
PHYSICAL REVIEW E APRIL 2000VOLUME 61, NUMBER 4
Stochastic resonance in ion channels characterized by information theory

Igor Goychuk and Peter Ha¨nggi
Institute of Physics, University of Augsburg, Universita¨tsstrasse 1, 86135 Augsburg, Germany

~Received 21 September 1999!

We identify a unifying measure for stochastic resonance~SR! in voltage dependent ion channels which
comprises periodic~conventional!, aperiodic, and nonstationary SR. Within a simplest setting, the gating
dynamics is governed by two-state conductance fluctuations, which switch at random time points between two
values. The corresponding continuous time point process is analyzed by virtue of information theory. In
pursuing this goal we evaluate for our dynamics thet information, the mutual information, and the rate of
information gain. As a main result we find an analytical formula for the rate of information gain that solely
involves the probability of the two channel states and their noise averaged rates. For small voltage signals it
simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR
occurs only when the closed state is predominantly dwelled upon. Upon increasing the probability for the open
channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain,
i.e., no SR behavior occurs.

PACS number~s!: 87.16.2b, 87.10.1e, 05.40.2a, 02.50.Wp
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I. INTRODUCTION

Stochastic resonance~SR! constitutes a cooperative phe
nomenon wherein the addition of noise to the informat
carrying signal can improve in a paradoxical manner the
tection and transduction of signals in nonlinear systems~see,
e.g., Ref.@1# for an introductory overview, and Ref.@2# for a
comprehensive survey and references!. Clearly, this effect
could play a prominent role for the function of sensory bi
ogy. As such, the beneficial role of ambient and exter
noises has been addressed not only theoretically~see, e.g.,
Ref. @3#!, but has also been manifested experimentally
different levels of biological organization—e.g., in huma
visual perception@4# and tactile sensation@5#, in cricket cer-
cal sensory systems@6#, in the mammalian neuronal ne
works@7#, and~even earlier! in the mechanoreceptive syste
in crayfish @8#. Presumably, the molecular mechanisms
biological SR have their roots in stochastic properties of
ion channel arrays of the receptor cell membranes@1#. This
stimulates interest in a study of SR in biological ion cha
nels. One of the outstanding challenges in SR researc
therefore the quest to answer whether—and how—SR oc
in single and/or coupled ion channels.

These channels are evolution’s solution enabling me
branes made of fat to participate in electrical signaling. Th
are formed of special membrane proteins@9#. In spite of their
great diversity, these naturally occurring nanotubes sh
some common features. Most importantly, the channels
functionally bistable, i.e., they are eitheropen, allowing spe-
cific ions to cross the membrane, or areclosed@9#. The regu-
lation of the ion flow is achieved by means of the so-cal
gating dynamics, i.e., those intrinsic stochastic transitions
curring inside the ion channel that regulate the dynamics
open and closed states. The key feature of gating dynami
that the opening-closing transition rates depend strongly
external factors such as the membrane potential~voltage-
gated ion channels!, membrane tension~mechanosensitive
ion channels!, or presence of chemical ligands~ligand-gated
PRE 611063-651X/2000/61~4!/4272~9!/$15.00
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ion channels!. This sensitivity allows one to look upon th
corresponding ion channel as a kind of single-molecular s
sor which transmits input information to the signa
modulated ion current response.

Recently, it was demonstrated experimentally
Bezrukov and Vodyanoy@10# that a parallel ensemble o
independent, althoughartificial ~alamethicin! voltage-gated
ion channels does exhibit SR behavior, when t
information-carrying voltage signal is perturbed by a no
component. These authors put forward the so-callednondy-
namical modelof SR. It is based on a statistical analysis o
‘‘doubly stochastic,’’ periodically driven Poisson proce
with a corresponding voltage-dependent spiking rate@10,11#.
Conceptually, such a model can be adequate to those s
tions only where the channel is closed on average with op
ings constituting relatively rare events. An experimen
challenge is to verify whether the SR effect persists
single natural biological ion channels under realistic con
tions. Moreover, a second challenge is to extend the theo
ical description in Ref.@11# to account properly for a distri-
bution of dwell times spent by the channel in the conduct
state.

The previous research on SR in ion channels was ex
sively restricted to the case of conventional SR, i.e., SR w
a periodic input signal. In a more general situation, howev
input aperiodic signals can be drawn from some statist
distribution. This case of the so-termedaperiodic SR was
recently put forward for neuronal systems@6,12–14#. Note
that the important assumption of dealing with a signal re
ization that is taken from a stationary process was mad
all previous studies. In practice, however, one frequently
counters a situation where this stationarity assumption is
rigorously valid, because the signal has a finite duration
the time scale set by observation. In thisnonstationarysitu-
ation, both spectral and cross-correlation SR measures
inadequate. A preferable approach is then to look for
from the perspective of statistical information transducti
@6,14#. As elucidated in this work, information theory@15#
4272 © 2000 The American Physical Society
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can indeed provide aunified framework to address differen
types of SR, includingnonstationarySR. It is the main pur-
pose of this work to investigate the possibility to enhance
transmission of information in asingle ion channel in the
presence of a dose of noise. This task will be accomplis
within a simplistic two-state Markovian model for ion cha
nel conductance@9#. Already within such an idealization, ou
analysis in terms of information theory measures turns ou
be rather involved.

II. TWO-STATE MODEL

In principle, a microscopic description of the gating d
namics should be based upon a detailed understanding o
structure of the channel’s ‘‘gating dynamics.’’ The prese
state of the art assumes that voltage-sensitive gates are
resented by mobile chargeda-helix fragments of the channe
protein which can dynamically block the ion conductin
pathway. Therefore, the gating dynamics can be describe
a diffusive motion of gating ‘‘particles’’ in an effective po
tential. Then Kramers diffusion theory@16,17# and its exten-
sion to the realm offluctuating barriers~see, e.g., Ref.@18#
for a review and further references! can be utilized to de-
scribe the gating dynamics. Such a type of procedure, h
ever, is still in its infancy@19#. For our purpose, it suffices t
follow a well-established phenomenological road provid
by a discrete phenomenological modeling@20#.

The simplest two-state model of this kind reflects t
functional bistability of ion channels. Dichotomous fluctu
tions between conducting and nonconducting conformati
of single ion channels were clearly seen in patch clamp
periments@20#. The statistical distributions of sojourn time
of the open channel state and the closed channel state
spectively, are generically not exponentially distributed@20#.
However, one can characterize these time distributions b
average timêTo(V)& to dwell in the open~O! state, and by
a corresponding average time^Tc(V)&, to stay in the closed
~C! state. These two averages depend on the transmemb
voltageV. Then the actual multistate gating dynamics can
approximately mapped onto the effective two-state dynam
described by the simple kinetic scheme

O �
kc~V!

ko~V!

C,

with corresponding voltage-dependent effective transit
rates kc(V)51/̂ To(V)& and ko(V)51/̂ Tc(V)&, respec-
tively. Although such a two-state Markov description pr
sents a rather crude approximation, it captures the main
tures of the gating dynamics of the voltage-sensitive
channels—the dichotomous nature and the volta
dependence of transition rates. Moreover, by construc
this model yields the correct mean open~closed! dwell times,
and the stationary probability for the channel to stay op
i.e., Po(V)5^To(V)&/
@^To(V)&1^Tc(V)&#. An example of the experimental de
pendence of the transition rates on voltageV can be found
for a K1 channel in Refs.@21,22#, and is depicted in Fig. 1
We note that, in contrast to the closing ratekc, the opening
rate hasno exponentialdependence on the voltage. In pa
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ticular, these two rates are not symmetric~with respect to
dependence onV; cf. Fig. 1!. The reason for this is that th
two-state description results in areduction of an intrinsic
multistate~or multiwell! gating dynamics, and thus presen
only a shadow of the real behavior. In this sense, the M
kovian approximation models the true non-Markovian d
namics on a coarse grained time scale.

To proceed, one has to generalize this working model t
case with time-dependent voltagesV(t)5V01Vs(t)1Vn(t).
Here we distinguish among three components of the volta
~i! the constant bias voltageV0; ~ii ! some time-dependent
unbiased signalVs(t); and ~iii ! a noisy component voltage
Vn(t). The noisy voltageVn(t) is assumed to be a stationa
Gaussian Markovian noise with zero average and root m
squared amplitudes. Moreover, it possesses a frequen
bandwidth f n . Let us restrict our treatment to the situatio
whereboth the signal and the external noise are slowly va
ing on a time scale set by diffusive motions occurring with
the open~or closed! conformation. This time scaletcon typi-
cally lies in themsec range, as manifested experimentally
the fast events in channel activation@19#. We thus can apply
a fluctuation ratemodel @1,11#, assuming that the transitio
ratesko(c)(t)[ko(c)@V(t)# follow the voltageV(t) adiabati-
cally. Furthermore, we assume that the applied Gaus
voltageVn(t) effectively presents ‘‘white noise’’ on the time
scale set by the decay of autocorrelations of the ion cur
fluctuations. The autocorrelation timet I51/@ko(V0)
1kc(V0)# is typically of the order of milliseconds@20#. Then
the choice of a noise bandwidthf n satisfying t I

21! f n

!tcon
21 , i.e., f n;10–100 kHz, presents a consistent spec

cation for the fluctuating rate description. The role of ext
nal noise is thus reduced within the same two-state appr
mation merely to forming new, noise-dressed tim
dependent transition ratesk̄a5o,c(t)[^ka5o,c@V(t)#&n .
These result from taking the stochastic average of the fl
tuating rates over theexternal noise. These effective rate
now depend on the noise rms amplitudes, the static voltage
V0, and the time-dependent signalVs(t). It turns out that
within the given approximation the averaged transition ra
do not depend on the noise bandwidthf n ; also see Appendix
A.

FIG. 1. Voltage dependence of the opening rate,ko , and the
closing rate,kc , for a K1 ion channel vs a static voltageV0 ~solid
lines!; cf. Eq. ~A1!. The corresponding probability for the chann
in the open state is depicted by the dotted line.
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Our models for the channel dynamics thus read

dPo~ t !

dt
52 k̄c~ t !Po~ t !1 k̄o~ t !Pc~ t !,

~1!
dPc~ t !

dt
52 k̄o~ t !Pc~ t !1 k̄c~ t !Po~ t !,

wherePo(t) andPc(t) denote the time-dependent probabi
ties for a single ion channel to be open or closed, resp
tively. The stochastic process described by Eq.~1! is a non-
stationary random telegraph noise with time-depende
transition rates. This model has been extensively studie
the literature, for example, to model conventional SR@2,23#.
Moreover, this model was studied in Ref.@24# from the per-
spective of input-output cross-correlations as a simple mo
for aperiodicSR. However, to the best of our knowledge,
detailed analysis of this cornerstone model, using inform
tion theory @15,14# to specify the information transductio
process, has not been developed previously.

III. STATISTICAL DISTRIBUTION OF CURRENT
FLUCTUATIONS

How can we estimate the amount of information transm
ted from the input voltage signalVs(t) to the output ion
current I (t)? A comparative statistical analysis of the io
current fluctuations performed in the absence and presen
a signal allows one to answer this question.

When the channel is open, a large number of ions cr
the channel, thus creating a finite, mean currentI o(t). This
current obeys the Ohmic lawI o(t)5go@V(t)2Vk#, wherego
is the conductivity of the open channel andVk is the ‘‘rever-
sal’’ potential ~Nernst potential! for K1 ion flow. When the
channel is closed, the ion flow is negligible and the curren
zero. We recall that the current passing through the o
channel is generally time dependent in accordance with
externally applied signalVs(t). However, we will assume
that information about the signal is encoded in the switch
events of current between zero andI o(t), and not in the
additional modulation ofI o(t). In other words, the informa
tion is assumed to be encoded in the signal-modulatedcon-
ductancefluctuations betweengo and zero@25#.

Moreover, one can describe the resulting current fluct
tions in terms of conductance fluctuations, i.e.,

I ~ t !5g~ t !@V~ t !2Vk#, ~2!

wherein g(t) is a two-state random point process@26,27#.
The sample space ofg(t) within the time interval@0,t# con-
sists of stochastic trajectories which flip between zero andg0
at randomly distributed switch-time pointst i , i 51,2, . . . ,
i.e.,

0,t1,t2,•••,ts,t. ~3!

This defines a continuous time point processt( t̃ ), 0< t̃<t.
Next we divide the sample space into two subspaces:~i! the
subspace ‘‘o’’ contains all trajectories which finish in the
open state at the end pointt of the considered time interva
and~ii ! the subspace ‘‘c’’ contains all trajectories which end
in the closed state, respectively. Furthermore, within e
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subspace the trajectories are divided into the subclasses
scribed by the numbers50,1,2, . . . , which enumerates the
number of intermediate flips that occurred between open
closed states in order to arrive at the final state. The pr
ability distribution on this space is given by a sequence
joint multitime probability densitiesQs

c(o)(t,ts , . . . ,t1) for
switches to occur at timet1 ,t2 , . . . ,ts , and to end up at
time t in either the open stateo or closed statec, respectively.
This probability distribution is normalized, i.e.,

(
a5o,c

FQ0
a~ t !

1(
s51

` E
0

t

dtsE
0

ts
dts21 . . . E

0

t2
dt1Qs

a~ t,ts , . . . ,t1!G
51. ~4!

The probability densitiesQs
c(o)(t,ts , . . . ,t1) are readily

constructed by taking into account the facts that the proc
g(t) is ~semi!-Markovian for any given realization of the
voltage signalVs(t), with the switching time pointst i being
drawn alternatingly from two differenttime-dependentPois-
son distributions@27#. In particular, the probability to stay in
the closed conformation until timet, given that this confor-
mation has been occupied initially with the probabili
Pc(0), is

Q0
c~ t !5e2*0

t k̄o(t)dtPc~0!. ~5!

To obtain the remaining probability densities, we introdu
the conditional probability density

Pc~t2ut1!5 k̄o~t2!e2*
t1

t2k̄o(t)dt ~6!

for leaving the state ‘‘c’’ in the time interval @t21dt,t2#,
given that this state was occupied with probability 1 at̃
5t1. Analogous expressions, with indices changed fromc to
o, hold obviously also for the complementary quantiti
Q0

o(t) and Po(t2ut1). Then the multitime probability densi
ties emerge as

Q2n
c ~ t,t2n , . . . ,t1!5e2*t2n

t k̄o(t)dtPo~t2nut2n21!

3Pc~t2n21ut2n22! . . . Po~t2ut1!

3Pc~t1u0!Pc~0! ~7!

for a given even number of flips, and

Q2n11
c ~ t,t2n11 , . . . ,t1!5e2*t2n11

t k̄o(t)dtPo~t2n11ut2n!

3Pc~t2nut2n21! . . . Pc~t2ut1!

3Po~t1u0!Po~0! ~8!

for an odd number of flips, respectively. The probability de
sities for the other subspace~labeled witho) can be written
down by use of a simple interchange of the indicesc ando in
Eqs.~5!–~8!.
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The above reasoning yields acompleteprobabilistic de-
scription of the stochastic switching process that is relate
the conductance fluctuationsg(t). In terms of the stochastic
path description, the probability that the channel is open
the instant timet is therefore given by

Po~ t !5Q0
o~ t !

1(
s51

` E
0

t

dtsE
0

ts
dts21•••E

0

t2
dt1Qs

o~ t,ts , . . . ,t1!.

~9!

An analogous expression also holds for the probability of
closed conformationPc(t). Upon differentiatingPo(t) and
Pc(t) with respect to timet, one can check that these tim
dependent probabilities indeed satisfy the kinetic equati
~1!.

IV. STOCHASTIC RESONANCE QUANTIFIED
BY INFORMATION THEORY

In the following we derive a general theory for variou
information measures that can be used to quantify the in
mation gain obtained from an input signalVs(t) being trans-
duced by the ion channel current realizationsI (t) when
Vs(t) is switched on, versus the case withVs(t) being
switched off. Intuitively, this information describes the d
ference in uncertainty about the current realizations in
absence and presence of the signalVs(t).

A. Preliminaries

We start out by reviewing the necessary background.
us first consider adiscrete random variableA. As demon-
strated by Shannon in 1948@15# ~his expression was discov
ered independently by Wiener!, the information entropy

S~A!52k(
i 51

n

pi ln pi ~10!

provides a measure of the uncertainty about a particular
alization Ai of A @28#. In Eq. ~10!, the setpi denotes the
normalized probabilities for the realizationsAi to occur,
( i 51

n pi51. The positive constantk in Eq. ~10! defines the
unit used in the measurement. If the information entropy
measured in binary units, thenk51/ln 2, natural units yield
k51, and digits givek51/ln 10. This measure attains
minimum ~being zero! if and only if pi51 for a particular
value ofi, and all others satisfypi50. It reaches a maximum
if pi51/n. The information entropy for a probability distri
bution is therefore a measure of how strongly it is peak
about a given alternative. Theuncertainty is consequently
large for spread out distributions, and small for concentra
ones.

The application of an external signal~perturbation! results
in a change of probabilitiespi , and consequently in entrop
S(A). The gained informationI is then defined by the cor
responding change in entropy, i.e.,I5Sbe f ore–Sa f ter .

The generalization of the information concept to the c
of a continuous variableA(x) presents no principal difficul-
ties. In this case a proper definition of entropy reads
to

at

e

s

r-

e
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e-

s

d

d

e

S~A!52kE p~x!ln@p~x!Dx#dx

[2kE p~x!ln@p~x!#dx2k ln Dx, ~11!

whereinp(x) is the probability density, andDx denotes the
precision with which the variableA(x) can be measured
~coarse graining of cell size!. As clearly seen from Eq.~11!,
the absoluteentropy of a continuous variable is not we
defined since it diverges in the limitDx→0. Nevertheless,
the entropy difference :5 information is well defined, and
does notdepend on the precisionDx.

B. t information

The generalization of information theory to the case
stochastic processes is not trivial. In our case, the pro
definition of entropy of the switch-point processt( t̃ ), con-
sidered in the time interval@0,T#, is, by analogy with Eq.
~11!,

St@TuVs#[2k (
a5o,c

H Q0
a~T!ln Q0

a~T!

1(
s51

` E
0

T

dtsE
0

ts
dts21•••

3E
0

t2
dt1Qs

a~T,ts , . . . ,t1!

3 ln@Qs
a~T,ts , . . . ,t1!~Dt!s#J , ~12!

whereDt denotes the precision of time measurement, a
the symbolVs indicates that the entropy is defined in pre
ence of the signalVs(t). The presence of the time resolutio
Dt in Eq. ~12! gives the name ‘‘t entropy’’ to this quantity
@29#. It is very important that in the contrast to the case o
continuous variable, the contribution of the finite time res
lution Dt to the t entropy cannot be recast in a form like
2k ln Dx @cf. Eq. ~11!#. We note that its contributionde-
pends on the statistics of the random processbeing different
in the presence and absence of a signal. This is why not o
the absoluteentropy, but also thedifferenceof entropies,
become poorly defined for continuous time point rando
processes. As a result, the definition of information in t
manner becomes rather ambiguous.

For a sufficiently large time intervalT the averaged infor-
mation transferred per unit time from the input voltage sig
Vs(t) to the output current signalI (t) can be defined as
follows @30,31#:

It5
St~TuVs50!2St~TuVs!

T
. ~13!

This information measure can be termed ‘‘t information per
unit time’’ to underline its dependence on the time resolut
Dt. Upon taking the derivative ofSt@ tuVs# in Eq. ~12! with
respect to timet, after some involved algebra~cf. Appendix
B! we obtain the result
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dSt@ tuVs#

dt
52k (

a5o,c
k̄a~ t !ln@ k̄a~ t !Dt/e#Pā~ t !, ~14!

whereā5o, if a5c, and vice versa. Together with Eq.~1!
and the definition~13!, the prominent result in Eq.~14! al-
lows one to express thet information for an arbitrary signa
Vs(t) through straightforward quadratures.

The t-information concept was used to analyze the inf
mation transfer in neuronal systems in Refs.@30,31#. How-
ever, the strong dependence oft information on the time
precisionDt @31# surely presents an undesirablesubjective
feature. In search ofobjectiveinformation measures, we con
sider information transfer in terms of the mutual informati
measure.

C. Mutual information

To introduce the reader to the mutual information co
cept, we follow the reasoning of Shannon@15#: the signals
Vs(t) are drawn from some statistical distribution charact
ized by the probability density functionalP@Vs(t)#. Noting
that the probability densitiesQs

a(t,ts , . . . ,t1) in Eqs. ~5!,
~7!, and ~8! are in fact conditional with respect to
the given realization ofVs(t), one can define the join
probability densities, Qjoint

a,s @ t,ts , . . . ,t1 ;Vs(t)#
5Qs

a(t,ts , . . . ,t1)P@Vs(t)# for the corresponding stochas
tic processesVs(t) and I (t). Moreover, one can define th
averaged probability densitieŝQs

a(t,ts , . . . ,t1)&signal for
the processI (t) in the presence of the process Vs(t), where
the path integral̂ •••&signal[*D@Vs# . . . P@Vs(t)# denotes
stochastic averaging over the signal realizations. The mu
information between the stochastic processVs(t) and I (t)
can then be defined as the entropy difference

MT~Vs ,I !5Sav~T!2^St~TuVs!&signal , ~15!

whereSav(T) is thet entropy of an averaged process defin
similarly to Eq.~12!, but with theaveragedprobability den-
sities^Qs

a(t,t1 , . . . ,ts)&signal . Note that making use of the
Bayes rules one can transform definition~15! into a form
which makes transparent the fact that the mutual informa
MT(Vs ,I ) is a symmetric functional of the processesVs(t)
andI (t), and provides anonlinearcross-correlation measur
between them@15#. However, we will take advantage of a
equivalent form; it is obtained from Eq.~15! by using Eq.
~12!, yielding

MT~Vs ,I !5kK (
a5o,c

H Q0
a~T!ln

Q0
a~T!

^Q0
a~T!&signal

1(
s51

` E
0

T

dtsE
0

ts
dts21•••

3E
0

t2
dt1Qs

a~T,ts , . . . ,t1!

3 ln
Qs

a~T,ts , . . . ,t1!

^Qs
a~T,ts , . . . ,t1!&signal

J L
signal

.

~16!
-

-

-

al

n

As clearly deduced from Eq.~16!, Shannon’s mutual infor-
mationdoes notdepend—due to its skillful definition in Eq
~15! – on the time resolutionDt. This underpins its advan
tage over the information measure in Eq.~13!. Moreover, the
functional form~16! inherits important connections betwee
the mutual information and another prominent informati
measure: the~relative! Kullback entropy, also termedinfor-
mation gain.

D. Rate of information gain

Information gain@32# is given in terms of the relative
entropy of the given statistical distribution with respect
some reference distribution. In our case, the reference di
bution corresponds to stationary ion current fluctuations
the absence of the voltage signalVs(t). For a given signal
Vs(t), the information gain reads

KT@ I uVs#[k (
a5o,c

H Q0
a~T!ln

Q0
a~T!

Q0
(0)a~T!

1(
s51

` E
0

T

dtsE
0

ts
dts21•••

3E
0

t2
dt1Qs

a~T,ts , . . . ,t1!

3 ln
Qs

a~T,ts , . . . ,t1!

Qs
(0)a~T,ts , . . . ,t1!

J , ~17!

where the index‘‘(0)’ ’ in Qs
(0)a refers to the case when n

voltage signal is applied. The relative entropy can be
garded as a signal-induced deviation of the entropy of
random point processt( t̃ ) from its stationary value obtaine
in the absence of signal. Although theabsoluteentropy of
such a switch-time point processt( t̃ ) depends strongly on
the time resolutionDt and thus is not well defined, the de
viation of entropy from the steady-state value can be defi
independentlyof Dt via Eq. ~17!. For stochastic processe
this relative entropy plays a role similar to the entropy d
ference, thus characterizing an information measure. T
justifies its given name: information gain. In contrast to m
tual information this measure can be defined fordeterminis-
tic signals as well. Consequently, information gain can
used as an information measure both for conventional
aperiodic SR. Moreover, this measure is also well defined
nonstationarysignals, and therefore can be used to quan
nonstationarySR as well.

In contrast to information gain, mutual information
more difficult to handle analytically. This is rooted in the fa
that the averagedpoint processt( t̃ ) is a non-Markovian
process, with corresponding joint probabilities not factor
ing into products of conditional probabilities.

The following important inequality can be deduced:

MT~Vs ,I !5^KT@ I uVs#&signal2KT@^I &signal#

<^KT@ I uVs#&signal . ~18!

In Eq. ~18!, KT@^I &signal#>0 is the relative entropy of an
averagedprocessg(t) defined similarly to Eq.~17!, but
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with averaged multitime probability densitie
^Qs

a(T,ts , . . . ,t1)&signal . The averaged information gai
thus provides an upper bound for the mutual informati
Moreover, applying a weak Gaussian signal, which can
regarded as a white noise on the time scale set by the
current fluctuations, one can show that the difference
tween the mutual information and the averaged informat
gain in Eq.~18! is of orderO(A4), whereA denotes the rms
amplitude of signalsA5^Vs

2(t)&signal
1/2 . On the other hand, i

is shown below that the averaged information gain per u
time is of the orderO(A2) and does not depend, within th
given lowest order approximation, on other statistical para
eters of signal. Thus the upper bound for mutual informat
in Eq. ~18! can indeed be achieved with an accuracy
O(A2). This fact opens a way to calculate the information
capacity for weak signals@33#.

The information gain can be evaluated from Eq.~17!
without further problems. By differentiatingKT@ I uVs# with
respect toT, we find, following the reasoning detailed i
Appendix B, the remarkably simple,main result for therate
of information gain, i.e.,

dKt@ I uVs#

dt
5k (

a5o,c
F k̄a~ t !lnS k̄a~ t !

k̄a~V0!
D 2 k̄a~ t !

1 k̄a~V0!GPā~ t !, ~19!

whereink̄a(V0) denotes the stationary transition rates in t
absence of signal. Together with Eq.~1! this equationcom-
pletelydetermines the information gain within the consider
two-state model for any applied signalVs(t). For the case of
a periodic signalVs(t) ~conventional SR!, or a stochastic
stationary signal~aperiodic SR!, one should additionally av
erage Eq.~19! over the signal fluctuations and take the lim
t→`. In doing so, Eq.~19! yields the stationary rate of in
formation gain. For weak stochastic signals this quantity a
defines the informational capacity@33#

C' lim
T→`

^KT@ I uVs#&signal /T. ~20!

If the signal is deterministic and has a finite duration, o
obtains thetotal information gainK by integrating Eq.~19!
in a range from 0 tò .

V. STOCHASTIC RESONANCE IN SINGLE K ¿ ION
CHANNELS

In the following we apply our developed informatio
theory concepts to investigate SR in a K1 ion channel. We
restrict our treatment to the case of weak signals with a t
duration which strongly exceeds the autocorrelation time
current fluctuationst I . Then, after some elementary calc
lations in the lowest order ofVs(t), Eqs.~19! and ~1! yield

dKt@ I ~ t !uVs~ t !#

dt
5R~V0 ,s!Vs

2~ t !, ~21!

where the form factor
.
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R~V0 ,s!5
1

8
k

k̄o~V0!k̄c~V0!

k̄o~V0!1 k̄c~V0!
@bo

2~V0!1bc
2~V0!#

~22!

depends on the static voltageV0 and—via the rates
k̄a(V0)—on the rms noise amplitudes. In Eq. ~22!,
ba(V0)52(d/dV0)ln@k̄a(V0)#, a5o andc, and the noise av-
eraged ratesk̄o(c)(V0) are given in the Appendix A for a K1

channel in Eqs.~A2! and ~A3!.
In the case of stationary stochastic signals or for perio

driving, Eq.~21! provides—after stochastic averaging, or a
eraging over the driving period of applied voltageVs(t),
respectively—the stationary rate of information gain. F
signals of finite duration the total information gain is direct
proportional to the total intensity of signalj5*0

`Vs
2(t)dt:

K5R~V0 ,s!j. ~23!

As a result we find that weak signals of the the same int
sity j produce equal information gains. The occurrence
three different kinds of SR behavior, i.e., periodic, aperiod
and nonstationary SR, clearly depends on the behavior of
form function R(V0 ,s) vs the rms noise amplitudes. We
recall that the static voltage~membrane potential! V0 con-
trols whether the ion channel is on average open or clos
cf. Fig. 1. In Fig. 2, we depict the behavior of the functio
R(V0 ,s) vs the rms noise amplitude for different values
the applied static voltage. If the K1 ion channel is closed, on
average, we observe that the information gain becom
strongly amplified by noise, and can even pass throug
maximum, i.e., SR occurs@cf. Fig. 2~a!#. In contrast, when
the stationary probability for an open channelPo5ko /(ko
1kc) becomes appreciably large, the addition of an ad
tional dose of noise can only deteriorate the detection
signal. As a result, the information gain decreases monot
cally with increasing noise amplitude@cf. Fig. 2~b!#. This
no-SR behavior occurs at a static bias ofV0'249 mV,
yielding Po'0.08. Note also, if the channel is predominan
open, that the information gain becomes practically insen
tive to the external noise@cf. the bottom curve in Fig. 2~b!#.
The occurrence of SR in the considered single ion chan
thus requires that the channel is predominantly resting in
closed state.

VI. CONCLUSIONS

Let us now summarize the main results of this work. W
have studied an illustrative two-state model for a single
channel gating dynamics from an information theoretic po
of view. The channel serves as an information channel, tra
ducing information from the applied time-dependent volta
signal to the ion current fluctuations. Three different info
mation theory measures have been developed to charact
stochastic resonance. From our viewpoint it is advantage
to use an information measure which is independent of t
resolutionDt. We argued that the rate of information ga
constitutes a unified characteristic measure for periodic~con-
ventional!, aperiodic, and nonstationary stochastic re
nance. For conventional~periodic! SR and aperiodic SR this
measure yields the averaged information gain per unit tim
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Moreover, for weak stochastic signals it also gives the inf
mational capacity, i.e., the maximal mutual informati
which can be transferred per unit time for random sign
with a fixed rms amplitude. The concept of information ga
can also be applied to the case ofnonstationarydeterministic
signals with finite duration, i.e., nonstationary SR; cf. E
~22! and ~23!.

Our main result is the closed formula for the rate of
formation gain in Eq.~19!: it can be evaluated in a straigh
forward manner by using the corresponding probabilities
the two-state gating dynamics in Eq.~1!. The information
gain itself follows upon a time integration. In the presence
weak driving we derived handy analytical results given
Eqs.~21!, ~22!, and~23!. For voltage input signals referrin
to a stationary process the averaged rate of the informa
gain is determined by the rms amplitude of the signal in
and by the form factorR(V0 ,s). In the case of a nonstation
ary signal of finite duration, the total information gain is th
product of this very form function and the integrated sign
intensityj.

The experimental procedure for determining the rate
information gain can be formulated along the lines used
thet entropy in Ref.@31#. First, one finds the correspondin
probability histograms in the presence and absence of a
nal, and then evaluates the information gain for the rela

FIG. 2. Information gain versus rms amplitude of external no
s at various static bias voltagesV0. The form functionR(V0 ,s) in
Eqs.~21!–~23! is plotted vs the rms noise intensitys.
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stochastic chains. Naturally, this information gain will st
depend on the time resolutionDt. However, in contrast to
the t information, this experimentally determined inform
tion gain should exhibit a much weaker dependence on
time resolutionDt. By using increasingly smaller time grid
Dt, the experimentally obtained rate of information gain w
approach a definite value.

Our theoretical results have been applied to investig
the phenomenon of stochastic resonance in a potass
selectiveShaker IRion channel@21#, as depicted within Figs
2~a! and 2~b!. Interestingly enough, we find that periodi
aperiodic, or nonstationary SR for this sort of ion channel,
quantified by the rate of information gain, is exhibited on
for a situation in which the channel resides on average i
closed state. This type of behavior is rooted in the asymm
try of two ratesko andkc , with ko depicting a characteristic
steep, thresholdlike behavior; cf. Fig. 1.

Our SR feature is similar to the study of parallel SR in
array of alamethicin channels@10#, although the two situa-
tions are not directly comparable. We note that the amoun
transmitted information depends crucially on the membra
potentialV0. For the model studied the information transf
is optimized at zero noise level nearV0'246 mV when the
opening probability becomes appreciable@note the upper
curve in Fig. 2~b!#. However, under such optimal condition
the addition of external noise has the effect of only furth
deteriorating the rate of information transfer@Fig. 2~b!#.
Upon further increasing the static biasV0 the ion channel
probability to stay open increases. The rate of informat
transfer then diminishes and becomes practically insens
to the input noise level.

These results hopefully will motivate researchers to m
sure the predicted SR behavior in single potassium ion ch
nels. Ever since the discovery of the SR phenomenon,
quest to use noise to optimize and control the transduc
and relay of biological information has been one of the Ho
Grails of SR research. Given this challenge, such and rel
experiments are much needed in order to settle the issu
question.
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APPENDIX A: MODEL FOR AVERAGED TRANSITION
RATES IN A POTASSIUM CHANNEL

The opening and closing rates for the effective two-st
model can be found from the voltage-dependent aver
dwell times. The latter can be determined from the expe
mental recordings. The experimental dependence of the
fective transition rates on voltageV0 for the potassium-
selective channelShaker IRembedded in the membrane of
Xenopusoocyte atfixedtemperatureT518°C has been fitted
@22,21# by a Hodgkin-Huxley type of data parametrizatio
@34#. This corresponding fitting procedure yields

e
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kc~V!5a1e2b1V, a150.015, b150.038,
~A1!

ko~V!5
a2~V1V2!

12e2b2(V1V2)
, a250.03, b250.8, V2546,

which are depicted in Fig. 1. Note that we replace the or
nal fit of the closing ratekc in Refs. @22,21# by a new ex-
pression in Eq.~A1!. Unlike Ref.@22#, our fit of experimen-
tal data in Ref.@22# is now also valid for positive voltagesV.
One should emphasize that the two rates in Eq.~A1! are
strongly asymmetric with respect to their dependence
voltage. In particular, the opening rateko(V) depicts a steep
thresholdlike behavior; see Fig. 1. In this work we explici
use these experimental findings in our calculations. The r
in Eq. ~A1! are measured in msec21, and the voltage in mV.
According to our model study, the input voltage readsV
5V01Vn(t) when no additional signal is applied. Equatio
~A1! must be averaged over the realizations ofVn(t) to ob-
tain the noise averaged ratesk̄o(V0) and k̄c(V0). For a
Gaussian voltage noiseVn(t) this averaging of the exponen
tial in the first equation in Eqs.~A1! is governed by the
second cumulant, yielding

k̄c~V0!5a1eb1
2s2/22b1V0, ~A2!

wheres5^Vn
2(t)&1/2. The averaged opening rate

k̄o~V0!5
1

A2ps
E

2`

` a2~V01V21y!

12e2b2(V01V21y)
e2(y2/2s2)dy

~A3!

unfortunately cannot be analytically simplified further. How
ever, this rate along with its derivativedk̄o(V0)/dV0 can
readily be evaluated numerically from Eq.~A3!.

APPENDIX B: CALCULATION OF ENTROPY
AND INFORMATION GAIN

The purpose of this appendix is to provide the read
with some details of calculation of the entropic measures
the continuous time random point two-state process con
ered in this paper. First, we note two useful properties of
multitime probability densities which can be establish
from Eqs.~7! and ~8!. That is,

d

dt
Qs

a~ t,ts , . . . ,t1!52 k̄ā~ t !Qs
a~ t,ts , . . . ,t1!, s>0,

~B1!

and
v.

F.
i-

n

es

s
r

d-
e

Qs
a~ t,t,ts21 , . . . ,t1!5 k̄a~ t !Qs21

ā ~ t,ts21 , . . . ,t1!, s>1.
~B2!

The indexa in Eqs.~B1! and~B2! takes the valuesa5o and
c, and the indexā takes the valueā5o, if a5c, and vice
versa. Using Eqs.~B1! and ~B2!, one can check thatPo(c)
given in Eq.~9! does satisfy Eq.~1!.

Furthermore, let us consider thet entropy in Eq.~12! as a
sum of two contributions,St@ tuVs#5k(a5o,cSa(t), with
Sa(t) defined from the corresponding partitioning in E
~12!. Then, repeatedly using the relationships~B1! and~B2!,
after some straightforward, but lengthy calculations, we
tain

d

dt
So~ t !52 k̄c~ t !So~ t !1 k̄o~ t !Sc~ t !1 k̄c~ t !Po~ t !

2 k̄o~ t !ln@ k̄o~ t !Dt#Pc~ t ! ~B3!

and

d

dt
Sc~ t !52 k̄o~ t !Sc~ t !1 k̄c~ t !So~ t !1 k̄o~ t !Pc~ t !

2 k̄c~ t !ln@ k̄c~ t !Dt#Po~ t !. ~B4!

The addition of Eqs.~B3! and ~B4! then yields Eq.~14!.
Likewise, splitting the information gainKt@ I uVs# in Eq. ~17!
into the sum of two contributions, Kt@ I uVs#
5k(a5o,cKa(t), and invoking the properties~B1! and~B2!
we obtain, after some algebra,

d

dt
Ko~ t !52 k̄c~ t !Ko~ t !1 k̄o~ t !Kc~ t !2@ k̄c~ t !

2 k̄c~V0!#Po~ t !1 k̄o~ t !lnS k̄o~ t !

k̄o~V0!
D Pc~ t !

~B5!

and

d

dt
Kc~ t !52 k̄o~ t !Kc~ t !1 k̄c~ t !Ko~ t !2@ k̄o~ t !

2 k̄o~V0!#Pc~ t !1 k̄c~ t !lnS k̄c~ t !

k̄c~V0!
D Po~ t !.

~B6!

Adding Eqs.~B4! and~B5! results, after multiplying byk, in
our main result, in Eq.~19!.
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