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Spinodal decomposition of off-critical quenches with a viscous phase using
dissipative particle dynamics in two and three spatial dimensions
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We investigate the domain growth and phase separation of hydrodynamically correct binary immiscible
fluids of differing viscosity as a function of minority phase concentration in both two and three spatial
dimensions using dissipative particle dynamics. We also examine the behavior of equal-viscosity fluids and
compare our results to similar lattice-gas simulations in two dimensions.
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I. INTRODUCTION Phase separation iequal-viscositybinary immiscible fluid
systems has been simulated using a variety of techniques,
Over the past few years, the dissipative particle dynamicéncluding DPD [1-5], molecular dynamic§6—-9], Monte
(DPD) model of complex fluids has received considerableCarlo[6,10], cell dynamical systems without hydrodynamics
attention. It has matured from its somewhat arbitrary initiall11] and with Oseen tensor hydrodynami€$2], time-
formulation into a model with a solid theoretical basis. Fur-dependent Ginzburg-Landau models witl3—17 and with-
thermore, it has been applied with considerable success toQut hydrodynamic417-19, lattice-gas automatf20-27,
large number of computer simulations of complex fluid sys-2"d lattice-Boltzmann techniquéd8—34. Spinodal decom-
tems such as colloidal suspensions, polymeric fluids, spinR0Sition of differing-viscosityimmiscible fluids has previ-
odal decomposition of binary immiscible fluids, and am- 0usly been simulated in two dimensions by a time-dependent

phiphilic fluids. DPD also looks promising for simulating Ginzburg-Landau model without hydrodynami€35]. We

multiphase flows and flow in porous media, and is now con-d'SC!JSS the effec_t of the proportion of each_ phz_ase on the
caling behavior in both two and three spatial dimensions.

S|dergd a l_JserI technique anngsMe _the other complexflui e also examine the behavior of equal-viscosity fluids, com-
algorl_thms. molecular dynam|c_s, lattice-gas a“t°m"’.“a’ an aring our results to similar lattice-gas simulations in two
techniques based on the lattice-Boltzmann equation. N imensiong 27].
single technique can yet be applied to all situations, and €ach after describing our fluid model in the following section,
has different strengths and weaknesses. While molecular dyge giscuss the expected temporal development of the char-
namics is in principle the most accurate microscopic apycteristic size of the separating domains in Sec. Ill. We then
proach, in practice it is too slow in both its quantu@ar-  describe our method for calculating the characteristic domain
Parinellg and classical forms because of its excessive detaikjze and its rate of growth in Sec. IV. This is followed in
Discrete mesoscopic methods developed from lattice-gas a%ecs. V and VI by information on the simulations performed
tomata have had some success, but they too have problemshd a discussion of the results, and by some conclusions in
such as lacking Galilean invariance. The traditional approaci$ec. VII. Finally, as an Appendix to this paper, we make a
of continuum fluid dynamics has met with limited success infew comments on the high-performance computing aspects
modeling behavior on the length and time scales charactenf this work.
istic of complex fluids.
In this paper we investigate phase separation from both
symmetric(critical) and off-critical quenches in binary im-
miscible fluids of generally differing viscosity using the hy-  In 1992, Hoogerbrugge and Koelman proposed dissipa-
drodynamically correct DPD model. Our motivation is to tive particle dynamic$36] as a novel particulate model for
probe and extend knowledge of the behavior of differing-the simulation of complex fluid behavior. DPD was devel-
viscosity fluids, of application, for example, to the action of oped in an attempt to capture the best aspects of molecular-
detergents and the extraction of oil from reservoir rocksdynamics and lattice-gas automata. It avoids the lattice-based
problems of lattice-gas automata, yet maintains an elegant
simplicity and larger scale that keeps the model much faster
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that mass and momentum are conserved but energy is natetailed balance and the fluctuation-dissipation theorgm,

Particles are normally interpreted as representing a coarsend o are related to Boltzmann’s constatg and the equi-

graining of the fluid, so that each particle contains manylibrium temperaturel by

molecules[36—39. Since the intrinsic time scale of DPD

represents the correlated motion of mesoscopic packets of

atoms or molecules, it is typically orders of magnitude larger

than the time scale of molecular dynamjd®)]. Particle po-

sitions and momenta are real variables, and are not restrictdd order to remain as close as possible to the original DPD

to a grid. model, Espaol and Warren chose the friction weight func-
Espaml and Warren’s analysi87] showed that the origi- tion to be

nal DPD model does not satisfy detailed balance, so the equi-

librium states(if they exis) cannot be simply characterized. B Fij

Detailed balance is the condition equating the rates of for- wij=1- K @)

ward and backward transition probabilities in a dynamical

system, and is a sufficiefibut not necessayyondition guar-  within the constant cutoff length.,>0 and zero otherwise,

anteeing that the system hag@ibbsian equilibrium state  wherer;; is the distance between particlesnd j. Adding

[41,42. Espanl and Warren formulated a Fokker-Planck Egs.(3)—(5) together, the total force is

equation and an equivalent set of stochastic differential equa-

tions which lead to an analogous continuous-time model,

0_2
Y

- 0'0”' ~
Fij= a_'ywij(Qj'Vij)_l'E wij & - ®
dp;=>, Fijdt=2 [FﬁdHFﬁdHFﬁdWij]a o o ) o
j#i j#i Immiscible fluid mixtures exist because individual mol-

(1)  ecules attract similar and repel dissimilar molecules. The
most common example of such behavior arises in mixtures

b of oil and water below a critical temperature. The nonpolar,

dxi_ﬁidt' hydrophobic molecules of oil attract one another through

short-range van der Waals forces, while the polar water mol-

In these equationsy;, x;, andm; denote the momentum, €cules have complex, long-range hydrophilic attractions
position, and mass of particie Flc iS a conservative force which are dominated by electrostatic interactions, inClUding

acting between particlesand j, while FiD and FiR' are the hydrogen _bonds. At_the atomistic level employgd in molecu-
dissipative and random forcedW;; =dW-J- are inélependent lar dynamics, such interactions demand a detailed treatment.

i i

increments of a Wiener process. By Italculus However, to obtain mesoscopic and macroscopic level de-
scriptions using DPD, the microscopic model can be drasti-
dWij dWiq= (i 61 + 8y Sj) dit, (2  cally simplified.

In order to model immiscible fluids, the simplest modifi-
sodW; is an infinitesimal of ordes anddW; can be writ- ~ cation to the one-component dissipative particle dynamics
ten 6, Jdt, where 6,=0; is a random variable with zero algorithm is to introduce a new variable, called the “color”
mean and unit variandé1]. Detailed balance is satisfied by PY analogy with Rothman-Kellef20,36. For example, we
this continuous-time version of DPD with an appropriateC°U|d choose red to represent oil and blue to represent water.
choice for the form of the forcef3], and so equilibrium When two particles of different color interact, we increase
states are guaranteed to exist and be Gibbsian. To ensure th3g conservative force, thereby increasing the repulsion. That
the associated fluctuation-dissipation theorem holds, Edpan'S:

and Warren suggested the forces assume the following forms . . . _
[37]: ag If particlesi and j are the same color

arﬁaij= . . . . .
a, if particlesi and j are different colors,

FﬁZawijéj y (3) (9)

b 5 - whereay and a; are constants with € ag<a,. As a con-
Fij=— ywij(&;-vi))&;, (4) sequence of mass and momentum conservation, the Navier-
Stokes equation is obeyed within a single-phase DPD fluid
and within regions of homogeneity of each of the two binary
R R immiscible fluid phased36,37,43,44 Likewise, detailed
Fij = owij§j, ©) balance is also preserved, at least in the limit of continuous
) ) ) N time [37,43,44.
wherev;; = (p; /m;) —(p;/my) is the difference in velocities  The immiscible fluids described above are identical to
of particlesj andi, g; is the unit vector pointing from par- each other. However, it is often the case that the two fluids in
ticle j to particlei, andwj; is a weighting function depending a mixture will differ physically. For example, oil and water
only on the distance separating particleandj. The con- typically have different viscosities. To model binary fluids
stantsa, y, ando are chosen to reflect the relative impor- with differing viscosity, we again adopt the simplest ap-
tance of the conservative, dissipatifs@scousg, and random proach: labeling one of the two phaseslors as more vis-
components in the fluid of interest. As a consequence ofous. When two particles of the same viscous color interact,

and
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the dissipativgviscous force is increased; in order to keep the temperature constant, we must correspondingly decrease the
random force according to E¢p), i.e.,

vo If either particlei or j is not the viscous color
poyi={ " o | (10
v, if both particlesi and j are the viscous color,
oy if either particlei or j is not the viscous color
o= 0= . . . . . (11)
o, If both particlesi and j are the viscous color,
|
where For symmetric quenches without hydrodynamic interactions,
dynamical scaling theory and experimgAf] indicate that
2 2 . ! .
oy 07 the scaling exponem®= 3. If flow effects are relevant, typi-
% = 7_1 =2kgT. (12 cally

Our previous study of finite difference methods applicable 3
to simulations with non-conservative fordeg indicated that B= ,
the finite-difference algorithm suggested by Groot and War- 3
ren[40] is a good choice for DPD. Their method is a varia- ) )
tion on the familiar velocity-Verlet algorithm, adding a mo- in two dimensions, and
mentum estimate before the force evaluation:

for R<R, (diffusive)

for R>R, (inertial hydrodynamig

: for R<Ry (diffusive)
At At .
X (t+At)=x:(t) + — pi(t)+ 7fi(t) , B=4 1 for Ry<R<R, (viscous hydrodynamjc
' 2 for R>R, (inertial hydrodynamig
(16)

At
pi(t+At)=p;(t) + 7fi(t)1
in three dimensions, wherR,= 7%/(p«) is the hydrody-
(13)  namic length andRy= 7D is the diffusive length, ex-
pressed in terms of the absolity/namio viscosity , den-
f(t+At)= E Fi(t+At), sity p, surface tension coefficiert and diffusion coefficient
J#i D. These scaling laws follow directly from dimensional
analysis of the macroscopic fluid dynamics equati(ss
called modelH, or Cahn-Hilliard coupled to Navier-Stokes
hydrodynamick in the appropriate regimelgt7]. When R
<Ry in three dimensions, diffusive effects dominate and we
whereAt is the time step size arfdt) is the force acting on expect the domains to form via the Lifshitz-SIyozov-Wagner
particlei at timet. The DPD units of length, mass, and time (LSW) evaporation-condensation mechanig#7]. WhenR
are specific to the particular set of model parameters, and the R in both two and three dimensions, we expect the
exact relationship between these parameters and a real flugfowth mechanism to be surface tension driven by hydrody-
in a particular situation can be determined by considering th@amic flow, balanced by inertial effecté8]. If Ry<R<R,;
dimensionless groups relevant to the motion of that systenin three dimensions, we expect viscous hydrodynamic effects
such as the Mach, Reynolds, and Weber numbers. to dominate, as predicted by Sigdi]; in this regime, the
Many further modifications to the model have been sug-surface tension drives the transport of the fluid along the
gested and implemented by others. Some of the most intetaterface, which is possible only if both phases are continu-
esting include energy conservation, colloidal particles, an®us[47,49. This third growth regime cannot occur in two
polymers. In very recent work, it has been shown that it isdimensions, and so we expect to see diffusive growttRfor
possible to derive a modified version of DPD directly from <Ry, [48]. Due to our choice of model parameters and the

pi(t+At) =p;(t)+ %[fi(t)+fi(t+At)],

the underlying molecular dynami¢45,46]. small size of our simulations, we do not expect to probe the
viscous or inertial hydrodynamic regimes.

Il TEMPORAL BEHAVIOR OF THE CHARACTERISTIC S|mulat|on§ in two ;patlal dimensions are especially u'se?

DOMAIN SIZE ful to emphasize the importance of correct hydrodynamics:

simulations which do not conserve momentum typically give
A central quantity in the study of growth kinetics is the g=3 for the diffusive regime R<R;,) [1-3,24—26. Simu-
characteristic domain sizB(t). For binary systems in the lation methods with correct hydrodynamic interactions typi-
regime of sharp domain walls, this is usually thought to fol-cally give the expected result g8=3 (see, e.g., Refs.
low algebraic growth laws of the form [1-3,6,7,10,18. It is worth noting that momentum conser-
vation is not thought necessary to model spinodal decompo-
R(t)~t~A. (14 sition in binary metallic alloys, since phase separation occurs
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by the migration of atoms to neighboring vacancies on thébulent remixing of the fluids. The conclusion they draw is
crystalline lattice [50]. Simulations based on lattice- that the3=35 scaling regime must be transigf&3]. How-
Boltzmann techniques also typically displa@=3. These ever, their analysis neglects mention of the relative strength
observations are supported by a renormalization-group apf the interface, quantified, for example, by the Weber num-
proach which has shown that thermal fluctuations causBer Nwe=pRV?/ k. If Nye is small at the onset of turbu-
Brownian motion-driven coalescence and play a crucial roléénce, we would expect turbulent remixing to be delayed, or
in causingg to assume the value df [47]; although some perhaps even postpone_d |ndef|n|te_ly allowmg Re to diverge.
lattice-Boltzmann techniques include these fluctuati@es, In any case, the separation dynamics would likely be affected
most do not. by Re=Reg,; for example, the fluid viscosity in a turbulent
There is some confusion in the literature over which scal€gion is roughly proportional to R4].
ing exponents should be observed for off-critical quenches,
and whether or not the algebraic scaling laftqg. (14)] IV. ESTIMATING THE CHARACTERISTIC
should in fact be obeyed for any off-critical binary immis- DOMAIN SIZE
cible fluid. Several authors have reported the coexistence of ) . o
multiple length scale§27,34,51. It is likewise uncertain as !N oOrder to characterize the phase separation kinetics
to what behavior should be observed from binary immiscible/ithin @ binary immiscible fluid, we need a practical tool to
fluids of differing viscosity [35]. Certainly, one growth Measure the characterlstp domau_fl size _correspondmg to the
mechanism we expect for off-critical quenches of both equaPtate of the system at a given point in time. The use of the

and differing viscosity is the LSW evaporation-condensatiorStatic structure function for this purpose is widespread. How-
mechanism, for whict8= % [47]. ever, we have noticed bizarre “early time” behavior when

It should also be noted that there are still some experi“smg the static structure function to characterize simulations

mental and theoretical challenges in unraveling the behavidp! Nighly off-critical quenches. Specifically, the characteris-

of systems in which both the order parameter and the motic domain size would sometimes change suddenly by an

mentum are locally conservéd7]. Experimentally, for ex- order of magnitude. This abrupt change in behavior did not
ample, it is difficult if not impossible to study two- correspond to anything observable in the time evolution of

dimensional fluid systems. As far as numerical studies ard1® POsitions of the DPD particles. Such anomalous behavior
concerned, it is important to recognize that three-'S likely due tq the large qucFuanns preval_ent in t_he sta_tlc
dimensional simulations are particularly demanding on alStructure function for small simulations of highly mixed bi-
the aforementioned techniques, and so definitive results af@" fluids, for which the characteristic domain size is very
harder to come by than in two dimensions. smat.. _ _ _
Indeed, Cates’s group in Edinburgh has recently reported The radial dlstn.butlon. functiog(r) is a well—establ!shgd
somewhat conflicting results from three-dimensional studied®! for the analysis of single-phase fluifs5,56, and indi-
of binary immiscible fluid separation for equal viscosity flu- Cates the likelihood of finding two particles separated by a
ids using dissipative particle dynamics and lattice-BoltzmanrfliStancer. For binary fluids we can also use the same-phase
methodd5,52]. While the former suggests the persistence of2nd differing-phase distribution functiori§]. The same-
nonuniversal length scales, hypothesized to be due to tHéha_se d|str|but|9n functiogyo(r) describes the likelihood qf
intrusion of a “molecular” or discretization length scale, this finding two particles of thsamephase separated by a dis-
is not supported by the latter, from which finite-size effectst@ncer, and the differing-phase distribution functigg,(r)
were more rigorously excluded. Note, however, that wheread@scribes the likelihood of finding two particles differing
the lattice-Boltzmann scheme was based on a Landau fre@hase separated by a distanceFrom the peaks of the
energy approach, and is essentially no more than a ﬁnitéjlffenng-phasg radlal d|str_|but|on funptlon, we can estimate
difference solution of the continuum modelequations, the t_he characteristic s_eparatlon_of particles of differing phase
macroscopic equations to which the spinodal DPD schem#-€-» the characteristic domain sjz&onsequently, we de-
corresponds have not yet been derived. This makes it uncle5ided to calculate the distribution between particles of differ-
whether the two systems being simulated are really one an@i"t Phasgcolor),
the same. Both of these studies emphasize the importance of
observing dynamical scaling over decades of time before Goi(1) = mn(r,Ar) 17
drawing conclusions as to the true nature of the scaling re- o1 pN@[1—p]V(r,Ar)’
gime. One notable result of their work is the clarification of
the relative time scales over which computer simulationrwherem=m; Vi is the mass of each particlassumed all
techniques typically operate. For the simulations they disidentica), n(r,Ar) is the number of particle pairs of differ-
cuss, molecular-dynamics time scales are on the order?f 10ng phase with separation between Ar/2 andr +Ar/2, N
in dimensionless units, lattice-gas automata and Langeviis the total number of particles)e (0,1) is the fraction of
dynamics probe time scales on the order of tthough 16, particles of one phaséhe more viscous phase if the two
DPD typically 1¢ to 1P, and methods based on the lattice- phases are of different viscosityandV(r,Ar) is the volume
Boltzmann equation f0through 16. of the spherical shell of radiusand thickness\r (from r
Grant and Elder have recently arguggs] that 8<3 in —Ar/2 tor+Ar/2). Itisapparent from Eq17) thatggq(r)
any asymptotic scaling regime because the Reynolds numbean only be calculated for<L/2 in a simulation with a
Re=pRV/7n (whereV is a characteristic velocifycannot periodic box size ol; this should not be interpreted as an
diverge, and in fact must remain less than a critical valuaundesirable limitation as finite-size effects are normally sig-
Re, to avoid the onset of turbulend®&4] and possible tur- nificant for R>L/2 [5,52]. A value of Ar=L/2000 gives a
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reasonable compromise between noise and resolution for the TABLE I. Model parameters for the viscosity measurements of
size of simulation we discuss in this paper. the lower-viscosity fluid.
The principal difficulty lies in analyzing the results auto-

matically, as we need to calculagg,(r) at many time steps Model

within each simulation in order to display the domain growth parameter Value
over time. We chose to calculate the median of that portion a 7.063
of the smoothedyy(r) curve extending above a threshold y 5.650
value 1+3s, where s is the standard deviation of the o 1.290
smoothed curve when it has effectively a constant unit value, m, 1
estimated from the last tenth of the smootlyge(r) curve at re 1.3
t=1. We used a fourth-order Savitzky-Golay smoothing fil- p 4

ter[57,58 to smoothgy,(r) overr at each point in time with
a symmetric window size chosen to reduce the noise while
leaving significant features untouchétil points in two di- pair distribution function is more intuitive to analyze than the
mensions and 101 points in thjeaVe chose the cutoff Static structure function, which aids our interpretation of the
threshold of 1 3s so as not to bias the median by the size off€sults.
the periodic simulation box; likewise, we chose the median
in preference to the medfirst moment because the median V. SIMULATION RESULTS
s I?SS biaset_j by outliers, S.UCh as those 2.5% of noisy points For the simulations of fluids with differing viscosity, we
which effectively have unit value but extend above the.pqqe one phase to be an order of magnitude more viscous
threshold. Both the median and mean give poor estimates 9fian the other, i.e.y,=10y,. Before simulating this new
the characteristic domain size as it approadh@s the limit  complex fluid, it is advisable to verify that increasing the
the global maximum ofjp,(r) to estimate the domain size jndeed increase the viscosity. For the lower-viscosity fluid
instead; this is a continuous transition for symmetrical peakswe chose the model parameters shown in Table |. The abso-
Once we have calculated the characteristic domain sizRite (dynamiq viscosity of a homogeneous DPD fluid can be
for a series ofggy(r) curves taken at different times from a estimated theoretically from the continuous-time viscosity,
single simulation, we begin a search for linear sections in thégnoring the effect of the conservative forcése., a=0)
plot of log;oR versus logyt. This has also been automated, [59,60; the continuous-time viscosity of this lower-viscosity
using analysis of variance to decide whether a given sectiofiuid is »=2.8.
of the plot is linear or cubic. We used the analytic expres- In order to verify this estimate, we performed a series of
sions for the least-squares fits with moments taken about tr@mulations of steady shear using Lees-Edwards periodic
means to minimize the effect of roundoff error. We keepboundary conditions. We performed a total of 63 simulations
only the longest linear sections, subject to there not beingvith a time step ofAt=0.1 (in our DPD time units each
any significant gaps in the coverage of the log-log plot. Anfrom a different random initial configuration and each al-
ensemble average of a number of simulations yields a plot dbwed to settle to steady-state shear before measurement be-
the scaling exponerg versus loggt, in which long horizon-  gan. We studied systems of both 1600 and 6400 particles, six
tal (zero gradientsections represent algebraic growth. Thissimulations at each of nine different shear rates for the
procedure allows more accurate determination of the scalinfprmer and three simulations at each of three distinct shear
exponent than a visual comparison of {§B versus loggt rates for the latter. As the results from the larger simulations
to a straight line of a particular slope, and provides a statisgave a mean viscosity nearly identical to that of the smaller
tically valid determination of whether or not the growth is ones, we can conclude that finite-size effects do not bias the
truly algebraic over a particular time period. Finite-size ef-viscosity of the smaller, faster simulations. We calculated the
fects forR~L/2 normally result in nonalgebraic growth or velocity profile for each set of parameters, and found it to be
unusually low scaling exponents; either case is easily destatistically indistinguishable from linear in every case.
tected by our method. A further advantage is the automation Analyzing these simulations led to a conclusion #»f
we have described, permitting large ensemble averages with 1.94+0.01. Others have also found discrepancies between
minimal effort. theory and simulation, particularly regarding the kinematic
We should note that estimating the characteristic domairontribution to viscosityf59], so the difference between the
size using the median can occasionally lead to discontinuisimulated viscosity and the continuous-time viscosity is not
ties. If these discontinuities are large enough, they will causentirely surprising. Since molecular-dynamics simulations
a break between linear sections. Small discontinuities may beontaining only conservative forces give a finite viscosity,
spanned by a single line, which would affect the slod ( we would be surprised if the theoretical estimate did not
and be detrimental to the results. However, large discontinuidiffer from our calculations.
ties will not be spanned, and so will not affect the slope. In order to measure the viscosity of the more viscous
The results we obtained using these techniques are coffluid, we set up a series of 1600 particle simulations of a
siderably better than those obtained with the static structureomogeneous DPD fluid as described above, using a total of
function, especially for highly mixed fluids where the pair 30 simulations. We varied the shear rate in the range that
distribution function is not drowned by fluctuations to the gave the best results in the previous simulations. The model
extent that the static structure function is. Furthermore, the@arameters differed in that was a factor of 10 larger while
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TABLE Il. Model parameters for the viscosity measurements of TABLE IV. Scaling exponents for two-dimensional differing-
the higher-viscosity fluid. viscosity fluids as a function of viscous phase fraction, divided into
“early” and “late time.”

Model
parameter Value ¢ Approximate range of logt B
a 7.063 0.2 0.17£0.09 to 1.28-0.09 0.092-0.014
% 56.50 0.3 0.09£0.04 to 1.0%0.03 0.083:0.008
o 4.079 0.4 0.13-0.05t0 1.13-0.04 0.068-0.006
m; 1 0.5 0.13-0.05 to 1.05-0.06 0.058-0.009
re 1.3 0.6 0.15-0.05 to 1.010.09 0.042-0.010
p 4 0.7 0.24:0.05 to 1.25:0.07 0.05&0.010
0.8 0.16£0.13 to 1.25:0.11 0.031*0.014
0.9 0.02£0.05to 1.1¥*+0.12 —0.24=0.07

o was a factor of/10 larger to keep the temperature constant
[see Eq.(12)]; these parameters are shown in Table Il. We 0.1 0.26-0.19 to 2.570.11 0.291-0.016
decreased the time step tot=0.01 due to the increased 0.2 0.53-0.13 to 2.63-0.08 0.335-0.008
magnitude of the dissipative and stochastic forces. Analyzing 0.3 0.72+0.05 to 2.51-0.07 0.333-0.012
these results led to the conclusion that 17.2+0.3, which 0.4 0.72+0.06 to 2.450.08 0.34%0.016
confirms the increase in viscosity. This increase is closeto a g 5 0.83-0.09 to 2.47 0.06 0.336-0.016
factor of 10, so that for similar model parameters it is rea- (g 0.92-0.11 to 2.52- 0.07 0.336-0.012
sonable to conclude that is approximately proportional to ¢ 7 0.95+0.04 to 2.65- 0.06 0.316-0.010
viscosity. _ _ 0.8 1.03-0.10 to 2.66-0.07 0.299-0.013

It is possible to measure the surface tension of a binary g 0.55-0.08 to 2.56-0.13 0.2G-0.02

immiscible fluid by integrating the pressure tensor across a

flat interface, or by verifying Laplace’s law for a series of

equilibrium bubbles of varying radjb5]. Laplace’s law was B without noise¢ with a concentration-dependent mobility

e o e, 25, 5 hey o i e rrodynamics, ulke cur ap

were omitted fro'm the present study. These calculation roach with DPD. The other me;osc_ale technlques which

would, however, allow identification of the unit of time for Coo\d be used to model these fluids include lattice-gas au-

compérison witr; other simulation techniqusse, e.g., Refs tomata ar_1d methods ba;ed on the Iattlce_—BoItzmann equa-
P I ' _tion. As with DPD, there is a high computational price to the

[5,52). Theoretical estimates for surface tension are als.?attice-gas approach, which requires adjustment to the colli-
available, but are of similar accuracy to the viscosity esti-

mate above sional outcomes of the look-up tables. Lattice-Boltzmann
For the simulation of fluids of differing viscosity, we must ] ) ] o
also choose the relatively small time step sizé\6f 0.01 in TABLE V. Scaling exponents for three-dimensional differing-
order to ensure the stability of the algorithm as a result of thé{(iscosity fluids as a function of viscous phase fraction, divided into
increased magnitude of the dissipative forces. This has theealrly and “late time.
consequence of making these simulations computationally

much more expensive than equal-viscosity simulations. In

¢ Approximate range of logt B

this context, it is worth commenting on the virtues of using 0.1 0.02+0.05 to 1.74-0.05 0.023-0.002
DPD to perform simulations of differing-viscosity fluids 0.2 —0.012+0.015 to 1.12-0.04 0.0219-0.0014
compared with other models. Sappelt andkla use an ap- 0.3 0 to 0.92-0.03 0.01710.0017
proach based on the Cahn-Hilliard equatien-called model 0.4 0.02+0.04 to 0.88-0.05 0.025-0.005
0.5 0.00-0.02 to 0.87-0.04 0.028-0.007
TABLE IIl. Model parameters used for the dlﬁerlng'V|SCOS|ty 0.6 —0.008+0.016 to 1.06:0.02 0.02730.0012
immiscible fluid simulations. 07 0.06-0.05 to 1.03-0.04 0.022-0.003
Model 0.8 —0.004+0.012 to 1.310.04 0.02280.0013
0.9 0.06£0.08 to 1.95-0.09 0.021-0.003
parameter Value
ag 7.063 0.1 1.47-0.07 to 2.62-0.07 0.53:0.05
ay 7.487 0.2 0.78:0.04 to 2.67-0.05 0.377-0.008
Yo 5.650 0.3 0.79:0.13 to 2.67-0.08 0.376:0.010
V1 56.50 0.4 0.710.16 to 2.68-0.06 0.360-0.007
oo 1.290 0.5 0.65-0.05 to 2.68-0.05 0.358-0.007
o1 4.079 0.6 0.703:0.019 to 2.640.08 0.364-0.007
m; 1 0.7 0.85-0.06 to 2.62-0.10 0.3630.012
re 1.3 0.8 1.08:0.04 to 2.5 0.06 0.406-0.017
p 4 0.9 1.76:0.08 to 2.7¢-0.03 0.52-0.02
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FIG. 1. Time evolution of five sample simulations of two-  FIG. 2. Time evolution of five sample simulations of two-
dimensional differing-viscosity fluids, each simulation having a dif- dimensional differing-viscosity fluids, each simulation having a dif-
ferent viscous phase fractiofvarying from ¢=0.1 through¢  ferent viscous phase fractiofvarying from ¢=0.5 through ¢
=0.5). =0.9).

(more correctly, lattice-BGKmodels can be used, based, for simulation, starting from timeé=1 and finishing at =500
example, on the Swift-Osborn-Yeomans free-energy func{in our DPD time units In both two and three dimensions,
tional approach61], but there is a similar computational we performed ten simulations at each of nine different frac-
price, although with the additional complication of poorly tions of the viscous phase, ranging fropr=0.1 (10% vis-
understood numerical instabilities. However, DPD offers thecous phaseto ¢=0.9 (90% viscous phaseWe show the
simplest algorithmic implementation which is thermody- time evolution of a single simulation at each value of the
namically consistent. viscous fraction in Figs. 1-4 for both two and three dimen-
Our differing-viscosity simulations used the model pa-sions. We represent the positions of the DPD particles in two
rameters shown in Table Ill. Each simulation had 6400 pardimensions by a gray scale map, in which the particle posi-
ticles, and ran for 50 000 time steps. We chose to use onlfions are weighted by Ed7) and assigned an intensity of
6400 particles in our simulations so that individual simula-gray based upon the proportion of each phase in this local-
tions would be quick enough to be run multiple times, allow-ized average. Figures 3 and 4 display the three-dimensional
ing us to consider the effect of changing the phase fractiosurface of the interface between the two immiscible phases,
and viscosity, and to increase the confidence in our resultds defined by there being equal proportions of each fluid in
and calculate accurate error estimates with ensemble averaipe localized average. In these four figures the gradual devel-
ing. Simulations with more particles would have given betteropment of domains can be seen. We examined the results of
resolution of small scale featuré=lative to the system size the domain size analysis for each simulation in plots of
and postponed the finite-size effects, at the price of increasddg;oR versus logyt, and further examined each ensemble
computational demands. Our resources would only have akverage in plots of3 versus logyt; the latter yielded the
lowed a few simulations of the size and length used by Jurynean values o3 and corresponding 68% confidence inter-
et al.[5] (1 000 000 particles making studies of the sort we vals for significant sections of algebraic growth. We show
describe in this paper impossible. these results for two and three dimensions in Tables IV and
We calculated the pair distribution function at 64 logarith-V and Figs. 5 and 6. The range of lgg we give in the
mically spaced points in time during the course of eachtables should be taken as a rough guide, since there is often
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t = 1.00

t =243

t=15.90

t=14.35

t = 34.88

t=84.73

t = 205.83

3 ¢ — 500.00 = N ¢ = 500.00

FIG. 3. Time evolution of five sample simulations of three-
dimensional differing-viscosity fluids, each simulation having a dif- yimensjonal differing-viscosity fluids, each simulation having a dif-

FIG. 4. Time evolution of five sample simulations of three-

ferent viscous phase fractiofvarying from ¢=0.1 through¢  ferent viscous phase fractiofvarying from ¢=0.5 through ¢
=05). =0.9).

a high degree of correlation between the start and end timeseen, and is greatly slowed for small minority fraction. We
of a particular linear section and its growth exponent withinshow the scaling exponents for two- and three-dimensional
the broad category of late time. We should emphasize thatqual-viscosity fluids in Tables VI and VII and Figs. 9 and
we are using the term “late time” as a relative category in10, where we mirror the scaling exponents ab@eat0.5 to

this paper, to distinguish these results from those obtained ahow the full range of minority phase fraction. Comparison
very early times. Due to the model parameters and small sizeith Figs. 7 and 8 qualitatively confirms the same behavior.
of these simulations, we do not expect to probe the viscous
or inertial hydrodynamic regimelsee Eqs(14)—(16), and
compare with Refg.1-4]].

We also constructed a series of equal-viscosity simula- A feature common to all these simulations is the lack of
tions in both two and three dimensions. These Hhed scale invariance at very early times, until approximately
=0.1, 6400 particles, and stopped tat1000. The model =10 tot=50 (in our DPD time units depending on the
parameters were the same as in the differing-viscosity simuexact composition of the fluid. This is apparent in thg(r)
lations, with the exception that both phases were identical tgurves as multiple peaks of similar magnitude, but could not
the less-viscous phase of the differing-viscosity simulationse seen in the frequency domain shown by the static struc-
(i.e., y=vyo ando=0y). We calculated the pair distribution ture function. Figure 11 shows an example of the differing-
function at 64 different points fronh=1 to t=1000, with  phase radial distribution function for a three-dimensional
ten simulations at each of eight different minority phase fracequal-viscosity simulationg=0.5) att=13.9; the crosses
tions from ¢=0.05 to ¢=0.5 in two dimensions, and ten represent the actual data and the curve represents the
simulations at each of five different fractions frapn=0.1to  smoothed data. This is one of the simulations we show in
¢=0.5in three dimensions. We show the time evolution of aFig. 8. The multiple peaks typically evolve by changing their
single simulation at each value of the minority fraction in height and relative weight, but not their position. This is
Figs. 7 and 8 for two and three dimensions, respectively. Imoticeably different from our “late time” behavior of the
these two figures the gradual development of domains can tgistribution function, where a single peak gradually advances

VI. DISCUSSION
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general shape. It is because of this “early time” behavior _’ . A N
that it was decided not to use solely the global maximum of {7e= | P 31 #% B 'ﬁ
ol Yook s wTe 4'

Oo1(r) to estimate the characteristic domain size. Foelhe = & 3 \
At these “early times” in all of the simulations, we ob-  %,7 %% }"1;;!,.“ ’:‘L -

served algebraic growth with a very small exponent, roughly . ARTA VW, e ' .
0.126+0.003 in two-dimensional equal-viscosity simula- » * °_*. rE R ' ‘ ?
‘ ". 't = 1000.0
¢

M

tions, 0.062-0.009 in two-dimensional differing-viscosity & ..0 "-".' » ." 4

simulations[except¢$=0.9 (90% viscous phasefor which P8l ety i ‘_v

B=—0.24+0.07], and 0.02460.0008 for simulations in 01 $=02 $=03 _ga 0B

three dimensions. This corresponds to the region of break-

down of scale invariance we described at the beginning of g, 7. Time evolution of five sample simulations of two-

this section. These “early time™ exponents are unaffected bygimensional equal-viscosity fluids, each simulation having a differ-

viscous or minority phase fraction in all of the simulations, ent minority phase fractionivarying from ¢=0.1 through ¢

except the differing-viscosity simulations in two dimensions.=0.5).

Here B decreases with increasinfy (viscous phase fraction

probably due to the domain-growth arresting effect of in-¢5. \which we have no adequate explanation. Others normally

creasing viscosity. We observed a remarkalileugh shoit  giscard similar early time regimes without comment

regime of 3= —0.24+0.07 for=0.9(90% viscous phase |9 16 29,30,32,33,3%r as an “early stage” or “transient”
regime[5,29]. However, there is growing evidence for the

0.6 . . . coexistence of multiple domain sizes and hence a breakdown
in universality, at least in certain phase-ordering domains
05| I [27,34,51,

For “late time” domain growth in the two-dimensional
differing-viscosity simulationgsee Fig. % we observed a
r z = I fairly constant value of3 for ¢=0.2 (20% viscous phage
through ¢=0.6 (60% viscous phagge decreasing both for
¢»=0.1 and very slightly for=0.7 and$=0.8, then de-
creasing sharply atp=0.9. This asymmetry is consistent
with the variation of the “early time” exponent in that an
increasingly viscous fluid is expected to develop domains

Scaling exponent 8
= =)
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T T
-
1 1

o
[
T
L

0.1+ 7 more gradually. At increasingly rarefied fractiong=€0.1
. . T T e o o and ¢=0.9), domain growth is retarded by the increased
0.0 T L= isolation of the droplets. The “late time” growth exponent

1
0.0 0.2 0.4 0.6 0.8 1.0

Viscous phase fraction ¢ throughout is effectively}, which suggests that the presence

of fluids of differing viscosity interferes with the normgl
FIG. 6. Scaling exponents for three-dimensional differing- =37 growth lmgchanism in two dimensions. The growth ex-
viscosity fluids as a function of viscous phase fraction. Circles in-ponent of 3 is expected from the LSW evaporation-
dicate “early time” and horizontal marks “late time”; error bars condensation mechanisfd7]. This is in some ways analo-
are 68% confidence intervals. gous to the effect obtained by deliberately breaking
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TABLE VI. Scaling exponents for two-dimensional equal-
viscosity fluids as a function of minority phase fraction, divided
into “early” and “late time.”

) Approximate range of logt B
0.2 0 to 1.16-0.04 0.1230.016
0.25 0.02£0.04 to 1.04-0.06 0.13:0.02
0.3 0.02:0.08 to 1.0a:0.05 0.135:0.012
0.4 —0.015+0.010 to 0.85:0.03 0.114-0.017
0.5 0.0G-0.03 to 0.96:0.08 0.13:0.03
0.05 0.19-0.19 to 2.8%0.14 0.2830.019
0.1 0.12:0.16 to 2.810.18 0.304:0.010
0.15 0.24-0.20 to 2.710.18 0.304-0.010
0.2 0.52:0.24 to 2.71-0.15 0.3370.012
0.25 1.0:0.3 to 2.76-0.13 0.39:0.04
0.3 0.71-0.15 to 2.530.22 0.3670.016
0.4 1.1%*0.16 to 2.5:0.2 0.415-0.019
0.5 1.4-0.3 to 2.56:0.09 0.470.04

would be theB=3% LSW evaporation-condensation mecha-
nism[47]; it may be a combination of these two mechanisms
that leads to our observeg< 3<% growth. A slight asym-
t=2018 metry in the “late time” growth exponent is also evident,

with domain growth proceeding more slowly with increas-
ingly viscous fluids of non-extreme viscous fraction.
£ = 500.0 For equal-viscosity fluids in two dimensions we observed
the expecte@@= 3 for symmetric quenchesg(=0.5) [1-3].
$=01  ¢=02 ¢=03 ¢=04 ¢=03 As we reduced the minority phase fraction, we observed a
. ; T
FIG. 8. Time evolution of five sample simulations of three- St€@dy decrease in the scaling exponent yiil; is reached
dimensional equal-viscosity fluids, each simulation having a differ-at the extremes. This conflrms the results of other Worke_rs
ent minority phase fractionvarying from ¢=0.1 through ¢  [27] that increasingly off-critical quenches retard the domain
=0.5). growth, while providing support for the observed slowdown
of growth at the extremes of viscous fraction in differing-

momentum conservation in symmetric quenches, as geviscosity fluids in two dimensions, which we commented on

scribed previously1-3]. Our domains are considerably less above. ) ) ) ) ,
circular at all viscous fractions than those observed by Sap- _In three dimensions, the domain growth (.)f equaI-VIs_cos_lty
pelt and Jekle (compare Figs. 1 and 2 with RB5]). This fluids appears largely unaffected by varying the m|rj0r|ty
is likely due to the lack of hydrodynamic interactions in their Phase fraction. Although there may be some increage at
model and to the greater difference in viscosity between theifhe extremes ot (as seen in the differing-viscosity fluid in
two phases. As in their simulations, our two-phase structuréree dimensions this is difficult to confirm definitely be-
for fluids of differing viscosity is not very different from the cause of the large variation in the rate of growth observed for
structure for fluids of equal viscosity. Moreover, our simula-the simulations withp=0.1, and hence the correspondingly
tions do not reveal any new insights regarding interfacialarge confidence interval. The scaling exponent throughout is
structure. close tof=3. Whereas Junget al. [5] were intending to

In three dimensions, the “late time” domain growth of probe the viscous or inertial hydrodynamic regimes with
differing-viscosity fluids displays nearly the opposite behav-their DPD simulations of equal-viscosity fluids in three di-
ior, with the scaling exponent increasing as the viscous fracmensions, we aimed only to probe length scales beRyw
tion reaches its extremes. This could be explained by thend R, [see Eqs(14)—(16)]. As such, our results are fully
increased fluid mobility in simulations with an extra spatial consistent with theirs. Our exclusion of finite-size effects is
dimension, as the majority phase is completely connectechore rigorous than theirs, and although not as extreme as
and so the domain growth could occur according to ghe that advocated by Kendogt al. [52], our method gives sta-
= £ mechanism, which is surface tension driven by hydrodyistical confidence that these domains are scaling algebra-
namic flow, balanced by inertial effects. This is qualitatively ically. Both Juryet al. [5] and Kendoret al. [52] were able
substantiated by inspection of Figs. 3 and 4, where a largdo cover the time domain more fully in three-dimensional
degree of connectivity of the majority phase can be observedqual-viscosity symmetric quenches only at the cost of per-
at the extremes of viscous fraction than 6~0.5. How- forming a large number of computationally very intensive
ever, a more obvious mechanism for the domain growttand very expensive simulations.
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TABLE VII. Scaling exponents for three-dimensional equal- 0.6 x 1
viscosity fluids as a function of minority phase fraction, divided
into “early” and “late time.” 05k ]
¢ Approximate range of logt B @ 04
g T 7
0.1 0 to 1.41-0.07 0.028:0.013 g T i oF == 3=
0.2 0.01+0.04 to 0.96:0.04 0.026:0.007 g 03+ 4
0.3 0.00:0.04 to 0.730.05 0.026:0.007 2
0.4 0 to 0.610.05 0.023:0.005 § 02k -
0.5 0 to 0.66:-0.05 0.02%=0.006
0.1+ .
0.1 1.35-0.11 to 2.480.18 0.43£0.08
0.2 0.52-0.04 to 2.68-0.02 0.362:0.008 00 P 7z z T 3 T T
0.3 0.43£0.04 to 2.530.04 0.366-0.009 0.0 0.2 0.4 0.6 0.8 1.0
0.4 0.38-0.02 to 2.47-0.03 0.369-0.006 Minority phase fraction ¢
0.5 0.32:0.04 to 2.480.02 0.364-0.007

FIG. 10. Scaling exponents for three-dimensional equal-
viscosity fluids as a function of minority phase fraction. Circles
indicate “early time” and horizontal marks “late time”; error bars
are 68% confidence intervals.

VIl. CONCLUSIONS

In this paper, we have described simulations of the do- L . , , :
main growth and phase separation of hydrodynamically cor@re in agreement with similar lattice-gas simulations in two

rect binary immiscible fluids of differing and equal viscosity dimensiong27.
as a function of minority phase concentration in both two _OPtaining meaningful results for ensemble averages of

and three spatial dimensions. Due to our choice of modéighly off-critical binary immiscible fluids was only made
parameters and the small size of our simulations, we did ndgasible by our automation of the calculation of the charac-
expect to probe the viscous or inertial hydrodynamic releristic domain size by the pair correlation function. It also

gimes. In three dimensions, we found that the characteristif?@de possible the identification of a regime of breakdown of
domain size scales @& for simulations of differing and scale invariance at very early times, which was not notice-
equal-viscosity fluids developing from symmetric and able in our original analysis using the static structure func-
slightly off-critical quenches. For highly off-critical {ON- Further simulations aimed at probing the viscous and

quenches we observe an increase in the scaling exponent. fifrtial hydrodynamic regimefsee Eqs(14)-(16)] would
two dimensions, we also obsentd® in simulations of be a useful addition to this work, as would simulations aimed

differing-viscosity fluids developing from symmetric and & Covering longer periods of time; however, both would re-
slightly off-critical quenches, although we observe a de-duire substantially increased computational work.

crease in the scaling exponent for highly off-critical
guenches. In equal-viscosity fluids in two dimensions, we
observet'? for symmetric quenches and a roughly linear
decrease to* for highly off-critical quenches; these results
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APPENDIX: HIGH-PERFORMANCE COMPUTING (195 MHz MIPS R1000D

In this appendix we provide a few comments regarding

. . . . EP T3D 1 1254 1
the running of DPD simulations on high-performance com- CC Cray T3 5 00

. 1(512>< 150 MHz Alpha EV4 2 575 1.09
puters. We usually had easy access to single-processor work- 4 354 0.89
stations, with a large variety of types and speeds of proces- '
sors. Multiprocessor machines allowing parallel execution of 8 251 0.62
simulations are much less common and are more difficult to ;g 2(1)2 8'?2

obtain access to, although they have become more common
during this research project. We used both the Cray T3D of o
the Edinburgh Parallel Computing Cent@PCQ and the HPCF Hitachi SR2201 1 1202 1.00

Hitachi SR2201 of the Cambridge High Performance Com{256xX150 MHz HARP-1B 2 634 0.95
puting Facility (HPCPB for computing the results described 4 371 0.81
in this paper; the former consisted of 512 processor nodes 8 255 0.59
and the latter consists of 256 nodes. 16 212 0.35

The implementation of the dissipative particle dynamics 32 243 0.15

algorithm is very similar to that of conventional molecular-
dynamics algorithm$55]. For example, we divide the peri-
odic spatial domairithe simulation cejlinto a regular array memory sizg with an increasing number of particlesl),
of equally sized link cells, such that each side of the rectanand is limited by computation time on all but the smallest
gular domain has an integer number of cells and each cell iaachines. The main simulations we performed for this paper
at leastr, across. Each link cell consists of a dynamically consisted of 6400 particles, and it is on the parallel and serial
allocated array of particles and pointers to the neighboringerformance of this size of simulation that we will make
cells. Individual particles consist of the position-momentummost of the following comments. Details of the performance
vector pair and a color index. of this size of simulation in two dimensions are shown in
For each time step we iterate through the particles in eacffables VIII and IX. These tables give the elapsed time per
link cell, calculating the force acting on each particle as itnode in seconds and relative parallel efficiency for the first
interacts with the particles in the same and neighboring linkL000 time steps, including data for a variety of computers
cells. Since the DPD force acts between pairs of particles, wand partition sizes. These data are for code compiled with the
must ignore half of the neighboring cells to avoid duplica-highest level of optimization, including some small reduc-
tion. When considering a different particle pair, we comparetions in floating-point accuracy. Table VIII describes the
the square of the separation distance wfih skipping to the  computers used to calculate the results in this paper, while
next particles if the pair is out of range. We then compute thél'able IX describes the computers to which we have recently
new position and velocity as determined by the finite-been allowed access, such as the Computer Services for Aca-
difference algorithnjsee Eq.(13) and Ref.[4]]. demic ResearciCSAR) Cray T3E and SGI Origin2000 in
We may write the complete state of the system to file, andManchester.
we can perform other calculations thereafter, for example to A typical simulation of 50 000 time steps takes 2.5 h on a
determine the temperature and pressure of the system. \B50 MHz Intel Pentium Il PC, the fastest single-processor
used the freely availableNu-MAKE utility to dictate the machine to which we had common access. This same simu-
compilation process, since the decision structures it containgtion would take 2.9 h on a 16-node partition of the T3D at
make it simple to write programs portable to a large range othe EPCC. However, to minimize fragmentation of the ma-
architectures. We created a comprehensive, automated tedtine, jobs using up to 32 nodes were limited to a total
suite to make it easy to verify that optimizations of the cal-execution time of 30 min. One possibility was to break up
culations did not accidentally change the results of the comthe run into 30-min portions, but this introduces additional
putations. overhead and complications; however, new jobs start in-
Given constant. and number densitg=p/m, the DPD  stantly because they need not be queued. A better option was
algorithm scales linearly(in both computation time and to run jobs on a 64-node partition, task farming four 16-node
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TABLE IX. Elapsed time(in seconds per node and parallel ally faster in processing than communicating when compared
efficiency of various computers for the first 1000 time steps of awith their older counterparts. Much better parallel efficiency
6400-particle simulation in two di_menfsions. These computers wergyas heen observed with larger simulations. The Cray T3D
not used to calculate the results in this paper. shows an unusual increase in efficiency when going from a
serial calculation to a 2-node parallel calculation with 6400
particles; this could be explained by any number of

Number Elapsed time Parallel

Machine ofnodes pernode efficiency hardware-specific arguments. We should note that the results
SGI Octane 1 152 1.00  for the Origin2000 include the effect of sharing the machine
(250 MHz MIPS R1000p 2 87 0.88 with other users, unlike all the other machines whose results
appear in Tables VIl and IX, for which each node was dedi-
CSAR Cray T3E-1200E 1 143 1.00 cated to our calculations.
(576X 600 MHz Alpha EV5 2 96 0.74 We decided to write the main simulation program in
4 75 0.48 C/C++ as opposed t6ORTRAN. This choice was made be-
8 67 0.27 cause C/G-+ were believed to be the most appropriate lan-
16 70 0.13 guages for dealing with DPD simulations which consist of a
large amount of bookkeeping wrapped around fairly simple
CSAR SGI Origin2000 1 133 100 computations. C/€+ and FORTRAN are highly portable to
(16X 250 MHz MIPS R1000D 2 81 0.83 different computer architectures, and although well-written
4 69 0.49 FORTRAN is more efficient on vector machin_es, for almost all
8 60 0.28 other situations they are of similar speed, given equally good

compilers. The use of vector maching@sich as the Hitachi
SR220) was not anticipated when this work on DPD began
jobs to run simultaneously. There was a 12-h limit to 64—512%everal years ago. Furthermore, it was not believed that the
node jobs(6 h during the week but there was often a long basic algorithm would vectorize well, due to the short vector
wait in the queues. If the efficient usage of billed time was aength in typical computations. Large programs are easier to
significant concern, sixteen 2-node jobs would complete irmaintain in C/C++ than inFORTRAN, although the increas-
8.0 h. However, during the week this meant restarting halfingly well-supportedFORTRAN 90 and 95 make the differ-
way through and waiting in the queue again. Similar com-ence less significant.
ments apply to the Hitachi SR2201, although its queues were Finally, we comment on our findings in tuning the mes-
limited to 8 h maximum. The extra administrative overheadssage passing interfad®Pl) calls for the Cray T3D. In our
involved and the billed usage means that we usually concersimulations, it was found that blocking callsends and re-
trated computation on the serial workstations. However, pareeives were faster than nonblocking calls and were easier to
allel execution becomes more attractive with larger simulause correctly. Furthermore, better scaling was achieved by
tions. sending the size of a variable-size message in a separate
The parallel efficiency of DPD with 6400 particles is message rather than probing incoming messages to deter-
good only for a modest number of processor nodes. This imine their size. Finally, using derived data types to remove
particularly true of the more modern parallel machines suchunneeded data from messages was slower than sending ev-
as the Cray T3E and SGI Origin2000, which are proportion-erything.
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