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Stochastic resonance in ion channels characterized by information theory
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We identify a unifying measure for stochastic resona(®®) in voltage dependent ion channels which
comprises periodi¢conventiong), aperiodic, and nonstationary SR. Within a simplest setting, the gating
dynamics is governed by two-state conductance fluctuations, which switch at random time points between two
values. The corresponding continuous time point process is analyzed by virtue of information theory. In
pursuing this goal we evaluate for our dynamics thimformation, the mutual information, and the rate of
information gain. As a main result we find an analytical formula for the rate of information gain that solely
involves the probability of the two channel states and their noise averaged rates. For small voltage signals it
simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR
occurs only when the closed state is predominantly dwelled upon. Upon increasing the probability for the open
channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain,
i.e., no SR behavior occurs.

PACS numbses): 87.16—b, 87.10+e, 05.40-a, 02.50.Wp

[. INTRODUCTION ion channels This sensitivity allows one to look upon the
corresponding ion channel as a kind of single-molecular sen-
Stochastic resonand&R) constitutes a cooperative phe- sor which transmits input information to the signal-
nomenon wherein the addition of noise to the informationmodulated ion current response.
carrying signal can improve in a paradoxical manner the de- Recently, it was demonstrated experimentally by
tection and transduction of signals in nonlinear systéseg, Bezrukov and Vodyanoy10] that a parallel ensemble of
e.g., Ref[1] for an introductory overview, and RdR] fora  independent, althoughrtificial (alamethicin voltage-gated
comprehensive survey and referenceSlearly, this effect ion channels does exhibit SR behavior, when the
could play a prominent role for the function of sensory biol- information-carrying voltage signal is perturbed by a noisy
ogy. As such, the beneficial role of ambient and externatomponent. These authors put forward the so-catleady-
noises has been addressed not only theoretidathe, e.g., namical modebf SR. It is based on a statistical analysis of a
Ref. [3]), but has also been manifested experimentally ori‘doubly stochastic,” periodically driven Poisson process
different levels of biological organization—e.g., in human with a corresponding voltage-dependent spiking fa6:11].
visual perceptioni4] and tactile sensatiofb], in cricket cer-  Conceptually, such a model can be adequate to those situa-
cal sensory systemi5], in the mammalian neuronal net- tions only where the channel is closed on average with open-
works[7], and(even earlierin the mechanoreceptive system ings constituting relatively rare events. An experimental
in crayfish[8]. Presumably, the molecular mechanisms ofchallenge is to verify whether the SR effect persists for
biological SR have their roots in stochastic properties of thesingle natural biological ion channels under realistic condi-
ion channel arrays of the receptor cell membraidsThis  tions. Moreover, a second challenge is to extend the theoret-
stimulates interest in a study of SR in biological ion chan-ical description in Ref[11] to account properly for a distri-
nels. One of the outstanding challenges in SR research Isution of dwell times spent by the channel in the conducting
therefore the quest to answer whether—and how—SR occursate.
in single and/or coupled ion channels. The previous research on SR in ion channels was exclu-
These channels are evolution’s solution enabling memsively restricted to the case of conventional SR, i.e., SR with
branes made of fat to participate in electrical signaling. Theya periodic input signal. In a more general situation, however,
are formed of special membrane protdifi§ In spite of their  input aperiodic signals can be drawn from some statistical
great diversity, these naturally occurring nanotubes shardistribution. This case of the so-termageriodic SR was
some common features. Most importantly, the channels areecently put forward for neuronal systerf,12—14. Note
functionally bistable, i.e., they are eithepen allowing spe- that the important assumption of dealing with a signal real-
cific ions to cross the membrane, or atesed[9]. The regu- ization that is taken from a stationary process was made in
lation of the ion flow is achieved by means of the so-calledall previous studies. In practice, however, one frequently en-
gating dynamics, i.e., those intrinsic stochastic transitions oceounters a situation where this stationarity assumption is not
curring inside the ion channel that regulate the dynamics ofigorously valid, because the signal has a finite duration on
open and closed states. The key feature of gating dynamics fee time scale set by observation. In thisnstationarysitu-
that the opening-closing transition rates depend strongly oation, both spectral and cross-correlation SR measures are
external factors such as the membrane poteritialtage- inadequate. A preferable approach is then to look for SR
gated ion channels membrane tensioimechanosensitive from the perspective of statistical information transduction
ion channels or presence of chemical ligandgyand-gated [6,14]. As elucidated in this work, information theofi5]
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can indeed provide anifiedframework to address different 1 P . -1
types of SR, includingionstationarySR. It is the main pur- N ;g_es e
pose of this work to investigate the possibility to enhance the osl o Ity -eeeee dos

transmission of information in aingle ion channel in the —
presence of a dose of noise. This task will be accomplished ',
within a simplistic two-state Markovian model for ion chan- A
nel conductancf9]. Already within such an idealization, our &
g
]
[a'ed

)
>
Opening probability

analysis in terms of information theory measures turns out to
be rather involved.

Il. TWO-STATE MODEL

In principle, a microscopic description of the gating dy- -80 -60 -40 -20
namics should be based,up“on a detailed qnd(irstanding of the Voltage [mV]
structure of the channel’'s “gating dynamics.” The present
state of the art assumes that voltage-sensitive gates are rep-gig. 1. Voltage dependence of the opening rég, and the
resented by mobile chargeghelix fragments of the channel cjosing ratek., for a K* ion channel vs a static voltagé, (solid
protein which can dynamically block the ion conducting jines); cf. Eq. (Al). The corresponding probability for the channel
pathway. Therefore, the gating dynamics can be described b the open state is depicted by the dotted line.
a diffusive motion of gating “particles” in an effective po- . .
tential. Then Kramers diffusion theof6,17 and its exten- ticular, these two rates are not symmetfvzith respect to
sion to the realm ofluctuating barriers(see, e.g., Ref18] dependence oN; cf. Fig. 1). The reason for this is that the

for a review and further referendesan be utilized to de- two-state description results in r@duction of an intrinsic

; - ; ltistate(or multiwell) gating dynamics, and thus presents
scribe the gating dynamics. Such a type of procedure, howMY : . 5
ever, is still in its infancy{19]. For our purpose, it suffices to only a shadow of the real behavior. In this sense, the Mar

follow a well-established phenomenological road providedkovlan approximation models the true non-Markovian dy-

by a di e bh logical model namics on a coarse grained time scale.
y & discrete phenomenological modeliizg]. To proceed, one has to generalize this working model to a

The simplest two-state model of this kind reflects the.,qe with time-dependent voltagegt) = Vo + V(t) + V,(1).
functional bistability of ion channels. Dichotomous fluctua- yere we distinguish among three componentss of the voltage:
tions between conducting and nonconducting conformationﬁ) the constant bias voltagé,; (i) some time-dependent,
of singleion channels were clearly seen in patch clamp exynpjased signaV(t); and (iii) a noisy component voltage
periments20]. The statistical distributions of sojourn times v _(t). The noisy voltage/,(t) is assumed to be a stationary
of the open channel state and the closed channel state, rgaussian Markovian noise with zero average and root mean
spectively, are generically not exponentially distribuf2d].  squared amplituder. Moreover, it possesses a frequency
However, one can characterize these time distributions by apandwidthf,. Let us restrict our treatment to the situation
average timgT,(V)) to dwell in the oper(O) state, and by  whereboththe signal and the external noise are slowly vary-
a corresponding average tinf&.(V)), to stay in the closed ing on a time scale set by diffusive motions occurring within
(C) state. These two averages depend on the transmembrag open(or closed conformation. This time scale,,,, typi-
voltageV. Then the actual multistate gating dynamics can bezally lies in theusec range, as manifested experimentally by
approximately mapped onto the effective two-state dynamicgne fast events in channel activatifi9]. We thus can apply
described by the simple kinetic scheme a fluctuation ratemodel[1,11], assuming that the transition
ratesko () (t) =Koy V(1) ] follow the voltageV(t) adiabati-

OK?(—V)C cally. Furthermore, we assume that the applied Gaussian
kT\;) ' voltageV,(t) effectively presents “white noise” on the time

scale set by the decay of autocorrelations of the ion current

with corresponding voltage-dependent effective transitiorfluctuations.  The —autocorrelation timer, = 1/Ko(Vo)
rates ko(V)=1KT,(V)) and ko(V)=1AT.(V)), respec- +kC(VO)_] is typically gf the order. of mHhsgconc[éZO]_.lThen
tively. Although such a two-state Markov description pre-the choice of a noise bandwidth, satisfying 7, "<f,
sents a rather crude approximation, it captures the main feas Teon. I-€., f3~10-100 kHz, presents a consistent specifi-
tures of the gating dynamics of the voltage-sensitive iorcation for the fluctuating rate description. The role of exter-
channels—the dichotomous nature and the voltagenal noise is thus reduced within the same two-state approxi-
dependence of transition rates. Moreover, by constructiomation merely to forming new, noise-dressed time-
this model yields the correct mean opetosed dwell times,  dependent transition rates,—o o(t)=(Kq—o [ V(1))

and the stationary probability for the channel to stay openThese result from taking the stochastic average of the fluc-
ie., Po(V)=(T,(V))!  tuating rates over thexternal noise. These effective rates
[(To(V))+(T(V))]. An example of the experimental de- now depend on the noise rms amplitugigthe static voltage
pendence of the transition rates on voltagean be found V,, and the time-dependent signdl(t). It turns out that

for aK™* channel in Refs[21,22, and is depicted in Fig. 1. within the given approximation the averaged transition rates
We note that, in contrast to the closing r&te the opening do not depend on the noise bandwidth also see Appendix
rate hasno exponentiadependence on the voltage. In par- A,
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Our models for the channel dynamics thus read subspace the trajectories are divided into the subclasses de-
scribed by the numbes=0,1,2 ..., which enumerates the
dPy(1) -k (t)P (t)+k (t)P(1), number of intermediate flips that occurred between open and
dt cno ° closed states in order to arrive at the final state. The prob-

(1) ability distribution on this space is given by a sequence of
dPe(t) CR(OPLO) LKD), joint multitime probability densitieQS*(t, 7, ... ,r;) for
dt switches to occur at timeq,r,, ...,7s, and to end up at
timetin either the open stateor closed state, respectively.
whereP(t) andP(t) denote the time-dependent probabili- This probability distribution is normalized, i.e.,
ties for a single ion channel to be open or closed, respec-
tively. The stochastic process described by @g.is anon-
stationary random telegraph noise with time-dependent E {Qg(t)
transition rates. This model has been extensively studied ir*=°:¢
the literature, for example, to model conventional [2R23]. © . o
Moreover, this model was studied in RE24] from the per- +> f def dre_q. .. f drQ2(t,7s, . . .,71)
spective of input-output cross-correlations as a simple model 0 0 0
for aperiodic SR. However, to the best of our knowledge, a
detailed analysis of this cornerstone model, using informa-
tion theory[15,14 to specify the information transduction
process, has not been developed previously.

=1. (4)

The probability densitiesQ%°(t,zs, ...,r;) are readily
constructed by taking into account the facts that the process
g(t) is (semj-Markovian for any given realization of the
voltage signaV(t), with the switching time points; being
drawn alternatingly from two differerttme-dependerois-
How can we estimate the amount of information transmit-son distributiong27]. In particular, the probability to stay in
ted from the input voltage signal(t) to the output ion the closed conformation until time given that this confor-
current|(t)? A comparative statistical analysis of the ion mation has been occupied initially with the probability
current fluctuations performed in the absence and presence B(0), is
a signal allows one to answer this question.
When the channel is open, a large number of ions cross Qg(t):effgko(f)drpc(o)_ (5)
the channel, thus creating a finite, mean curig(t). This
current obeys the Ohmic laly(t) =g.[ V(t) — V], whereg,
is the conductivity of the open channel avidis the “rever-
sal” potential (Nernst potentialfor K* ion flow. When the
channel is closed, the ion flow is negligible and the current is — o
zero. We recall that the current passing through the open Po(75] 1) =ko( 7)€ [ rko(47 (6)
channel is generally time dependent in accordance with the
externally applied signaV/((t). However, we will assume for leaving the state €” in the time interval[ 7, +dt, 7,],
that information about the signal is encoded in the switchinggiven that this state was occupied with probability Itat
events of current between zero ahg(t), and not in the = 71. Analogous expressions, with indices changed footm
additional modulation of (). In other words, the informa- 0, hold obviously also for the complementary quantities
tion is assumed to be encoded in the sighal-modulated  Qo(t) and Po(75| ;). Then the multitime probability densi-

IIl. STATISTICAL DISTRIBUTION OF CURRENT
FLUCTUATIONS

To obtain the remaining probability densities, we introduce
the conditional probability density

ductancefluctuations betweeg, and zerd 25]. ties emerge as
Moreover, one can describe the resulting current fluctua-
tions in terms of conductance fluctuations, i.e., QS (t, Tan, Tl):effLZHE)(r)dTPO(TZHhZH )
HO)=9(DIV(1)=Vid, 2 XPc(Tan-1|T2n-2) - - - Po(72| T1)
whereing(t) is a two-state random point procefgz6,27. X P.(71]0)P(0) !

The sample space gf(t) within the time interva[ 0,t] con-
sists of stochastic trajectories which flip between zerognd for a given even number of flips, and
at randomly distributed switch-time points, i=1,2,...,
ie.,

R
Qnia(timonst, ..o =€ o JOIP (1) | 750)
< < .
O< 7'1< T2 Ts<t (3) X PC( T2n| T2n_1) P PC( 7'2| Tl)
This defines a continuous time point proce$s), 0<t<t. X Po(71/0)P4(0) (8)

Next we divide the sample space into two subspag@gshe

subspace 6" contains all trajectories which finish in the for an odd number of flips, respectively. The probability den-
open state at the end poindf the considered time interval, sities for the other subspac¢kbeled witho) can be written
and(ii) the subspace ¢” contains all trajectories which end down by use of a simple interchange of the indicesido in

in the closed state, respectively. Furthermore, within eactitgs.(5)—(8).
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The above reasoning yieldsampleteprobabilistic de-
scription of the stochastic switching process that is related to S(A)=~— Kf p(x)In[p(x)Ax]dx
the conductance fluctuatioggt). In terms of the stochastic

path description, the probability that the channel is open at B
the instant time is therefore given by ==« | p()In[p(x)Jdx—«In Ax, (12)
Po(t)=Qg(t) whereinp(x) is the probability density, andx denotes the

" precision with which the variablé&(x) can be measured
t 7s 2 (coarse graining of cell sizeAs clearly seen from Eq11)
(o] H
+§1 deTsfo drsy--- fo d71Qs(t.7s, - .T1). the absoluteentropy of a continuous variable is not well
defined since it diverges in the limi&x—0. Nevertheless,
©) the entropy difference = information is well defined, and

An analogous expression also holds for the probability of thedoes notdepend on the precisiofix.

closed conformatiorP(t). Upon differentiatingP,(t) and _ )

P.(t) with respect to time, one can check that these time- B. 7 information

dependent probabilities indeed satisfy the kinetic equations The generalization of information theory to the case of
(D). stochastic processes is not trivial. In our case, the proper

definition of entropy of the switch-point procesét), con-
IV. STOCHASTIC RESONANCE QUANTIFIED sidered in the time intervdl0,T], is, by analogy with Eq.
BY INFORMATION THEORY (11),

In the following we derive a general theory for various
information measures that can be used to quantify the infor- SIT|Vi=—« Z {QS‘(T)In Q4(T)
mation gain obtained from an input signél(t) being trans- a=o.c
duced by the ion channel current realizatiol{s) when © o ;
V¢(t) is switched on, versus the case with(t) being +E f def Sde_l,,_
switched off. Intuitively, this information describes the dif- =1 Jo 0
ference in uncertainty about the current realizations in the

absence and presence of the sigvidlt). % fTZdTng(T,TS, o)
0

A. Preliminaries

We start out by reviewing the necessary background. Let XIn[Qg(T,7s, ... ,71)(AT)S]] . (12
us first consider aliscrete random variabled. As demon-
strated by Shannon in 19485] (his expression was discov-

i . . > where A denotes the precision of time measurement, and
ered independently by Wienetthe information entropy 4 P

the symbolV, indicates that the entropy is defined in pres-
n ence of the signaV/4(t). The presence of the time resolution
S(A)=— Kz p: In p; (10) A7 in Eq. (12 gives the name # entropy” to this quantity
i=1 [29]. It is very important that in the contrast to the case of a
continuous variable, the contribution of the finite time reso-
provides a measure of the uncertainty about a particular reution A r to the = entropy cannot be recast in a form like
alization A; of A [28]. In Eq. (10), the setp; denotes the _ x|n Ax [cf. Eq. (11)]. We note that its contributiomle-
normalized probabilities for the realizatior#s to occur, pends on the statistics of the random proclesig different
={_,pj=1. The positive constant in Eq. (10) defines the in the presence and absence of a signal. This is why not only
unit used in the measurement. If the information entropy ishe absoluteentropy, but also thalifferenceof entropies,
measured in binary units, thea=1/In 2, natural units yield become poorly defined for continuous time point random
k=1, and digits givex=1/In10. This measure attains a processes. As a result, the definition of information in this
minimum (being zer9 if and only if pj=1 for a particular manner becomes rather ambiguous.
value ofi, and all others satisfg;=0. It reaches a maximum For a sufficiently large time intervdl the averaged infor-
if pj=21/n. The information entropy for a probability distri- mation transferred per unit time from the input voltage signal
bution is therefore a measure of how strongly it is peaked/((t) to the output current signdl(t) can be defined as
about a given alternative. Thencertaintyis consequently follows [30,31]:
large for spread out distributions, and small for concentrated
ones.  S{T|Vs=0)—SA(T|Vy)
The application of an external signg@erturbation results 1= T '
in a change of probabilitiep;, and consequently in entropy
S(A). The gained informatiod is then defined by the cor- This information measure can be termed ihformation per
responding change in entropy, i.85 Spefore—Safter - unit time” to underline its dependence on the time resolution
The generalization of the information concept to the case\ 7. Upon taking the derivative d8[t|V] in Eq. (12) with
of a continuous variablé&(x) presents no principal difficul- respect to timd, after some involved algebraf. Appendix
ties. In this case a proper definition of entropy reads B) we obtain the result

(13
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dSt|V] _ _ As clearly deduced from Ed16), Shannon’s mutual infor-
—at K ZO . K (DIn[k,(t)AT/e]PL(t), (14  mationdoes nodepend—due to its skillful definition in Eq.

“me (15 — on the time resolution 7. This underpins its advan-
tage over the information measure in E3). Moreover, the
functional form(16) inherits important connections between
the mutual information and another prominent information
measure: thérelative Kullback entropy, also termeithfor-
mation gain

wherea=o0, if a=c, and vice versa. Together with EQ.)
and the definition(13), the prominent result in Eq14) al-
lows one to express theinformation for an arbitrary signal
V,(t) through straightforward quadratures.

The r-information concept was used to analyze the infor-
mation transfer in neuronal systems in R¢f30,31]. How-
ever, the strong dependence ofinformation on the time
precisionA 7 [31] surely presents an undesiraldebjective Information gain[32] is given in terms of the relative
feature. In search afbjectiveinformation measures, we con- entropy of the given statistical distribution with respect to
sider information transfer in terms of the mutual information some reference distribution. In our case, the reference distri-

D. Rate of information gain

measure. bution corresponds to stationary ion current fluctuations in
the absence of the voltage signaj(t). For a given signal
C. Mutual information V(t), the information gain reads
To introduce the reader to the mutual information con- QY(T)
cept, we follow the reasoning of Shannptb]: the signals Ki[l|Vsl=x > |Qg(T)InT
V(t) are drawn from some statistical distribution character- @=0,c Qo “(T)
ized by the probability density function&[V4(t)]. Noting o T
that the probability densitieQ%(t, . . .. ,ry) in Egs. (5), > f dr, f re -
(7), and (8) are in fact conditional with respect to s=1 Jo 0
the given realization ofV4(t), one can define the joint .
probability  densities,  QUS[t, s, .. . ,71;Va(D)] y f 241QN(T 7, - . 70)
=Qg(t,7s, ...,m)P[Vs(t)] for the corresponding stochas- 0
tic processed/(t) andI(t). Moreover, one can define the o
averaged probability densitig®Qg(t, s, . . . ,71))signal fOr xIn (M7, - 1) (17)
the process(t) in the presence of the process(yj, where QO T, 7, ..., 1)’

the path integral - - - )signa=JD[Vs] . . . P[V4(t)] denotes _ _ ©
stochastic averaging over the signal realizations. The mutuayhere the index'(0)" in Qg™ refers to the case when no
information between the stochastic procaggt) and I(t)  Vvoltage signal is applied. The relative entropy can be re-

can then be defined as the entropy difference garded as a signal-induced deviation of the entropy of the
random point process(t) from its stationary value obtained
MT(st|):Sav(T)_<ST(T|Vs)>signal’ (15 in the absence of signal. Although tladsoluteentropy of

dsuch a switch-time point proces$t) depends strongly on
the time resolutiom = and thus is not well defined, the de-
viation of entropy from the steady-state value can be defined

Bayes rules one can transform definiti¢tb) into a form independenthof A7 via Eq. (17). For stochastic processes

which makes transparent the fact that the mutual informatior?hIS relative entropy plays arole $|m|Iar to the entropy d'f'.
M+(Vs,1) is a symmetric functional of the procességt) erence, thus characterizing an information measure. This
an(TJII (ts)' and provides aonlinearcross-correlation measure Justlﬂes Its given name- information gain. In contrast'tc.) mu-
betweeﬁ theni15]. However, we will take advantage of an tual information this measure can be defineddeterminis-

. = X . tic signals as well. Consequently, information gain can be
equivalent form; it is obtained from Eq15) by using Eq. used as an information measure both for conventional and

whereS,,(T) is ther entropy of an averaged process define
similarly to Eq.(12), but with theaveragedprobability den-
sities(Qg(t, 71, . . . ,7s))signai- NOte that making use of the

(12), yielding aperiodic SR. Moreover, this measure is also well defined for
o7 nonstationarysignals, and therefore can be used to quantify
Ma(Vg, )=k 2 QX(T)In Qo(T) nonstationarySR as well.
* oo | 0 (Qo(T))signal In contrast to information gain, mutual information is
. more difficult to handle analytically. This is rooted in the fact
> deT fTSdT that the averagedpoint processr(t) is a non-Markovian
e PR PR process, with corresponding joint probabilities not factoriz-
ing into products of conditional probabilities.
% foTszng(T,Ts, ) The following important inequality can be deduced:
M(Vs, 1) = <’CT[| |Vs]>signal_ ’CT[<| >signa|]
ATy7gy oy
XIn aQS( Ts Tl) }> . $<ICT[| |Vs]>signal- (18)
<Q5(Tr7'51 cee 17'1)>signa| signal

In Eq. (18), K+[(l)signall=0 is the relative entropy of an
(16)  averagedprocessg(t) defined similarly to Eq.(17), but
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with averaged multitime probability  densities 1 ky(Vo)ka(Vo)
(QX(T,7s, ..., T1))signal- The averaged information gain R(Vo,a)=gK_O—C_[/Bg(VO)Jr,Bﬁ(VO)]
thus provides an upper bound for the mutual information. ko(Vo) +Ke(Vo)

Moreover, applying a weak Gaussian signal, which can be (22

regarded as a white noise on the time scale set by the iocri1 q th tat ltaa d—via th ¢
current fluctuations, one can show that the difference beZ®PeNds On e Stalic Vollag¥, and—via ihe rales
tween the mutual information and the averaged informatiorKa(Vo)—0n the rms noise amplituder. In Eq. (22),

gain in Eq.(18) is of orderO(A?%), whereA denotes the rms Ba(vo)=2(gdvo)ln[?a(v0)], a=0 andc, and the noise av-

amplitude of signal\=(VZ(t))fz - ON the other hand, it eraged rateko) (Vo) are given in the Appendix A for a K

is shown below that the averaged information gain per unithannel in Eqs(A2) and(A3).

time is of the ordelO(A?) and does not depend, within the  In the case of stationary stochastic signals or for periodic
given lowest order approximation, on other statistical paramelriving, Eq.(21) provides—after stochastic averaging, or av-

eters of signal. Thus the upper bound for mutual informatioreraging over the driving period of applied voltayg(t),

in Eq. (18) can indeed be achieved with an accuracy ofrespectively—the stationary rate of information gain. For
O(A?). This fact opens a way to calculate the informationalsignals of finite duration the total information gain is directly

capacity for weak signals33]. proportional to the total intensity of signék= [ VZ(t)dt:
The information gain can be evaluated from Ed7)
without further problems. By differentiatingi{[1|Vs] with K=R(Vy,0)&. (23

respect toT, we find, following the reasoning detailed in
Appendix B, the remarkably simplejainresult for therate  As a result we find that weak signals of the the same inten-
of information gaini.e., sity £ produce equal information gains. The occurrence of
o three different kinds of SR behavior, i.e., periodic, aperiodic,
— k,(t) — and nonstationary SR, clearly depends on the behavior of the
{ka(t)ln< )_ o(t) form function R(Vg,0) vs the rms noise amplitude. We
recall that the static voltagénembrane potentiplV, con-
trols whether the ion channel is on average open or closed,
P_(1), (19 cf. Fig. 1. In Fig. 2, we depict the behavior of the function
R(Vy,0) vs the rms noise amplitude for different values of
_ the applied static voltage. If theKion channel is closed, on
whereink, (Vo) denotes the stationary transition rates in theaverage, we observe that the information gain becomes
absence of signal. Together with Eq) this equationcom-  strongly amplified by noise, and can even pass through a
pletelydetermines the information gain within the consideredmaximum, i.e., SR occurf. Fig. 2a)]. In contrast, when
two-state model for any applied sign@l(t). For the case of the stationary probability for an open chanrl=k,/(k,
a periodic signalV4(t) (conventional SR or a stochastic +k.) becomes appreciably large, the addition of an addi-
stationary signalaperiodic SR, one should additionally av- tional dose of noise can only deteriorate the detection of
erage Eq(19) over the signal fluctuations and take the limit signal. As a result, the information gain decreases monotoni-
t—oo. In doing so, Eq(19) yields the stationary rate of in- cally with increasing noise amplitudef. Fig. 2b)]. This
formation gain. For weak stochastic signals this quantity als;o-SR behavior occurs at a static bias \6f~—49 mV,

diC[1]Vs]
dat ":2

a\ VO

+Kq( Vo)

defines the informational capacit$3] yielding P,~0.08. Note also, if the channel is predominantly
open, that the information gain becomes practically insensi-
C= lim (K+[1|Vs])signal/ T (200 tive to the external noiskef. the bottom curve in Fig. ®)].
Toe The occurrence of SR in the considered single ion channel

, , o " i thus requires that the channel is predominantly resting in its
If the signal is deterministic and has a finite duration, oneg|osed state.

obtains thetotal information gainiC by integrating Eq(19)

in a range from O toe.
VI. CONCLUSIONS

V. STOCHASTIC RESONANCE IN SINGLE K * ION Let us now summarize the main results of this work. We
CHANNELS have studied an illustrative two-state model for a single ion
. . _ channel gating dynamics from an information theoretic point
In the following we apply our developed information of yiew. The channel serves as an information channel, trans-
theory concepts to investigate SR in & Kon channel. We  qycing information from the applied time-dependent voltage
restrict our treatment to the case of weak signals with a timgjgnal to the ion current fluctuations. Three different infor-
duration which _strongly exceeds the autocorrelation time ofation theory measures have been developed to characterize
current fluctuationsr, . Then, after some elementary calcu- stochastic resonance. From our viewpoint it is advantageous
lations in the lowest order of(t), Egs.(19) and(1) yield {0 use an information measure which is independent of time
resolutionA 7. We argued that the rate of information gain
di[1(D]Vs(1)] -R 2 constitutes a unified characteristic measure for peri¢mio-
= =R(Vy,0)V(1), (22) . et . :
dt ventiona), aperiodic, and nonstationary stochastic reso-
nance. For conventiongberiodig SR and aperiodic SR this
where the form factor measure yields the averaged information gain per unit time.
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stochastic chains. Naturally, this information gain will still
depend on the time resolutiahr. However, in contrast to
the 7 information, this experimentally determined informa-
tion gain should exhibit a much weaker dependence on the
time resolutionA 7. By using increasingly smaller time grids
A7, the experimentally obtained rate of information gain will
approach a definite value.

Our theoretical results have been applied to investigate
the phenomenon of stochastic resonance in a potassium-
selectiveShaker IRon channe[21], as depicted within Figs.
2(a) and 2Zb). Interestingly enough, we find that periodic,
aperiodic, or nonstationary SR for this sort of ion channel, as
guantified by the rate of information gain, is exhibited only
) for a situation in which the channel resides on average in a

Input noise strength o [mV] closed state. This type of behavior is rooted in the asymme-
try of two ratesk, andk., with k, depicting a characteristic
(b) ;/ ~ 46I steep, thresholdlikg bghgvior; cf. Fig. 1. .
0=—46mV — ] Our SR feature is similar to the study of parallel SR in an
array of alamethicin channe[40], although the two situa-
tions are not directly comparable. We note that the amount of
transmitted information depends crucially on the membrane
potentialVy. For the model studied the information transfer
is optimized at zero noise level nédg~ —46 mV when the
opening probability becomes apprecialjleote the upper
curve in Fig. Zb)]. However, under such optimal conditions
the addition of external noise has the effect of only further
deteriorating the rate of information transffFig. 2(b)].
Upon further increasing the static bidg the ion channel
probability to stay open increases. The rate of information
transfer then diminishes and becomes practically insensitive
Input noise strength o [mV] to the input noise level. _ _
These results hopefully will motivate researchers to mea-

FIG. 2. Information gain versus rms amplitude of external noisesure the predicted SR behavior in single potassium ion chan-
o at various static bias voltag&. The form functionR(V,,o) in nels. Ever since the discovery of the SR phenomenon, the
Egs.(21)—(23) is plotted vs the rms noise intensiby. quest to use noise to optimize and control the transduction

L . . . and relay of biological information has been one of the Holy
Moreover, for weak stochastic signals it also gives the infor-g 45 of SR research. Given this challenge, such and related

maponal capacity, i.e., the ma>§|mal mutual mformgﬂon experiments are much needed in order to settle the issue in
which can be transferred per unit time for random S'gnalsﬁuestion.

with a fixed rms amplitude. The concept of information gain
can also be applied to the casenoinstationarydeterministic
signals with finite duration, i.e., nonstationary SR; cf. Egs.
(22) and (23).

Our main result is the closed formula for the rate of in-  The authors gratefully acknowledge the support of this
formation gain in Eq(19): it can be evaluated in a straight- work by the German-Israel Foundatié®IF) through Grant
forward manner by using the corresponding probabilities ofNo. G-411-018.05/95, as well as by the Deutsche Fors-
the two-state gating dynamics in E€). The information  chungsgemeinschaft, SFB 486 and HA1517/13-2.
gain itself follows upon a time integration. In the presence of
weak driving we derived handy analytical results given in
Egs.(21), (22), and(23). For voltage input signals referring APPENDIX A: MODEL FOR AVERAGED TRANSITION
to a stationary process the averaged rate of the information RATES IN A POTASSIUM CHANNEL
gain is determined by the rms amplitude of the signal input
and by the form factoR(V,, o). In the case of a nonstation- The opening and closing rates for the effective two-state
ary signal of finite duration, the total information gain is the model can be found from the voltage-dependent average
product of this very form function and the integrated signaldwell times. The latter can be determined from the experi-
intensity &. mental recordings. The experimental dependence of the ef-

The experimental procedure for determining the rate ofective transition rates on voltag¥, for the potassium-
information gain can be formulated along the lines used foselective channebhaker IRembedded in the membrane of a
the 7 entropy in Ref[31]. First, one finds the corresponding Xenopusocyte affixedtemperaturé = 18°C has been fitted
probability histograms in the presence and absence of a si§22,21] by a Hodgkin-Huxley type of data parametrization
nal, and then evaluates the information gain for the relatedi34]. This corresponding fitting procedure yields

Information gain [bits/(sec mV?)]

Information gain [bits/(sec mV?)]

ACKNOWLEDGMENTS
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ke(V)=ae ", a,;=0.015, b;=0.038, Qg(t,t,rs_l,...,Tl)=?a(t)Q;7_1(t,Ts_1,...,Tl), s=1.
(A1) (B2)

a,=0.03, b,=0.8, V,=46, The indexa in Egs.(B1) and(B2) takes the valuea=o0 and
¢, and the indexx takes the valuer=o, if a=c, and vice

which are depicted in Fig. 1. Note that we replace the origiversa. Using Egs(B1) and (B2), one can check tha®,

nal fit of the closing ratek. in Refs.[22,21] by a new ex- diven in Eq.(9) does satisfy Eq(1).

pression in Eq(A1). Unlike Ref.[22], our fit of experimen- Furthermore, let us consider theentropy in Eq(12) as a

tal data in Ref[22] is now also valid for positive voltagag ~ sum of two contributions S,[t|V¢]= k= ,—oS,(t), with
One should emphasize that the two rates in &) are  S.(t) defined from the corresponding partitioning in Eq.
strongly asymmetric with respect to their dependence ot12). Then, repeatedly using the relationshiBd) and(B2),
voltage. In particular, the opening ratg(V) depicts a steep, afFer some straightforward, but lengthy calculations, we ob-
thresholdlike behavior; see Fig. 1. In this work we explicitly tain

use these experimental findings |£ our calculations. The rates

in Eqg. (A1) are measured in mset, and the voltage in mV. el N s s

According to our model study, the input voltage reads dt olt) KeSolt) F koS +ke()Po(1)

=Vy+ V,(t) when no additional signal is applied. Equations — —

(A1) must be averaged over the realizationsvgft) to ob- ~ko(DIN[ko() A7]P(1) (B3)

tain the noise averaged ratég(Vy) and k.(Vy). For a and
Gaussian voltage noisé,(t) this averaging of the exponen-

tial in the first equation in Egs(Al) is governed by the
second cumulant, yielding

a)(V+V,)

(V)= 17 vy

%scm: ~ko(1)Sc(t) +Ke(t)So(t) + k(1) Pe()

Ke(Vo) =a,ePio?2-bivo (A2) —ke(DIN[k()ATIP(1). (B4)

Whereg:wﬁ(t)}l&_ The averaged opening rate The addition of Eqs(B3) and (B4) then yields Eq.(14).

Likewise, splitting the information gaitt,[1|Vs] in Eq. (17)

— = ay(Vo+Voty) 220 into  the sum of two contributions, Kl Al

Ko(Vo) = Zro) ~1-e bty dy = k3 4-0,cK4(t), and invoking the propertied®1) and (B2)
(A3) we obtain, after some algebra,

unfortunately cannot be analytically simplified further. How- EKo(t) = —Ke() Ko (1) + Ko (D) K(t) — [Ko(t)
ever, this rate along with its derivativek,(Vy)/dV, can dt
readily be evaluated numerically from E@3).

— - Ko(t)
—kc<vo>]Po<t>+ko<t>ln(_° )Pcm
APPENDIX B: CALCULATION OF ENTROPY Ko(Vo)
AND INFORMATION GAIN (B5)

The purpose of this appendix is to provide the readerg,,q
with some details of calculation of the entropic measures for
the continuous time random point two-state process consid- d — — —
ered in this paper. First, we note two useful properties of the g Ke(1) = ~Ko(D)Kc(1) +ke(D)Ko(t) = [Ko(1)
multitime probability densities which can be established

from Eqgs.(7) and(8). That is, _ _ ( k(1) )
—ko(Vo) IPc(t) +ke(t)In| = Po(t).
d N _ N Ke(Vo)
aQS(t,TS, oo T) =K (D)Qe(t, 7, ... ,T),  S=0, (B6)
(B1) i L .
Adding Egs.(B4) and(B5) results, after multiplying by, in
and our main result, in Eq(19).
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