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Large scale instabilities in two-dimensional magnetohydrodynamics
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The stability of a sheared magnetic field is analyzed in two-dimensional magnetohydrodynamics with resis-
tive and viscous dissipation. Using a multiple-scale analysis, it is shown that at large enough Reynolds
numbers the basic state describing a motionless fluid and a layered magnetic field, becomes unstable with
respect to large scale perturbations. The exact expressions for eddy-viscosity and eddy-resistivity are derived in
the nearby of the critical point where the instability sets in. In this marginally unstable case the nonlinear phase
of perturbation growth obeys to a Cahn-Hilliard-like dynamics characterized by coalescence of magnetic
islands leading to a final new equilibrium state. High resolution numerical simulations confirm quantitatively
the predictions of multiscale analysis.

PACS numbsd(s): 52.35.Py, 47.20.Ft

[. INTRODUCTION the growth of perturbations is also accessible by the same
techniques, and numerical simulations provide a precise
The onset of turbulent fluid motion is tightly connected quantitative assessment of the theoretical results. Eventually
with the appearance of instabilities: a flow pattern sustainethe development of large scale perturbations tracks the route
by some external forcing is kept in equilibrium by dissipative to the turbulent inverse cascade of magnetic square potential
mechanisms; when dissipative coefficients are lowered behich characterizes 2D MHIX6].
low a definite threshold the flow becomes unstable with re- I Sec. Il, we briefly introduce the fluid equations of mag-
spect to small amplitude perturbations. Typically, the charnetohydrodynamics and their basic equilibrium states. In
acteristic length-scale of the perturbations that trigger thé>ec. lll, the behavior of large scale perturbations is investi-
instability is smaller than that of the basic flow. The newborndated making use of multiple-scale analysis and exact ex-
structures are themselves unstable and break into smallefessions for eddy viscosity and eddy resistivity are derived.
flow patterns, this process eventually generating small-scal€he main result is the appearance of large scale transverse
fluctuations smoothed out by dissipation. The net effect ofnstabilities, associated to negative values of the renormal-
the presence of small-scale instabilities is thus an energized dissipative coefficients. In Sec. IV, we focus on the case
drag from large scale structures. This process is usually min2f marginal instability for which we obtain the effective
icked by introducing an effective dissipatideddy viscos- edquation for the large scale behavior and we show that the
|ty), a Very old idea based on the ana'ogy with the derivatiorfull nonlinear regime iS Characterized by the eVOIUtion to-
of molecular dissipative coefficients in the framework of ki- wards a fixed point. In Sec. V, we present the results of
netic theory(see Ref[1] for a general perspectiyeBoth the direct numerical simulation$DNS), which display a clear
former simplified picture and the kinetic analogy dramati-guantitativeagreement with the predictions of multiple-scale
cally break loose for two-dimensional flows, when instabili- @nalysis, both in the linear and in the nonlinear phase.
ties often develop at a scale larger than the one where energy
injection takes place. The most renowned example of this Il. MHD EQUATIONS AND BASIC EQUILIBRIA
phenomenon is observed in the context of the hydrodynami- , , , ,
cal Kolmogorov flow[2], but other two-dimensional systems ~ MHD equations are relevant in many different physical
like the equivalent-barotropi¢3] and the drift-wave[4]  CONtests, such as astrophysics, laboratory plasma physics, or
models have been proven to exhibit such a phenomenolog§?@dnetized liquid metal dynamics. The applicability of this
In this case, then, the picture drawn above has to be som&odel, which is a fluid description of plasma, relies on the
how reversed, since larger and larger structures are generat@gsumption that all the length scales under consideration
by the chain of instabilities and energy is extracted fromMust largely exceed the ion Larmor radius. In a strong ex-
smaller scales. Also the kinetic analogy must be revised byernal magnetic field which is oriented alongB,>B, , the
introducing the concept of negative eddy viscodi§j in motion becomes almost two-dimensional and the MHD
order to take the inverse energy flux into account. model is well approximated by the 2D MHD equations for
The purpose of the present paper is to describe the onsté magnetic flux function associated to the planar mag-
of large scale instabilities in two-dimensional magnetohydroJ1etic field B, =&, XV) and for the stream functiop of
dynamics. This phenomenon will be interpreted in terms of ghe incompressible planar flow (=e,xV¢) [7]
negative eddy resistivity, which in the case under investiga-
tion can be analytically derived from the equations of motion (9_1/;+[ 1= (V24— Jg) (1)
by means of multiple scale analysis. The nonlinear phase of at ¢ 1= (V4= Jo),
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V2 time T is suggested by physical hints: we are looking for a
p +[@,V2]=[4,V2y]+ vV, (2)  diffusive behavior of large scales which is supposed to take
place on times of orde® (e~ “) (due to the eddy resistivity

where, following a standard notation, the convective term@nd viscosity. It is worth noticing that in general the large-

are written as Jacobian operatof$,61=d,fd,g— 3,94, f). scale MHD dynamics is first order in time and spadiae.

The above equations have been normalized with respect wet”iﬁnownafeffecﬁ [t589] bUttltbcan be s?own tt%z;\]te i[hls is
s ; .« hotthe case for parity-invariant basic configuratiphg].

the characteristic macroscopic lendth magnetic fieldB, oo X

and Alfven time 7a=L/v 4, wr?ile 7 a?]fjv arg, respectively, By SUbSt'tUtmg Eq/(3) and Eqs(4),(5) into Eqsf.(l). and

the inverse Lundquist number¢2/4mv AL) and the inverse (2) and by equating the same powerseobne easily finds a

N . hierarchy of equations in which perturbations belonging to
Reynolds  number i{/vaL). The Alfven velocity, v, different order of expansion appear coupled and depend on

=B/(4mmn)*Z, is the velocity of small amplitude waves, fast and slow variables. The dependence on the fast time
propagating along the magnetic fiedin a uniform plasma variables can be discarded by observing that it reduces to a
with densitynm. transient not affecting the long-time behavior, thanks to the
We will consider as basic equilibrium a magnetic shear infact that the forcing and the basic flux are time independent
a motionless conducting fluighy=F(x),¢0=0, whereFis  (a rigorous proof needs the construction of a Poindare
any function of a single coordinate. The forcidg=V2y,  equality [11].
(magnetic energy inputbalances the resistive term in Eq. At each order ine, we have an equation in which both
(1). Notice that at the equilibrium the vorticity?¢, is not  fast and slow variables appears. We look for solutions with
enhanced by the Lorentz forgey, V2] in Eq. (2) due to  the same periodicities as the basic equilibrium. The depen-
the basic magnetic flux one dimensionality. For large valueglence on the fast variable is then filtered out by averaging
of resistivity and viscosity, this equilibrium is stable. At over thex-y periodicity. In this way we end up with a set of
smaller values of the dissipation the only source of instabilityequations involving the large scale fields
is in the nonlinear terms, whose effect will be shown on
average to reduce to a renormalization of the molecular co-  ¥®(X,Y, T)=(),,, POXY,T)=(eW),,.
efficients. . .
In the following we will chooseF(x) =cosx and we will The equations have to be solved re_cyrswe]y because .SOIU'
work in a slab geometry with periodic boundary conditions.ions of lower order appear as coefficients in the following

Such a configuration is widely used to study the evolution offtﬁps gf thg rt1.|erar(f:r:%. In Appdend|x AfWIEI’ glvg %mcf)lre de-
large scale instabilities for its simplicity: any periodic func- alied description of the proceduré we followed. brietly, we

tion A(x) would fit. In this framework we will show that it is can here anticipate that the equation for the large scale mag-

possible to evaluate analytically the renormalized resistivitﬂ“ft'C ETX% IS otg_tam;ed ‘3‘:’ slolvablhty Icondn;p%?aé(%r)der
and viscosity. It will turn out that eddy-resistivity can attain £ whiie the eq(;JaJ‘on or the large scale vortic
negative values which are the fingerprints of large scale inCOMes out at order

stability.

@ 24y, (0)
i +[ PO (O] = V2P — i v (6)
IIl. MULTIPLE-SCALE ANALYSIS JT 2v Y2
We are interested in the evolution of perturbations which  5v2¢(0)
develop on a length scalsay L,,) much larger than the T+[¢(O),V2¢(O)]
basic magnetic flux typical scale To this purpose, we can
exploit the separation of scales as a perturbative parameter 1 2 (1 v\ [ gp ()2
[e=0O(L/Lyy] and recast Eqs(1),(2) in a multiple-scale =[\I’(°),V2\If(°)]+§ {—( —)( )
- . . = IXAY | 12 aY
form by introducing a set ofslow variables K=¢&x,Y
=s_y,T=82t) i_n addition to thefast variabl_es ky,t) on 1 {992 1 2/ 2 72
which the basic flow evolves. The new variables have to be +_< ) — | — 3 |p®
considered independent of the fast variables. Accordingly, 7?2\ Y 2n gy2\ gY?  oX?
%?)?mdégeirnigual operators appearing in E@b),(2) are trans VRO @
. i 2 Let us focus our attention on diffusive terms in E¢®)
G diteVi, doditetir, ® and (7): as a consequence of the anisotropy of the basic
and the fields are expanded perturbatively:ias small-scale flow the eddy diffusivities are anisotropic too.
For longitudinal perturbations [®(®=® (X, T),¥©
= Ot ey Dy g2y Dy .. (4 =¥O(X,T)] both viscosity and resistivity are left un-
changed. On the other hand, for transverse perturbations
0=+ goW 42004 ... (59 [@O=O(Y,T),¥@=¥0O)(Y,T)] the renormalization of

resistivity due to the small scale magnetic energy holds a
where 0 and ¢ depend on both fastx(y,t) and slow negative term € 1/2v), while molecular viscosity is in-
(X,Y,T) variables. In the multiscale methods no prescriptioncreased by the eddy contribution (%2 From a general
is givena priori for the ordering between the two sets of point of view, the multi-scale procedure eliminates all the
variables. Indeed, in this problem, the scaling of the slowcontributions involving fast variables. The couplings be-
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IV. NONLINEAR EVOLUTION AT MARGINAL
INSTABILITY

Special attention deserves the development of this large
scale instability for Reynolds numbers close to the marginal
stability threshold. In this regime we will see that the large
scale equations became substantially simpler and it is pos-
sible to draw analytically conclusions concerning the nonlin-
ear behavior. The final state is a fixed point characterized by
a magnetic island of the size of the box. Numerical simula-
tions indicate that this picture survive even for higher values
. . . . . of the Reynolds numbers.

0 0.5 1 1.5 2 25 3 The nonlinear evolution in the marginal regime is de-

T scribed by two coupled equations which generalize the
Cahn-Hilliard equation, found for the hydrodynamical coun-
terpart of this system, the so-called Kolmogorov flow
[10,12,13. Let us suppose to move the parameters just above
the marginal stability line

FIG. 1. Marginal stability lines for magnetic flux and stream
function. Region I: stable witli"y, <0 andI'(<0. Region II:T'y
>0, I'p<0. Region llI:T'y<0, I',>0. Region IV: instable with
I'y>0, T'>0.

n= 77c(1_32)v V= Vc(l_sz)r (12
tween fast and slow components in the nonlinear terms are
transformed into a renormalization of the molecular coeffi-where n.v.=1/2 (P=1). The perturbative parameter is
cients and in the new nonlinear terms in E),(7). thus fixed by the distance betweepnv and their critical

Linear stability analysis is performed by assuming a largevalues 7.,v.. We will take into account only transverse
scale perturbation of the typeW(@~explyT+IKyX  perturbations(i.e., without dependence oX) since, as
+1KyY) and @O~ expl,T+IKyX+IKyY). The dispersion shown in Fig. 1, the large scale magnetic flux linear instabil-
relations read ity is mainly transverse, close #®=1. According to Eq(6),

the transverse eddy-resistivity in the neighborhood of the
1 critical line defined by Eq(12) is of orderO(&?), thus sug-
[y=— 77K§<_( n— _) K%, (8) gesting a scaling for the slow timie=s*t. The decomposi-
2v tion rules(3) become

. 2 dx—dy dy—dytedy, d—ditetor. (13
_ 4 212 4 . . .
Fq)——ﬁ VJFE Ky+2| v— E) KXKy+ vKx|. The same multiscale technique described above can be
o) adopted to solve perturbatively Eq4) and (2). At first or-
der ine we obtain
The stability problem can be rephrased in simpler form by y=cosx+¥O(Y T)+e¥O(Y,T), (14)
introducing the parameterB=1/2pv and T=(Ky/Ky)?2. ©
Marginal stability lines [y =1"¢,=0) are then given by the _ A
equations =21 pY sinx. (15)
1-P+T=0 10 We notice that the large scale stream function is linearly
B (10 stable and it is simply driven by the magnetic flux perturba-
tion ¥(©. Averaging the equations over the fast variables,
3 , the evolution equations fob (©) and¥ (Y emerge at ordes*
1+ P+2( 1- EP)T-FT =0, (1) ande®, respectively,

27
0)— _ —_ (0)_ (0)
and are plotted in Fig. 1. For high enough values of molecu- Ir¥ g MedayV = 2mcdy ¥

lar resistivity and viscosity R<1), the basic flow is stable

against any large scale perturbation. Increasing the Reynolds + 1270y y W O (ay W ()2, (16)
numbers, the first instability sets in Bt=1 andT=0, i.e., 07

ions. i <
for transverse perturbations. We notice that fer R<<16/9 G W=—""p 5, D2y 5 D)

the large scale vorticity is always stabl€(<0) and the
magnetic potential growth ratéy is maximum in the case
T:% p g v + 12770(9YY\I,(1)( aY\P(O))Z

“The large scale gquatiorﬁ@),(?) are actually more com- + 2450y ¥ gy, W O g, P ), (17)
plicated than the original ones. In order to have an insight of
the phenomenology of the large-scale dynamics, it is useful In the first equation(16), one easily recognizes the re-
to limit ourselves to the situation of marginal instability in nowned Cahn-Hilliard equatiofi2], which may be written
the neighborhood of the critical poinP&1,T=0). in variational form
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v sv[wO)] m
a - sp@ 0
The existence of the Lyapunov functional 10
N .
V[‘I’(O)]=ncf dY| — (¥ O)2+ (9 W4
210* |
27
+ 1_6(3\(\(‘1’(0))2 (18
310 . '
0 0.05 0.1

indicates that asymptotically the solution of EG.6) in a
bounded domain reaches a fixed point. This stationary solu- ky
tion is approached by a sequence of metastable states of de'FlG. 2. Growth ratesy of the transverse Fourier modésfor
creasing dominating mode. We thus expect to observe a NO”imulation withr = 1/64, v=0.49 andy=1.0. The continuous line
linear evolution dominated by a magnetic island coalescenC(?epresents the linear p'redictiQElZ).
analogous to the vortex pairing in 2D hydrodynaniit8].
Equation(17) is linear inW®), with coefficients depend- o7

|ﬂng non]mearly on¥ @, It aIsp can be written as a gradient y=— — pk*+27.eK2, (22)

ow, with a Lyapunov functional 8

— (YT )2+ 6(ay W ()25, 1)? which shows that the largest unstable wave numbé,is
=0.77e. The smallest transverse wave numbdgisr thus,
in order to numerically observe the instability, it must be
: 19 <0.7%.
In Fig. 2 we report the growth rates of the first modes for
We conclude this section by observing that the dispersio@ simulation withr=1/64, »=0.49, and»=1. From Eq.
relation for¥ (9~ exp'T+IKY) now reads (21) we haves =0.1 and thus, according to E@2), only the
first four modes are unstable. The initial perturbation is
small, random and on all the first 20 modes, we are then able
to observe also negativgs (stable modes The comparison
with the linear prediction(22) is very good even it is not
It implies instability " >0) for anyK=<0.77. We notice that very small. The numerical data of Fig. 2 have been obtained
information about the characteristic scale of unstable modesy a linear fit of the logarithm of the mode amplitude versus
was absent in the general treatment presented in the previotime in the early stages of the simulation.
section because at any finite distance from the instability Let us now consider the nonlinear stage of the perturba-

V¥ D)= ncf ay

27
+ 1—6(3\(\(‘1’(1))2

27
r=- §77CK4+ 29.K2. (20

line, all the large scale modes are unstable. tion growth. We describe here a different simulation with
=1/16 ande=0.32 which was advanced for a very long
V. NUMERICAL RESULTS lapse of time. The nonlinear evolution will ultimately lead to

) , ) _ afixed point by a succession of long lasting quasiequilibrium
The analytical results presented in the previous sectioiates of decreasing wave number. The evolution of the am-
have been checked by extensive direct numerical S|mulat|oq§|itudeS of the first five transverse modes computed from the

of MHD equations(1),(2). In order to force a transverse per- girect numerical simulation is plotted in Fig. 3. Notice that in
turbation, we integrate the equations on a rectangular slab

with L=L,=27 and L,=L,. According to the notation

used at the beginning of Sec. Ill, a large scale instability can 10° ' ' n=1
only develop on they direction for an aspect ratio
=L, /L,<1.
Given the numerical values of parameterand v, from e S
Eqg. (12) and the conditiory.v.=1/2 we have - "
Y
e=VN1—-+\27nv, 5= \/2:, (21
14
which are used for the theoretical predictions of the previous 10 L

10 100 1000 10000
t

section.

The simplest check of our results concerns the growth
rates of the instability which, in the initial linear regime, are  FIG. 3. Time evolution of magnetic potential of the first Fourier
given by the dispersion relatio(20). In physical (not re-  transverse components of wave numkgsn/16 for the DNS with
scaled variables(20) becomes r=1/16, =0.4, andv=1.0. The number of unstable modes is 4.
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FIG. 6. Snapshot of the stream functiprreconstructed accord-
ing to Eq.(15) for t=200 (left) andt= 20 000(right).

Hilliard equation for the large scale magnetic fi(6) with
the same parameters of the DNS. As shown in Fig. 5 we find
an impressive agreement even for very long times. The final
relative amplitudes of the most energetic transverse modes is
recovered within a 10% accuracy.

As a further test of the multiscale predictions, we checked
the relationg14),(15) during the evolution. At leading order
in &, ¥O(y,t) is obtained by subtracting the basic flow
cosx from the magnetic flux/(x,y,t). The resulting field,
which reveals to be indeex independent, is then used to
reconstruct the stream function by means of Edy). The
results for the configuration of Fig. 4 is shown in Fig. 6.

FIG. 4. Snapshot of the magnetic flyx(left) and stream func-
tion ¢ (right) for t=200 (upped andt= 20 000 (lower).

this case the fifth mod&=5/16 is linearly stable but it is
nonlinearly driven by smaller wave number. VI. CONCLUSIONS

The typical linear time is now rather short,»1/O(1), e have investigated the issue of stability of highly an-
and the final stationary state, dominated by the largest a"a'|‘sotropic, magnetic-energy dominated equilibrium states of

able modek;, is reached at very long times;>1000. At {he MHD fluid model equations. These configurations are
intermediate times, almost stationary metastable states, chafaown to be unstable for small values of resistivity leading
acterized by decreasing leading mode, are punctuated by fagf the formation of thin boundary layers in the nearby of the
coalescence processes. Most of the energy dissipation takgstral line of the magnetic fiel,14. At variance with the
place during these fast reconnection processes. In Fig. 4 Wa,qye case, we focused our attention on the range of moder-
display the period-two metastable state at titre200 and  gte | yndquist/Reynolds numbers, where the boundary layer
the final, period-one state &t=20000. The dynamical pic-  apnroximation is not fruitfully applicable. We have shown
ture arising from Figs. 3 and 4 qual_ltfitlvely agrees with theanalytically, by means of multiple-scale analysis, that a type
dynamics described by the Cahn-Hilliard equati@8].  of large scale instability can arise above a definite threshold,

To check quantitatively the validity of nonlinear multi- 5nq that for a generic perturbation the maximum growth is
scale analysis we have numerically integrated the Cahnschieved by modes transverse to the magnetic field lines of
the basic state. On the basis of this result, we have performed
the multiple scale analysis for the marginally unstable case
and for purely transverse perturbations. The analytic proce-
dure yields a set of partial differential equations which de-
scribe the full nonlinear evolution of magnetic perturbations.
It is possible to show that these equations possess a
Lyapunov functional and thus their solutions asymptotically
approach a fixed point which represents a nonlinear equilib-
rium different from the basic one. Direct numerical simula-
tions of two-dimensional MHD performed with a pseu-
dospectral code reveal an excelleniantitative agreement
with the first-order analytical prediction in a wide range of
values of the perturbative parameter. The development of
large scale magnetic instabilities, caused by the occurrence

FIG. 5. Time evolution of the first square Fourier components ofof negative eddy diffusivities, is eventually related to inverse
¥ solution of the Cahn-Hilliard equation. Compare with Fig. 3 cascade of magnetic potential which is known to feature in
relative to the direct numerical simulation of MHD equations. two-dimensional MHD turbulencfl5,16.

10 100 1000 10000
t
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Summarizing, the loss of stability of a magnetic shear at JOCX,Y, T)=PO(X,Y,T)+cosx,
moderate Reynolds number is due to the growth of large
scale perturbations whose main traits can be captured by a e@0:X,Y, T)=dO(X,Y,T).

multiple scale analysis. When there is a single neutral line, at

large enough LundquistReynolds numbers, this mechanisye notice here that at each step the solution will be given as
is overcome by the formation of resistive boundary layersyne gym of a fluctuatingsmall scalg¢ contribution and a
The transverse large-scale instability here described is I'kel«‘r’nean(large scali contribution, namely

to be the generic mechanism of instability of sheared mag-
netic fields even for large Lundquist/Reynolds numbers PORX Y T)= (4 DX Y. T)=( oM
whenever the basic state admits a large number of neutral XY= (XY =(e

lines. At first order, the equations are

ACKNOWLEDGMENTS (9()0(0) (9¢(O) (yzlﬂ(l) a2¢(0) ’9‘P(0) a¢(0)
_ =0,

We acknowledge the partial support by CNR Special x oy Ix? axaxX Y  ox
Project “Turbulence and nonlinear phenomena in plasmas”

and by INFM (PRA-TURBQ. The calculations were per- (?4(P(1) (94¢(0) 0,“//(0) 0731,0(0) [?w(o) ﬁ3$(0)

formed with computer facilities of INFN, Sezione di Torino. - -
RP was partially supported by UK PPARC under Grant No. axt o ax3aX X gx2gy  IY X3
GR/L63143.
B 01@(0) 0’)3(P(0) 0’»@(0) ,;»3@(0) -
APPENDIX: DERIVATION OF THE LARGE N ogxd X ax2aY

SCALE EQUATIONS
As expected, the zeroth-order fields appear in the first order

~ As anticipated in Sec. Ill, we give here a detailed descripgquation as coefficients. Substituting the solutions just found
tion of the procedure we followed to derive the set of Eqs.gpove, the two equations reduce to

(6),(7) governing the large scale dynamics. Since the algebra

soon becomes heavy and nothing conceptually different hap- 2D Hp©)

pens for higher order terms, we limit ourselves to the second -7 + sinx=0,
order in the expansion when E@®) is found. We recall that ax? aY
the basic idea of multiple scale analygiisat of treating fast
and slow variables independenthgads to the prescription PArAC N ON
vt EY; sinx=0,
d—di+eV;, d—d+ear, (A1) IX

which can now be straightforwardly solved, leading to the

for the differential operators appearing in MHD equations.’’ i
first order fields

As a first step, then, we substituted E41) and the pertur-
bative expansion

() (1) 1909
= Ot gDt g2y @ g .. PHXGKY, T) =PH(XY,T)— P sinx,
Ot (s 2,2 1 9w
PTET e e PBOCX,Y, T =®DX,Y,T)+ = —Csinx.

in the MHD equations to yield two infinite sets of equations

by equating to zero coefficients of different powerssin  Notice again that the solutions are well-behaved, since they
As the unknown fields ™ (x,y,t;X,Y,T) and have the required periodicity in the fast variables.
e®M(x,y,t;X,Y,T) are coupled hierarchically, these equa- The same is not true for the solution of the magnetic flux
tions need to be solved recursively. It can be sufficient tdunction at second order. Consider in fact the equation

look for functions with the same periodicity as the basic

field. 1(od®)2 a0 g Hpd)
To leading order, the equations simply read 2\ oy | O T Ty Tox Ty SX
Py 129 0@ PrO 52y
- + = - SinX— 7 -7
7| 2 teosx =0, JY? IY? Ix?
1(ow©)2 7> i AR
4(0) +— COSX+ 2—o— COSX— p————
_Vé?cp =0 V( Y ) XY K NG
ax*

o¥© 9 © 5y ©)
. . + + —
with solutions Y X oT 0,

(A2)
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in which the lower order solutions have already been in-This procedure(derive the equations, check for secular
serted. When integrated twice with respecktm find (%),  terms, impose solvability conditions, find the well-behaved
it gives origin to secular terms, in fact proportionalxt In  solutions has to be repeated up to the fourth order, when the
order to guarantee the periodicity conditions to be satisfiedevolution equation(7) for the large scale stream function

: . . 0) ari i it
we then have to impose that their sum is zero, namely ~ @ arises at last as a solvability condition.
Similarly, all the machinery is reproducible for the mar-

ginal unstable case, when the dissipative coefficients are ex-
panded about the critical valueg ,v.. We used a symbolic

PAACY 1 #2v© , ,
+[PO WO py2p 0 4 — =0. manipulator softwargMAPLE) to derive Egs.(6),(7) and
aT 2v Y2 (16),(17).
[1] U. Frisch and S.A. Orszag, Phys. Todhy24 (1990. ics and Dynamo TheorgPergamon Press, Oxford, 1980
[2] L.D. Meshalkin and Ya.G. Sinai, J. Appl. Math. Mech5, [9] H.K. Moffatt, Magnetic Field Generation in Electrically Con-
1700(1962. ducting Fluids (Cambridge University Press, Cambridge,
[3] U. Frisch, B. Legras, and B. Villone, Physicads, 36 (1996. 1978.
[4] A.V. Tur, A.V. Chechkin, and V.V. Yanovsky, Phys. Fluids B [10] B. Dubrulle and U. Frisch, Phys. Rev. 43, 5355(199J).
4, 3513(1992. [11] L. Biferale, A. Crisanti, M. Vergassola, and A. Vulpiani, Phys.
[5] U. Frisch, inLecture Notes on Turbulencedited by J.R. Her- Fluids 7, 2725(1995.
ring and J.C. McWilliamgWorld Scientific, Singapore, 1989 [12] G. Sivashinky, Physica 07, 243(1985.
p. 234. [13] Z.S. She, Phys. Lett. A24, 161(1987).
[6] D. Biskamp and U. Bremer, Phys. Rev. L&t 3819(1993. [14] H.P. Furth, J. Killen, and M.N. Rosenbluth, Phys. Fluils
[7] D. Biskamp,NonLinear MagnetoHydroDynami¢€ambridge 459 (1963.
University Press, Cambridge, England, 1293 [15] A. Pouquet, J. Fluid Meci88, 1 (1978.

[8] F. Krause and K.H. Riler, Mean Field Magnetohydrodynam- [16] D. Biskamp, Plasma Phys. Controlled Fus® 311 (1984.



