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Large scale instabilities in two-dimensional magnetohydrodynamics
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The stability of a sheared magnetic field is analyzed in two-dimensional magnetohydrodynamics with resis-
tive and viscous dissipation. Using a multiple-scale analysis, it is shown that at large enough Reynolds
numbers the basic state describing a motionless fluid and a layered magnetic field, becomes unstable with
respect to large scale perturbations. The exact expressions for eddy-viscosity and eddy-resistivity are derived in
the nearby of the critical point where the instability sets in. In this marginally unstable case the nonlinear phase
of perturbation growth obeys to a Cahn-Hilliard-like dynamics characterized by coalescence of magnetic
islands leading to a final new equilibrium state. High resolution numerical simulations confirm quantitatively
the predictions of multiscale analysis.

PACS number~s!: 52.35.Py, 47.20.Ft
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I. INTRODUCTION

The onset of turbulent fluid motion is tightly connecte
with the appearance of instabilities: a flow pattern sustai
by some external forcing is kept in equilibrium by dissipati
mechanisms; when dissipative coefficients are lowered
low a definite threshold the flow becomes unstable with
spect to small amplitude perturbations. Typically, the ch
acteristic length-scale of the perturbations that trigger
instability is smaller than that of the basic flow. The newbo
structures are themselves unstable and break into sm
flow patterns, this process eventually generating small-s
fluctuations smoothed out by dissipation. The net effect
the presence of small-scale instabilities is thus an ene
drag from large scale structures. This process is usually m
icked by introducing an effective dissipation~eddy viscos-
ity!, a very old idea based on the analogy with the derivat
of molecular dissipative coefficients in the framework of k
netic theory~see Ref.@1# for a general perspective!. Both the
former simplified picture and the kinetic analogy drama
cally break loose for two-dimensional flows, when instab
ties often develop at a scale larger than the one where en
injection takes place. The most renowned example of
phenomenon is observed in the context of the hydrodyna
cal Kolmogorov flow@2#, but other two-dimensional system
like the equivalent-barotropic@3# and the drift-wave@4#
models have been proven to exhibit such a phenomenol
In this case, then, the picture drawn above has to be so
how reversed, since larger and larger structures are gene
by the chain of instabilities and energy is extracted fro
smaller scales. Also the kinetic analogy must be revised
introducing the concept of negative eddy viscosity@5# in
order to take the inverse energy flux into account.

The purpose of the present paper is to describe the o
of large scale instabilities in two-dimensional magnetohyd
dynamics. This phenomenon will be interpreted in terms o
negative eddy resistivity, which in the case under investi
tion can be analytically derived from the equations of mot
by means of multiple scale analysis. The nonlinear phas
PRE 611063-651X/2000/61~4!/4329~7!/$15.00
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the growth of perturbations is also accessible by the sa
techniques, and numerical simulations provide a prec
quantitative assessment of the theoretical results. Eventu
the development of large scale perturbations tracks the r
to the turbulent inverse cascade of magnetic square pote
which characterizes 2D MHD@6#.

In Sec. II, we briefly introduce the fluid equations of ma
netohydrodynamics and their basic equilibrium states.
Sec. III, the behavior of large scale perturbations is inve
gated making use of multiple-scale analysis and exact
pressions for eddy viscosity and eddy resistivity are deriv
The main result is the appearance of large scale transv
instabilities, associated to negative values of the renorm
ized dissipative coefficients. In Sec. IV, we focus on the c
of marginal instability for which we obtain the effectiv
equation for the large scale behavior and we show that
full nonlinear regime is characterized by the evolution
wards a fixed point. In Sec. V, we present the results
direct numerical simulations~DNS!, which display a clear
quantitativeagreement with the predictions of multiple-sca
analysis, both in the linear and in the nonlinear phase.

II. MHD EQUATIONS AND BASIC EQUILIBRIA

MHD equations are relevant in many different physic
contests, such as astrophysics, laboratory plasma physic
magnetized liquid metal dynamics. The applicability of th
model, which is a fluid description of plasma, relies on t
assumption that all the length scales under considera
must largely exceed the ion Larmor radius. In a strong
ternal magnetic field which is oriented alongz, Bz@B' , the
motion becomes almost two-dimensional and the MH
model is well approximated by the 2D MHD equations f
the magnetic flux functionc associated to the planar mag
netic field (B'5ez3¹c) and for the stream functionw of
the incompressible planar flow (v'5ez3¹w) @7#

]c

]t
1@w,c#5h~¹2c2J0!, ~1!
4329 © 2000 The American Physical Society
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]¹2w

]t
1@w,¹2w#5@c,¹2c#1n¹4w, ~2!

where, following a standard notation, the convective ter
are written as Jacobian operators (@ f ,g#5]xf ]yg2]xg]yf ).
The above equations have been normalized with respe
the characteristic macroscopic lengthL, magnetic fieldB̄,
and Alfvén timetA5L/vA , while h andn are, respectively,
the inverse Lundquist number (hc2/4pvAL) and the inverse
Reynolds number (n/vAL). The Alfvèn velocity, vA

5B̄/(4pmn)1/2, is the velocity of small amplitude waves
propagating along the magnetic fieldB̄ in a uniform plasma
with densitynm.

We will consider as basic equilibrium a magnetic shea
a motionless conducting fluidc05F(x),w050, whereF is
any function of a single coordinate. The forcingJ05¹2c0
~magnetic energy input! balances the resistive term in E
~1!. Notice that at the equilibrium the vorticity¹2w0 is not
enhanced by the Lorentz force@c0 ,¹2c0# in Eq. ~2! due to
the basic magnetic flux one dimensionality. For large val
of resistivity and viscosity, this equilibrium is stable. A
smaller values of the dissipation the only source of instabi
is in the nonlinear terms, whose effect will be shown
average to reduce to a renormalization of the molecular
efficients.

In the following we will chooseF(x)5cosx and we will
work in a slab geometry with periodic boundary condition
Such a configuration is widely used to study the evolution
large scale instabilities for its simplicity: any periodic fun
tion F(x) would fit. In this framework we will show that it is
possible to evaluate analytically the renormalized resistiv
and viscosity. It will turn out that eddy-resistivity can atta
negative values which are the fingerprints of large scale
stability.

III. MULTIPLE-SCALE ANALYSIS

We are interested in the evolution of perturbations wh
develop on a length scale~say Lbox) much larger than the
basic magnetic flux typical scaleL. To this purpose, we can
exploit the separation of scales as a perturbative param
@«5O(L/Lbox)# and recast Eqs.~1!,~2! in a multiple-scale
form by introducing a set ofslow variables (X5«x,Y
5«y,T5«2t) in addition to thefast variables (x,y,t) on
which the basic flow evolves. The new variables have to
considered independent of the fast variables. Accordin
the differential operators appearing in Eqs.~1!,~2! are trans-
formed into

] i→] i1«¹ i , ] t→] t1«2]T , ~3!

and the fields are expanded perturbatively in« as

c5c (0)1«c (1)1«2c (2)1•••, ~4!

w5w (0)1«w (1)1«2w (2)1•••, ~5!

wherec (k) and w (k) depend on both fast (x,y,t) and slow
(X,Y,T) variables. In the multiscale methods no prescript
is given a priori for the ordering between the two sets
variables. Indeed, in this problem, the scaling of the sl
s
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time T is suggested by physical hints: we are looking for
diffusive behavior of large scales which is supposed to t
place on times of orderO(«22) ~due to the eddy resistivity
and viscosity!. It is worth noticing that in general the large
scale MHD dynamics is first order in time and space~the
well-knowna effect! @5,8,9#, but it can be shown that this i
not the case for parity-invariant basic configurations@10#.

By substituting Eq.~3! and Eqs.~4!,~5! into Eqs.~1! and
~2! and by equating the same powers of«, one easily finds a
hierarchy of equations in which perturbations belonging
different order of expansion appear coupled and depend
fast and slow variables. The dependence on the fast tim
variables can be discarded by observing that it reduces
transient not affecting the long-time behavior, thanks to
fact that the forcing and the basic flux are time independ
~a rigorous proof needs the construction of a Poincare´ in-
equality! @11#.

At each order in«, we have an equation in which bot
fast and slow variables appears. We look for solutions w
the same periodicities as the basic equilibrium. The dep
dence on the fast variable is then filtered out by averag
over thex-y periodicity. In this way we end up with a set o
equations involving the large scale fields

C (k)~X,Y,T!5^c (k)&x,y , F (k)~X,Y,T!5^w (k)&x,y .

The equations have to be solved recursively because s
tions of lower order appear as coefficients in the followi
steps of the hierarchy. In Appendix A we give a more d
tailed description of the procedure we followed. Briefly, w
can here anticipate that the equation for the large scale m
netic flux C (0) is obtained as solvability condition at orde
«2, while the equation for the large scale vorticity¹2F (0)

comes out at order«4

]C (0)

]T
1@F (0),C (0)#5h¹2C (0)2

1

2n

]2C (0)

]Y2
, ~6!

]¹2F (0)

]T
1@F (0),¹2F (0)#

5@C (0),¹2C (0)#1
1

2

]2

]X ]Y H 1

n2 S 112
n

h D S ]C (0)

]Y D 2

1
1

h2 S ]F (0)

]Y D 2J 1
1

2h

]2

]Y2 S ]2

]Y2
23

]2

]X2D F (0)

1n¹4F (0). ~7!

Let us focus our attention on diffusive terms in Eqs.~6!
and ~7!: as a consequence of the anisotropy of the ba
small-scale flow the eddy diffusivities are anisotropic to
For longitudinal perturbations @F (0)5F (0)(X,T),C (0)

5C (0)(X,T)# both viscosity and resistivity are left un
changed. On the other hand, for transverse perturbat
@F (0)5F (0)(Y,T),C (0)5C (0)(Y,T)# the renormalization of
resistivity due to the small scale magnetic energy hold
negative term (21/2n), while molecular viscosity is in-
creased by the eddy contribution (1/2h). From a general
point of view, the multi-scale procedure eliminates all t
contributions involving fast variables. The couplings b
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tween fast and slow components in the nonlinear terms
transformed into a renormalization of the molecular coe
cients and in the new nonlinear terms in Eqs.~6!,~7!.

Linear stability analysis is performed by assuming a la
scale perturbation of the typeC (0);exp(GCT1ıKXX
1ıKYY) and F (0);exp(GFT1ıKXX1ıKYY). The dispersion
relations read

GC52hKX
22S h2

1

2n DKY
2 , ~8!

GF52
1

K2 F S n1
1

2h DKY
412S n2

3

4h DKX
2KY

21nKX
4 G .

~9!

The stability problem can be rephrased in simpler form
introducing the parametersP51/2hn and T5(KX /KY)2.
Marginal stability lines (GC5GF50) are then given by the
equations

12P1T50, ~10!

11P12S 12
3

2
PDT1T250, ~11!

and are plotted in Fig. 1. For high enough values of mole
lar resistivity and viscosity (P,1), the basic flow is stable
against any large scale perturbation. Increasing the Reyn
numbers, the first instability sets in atP51 andT50, i.e.,
for transverse perturbations. We notice that for 1,P,16/9
the large scale vorticity is always stable (GF,0) and the
magnetic potential growth rateGC is maximum in the case
T50.

The large scale equations~6!,~7! are actually more com
plicated than the original ones. In order to have an insigh
the phenomenology of the large-scale dynamics, it is us
to limit ourselves to the situation of marginal instability
the neighborhood of the critical point (P51,T50).

FIG. 1. Marginal stability lines for magnetic flux and strea
function. Region I: stable withGC,0 andGF,0. Region II:GC

.0, GF,0. Region III:GC,0, GF.0. Region IV: instable with
GC.0, GF.0.
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IV. NONLINEAR EVOLUTION AT MARGINAL
INSTABILITY

Special attention deserves the development of this la
scale instability for Reynolds numbers close to the margi
stability threshold. In this regime we will see that the lar
scale equations became substantially simpler and it is p
sible to draw analytically conclusions concerning the nonl
ear behavior. The final state is a fixed point characterized
a magnetic island of the size of the box. Numerical simu
tions indicate that this picture survive even for higher valu
of the Reynolds numbers.

The nonlinear evolution in the marginal regime is d
scribed by two coupled equations which generalize
Cahn-Hilliard equation, found for the hydrodynamical cou
terpart of this system, the so-called Kolmogorov flo
@10,12,13#. Let us suppose to move the parameters just ab
the marginal stability line

h5hc~12«2!, n5nc~12«2!, ~12!

where hcnc51/2 (P51). The perturbative parameter« is
thus fixed by the distance betweenh,n and their critical
values hc ,nc . We will take into account only transvers
perturbations~i.e., without dependence onX) since, as
shown in Fig. 1, the large scale magnetic flux linear insta
ity is mainly transverse, close toP51. According to Eq.~6!,
the transverse eddy-resistivity in the neighborhood of
critical line defined by Eq.~12! is of orderO(«2), thus sug-
gesting a scaling for the slow timeT5«4t. The decomposi-
tion rules~3! become

]x→]x ]y→]y1«]Y , ] t→] t1«4]T . ~13!

The same multiscale technique described above can
adopted to solve perturbatively Eqs.~1! and ~2!. At first or-
der in « we obtain

c5cosx1C (0)~Y,T!1«C (1)~Y,T!, ~14!

w52hc«
]C (0)

]Y
sinx. ~15!

We notice that the large scale stream function is linea
stable and it is simply driven by the magnetic flux perturb
tion C (0). Averaging the equations over the fast variabl
the evolution equations forC (0) andC (1) emerge at order«4

and«5, respectively,

]TC (0)52
27

8
hc]4YC (0)22hc]YYC (0)

112hc]YYC (0)~]YC (0)!2, ~16!

]TC (1)52
27

8
hc]4YC (1)22hc]YYC (1)

112hc]YYC (1)~]YC (0)!2

124hc]YC (0)]YYC (0)]YC (1). ~17!

In the first equation~16!, one easily recognizes the re
nowned Cahn-Hilliard equation@12#, which may be written
in variational form
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]C (0)

]t
52

dV@C (0)#

dC (0)
.

The existence of the Lyapunov functional

V@C (0)#5hcE dYF2~]YC (0)!21~]YC (0)!4

1
27

16
~]YYC (0)!2G ~18!

indicates that asymptotically the solution of Eq.~16! in a
bounded domain reaches a fixed point. This stationary s
tion is approached by a sequence of metastable states o
creasing dominating mode. We thus expect to observe a
linear evolution dominated by a magnetic island coalesce
analogous to the vortex pairing in 2D hydrodynamics@13#.

Equation~17! is linear inC (1), with coefficients depend
ing nonlinearly onC (0). It also can be written as a gradie
flow, with a Lyapunov functional

V@C (1)#5hcE dYF2~]YC (1)!216~]YC (0)!2~]YC (1)!2

1
27

16
~]YYC (1)!2G . ~19!

We conclude this section by observing that the dispers
relation forC (0);exp(GT1ıKY) now reads

G52
27

8
hcK

412hcK
2. ~20!

It implies instability (G.0) for anyK&0.77. We notice that
information about the characteristic scale of unstable mo
was absent in the general treatment presented in the prev
section because at any finite distance from the instab
line, all the large scale modes are unstable.

V. NUMERICAL RESULTS

The analytical results presented in the previous sec
have been checked by extensive direct numerical simulat
of MHD equations~1!,~2!. In order to force a transverse pe
turbation, we integrate the equations on a rectangular
with L5Lx52p and Ly>Lx . According to the notation
used at the beginning of Sec. III, a large scale instability
only develop on they direction for an aspect ratior
5Lx /Ly,1.

Given the numerical values of parametersh andn, from
Eq. ~12! and the conditionhcnc51/2 we have

«5A12A2hn, hc5A h

2n
, ~21!

which are used for the theoretical predictions of the previ
section.

The simplest check of our results concerns the gro
rates of the instability which, in the initial linear regime, a
given by the dispersion relation~20!. In physical ~not re-
scaled! variables~20! becomes
u-
de-
n-
e,

n

es
us
y

n
ns

ab

n

s

h

g52
27

8
hck

412hc«
2k2, ~22!

which shows that the largest unstable wave number iskmax
.0.77«. The smallest transverse wave number isk15r thus,
in order to numerically observe the instability, it must ber
<0.77«.

In Fig. 2 we report the growth rates of the first modes
a simulation withr 51/64, n50.49, andh51. From Eq.
~21! we have«.0.1 and thus, according to Eq.~22!, only the
first four modes are unstable. The initial perturbation
small, random and on all the first 20 modes, we are then a
to observe also negativeg ’s ~stable modes!. The comparison
with the linear prediction~22! is very good even if« is not
very small. The numerical data of Fig. 2 have been obtai
by a linear fit of the logarithm of the mode amplitude vers
time in the early stages of the simulation.

Let us now consider the nonlinear stage of the pertur
tion growth. We describe here a different simulation withr
51/16 and«.0.32 which was advanced for a very lon
lapse of time. The nonlinear evolution will ultimately lead
a fixed point by a succession of long lasting quasiequilibri
states of decreasing wave number. The evolution of the
plitudes of the first five transverse modes computed from
direct numerical simulation is plotted in Fig. 3. Notice that

FIG. 2. Growth ratesg of the transverse Fourier modesk for
simulation withr 51/64, n50.49, andh51.0. The continuous line
represents the linear prediction~22!.

FIG. 3. Time evolution of magnetic potential of the first Fouri
transverse components of wave numberkn5n/16 for the DNS with
r 51/16, h50.4, andn51.0. The number of unstable modes is
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this case the fifth modek55/16 is linearly stable but it is
nonlinearly driven by smaller wave number.

The typical linear time is now rather short, 1/g;O(1),
and the final stationary state, dominated by the largest av
able modek1, is reached at very long times,t.1000. At
intermediate times, almost stationary metastable states, c
acterized by decreasing leading mode, are punctuated by
coalescence processes. Most of the energy dissipation t
place during these fast reconnection processes. In Fig. 4
display the period-two metastable state at timet5200 and
the final, period-one state att520 000. The dynamical pic
ture arising from Figs. 3 and 4 qualitatively agrees with t
dynamics described by the Cahn-Hilliard equation@13#.

To check quantitatively the validity of nonlinear mult
scale analysis we have numerically integrated the Ca

FIG. 4. Snapshot of the magnetic fluxc ~left! and stream func-
tion w ~right! for t5200 ~upper! and t520 000~lower!.

FIG. 5. Time evolution of the first square Fourier components
C (0) solution of the Cahn-Hilliard equation. Compare with Fig.
relative to the direct numerical simulation of MHD equations.
il-

ar-
ast
kes

e

e

n-

Hilliard equation for the large scale magnetic flux~16! with
the same parameters of the DNS. As shown in Fig. 5 we
an impressive agreement even for very long times. The fi
relative amplitudes of the most energetic transverse mode
recovered within a 10% accuracy.

As a further test of the multiscale predictions, we check
the relations~14!,~15! during the evolution. At leading orde
in «, C (0)(y,t) is obtained by subtracting the basic flo
cosx from the magnetic fluxc(x,y,t). The resulting field,
which reveals to be indeedx independent, is then used t
reconstruct the stream function by means of Eq.~15!. The
results for the configuration of Fig. 4 is shown in Fig. 6.

VI. CONCLUSIONS

We have investigated the issue of stability of highly a
isotropic, magnetic-energy dominated equilibrium states
the MHD fluid model equations. These configurations a
known to be unstable for small values of resistivity leadi
to the formation of thin boundary layers in the nearby of t
neutral line of the magnetic field@7,14#. At variance with the
above case, we focused our attention on the range of mo
ate Lundquist/Reynolds numbers, where the boundary la
approximation is not fruitfully applicable. We have show
analytically, by means of multiple-scale analysis, that a ty
of large scale instability can arise above a definite thresh
and that for a generic perturbation the maximum growth
achieved by modes transverse to the magnetic field line
the basic state. On the basis of this result, we have perfor
the multiple scale analysis for the marginally unstable c
and for purely transverse perturbations. The analytic pro
dure yields a set of partial differential equations which d
scribe the full nonlinear evolution of magnetic perturbation
It is possible to show that these equations posses
Lyapunov functional and thus their solutions asymptotica
approach a fixed point which represents a nonlinear equ
rium different from the basic one. Direct numerical simul
tions of two-dimensional MHD performed with a pse
dospectral code reveal an excellentquantitative agreemen
with the first-order analytical prediction in a wide range
values of the perturbative parameter. The developmen
large scale magnetic instabilities, caused by the occurre
of negative eddy diffusivities, is eventually related to inver
cascade of magnetic potential which is known to feature
two-dimensional MHD turbulence@15,16#.

f

FIG. 6. Snapshot of the stream functionw reconstructed accord
ing to Eq.~15! for t5200 ~left! and t520 000~right!.
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Summarizing, the loss of stability of a magnetic shear
moderate Reynolds number is due to the growth of la
scale perturbations whose main traits can be captured
multiple scale analysis. When there is a single neutral line
large enough Lundquist/Reynolds numbers, this mechan
is overcome by the formation of resistive boundary laye
The transverse large-scale instability here described is lik
to be the generic mechanism of instability of sheared m
netic fields even for large Lundquist/Reynolds numb
whenever the basic state admits a large number of ne
lines.
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APPENDIX: DERIVATION OF THE LARGE
SCALE EQUATIONS

As anticipated in Sec. III, we give here a detailed desc
tion of the procedure we followed to derive the set of E
~6!,~7! governing the large scale dynamics. Since the alge
soon becomes heavy and nothing conceptually different h
pens for higher order terms, we limit ourselves to the sec
order in the expansion when Eq.~6! is found. We recall that
the basic idea of multiple scale analysis~that of treating fast
and slow variables independently! leads to the prescription

] i→] i1«¹ i , ] t→] t1«2]T , ~A1!

for the differential operators appearing in MHD equation
As a first step, then, we substituted Eq.~A1! and the pertur-
bative expansion

c5c (0)1«c (1)1«2c (2)1•••,

w5w (0)1«w (1)1«2w (2)1•••

in the MHD equations to yield two infinite sets of equatio
by equating to zero coefficients of different powers in«.
As the unknown fields c (k)(x,y,t;X,Y,T) and
w (k)(x,y,t;X,Y,T) are coupled hierarchically, these equ
tions need to be solved recursively. It can be sufficient
look for functions with the same periodicity as the ba
field.

To leading order, the equations simply read

2hS ]2c (0)

]x2
1cosxD 50,

2n
]4w (0)

]x4
50

with solutions
t
e
a

at
m
.
ly
-

s
ral

l
’’

.

-
.
ra
p-
d

.

-
o

c (0)~x;X,Y,T!5C (0)~X,Y,T!1cosx,

w (0)~x;X,Y,T!5F (0)~X,Y,T!.

We notice here that at each step the solution will be given
the sum of a fluctuating~small scale! contribution and a
mean~large scale! contribution, namely,

C (k)~X,Y,T!5^c (k)&x , F (k)~X,Y,T!5^w (k)&x .

At first order, the equations are

]w (0)

]x

]c (0)

]Y
2h

]2c (1)

]x2
12

]2c (0)

]x ]X
2

]w (0)

]Y

]c (0)

]x
50,

2n
]4w (1)

]x4
14

]4w (0)

]x3 ]X
2

]c (0)

]x

]3c (0)

]x2 ]Y
1

]c (0)

]Y

]3c (0)

]x3

2
]w (0)

]Y

]3w (0)

]x3
1

]w (0)

]x

]3w (0)

]x2 ]Y
50.

As expected, the zeroth-order fields appear in the first or
equation as coefficients. Substituting the solutions just fou
above, the two equations reduce to

2h
]2c (1)

]x2
1

]F (0)

]Y
sinx50,

2n
]4w (1)

]x4
1

]C (0)

]Y
sinx50,

which can now be straightforwardly solved, leading to t
first order fields

c (1)~x;X,Y,T!5C (1)~X,Y,T!2
1

h

]F (0)

]Y
sinx,

w (1)~x;X,Y,T!5F (1)~X,Y,T!1
1

n

]C (0)

]Y
sinx.

Notice again that the solutions are well-behaved, since t
have the required periodicity in the fast variables.

The same is not true for the solution of the magnetic fl
function at second order. Consider in fact the equation

1

h S ]F (0)

]Y D 2

cosx2
]F (0)

]Y

]C (0)

]X
1

]F (1)

]Y
sinx

1
1

n

]2C (0)

]Y2
sin2 x2h

]2C (0)

]Y2
2h

]2c (2)

]x2

1
1

n S ]C (0)

]Y D 2

cosx12
]2F (0)

]X ]Y
cosx2h

]2C (0)

]X2

1
]C (0)

]Y

]F (0)

]X
1

]C (0)

]T
50, ~A2!



in

e

ar
ed
the
n

r-
ex-
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in which the lower order solutions have already been
serted. When integrated twice with respect tox to find c (2),
it gives origin to secular terms, in fact proportional tox2. In
order to guarantee the periodicity conditions to be satisfi
we then have to impose that their sum is zero, namely

]C (0)

]T
1@F (0),C (0)#2h¹2C (0)1

1

2n

]2C (0)

]Y2
50.
B

-

-

d,

This procedure~derive the equations, check for secul
terms, impose solvability conditions, find the well-behav
solutions! has to be repeated up to the fourth order, when
evolution equation~7! for the large scale stream functio
F (0) arises at last as a solvability condition.

Similarly, all the machinery is reproducible for the ma
ginal unstable case, when the dissipative coefficients are
panded about the critical valueshc ,nc . We used a symbolic
manipulator software~MAPLE! to derive Eqs.~6!,~7! and
~16!,~17!.
-
e,
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