportion of each phase on
scaling behavior in both two and three spatial dimensio
We also examine the behavior of equal-viscosity fluids, co
paring our results to similar lattice-gas simulations in tw
dimensions@27#.

After describing our fluid model in the following section
we discuss the expected temporal development of the c
acteristic size of the separating domains in Sec. III. We th
describe our method for calculating the characteristic dom
size and its rate of growth in Sec. IV. This is followed
Secs. V and VI by information on the simulations perform
and a discussion of the results, and by some conclusion
Sec. VII. Finally, as an Appendix to this paper, we make
few comments on the high-performance computing asp
of this work.

II. THE FLUID MODEL

In 1992, Hoogerbrugge and Koelman proposed dissi
tive particle dynamics@36# as a novel particulate model fo
the simulation of complex fluid behavior. DPD was deve
oped in an attempt to capture the best aspects of molec
dynamics and lattice-gas automata. It avoids the lattice-ba
problems of lattice-gas automata, yet maintains an eleg
simplicity and larger scale that keeps the model much fa
than molecular dynamics. This simplicity also makes DP
highly extensible, such as for including the interactions
complex molecules or modeling flow in an arbitrary numb
of spatial dimensions. The key features of the model are
the fluid is grouped into packets, termed ‘‘particles,’’ an
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436 PRE 61KEIR E. NOVIK AND PETER V. COVENEY
that mass and momentum are conserved but energy is
Particles are normally interpreted as representing a coa
graining of the fluid, so that each particle contains ma
molecules@36–39#. Since the intrinsic time scale of DPD
represents the correlated motion of mesoscopic packet
atoms or molecules, it is typically orders of magnitude larg
than the time scale of molecular dynamics@40#. Particle po-
sitions and momenta are real variables, and are not restr
to a grid.

Español and Warren’s analysis@37# showed that the origi-
nal DPD model does not satisfy detailed balance, so the e
librium states~if they exist! cannot be simply characterized
Detailed balance is the condition equating the rates of
ward and backward transition probabilities in a dynami
system, and is a sufficient~but not necessary! condition guar-
anteeing that the system has a~Gibbsian! equilibrium state
@41,42#. Espan˜ol and Warren formulated a Fokker-Planc
equation and an equivalent set of stochastic differential eq
tions which lead to an analogous continuous-time model

dpi5(
j Þ i

Fi j dt5(
j Þ i

@Fi j
C dt1Fi j

D dt1Fi j
R dWi j #,

~1!

dxi5
pi

mi
dt.

In these equations,pi , xi , and mi denote the momentum
position, and mass of particlei. Fi j

C is a conservative force
acting between particlesi and j, while Fi j

D and Fi j
R are the

dissipative and random forces.dWi j 5dWji are independen
increments of a Wiener process. By Itoˆ calculus

dWi j dWkl5~d ikd j l 1d i l d jk!dt, ~2!

so dWi j is an infinitesimal of order12 anddWi j can be writ-
ten u i j Adt, whereu i j 5u j i is a random variable with zero
mean and unit variance@41#. Detailed balance is satisfied b
this continuous-time version of DPD with an appropria
choice for the form of the forces@43#, and so equilibrium
states are guaranteed to exist and be Gibbsian. To ensur
the associated fluctuation-dissipation theorem holds, Esp˜ol
and Warren suggested the forces assume the following fo
@37#:

Fi j
C5av i j êi j , ~3!

Fi j
D52gv i j

2 ~ êi j •vi j !êi j , ~4!

and

Fi j
R5sv i j êi j , ~5!

wherevi j 5(pi /mi)2(pj /mj ) is the difference in velocities
of particlesj and i, êi j is the unit vector pointing from par
ticle j to particlei, andv i j is a weighting function dependin
only on the distance separating particlesi and j. The con-
stantsa, g, ands are chosen to reflect the relative impo
tance of the conservative, dissipative~viscous!, and random
components in the fluid of interest. As a consequence
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detailed balance and the fluctuation-dissipation theoremg
ands are related to Boltzmann’s constantkB and the equi-
librium temperatureT by

s2

g
52kBT. ~6!

In order to remain as close as possible to the original D
model, Espan˜ol and Warren chose the friction weight func
tion to be

v i j 512
r i j

r c
~7!

within the constant cutoff lengthr c.0 and zero otherwise
where r i j is the distance between particlesi and j. Adding
Eqs.~3!–~5! together, the total force is

Fi j 5Fa2gv i j ~ êi j •vi j !1
su i j

Adt
Gv i j êi j . ~8!

Immiscible fluid mixtures exist because individual mo
ecules attract similar and repel dissimilar molecules. T
most common example of such behavior arises in mixtu
of oil and water below a critical temperature. The nonpol
hydrophobic molecules of oil attract one another throu
short-range van der Waals forces, while the polar water m
ecules have complex, long-range hydrophilic attractio
which are dominated by electrostatic interactions, includ
hydrogen bonds. At the atomistic level employed in molec
lar dynamics, such interactions demand a detailed treatm
However, to obtain mesoscopic and macroscopic level
scriptions using DPD, the microscopic model can be dra
cally simplified.

In order to model immiscible fluids, the simplest modi
cation to the one-component dissipative particle dynam
algorithm is to introduce a new variable, called the ‘‘color
by analogy with Rothman-Keller@20,36#. For example, we
could choose red to represent oil and blue to represent w
When two particles of different color interact, we increa
the conservative force, thereby increasing the repulsion. T
is,

a°a i j 5H a0 if particles i and j are the same color

a1 if particles i and j are different colors,
~9!

wherea0 anda1 are constants with 0<a0,a1. As a con-
sequence of mass and momentum conservation, the Na
Stokes equation is obeyed within a single-phase DPD fl
and within regions of homogeneity of each of the two bina
immiscible fluid phases@36,37,43,44#. Likewise, detailed
balance is also preserved, at least in the limit of continu
time @37,43,44#.

The immiscible fluids described above are identical
each other. However, it is often the case that the two fluid
a mixture will differ physically. For example, oil and wate
typically have different viscosities. To model binary fluid
with differing viscosity, we again adopt the simplest a
proach: labeling one of the two phases~colors! as more vis-
cous. When two particles of the same viscous color inter
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the dissipative~viscous! force is increased; in order to keep the temperature constant, we must correspondingly decre
random force according to Eq.~6!, i.e.,

g°g i j 5H g0 if either particle i or j is not the viscous color

g1 if both particles i and j are the viscous color,
~10!

s°s i j 5H s0 if either particle i or j is not the viscous color

s1 if both particles i and j are the viscous color,
~11!
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s0
2

g0
5

s1
2

g1
52kBT. ~12!

Our previous study of finite difference methods applica
to simulations with non-conservative forces@4# indicated that
the finite-difference algorithm suggested by Groot and W
ren @40# is a good choice for DPD. Their method is a vari
tion on the familiar velocity-Verlet algorithm, adding a mo
mentum estimate before the force evaluation:

xi~ t1Dt !5xi~ t !1
Dt

mi
Fpi~ t !1

Dt

2
f i~ t !G ,

pi~ t1Dt !5pi~ t !1
Dt

2
f i~ t !,

~13!

f i~ t1Dt !5(
j Þ i

Fi j ~ t1Dt !,

pi~ t1Dt !5pi~ t !1
Dt

2
@ f i~ t !1f i~ t1Dt !#,

whereDt is the time step size andf i(t) is the force acting on
particle i at time t. The DPD units of length, mass, and tim
are specific to the particular set of model parameters, and
exact relationship between these parameters and a real
in a particular situation can be determined by considering
dimensionless groups relevant to the motion of that syst
such as the Mach, Reynolds, and Weber numbers.

Many further modifications to the model have been s
gested and implemented by others. Some of the most in
esting include energy conservation, colloidal particles, a
polymers. In very recent work, it has been shown that i
possible to derive a modified version of DPD directly fro
the underlying molecular dynamics@45,46#.

III. TEMPORAL BEHAVIOR OF THE CHARACTERISTIC
DOMAIN SIZE

A central quantity in the study of growth kinetics is th
characteristic domain sizeR(t). For binary systems in the
regime of sharp domain walls, this is usually thought to f
low algebraic growth laws of the form

R~ t !;tb. ~14!
e
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For symmetric quenches without hydrodynamic interactio
dynamical scaling theory and experiment@47# indicate that
the scaling exponentb5 1

3 . If flow effects are relevant, typi-
cally

b5H 1
2 for R!Rh ~diffusive!

2
3 for R@Rh ~ inertial hydrodynamic!

~15!

in two dimensions, and

b5H 1
3 for R!Rd ~diffusive!

1 for Rd!R!Rh ~viscous hydrodynamic!

2
3 for R@Rh ~ inertial hydrodynamic!

~16!

in three dimensions, whereRh5h2/(rk) is the hydrody-
namic length andRd5AhD is the diffusive length, ex-
pressed in terms of the absolute~dynamic! viscosityh, den-
sity r, surface tension coefficientk, and diffusion coefficient
D. These scaling laws follow directly from dimension
analysis of the macroscopic fluid dynamics equations~so-
called modelH, or Cahn-Hilliard coupled to Navier-Stoke
hydrodynamics! in the appropriate regimes@47#. When R
!Rd in three dimensions, diffusive effects dominate and
expect the domains to form via the Lifshitz-Slyozov-Wagn
~LSW! evaporation-condensation mechanism@47#. WhenR
@Rh in both two and three dimensions, we expect t
growth mechanism to be surface tension driven by hydro
namic flow, balanced by inertial effects@48#. If Rd!R!Rh
in three dimensions, we expect viscous hydrodynamic effe
to dominate, as predicted by Siggia@49#; in this regime, the
surface tension drives the transport of the fluid along
interface, which is possible only if both phases are conti
ous @47,49#. This third growth regime cannot occur in tw
dimensions, and so we expect to see diffusive growth foR
!Rh @48#. Due to our choice of model parameters and t
small size of our simulations, we do not expect to probe
viscous or inertial hydrodynamic regimes.

Simulations in two spatial dimensions are especially u
ful to emphasize the importance of correct hydrodynam
simulations which do not conserve momentum typically g
b5 1

3 for the diffusive regime (R!Rh) @1–3,24–26#. Simu-
lation methods with correct hydrodynamic interactions ty
cally give the expected result ofb5 1

2 ~see, e.g., Refs
@1–3,6,7,10,16#!. It is worth noting that momentum conse
vation is not thought necessary to model spinodal decom
sition in binary metallic alloys, since phase separation occ
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by the migration of atoms to neighboring vacancies on
crystalline lattice @50#. Simulations based on lattice
Boltzmann techniques also typically displayb5 1

3 . These
observations are supported by a renormalization-group
proach which has shown that thermal fluctuations ca
Brownian motion-driven coalescence and play a crucial r
in causingb to assume the value of12 @47#; although some
lattice-Boltzmann techniques include these fluctuations@29#,
most do not.

There is some confusion in the literature over which sc
ing exponents should be observed for off-critical quench
and whether or not the algebraic scaling law@Eq. ~14!#
should in fact be obeyed for any off-critical binary immi
cible fluid. Several authors have reported the coexistenc
multiple length scales@27,34,51#. It is likewise uncertain as
to what behavior should be observed from binary immisci
fluids of differing viscosity @35#. Certainly, one growth
mechanism we expect for off-critical quenches of both eq
and differing viscosity is the LSW evaporation-condensat
mechanism, for whichb5 1

3 @47#.
It should also be noted that there are still some exp

mental and theoretical challenges in unraveling the beha
of systems in which both the order parameter and the
mentum are locally conserved@47#. Experimentally, for ex-
ample, it is difficult if not impossible to study two
dimensional fluid systems. As far as numerical studies
concerned, it is important to recognize that thre
dimensional simulations are particularly demanding on
the aforementioned techniques, and so definitive results
harder to come by than in two dimensions.

Indeed, Cates’s group in Edinburgh has recently repo
somewhat conflicting results from three-dimensional stud
of binary immiscible fluid separation for equal viscosity fl
ids using dissipative particle dynamics and lattice-Boltzma
methods@5,52#. While the former suggests the persistence
nonuniversal length scales, hypothesized to be due to
intrusion of a ‘‘molecular’’ or discretization length scale, th
is not supported by the latter, from which finite-size effe
were more rigorously excluded. Note, however, that wher
the lattice-Boltzmann scheme was based on a Landau
energy approach, and is essentially no more than a fin
difference solution of the continuum modelH equations, the
macroscopic equations to which the spinodal DPD sche
corresponds have not yet been derived. This makes it unc
whether the two systems being simulated are really one
the same. Both of these studies emphasize the importan
observing dynamical scaling over decades of time bef
drawing conclusions as to the true nature of the scaling
gime. One notable result of their work is the clarification
the relative time scales over which computer simulat
techniques typically operate. For the simulations they d
cuss, molecular-dynamics time scales are on the order of2

in dimensionless units, lattice-gas automata and Lange
dynamics probe time scales on the order of 102 through 104,
DPD typically 103 to 105, and methods based on the lattic
Boltzmann equation 101 through 108.

Grant and Elder have recently argued@53# that b< 1
2 in

any asymptotic scaling regime because the Reynolds num
Re5rRV/h ~where V is a characteristic velocity! cannot
diverge, and in fact must remain less than a critical va
Recr to avoid the onset of turbulence@54# and possible tur-
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bulent remixing of the fluids. The conclusion they draw
that theb5 2

3 scaling regime must be transient@53#. How-
ever, their analysis neglects mention of the relative stren
of the interface, quantified, for example, by the Weber nu
ber NWe5rRV2/k. If NWe is small at the onset of turbu
lence, we would expect turbulent remixing to be delayed,
perhaps even postponed indefinitely allowing Re to diver
In any case, the separation dynamics would likely be affec
by Re>Recr ; for example, the fluid viscosity in a turbulen
region is roughly proportional to Re@54#.

IV. ESTIMATING THE CHARACTERISTIC
DOMAIN SIZE

In order to characterize the phase separation kine
within a binary immiscible fluid, we need a practical tool
measure the characteristic domain size corresponding to
state of the system at a given point in time. The use of
static structure function for this purpose is widespread. Ho
ever, we have noticed bizarre ‘‘early time’’ behavior whe
using the static structure function to characterize simulati
of highly off-critical quenches. Specifically, the character
tic domain size would sometimes change suddenly by
order of magnitude. This abrupt change in behavior did
correspond to anything observable in the time evolution
the positions of the DPD particles. Such anomalous beha
is likely due to the large fluctuations prevalent in the sta
structure function for small simulations of highly mixed b
nary fluids, for which the characteristic domain size is ve
small.

The radial distribution functiong(r ) is a well-established
tool for the analysis of single-phase fluids@55,56#, and indi-
cates the likelihood of finding two particles separated b
distancer. For binary fluids we can also use the same-ph
and differing-phase distribution functions@6#. The same-
phase distribution functiong00(r ) describes the likelihood o
finding two particles of thesamephase separated by a di
tancer, and the differing-phase distribution functiong01(r )
describes the likelihood of finding two particles ofdiffering
phase separated by a distancer. From the peaks of the
differing-phase radial distribution function, we can estima
the characteristic separation of particles of differing pha
~i.e., the characteristic domain size!. Consequently, we de
cided to calculate the distribution between particles of diff
ent phase~color!,

g01~r !5
m n~r ,Dr !

rNf@12f#V~r ,Dr !
, ~17!

wherem5mi ; i is the mass of each particle~assumed all
identical!, n(r ,Dr ) is the number of particle pairs of differ
ing phase with separation betweenr 2Dr /2 andr 1Dr /2, N
is the total number of particles,fP(0,1) is the fraction of
particles of one phase~the more viscous phase if the tw
phases are of different viscosity!, andV(r ,Dr ) is the volume
of the spherical shell of radiusr and thicknessDr ~from r
2Dr /2 to r 1Dr /2). It is apparent from Eq.~17! thatg01(r )
can only be calculated forr<L/2 in a simulation with a
periodic box size ofL; this should not be interpreted as a
undesirable limitation as finite-size effects are normally s
nificant for R.L/2 @5,52#. A value of Dr 5L/2000 gives a
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reasonable compromise between noise and resolution fo
size of simulation we discuss in this paper.

The principal difficulty lies in analyzing the results aut
matically, as we need to calculateg01(r ) at many time steps
within each simulation in order to display the domain grow
over time. We chose to calculate the median of that port
of the smoothedg01(r ) curve extending above a thresho
value 113s, where s is the standard deviation of th
smoothed curve when it has effectively a constant unit va
estimated from the last tenth of the smoothedg01(r ) curve at
t51. We used a fourth-order Savitzky-Golay smoothing
ter @57,58# to smoothg01(r ) over r at each point in time with
a symmetric window size chosen to reduce the noise w
leaving significant features untouched~41 points in two di-
mensions and 101 points in three!. We chose the cutoff
threshold of 113s so as not to bias the median by the size
the periodic simulation box; likewise, we chose the med
in preference to the mean~first moment! because the media
is less biased by outliers, such as those 2.5% of noisy po
which effectively have unit value but extend above t
threshold. Both the median and mean give poor estimate
the characteristic domain size as it approachesL/2, the limit
of calculableg01(r ). When this situation is detected, we u
the global maximum ofg01(r ) to estimate the domain siz
instead; this is a continuous transition for symmetrical pea

Once we have calculated the characteristic domain
for a series ofg01(r ) curves taken at different times from
single simulation, we begin a search for linear sections in
plot of log10R versus log10 t. This has also been automate
using analysis of variance to decide whether a given sec
of the plot is linear or cubic. We used the analytic expr
sions for the least-squares fits with moments taken abou
means to minimize the effect of roundoff error. We ke
only the longest linear sections, subject to there not be
any significant gaps in the coverage of the log-log plot.
ensemble average of a number of simulations yields a plo
the scaling exponentb versus log10 t, in which long horizon-
tal ~zero gradient! sections represent algebraic growth. Th
procedure allows more accurate determination of the sca
exponent than a visual comparison of log10R versus log10 t
to a straight line of a particular slope, and provides a sta
tically valid determination of whether or not the growth
truly algebraic over a particular time period. Finite-size
fects for R'L/2 normally result in nonalgebraic growth o
unusually low scaling exponents; either case is easily
tected by our method. A further advantage is the automa
we have described, permitting large ensemble averages
minimal effort.

We should note that estimating the characteristic dom
size using the median can occasionally lead to disconti
ties. If these discontinuities are large enough, they will ca
a break between linear sections. Small discontinuities ma
spanned by a single line, which would affect the slope (b)
and be detrimental to the results. However, large disconti
ties will not be spanned, and so will not affect the slope.

The results we obtained using these techniques are
siderably better than those obtained with the static struc
function, especially for highly mixed fluids where the pa
distribution function is not drowned by fluctuations to th
extent that the static structure function is. Furthermore,
he
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pair distribution function is more intuitive to analyze than t
static structure function, which aids our interpretation of t
results.

V. SIMULATION RESULTS

For the simulations of fluids with differing viscosity, w
chose one phase to be an order of magnitude more vis
than the other, i.e.,g1510g0. Before simulating this new
complex fluid, it is advisable to verify that increasing th
parameterg, while keeping the temperature constant, do
indeed increase the viscosity. For the lower-viscosity flu
we chose the model parameters shown in Table I. The a
lute ~dynamic! viscosity of a homogeneous DPD fluid can b
estimated theoretically from the continuous-time viscos
ignoring the effect of the conservative forces~i.e., a50)
@59,60#; the continuous-time viscosity of this lower-viscosi
fluid is h52.8.

In order to verify this estimate, we performed a series
simulations of steady shear using Lees-Edwards perio
boundary conditions. We performed a total of 63 simulatio
with a time step ofDt50.1 ~in our DPD time units!, each
from a different random initial configuration and each a
lowed to settle to steady-state shear before measuremen
gan. We studied systems of both 1600 and 6400 particles
simulations at each of nine different shear rates for
former and three simulations at each of three distinct sh
rates for the latter. As the results from the larger simulatio
gave a mean viscosity nearly identical to that of the sma
ones, we can conclude that finite-size effects do not bias
viscosity of the smaller, faster simulations. We calculated
velocity profile for each set of parameters, and found it to
statistically indistinguishable from linear in every case.

Analyzing these simulations led to a conclusion ofh
51.9460.01. Others have also found discrepancies betw
theory and simulation, particularly regarding the kinema
contribution to viscosity@59#, so the difference between th
simulated viscosity and the continuous-time viscosity is
entirely surprising. Since molecular-dynamics simulatio
containing only conservative forces give a finite viscosi
we would be surprised if the theoretical estimate did n
differ from our calculations.

In order to measure the viscosity of the more visco
fluid, we set up a series of 1600 particle simulations o
homogeneous DPD fluid as described above, using a tota
30 simulations. We varied the shear rate in the range
gave the best results in the previous simulations. The mo
parameters differed in thatg was a factor of 10 larger while

TABLE I. Model parameters for the viscosity measurements
the lower-viscosity fluid.

Model
parameter Value

a 7.063
g 5.650
s 1.290
mi 1
r c 1.3
r 4
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s was a factor ofA10 larger to keep the temperature const
@see Eq.~12!#; these parameters are shown in Table II. W
decreased the time step toDt50.01 due to the increase
magnitude of the dissipative and stochastic forces. Analyz
these results led to the conclusion thath517.260.3, which
confirms the increase in viscosity. This increase is close
factor of 10, so that for similar model parameters it is re
sonable to conclude thatg is approximately proportional to
viscosity.

It is possible to measure the surface tension of a bin
immiscible fluid by integrating the pressure tensor acros
flat interface, or by verifying Laplace’s law for a series
equilibrium bubbles of varying radii@55#. Laplace’s law was
verified for a DPD binary immiscible fluid in our previou
simulations @1–3#, and so surface tension measureme
were omitted from the present study. These calculati
would, however, allow identification of the unit of time fo
comparison with other simulation techniques~see, e.g., Refs
@5,52#!. Theoretical estimates for surface tension are a
available, but are of similar accuracy to the viscosity e
mate above.

For the simulation of fluids of differing viscosity, we mu
also choose the relatively small time step size ofDt50.01 in
order to ensure the stability of the algorithm as a result of
increased magnitude of the dissipative forces. This has
consequence of making these simulations computation
much more expensive than equal-viscosity simulations
this context, it is worth commenting on the virtues of usi
DPD to perform simulations of differing-viscosity fluid
compared with other models. Sappelt and Ja¨ckle use an ap-
proach based on the Cahn-Hilliard equation~so-called model

TABLE III. Model parameters used for the differing-viscosi
immiscible fluid simulations.

Model
parameter Value

a0 7.063
a1 7.487
g0 5.650
g1 56.50
s0 1.290
s1 4.079
mi 1
r c 1.3
r 4

TABLE II. Model parameters for the viscosity measurements
the higher-viscosity fluid.

Model
parameter Value

a 7.063
g 56.50
s 4.079
mi 1
r c 1.3
r 4
t

g

a
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B without noise! with a concentration-dependent mobilit
@35#, so they do not include hydrodynamics, unlike our a
proach with DPD. The other mesoscale techniques wh
could be used to model these fluids include lattice-gas
tomata and methods based on the lattice-Boltzmann e
tion. As with DPD, there is a high computational price to t
lattice-gas approach, which requires adjustment to the c
sional outcomes of the look-up tables. Lattice-Boltzma

TABLE IV. Scaling exponents for two-dimensional differing
viscosity fluids as a function of viscous phase fraction, divided i
‘‘early’’ and ‘‘late time.’’

f Approximate range of log10 t b

0.2 0.1760.09 to 1.2860.09 0.09260.014
0.3 0.0960.04 to 1.0760.03 0.08360.008
0.4 0.1360.05 to 1.1360.04 0.06860.006
0.5 0.1360.05 to 1.0560.06 0.05860.009
0.6 0.1560.05 to 1.0160.09 0.04260.010
0.7 0.2460.05 to 1.2560.07 0.05860.010
0.8 0.1660.13 to 1.2560.11 0.03160.014
0.9 0.0260.05 to 1.1160.12 20.2460.07

0.1 0.2660.19 to 2.5760.11 0.29160.016
0.2 0.5360.13 to 2.6360.08 0.33560.008
0.3 0.7260.05 to 2.5160.07 0.33360.012
0.4 0.7260.06 to 2.4560.08 0.34160.016
0.5 0.8360.09 to 2.4760.06 0.33660.016
0.6 0.9260.11 to 2.5260.07 0.33660.012
0.7 0.9560.04 to 2.6560.06 0.31660.010
0.8 1.0360.10 to 2.6660.07 0.29960.013
0.9 0.5560.08 to 2.5660.13 0.2060.02

TABLE V. Scaling exponents for three-dimensional differin
viscosity fluids as a function of viscous phase fraction, divided i
‘‘early’’ and ‘‘late time.’’

f Approximate range of log10 t b

0.1 0.0260.05 to 1.7460.05 0.02360.002
0.2 20.01260.015 to 1.1260.04 0.021960.0014
0.3 0 to 0.9260.03 0.017160.0017
0.4 0.0260.04 to 0.8860.05 0.02560.005
0.5 0.0060.02 to 0.8760.04 0.02860.007
0.6 20.00860.016 to 1.0060.02 0.027360.0012
0.7 0.0660.05 to 1.0360.04 0.02260.003
0.8 20.00460.012 to 1.3160.04 0.022860.0013
0.9 0.0660.08 to 1.9560.09 0.02160.003

0.1 1.4760.07 to 2.6260.07 0.5360.05
0.2 0.7860.04 to 2.6760.05 0.37760.008
0.3 0.7960.13 to 2.6760.08 0.37660.010
0.4 0.7160.16 to 2.6860.06 0.36060.007
0.5 0.6560.05 to 2.6860.05 0.35860.007
0.6 0.70360.019 to 2.6460.08 0.36460.007
0.7 0.8560.06 to 2.6260.10 0.36360.012
0.8 1.0860.04 to 2.5160.06 0.40660.017
0.9 1.7660.08 to 2.7060.03 0.5260.02

f
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~more correctly, lattice-BGK! models can be used, based, f
example, on the Swift-Osborn-Yeomans free-energy fu
tional approach@61#, but there is a similar computationa
price, although with the additional complication of poor
understood numerical instabilities. However, DPD offers
simplest algorithmic implementation which is thermod
namically consistent.

Our differing-viscosity simulations used the model p
rameters shown in Table III. Each simulation had 6400 p
ticles, and ran for 50 000 time steps. We chose to use o
6400 particles in our simulations so that individual simu
tions would be quick enough to be run multiple times, allo
ing us to consider the effect of changing the phase frac
and viscosity, and to increase the confidence in our res
and calculate accurate error estimates with ensemble ave
ing. Simulations with more particles would have given bet
resolution of small scale features~relative to the system size!
and postponed the finite-size effects, at the price of increa
computational demands. Our resources would only have
lowed a few simulations of the size and length used by J
et al. @5# ~1 000 000 particles!, making studies of the sort w
describe in this paper impossible.

We calculated the pair distribution function at 64 logarit
mically spaced points in time during the course of ea

FIG. 1. Time evolution of five sample simulations of two
dimensional differing-viscosity fluids, each simulation having a d
ferent viscous phase fraction~varying from f50.1 through f
50.5).
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simulation, starting from timet51 and finishing att5500
~in our DPD time units!. In both two and three dimensions
we performed ten simulations at each of nine different fr
tions of the viscous phase, ranging fromf50.1 ~10% vis-
cous phase! to f50.9 ~90% viscous phase!. We show the
time evolution of a single simulation at each value of t
viscous fraction in Figs. 1–4 for both two and three dime
sions. We represent the positions of the DPD particles in
dimensions by a gray scale map, in which the particle po
tions are weighted by Eq.~7! and assigned an intensity o
gray based upon the proportion of each phase in this lo
ized average. Figures 3 and 4 display the three-dimensi
surface of the interface between the two immiscible phas
as defined by there being equal proportions of each fluid
the localized average. In these four figures the gradual de
opment of domains can be seen. We examined the resul
the domain size analysis for each simulation in plots
log10R versus log10 t, and further examined each ensemb
average in plots ofb versus log10 t; the latter yielded the
mean values ofb and corresponding 68% confidence inte
vals for significant sections of algebraic growth. We sho
these results for two and three dimensions in Tables IV
V and Figs. 5 and 6. The range of log10 t we give in the
tables should be taken as a rough guide, since there is o

FIG. 2. Time evolution of five sample simulations of two
dimensional differing-viscosity fluids, each simulation having a d
ferent viscous phase fraction~varying from f50.5 through f
50.9).
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a high degree of correlation between the start and end ti
of a particular linear section and its growth exponent with
the broad category of late time. We should emphasize
we are using the term ‘‘late time’’ as a relative category
this paper, to distinguish these results from those obtaine
very early times. Due to the model parameters and small
of these simulations, we do not expect to probe the visc
or inertial hydrodynamic regimes@see Eqs.~14!–~16!, and
compare with Refs.@1–4##.

We also constructed a series of equal-viscosity simu
tions in both two and three dimensions. These hadDt
50.1, 6400 particles, and stopped att51000. The model
parameters were the same as in the differing-viscosity si
lations, with the exception that both phases were identica
the less-viscous phase of the differing-viscosity simulatio
~i.e., g5g0 ands5s0). We calculated the pair distributio
function at 64 different points fromt51 to t51000, with
ten simulations at each of eight different minority phase fr
tions from f50.05 to f50.5 in two dimensions, and te
simulations at each of five different fractions fromf50.1 to
f50.5 in three dimensions. We show the time evolution o
single simulation at each value of the minority fraction
Figs. 7 and 8 for two and three dimensions, respectively
these two figures the gradual development of domains ca

FIG. 3. Time evolution of five sample simulations of thre
dimensional differing-viscosity fluids, each simulation having a d
ferent viscous phase fraction~varying from f50.1 through f
50.5).
es

at

at
ze
s

-

u-
to
s

-

a

n
be

seen, and is greatly slowed for small minority fraction. W
show the scaling exponents for two- and three-dimensio
equal-viscosity fluids in Tables VI and VII and Figs. 9 an
10, where we mirror the scaling exponents aboutf50.5 to
show the full range of minority phase fraction. Comparis
with Figs. 7 and 8 qualitatively confirms the same behav

VI. DISCUSSION

A feature common to all these simulations is the lack
scale invariance at very early times, until approximatelyt
510 to t550 ~in our DPD time units! depending on the
exact composition of the fluid. This is apparent in theg01(r )
curves as multiple peaks of similar magnitude, but could
be seen in the frequency domain shown by the static st
ture function. Figure 11 shows an example of the differin
phase radial distribution function for a three-dimension
equal-viscosity simulation (f50.5) at t513.9; the crosses
represent the actual data and the curve represents
smoothed data. This is one of the simulations we show
Fig. 8. The multiple peaks typically evolve by changing th
height and relative weight, but not their position. This
noticeably different from our ‘‘late time’’ behavior of the
distribution function, where a single peak gradually advan

FIG. 4. Time evolution of five sample simulations of thre
dimensional differing-viscosity fluids, each simulation having a d
ferent viscous phase fraction~varying from f50.5 through f
50.9).
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its position while broadening but retaining its height a
general shape. It is because of this ‘‘early time’’ behav
that it was decided not to use solely the global maximum
g01(r ) to estimate the characteristic domain size.

At these ‘‘early times’’ in all of the simulations, we ob
served algebraic growth with a very small exponent, roug
0.12660.003 in two-dimensional equal-viscosity simul
tions, 0.06260.009 in two-dimensional differing-viscosit
simulations@exceptf50.9 ~90% viscous phase!, for which
b520.2460.07], and 0.024660.0008 for simulations in
three dimensions. This corresponds to the region of bre
down of scale invariance we described at the beginning
this section. These ‘‘early time’’ exponents are unaffected
viscous or minority phase fraction in all of the simulation
except the differing-viscosity simulations in two dimension
Hereb decreases with increasingf ~viscous phase fraction!,
probably due to the domain-growth arresting effect of
creasing viscosity. We observed a remarkable~though short!
regime ofb520.2460.07 forf50.9 ~90% viscous phase!,

FIG. 5. Scaling exponents for two-dimensional differin
viscosity fluids as a function of viscous phase fraction. Circles
dicate ‘‘early time’’ and horizontal marks ‘‘late time’’; error bar
are 68% confidence intervals.

FIG. 6. Scaling exponents for three-dimensional differin
viscosity fluids as a function of viscous phase fraction. Circles
dicate ‘‘early time’’ and horizontal marks ‘‘late time’’; error bar
are 68% confidence intervals.
r
f

y

k-
f

y
,
.

-for which we have no adequate explanation. Others norm
discard similar early time regimes without comme
@9,16,29,30,32,33,35# or as an ‘‘early stage’’ or ‘‘transient’’
regime @5,29#. However, there is growing evidence for th
coexistence of multiple domain sizes and hence a breakd
in universality, at least in certain phase-ordering doma
@27,34,51#.

For ‘‘late time’’ domain growth in the two-dimensiona
differing-viscosity simulations~see Fig. 5!, we observed a
fairly constant value ofb for f50.2 ~20% viscous phase!
through f50.6 ~60% viscous phase!, decreasing both for
f50.1 and very slightly forf50.7 andf50.8, then de-
creasing sharply atf50.9. This asymmetry is consisten
with the variation of the ‘‘early time’’ exponent in that a
increasingly viscous fluid is expected to develop doma
more gradually. At increasingly rarefied fractions (f50.1
and f50.9), domain growth is retarded by the increas
isolation of the droplets. The ‘‘late time’’ growth exponen
throughout is effectively13 , which suggests that the presen
of fluids of differing viscosity interferes with the normalb
5 1

2 growth mechanism in two dimensions. The growth e
ponent of 1

3 is expected from the LSW evaporation
condensation mechanism@47#. This is in some ways analo
gous to the effect obtained by deliberately breaki

-

-
-

FIG. 7. Time evolution of five sample simulations of two
dimensional equal-viscosity fluids, each simulation having a diff
ent minority phase fraction~varying from f50.1 through f
50.5).
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444 PRE 61KEIR E. NOVIK AND PETER V. COVENEY
momentum conservation in symmetric quenches, as
scribed previously@1–3#. Our domains are considerably le
circular at all viscous fractions than those observed by S
pelt and Ja¨ckle ~compare Figs. 1 and 2 with Ref.@35#!. This
is likely due to the lack of hydrodynamic interactions in the
model and to the greater difference in viscosity between t
two phases. As in their simulations, our two-phase struc
for fluids of differing viscosity is not very different from th
structure for fluids of equal viscosity. Moreover, our simu
tions do not reveal any new insights regarding interfac
structure.

In three dimensions, the ‘‘late time’’ domain growth o
differing-viscosity fluids displays nearly the opposite beha
ior, with the scaling exponent increasing as the viscous fr
tion reaches its extremes. This could be explained by
increased fluid mobility in simulations with an extra spat
dimension, as the majority phase is completely connec
and so the domain growth could occur according to theb
5 2

3 mechanism, which is surface tension driven by hydro
namic flow, balanced by inertial effects. This is qualitative
substantiated by inspection of Figs. 3 and 4, where a la
degree of connectivity of the majority phase can be obser
at the extremes of viscous fraction than forf'0.5. How-
ever, a more obvious mechanism for the domain grow

FIG. 8. Time evolution of five sample simulations of thre
dimensional equal-viscosity fluids, each simulation having a diff
ent minority phase fraction~varying from f50.1 through f
50.5).
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would be theb5 1
3 LSW evaporation-condensation mech

nism @47#; it may be a combination of these two mechanis
that leads to our observed13 ,b, 2

3 growth. A slight asym-
metry in the ‘‘late time’’ growth exponent is also eviden
with domain growth proceeding more slowly with increa
ingly viscous fluids of non-extreme viscous fraction.

For equal-viscosity fluids in two dimensions we observ
the expectedb5 1

2 for symmetric quenches (f50.5) @1–3#.
As we reduced the minority phase fraction, we observe
steady decrease in the scaling exponent untilb5 1

3 is reached
at the extremes. This confirms the results of other work
@27# that increasingly off-critical quenches retard the dom
growth, while providing support for the observed slowdow
of growth at the extremes of viscous fraction in differin
viscosity fluids in two dimensions, which we commented
above.

In three dimensions, the domain growth of equal-viscos
fluids appears largely unaffected by varying the minor
phase fraction. Although there may be some increase inb at
the extremes off ~as seen in the differing-viscosity fluid in
three dimensions!, this is difficult to confirm definitely be-
cause of the large variation in the rate of growth observed
the simulations withf50.1, and hence the corresponding
large confidence interval. The scaling exponent throughou
close tob5 1

3 . Whereas Juryet al. @5# were intending to
probe the viscous or inertial hydrodynamic regimes w
their DPD simulations of equal-viscosity fluids in three d
mensions, we aimed only to probe length scales belowRd
and Rh @see Eqs.~14!–~16!#. As such, our results are fully
consistent with theirs. Our exclusion of finite-size effects
more rigorous than theirs, and although not as extreme
that advocated by Kendonet al. @52#, our method gives sta
tistical confidence that these domains are scaling alge
ically. Both Juryet al. @5# and Kendonet al. @52# were able
to cover the time domain more fully in three-dimension
equal-viscosity symmetric quenches only at the cost of p
forming a large number of computationally very intensi
and very expensive simulations.

TABLE VI. Scaling exponents for two-dimensional equa
viscosity fluids as a function of minority phase fraction, divide
into ‘‘early’’ and ‘‘late time.’’

f Approximate range of log10 t b

0.2 0 to 1.1060.04 0.12360.016
0.25 0.0260.04 to 1.0460.06 0.1360.02
0.3 0.0260.08 to 1.0060.05 0.13560.012
0.4 20.01560.010 to 0.8560.03 0.11460.017
0.5 0.0060.03 to 0.9060.08 0.1360.03

0.05 0.1960.19 to 2.8360.14 0.28360.019
0.1 0.1260.16 to 2.8160.18 0.30460.010
0.15 0.2460.20 to 2.7160.18 0.30460.010
0.2 0.5260.24 to 2.7160.15 0.33760.012
0.25 1.060.3 to 2.7660.13 0.3960.04
0.3 0.7160.15 to 2.5360.22 0.36760.016
0.4 1.1160.16 to 2.560.2 0.41560.019
0.5 1.460.3 to 2.5060.09 0.4760.04

-
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VII. CONCLUSIONS

In this paper, we have described simulations of the
main growth and phase separation of hydrodynamically c
rect binary immiscible fluids of differing and equal viscosi
as a function of minority phase concentration in both t
and three spatial dimensions. Due to our choice of mo
parameters and the small size of our simulations, we did
expect to probe the viscous or inertial hydrodynamic
gimes. In three dimensions, we found that the character
domain size scales ast1/3 for simulations of differing and
equal-viscosity fluids developing from symmetric a
slightly off-critical quenches. For highly off-critica
quenches we observe an increase in the scaling expone
two dimensions, we also observet1/3 in simulations of
differing-viscosity fluids developing from symmetric an
slightly off-critical quenches, although we observe a d
crease in the scaling exponent for highly off-critic
quenches. In equal-viscosity fluids in two dimensions,
observet1/2 for symmetric quenches and a roughly line
decrease tot1/3 for highly off-critical quenches; these resul

TABLE VII. Scaling exponents for three-dimensional equa
viscosity fluids as a function of minority phase fraction, divid
into ‘‘early’’ and ‘‘late time.’’

f Approximate range of log10t b

0.1 0 to 1.4160.07 0.02860.013
0.2 0.0160.04 to 0.9060.04 0.02660.007
0.3 0.0060.04 to 0.7360.05 0.02660.007
0.4 0 to 0.6160.05 0.02360.005
0.5 0 to 0.6060.05 0.02960.006

0.1 1.3560.11 to 2.4860.18 0.4360.08
0.2 0.5260.04 to 2.6860.02 0.36260.008
0.3 0.4360.04 to 2.5360.04 0.36660.009
0.4 0.3860.02 to 2.4760.03 0.36960.006
0.5 0.3260.04 to 2.4860.02 0.36460.007

FIG. 9. Scaling exponents for two-dimensional equal-viscos
fluids as a function of minority phase fraction. Circles indica
‘‘early time’’ and horizontal marks ‘‘late time’’; error bars are 68%
confidence intervals.
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are in agreement with similar lattice-gas simulations in t
dimensions@27#.

Obtaining meaningful results for ensemble averages
highly off-critical binary immiscible fluids was only mad
feasible by our automation of the calculation of the char
teristic domain size by the pair correlation function. It al
made possible the identification of a regime of breakdown
scale invariance at very early times, which was not noti
able in our original analysis using the static structure fu
tion. Further simulations aimed at probing the viscous a
inertial hydrodynamic regimes@see Eqs.~14!–~16!# would
be a useful addition to this work, as would simulations aim
at covering longer periods of time; however, both would
quire substantially increased computational work.
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FIG. 10. Scaling exponents for three-dimensional equ
viscosity fluids as a function of minority phase fraction. Circl
indicate ‘‘early time’’ and horizontal marks ‘‘late time’’; error bar
are 68% confidence intervals.

FIG. 11. Differing-phase radial distribution function for a thre
dimensional equal-viscosity fluid (f50.5) at t513.9. The unit of
length for r is specific to the particular set of model paramete
used.
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APPENDIX: HIGH-PERFORMANCE COMPUTING

In this appendix we provide a few comments regard
the running of DPD simulations on high-performance co
puters. We usually had easy access to single-processor w
stations, with a large variety of types and speeds of proc
sors. Multiprocessor machines allowing parallel execution
simulations are much less common and are more difficul
obtain access to, although they have become more com
during this research project. We used both the Cray T3D
the Edinburgh Parallel Computing Center~EPCC! and the
Hitachi SR2201 of the Cambridge High Performance Co
puting Facility ~HPCF! for computing the results describe
in this paper; the former consisted of 512 processor no
and the latter consists of 256 nodes.

The implementation of the dissipative particle dynam
algorithm is very similar to that of conventional molecula
dynamics algorithms@55#. For example, we divide the per
odic spatial domain~the simulation cell! into a regular array
of equally sized link cells, such that each side of the rect
gular domain has an integer number of cells and each ce
at leastr c across. Each link cell consists of a dynamica
allocated array of particles and pointers to the neighbor
cells. Individual particles consist of the position-momentu
vector pair and a color index.

For each time step we iterate through the particles in e
link cell, calculating the force acting on each particle as
interacts with the particles in the same and neighboring
cells. Since the DPD force acts between pairs of particles
must ignore half of the neighboring cells to avoid duplic
tion. When considering a different particle pair, we comp
the square of the separation distance withr c

2 , skipping to the
next particles if the pair is out of range. We then compute
new position and velocity as determined by the fini
difference algorithm@see Eq.~13! and Ref.@4##.

We may write the complete state of the system to file, a
we can perform other calculations thereafter, for example
determine the temperature and pressure of the system
used the freely availableGNU-MAKE utility to dictate the
compilation process, since the decision structures it cont
make it simple to write programs portable to a large range
architectures. We created a comprehensive, automated
suite to make it easy to verify that optimizations of the c
culations did not accidentally change the results of the co
putations.

Given constantr c and number densityn5r/m, the DPD
algorithm scales linearly~in both computation time and
s;
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memory size! with an increasing number of particles (N),
and is limited by computation time on all but the smalle
machines. The main simulations we performed for this pa
consisted of 6400 particles, and it is on the parallel and se
performance of this size of simulation that we will mak
most of the following comments. Details of the performan
of this size of simulation in two dimensions are shown
Tables VIII and IX. These tables give the elapsed time
node in seconds and relative parallel efficiency for the fi
1000 time steps, including data for a variety of comput
and partition sizes. These data are for code compiled with
highest level of optimization, including some small redu
tions in floating-point accuracy. Table VIII describes th
computers used to calculate the results in this paper, w
Table IX describes the computers to which we have rece
been allowed access, such as the Computer Services for
demic Research~CSAR! Cray T3E and SGI Origin2000 in
Manchester.

A typical simulation of 50 000 time steps takes 2.5 h on
350 MHz Intel Pentium II PC, the fastest single-proces
machine to which we had common access. This same si
lation would take 2.9 h on a 16-node partition of the T3D
the EPCC. However, to minimize fragmentation of the m
chine, jobs using up to 32 nodes were limited to a to
execution time of 30 min. One possibility was to break
the run into 30-min portions, but this introduces addition
overhead and complications; however, new jobs start
stantly because they need not be queued. A better option
to run jobs on a 64-node partition, task farming four 16-no

TABLE VIII. Elapsed time~in seconds! per node and paralle
efficiency of various computers for the first 1000 time steps o
6400-particle simulation in two dimensions. These computers w
used to calculate the results in this paper.

Number Elapsed time Parallel
Machine of nodes per node efficienc

DEC 3000/400 AXP 1 624
~133 MHz Alpha EV4!

Linux PC 1 180
~350 MHz Intel Pentium II!

SGI Indigo2 1 200
~195 MHz MIPS R10000!

EPCC Cray T3D 1 1254 1.00
(5123150 MHz Alpha EV4! 2 575 1.09

4 354 0.89
8 251 0.62

16 206 0.38
32 214 0.18

HPCF Hitachi SR2201 1 1202 1.00
(2563150 MHz HARP-1E! 2 634 0.95

4 371 0.81
8 255 0.59

16 212 0.35
32 243 0.15
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jobs to run simultaneously. There was a 12-h limit to 64–5
node jobs~6 h during the week!, but there was often a long
wait in the queues. If the efficient usage of billed time wa
significant concern, sixteen 2-node jobs would complete
8.0 h. However, during the week this meant restarting h
way through and waiting in the queue again. Similar co
ments apply to the Hitachi SR2201, although its queues w
limited to 8 h maximum. The extra administrative overhea
involved and the billed usage means that we usually conc
trated computation on the serial workstations. However, p
allel execution becomes more attractive with larger simu
tions.

The parallel efficiency of DPD with 6400 particles
good only for a modest number of processor nodes. Thi
particularly true of the more modern parallel machines s
as the Cray T3E and SGI Origin2000, which are proportio

TABLE IX. Elapsed time~in seconds! per node and paralle
efficiency of various computers for the first 1000 time steps o
6400-particle simulation in two dimensions. These computers w
not used to calculate the results in this paper.

Number Elapsed time Parallel
Machine of nodes per node efficienc

SGI Octane 1 152 1.00
~250 MHz MIPS R10000! 2 87 0.88

CSAR Cray T3E-1200E 1 143 1.00
(5763600 MHz Alpha EV5! 2 96 0.74

4 75 0.48
8 67 0.27

16 70 0.13

CSAR SGI Origin2000 1 133 1.00
(163250 MHz MIPS R10000! 2 81 0.83

4 69 0.49
8 60 0.28
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ally faster in processing than communicating when compa
with their older counterparts. Much better parallel efficien
has been observed with larger simulations. The Cray T
shows an unusual increase in efficiency when going from
serial calculation to a 2-node parallel calculation with 64
particles; this could be explained by any number
hardware-specific arguments. We should note that the res
for the Origin2000 include the effect of sharing the mach
with other users, unlike all the other machines whose res
appear in Tables VIII and IX, for which each node was de
cated to our calculations.

We decided to write the main simulation program
C/C11 as opposed toFORTRAN. This choice was made be
cause C/C11 were believed to be the most appropriate la
guages for dealing with DPD simulations which consist o
large amount of bookkeeping wrapped around fairly sim
computations. C/C11 and FORTRAN are highly portable to
different computer architectures, and although well-writt
FORTRAN is more efficient on vector machines, for almost
other situations they are of similar speed, given equally go
compilers. The use of vector machines~such as the Hitach
SR2201! was not anticipated when this work on DPD beg
several years ago. Furthermore, it was not believed that
basic algorithm would vectorize well, due to the short vec
length in typical computations. Large programs are easie
maintain in C/C11 than inFORTRAN, although the increas
ingly well-supportedFORTRAN 90 and 95 make the differ
ence less significant.

Finally, we comment on our findings in tuning the me
sage passing interface~MPI! calls for the Cray T3D. In our
simulations, it was found that blocking calls~sends and re-
ceives! were faster than nonblocking calls and were easie
use correctly. Furthermore, better scaling was achieved
sending the size of a variable-size message in a sepa
message rather than probing incoming messages to d
mine their size. Finally, using derived data types to remo
unneeded data from messages was slower than sendin
erything.
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