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Exact results and scaling properties of small-world networks

R. V. Kulkarni* E. Almaas, and D. Stroud
Department of Physics, The Ohio State University, Columbus, Ohio 43210
(Received 19 August 1999

We study the distribution function for minimal paths in small-world networks. We derive its general form,
which we verify numerically, and also discuss its scaling properties. Using the general form of this distribution
function, we derive exact expressions for the average minimal distaael its variancer?. Finally, we study
the limit of large system sizes and obtain some approximate results.

PACS numbgs): 84.35:+i, 05.50:+q, 64.60.Fr, 87.18.Sn

Recently Watts and Strogaf2] have studied a class of Dorogovtsev and Mendd48] have introduced two exactly
networks that can be “tuned” from an ordered to a randomsolvable models similar to small-world networks. For these
state by varying a single parameter. For a range of parametgnrodels they_drive the explicit form d®(m|n), from which
values, they found that the networks resembled ordered nethey obtain/” and other properties of their networks. In this
works locally but random networks globally. They namedpaper, we derive the general form@¢m|n) for small-world
this class of networks “small-world” networks because of networks, and we confirm it numerically. Using this form,
their relevance to a well-known problem in sociolof].  we derive an exact expression férand for the variance of
Since t_he|r mtroductl_on, small_—world networks and_thewz o?=/2_ /2 We also study the scaling properties of
properties have received considerable attenfn18], in . . L

) . L P(m|n) and obtain some approximate results for it in the
part because of their possible application to a broad range ?fm

; ) . Imit of large L. Note that in describing the networks, we
systems, ranging from social network] to coupled oscil- have considered the case of coordination numberksf 2
lators[3].

. ) for each site. However, our arguments for the general form
Much of the work characterizing the properties of small-

o > of P(m|n) are valid for arbitraryk. For simplicity we will
world networks has focused on the average minimal d'SIanCE’onsider the cask=1 in the rest of this paper, and gener-

/ separating two randomly chosen points in the networkalizations to arbitrark will be indicated as appropriate.

Previous work has shown thathas two scaling regimes: for ~ We begin by deriving the general form B(n|m). First,
small system sizeks, it is found that”~L, whereas for large  Since the minimal distance cannot exceed the Euclidean dis-

L, /~log(L) [19]. A scaling form for/ has been proposed tance,P(njm)=0 for n<m. For n>m, the minimal path

and numerically confirmed; however, the nature of the crossmust use at least one shortcut. But taking a shortcut is

over between the two scaling regimes has been the subject 8fiuivalent to randomizing the position along the network,

debatef5,8,10,12,14,1F In this work, we will focus on the since the shortcuts are uniformly distributed. Herfe|m)

basic probability distributions for small-world networks, and must be independent affor all n>m. Finally, for n=m, it

as a consequence obtain exact results/fand its variance IS not necessary to use any shortcuts in the minimal path; so

o2 the arguments invoked fon>m do not apply. Instead,
We generate the networks following the prescription ofP(n|n) is determined by the constraint that the probability

Newman and Watt$8]. We start with a one-dimensional distribution is normalized.

periodic lattice withL =2N sites and nearest neighbor con- We now derive the general form d?(m|n). From el-

nections. We then add shortcuts uniformly with probability ementary probability theory, we have

such that the average number of shortcuts added=ipL.

We denote the distance between two sites, counted along the 2
: ; ; : _ P(m|n), n<N
lattice using only nearest neighbor links, as the Euclidean — L-1
distance. By contrast, the shortest distance between two sites, P(NfmQ(m=y @
counted along any bond including shortcut bonds, is called mP(m|n), n=N.

the minimal distance.

Using these definitions, we now introduce the following From Eq. (1) and the properties discussed in the previous
probability functions:(i) P(n|m), the probability that two paragraph,P(m<n|n)=f(m) is independent ofn, and
sites are separated by Euclidean distanagven that their ~ P(m>n|n)=0. Thus the general form d?(m|n) is
minimal distance ism; (i) P(m|n), the probability that two I
sites have minimal separatian given that their Euclidean ,
distance isn; and (i) Q(m), the probability that two ran- P(m|n)=®(n—m)f(m)+(1— ,21 f(m )) Smn. (2)
domly chosen sites have a minimal separatienRecently, "o

where®(x) is defined by®(x)=0 for x<0 and®(x)=1
for x>0. We have numerically confirmed the validity of this
*Electronic address: rahul@mps.ohio-state.edu form, as shown in Fig. 1.
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FIG. 1. The values of (m) as obtained fronP(m[n), which is FIG. 2. The average minimal separatioi Lg(x) vs the aver-

calculated from simulations for thevaluesn=>5 (O), n=10(1)),  age number of shortcuts=pL, as obtained from numerical simu-
n=15(x), andn=500 (¢). This figure confirms the statement that |4tion by averaging over all pairé), numerical simulation using

P(m<n|n) is independent ofi. The parameters for the figure are Eq. (6) (O), and Paddit as given by Ref[12] (solid line). This
L=1000, p=0.25. Similar confirmation has been obtained from ., firms the exact expression HE).

simulations for a wide range of parameter values.

The fact thatP(m|n) is completely determined bf(m)
implies that we need to consider only “diametrically oppo-
site sites” (d.0.9 in its computation [since f(m)
=P(m|N)]. It also has some surprising consequences, re- eyl 1+ 1
gardless of the exact form df(m). To explore these, we {(Z(N) L-1
examine some ot_her properties of small-world networks. For
example, besidesg, the quantity(/(n)), which is the aver-
age minimal distance_separatin_g two _sites with Euclideanrpe surprising aspect of the above equations is thand
distancen, has been discussed in the literat{itd,15. We ;2 \hich are average properties of the entire network, are
can express both these quantities in term®@f[n) as fol-  ¢ompletely determined by the mean separation of d.o.s.
lows: (/(N)) and its higher moments”(N)) and(/3(N)). Note

n that Egs.(6) and (7) can readily be generalized to akyby

(Z(n))= > mP(m|n), (3)  performing the substitutioh—[L/Kk].
m=1 When the network has exactly one shortcut, we can cal-

N1 n N culate/ analytically using Eq(6). In this case, in the limit

- 1 of large N, we get(/(N))=3N and(/?(N))=2N? which
”:T<22 > mP(m[n)+ >, mP(m|n)). (4) . g_/_s get(/(N))=3 - .< (N))=2 _

L-1\ im1m m=1 gives/ = 3 N. As expected, this is in perfect agreement with

o the results obtained by Strang and Eriks$g6]. We have

Similar expressions hold fdr’%(n)), (#°(n)), and/?. Sub-  further confirmed Eq(6) by numerically computing” using
stituting the form ofP(m[n) [Eq. (2)] into the expression for  the following two proceduregi) averaging the minimal dis-

1+ !
L-1

o2=(/%(N)) (Z(N)=4(73(N))]

N

_</*2<N>>}2
L-1 |°

)

/" [Eq. (4), we obtain tance over all pairs of sites, afiil) considering only pairs of
d.o.s. and using Ed6). The results, which are presented in
— nrnt N n-1 Fig. 2, indicate that the two procedures are equivalent.
/=17 221 le mf(m)+2nZl n 1—m21 f(m) The results obtained so far have been independent of the

functional form off (m). To gain further insight, we consider
the scaling properties of (m), following the real-space
, (5) renormalization grougRG) analysis of Newman and Watts
[8]. This procedure consists of blocking pairs of adjacent
sites while preserving the total number of shortcuts in the
network. This gives for the transformed lattité = N/2 and

N—-1

N—1
+ 2—1 mf(m)+N| 1— 2—1 f(m))

which can be simplified to give the following exact expres-

sion: p’ =2p. We note the following features of this transforma-
o 1 (/2(N)) tion [8]: (i) the geometry of the minimal paths is unchanged
/=(/(N))| 1+ ) XY ) (6)  inalmost all cases, and the number of site pairs for which the
L-1 L-1 geometry does change is negligible for latgand smallp,

o ) ) ) and (i) the distance along the minimal path is halved, i.e.,
Similarly, we obtain an expression for the variance of the,, — /2 for largeL and smallp. Furthermore, we note that

distribution of minimal distancesr?=/2— /2 the RG transformation maps two pairs of d.o.s. into a single
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FIG. 3. This figure confirms the proposed scaling form of
f(m,N,p) [Eq. (10)] for x=pL=10 and system sizds=500 (*),
750 (¢), and 1000 ). We have confirmed this scaling collapse
for a wide range ok values.

pair. This fact, in conjunction with point§) and (ii) above,
give us

,(m N )_
f 5,5,2p =2f(m,N,p), (8)

where we have made the dependenceNoand p of f(m)
explicit. For largeN, taking the continuum limit, we can
generalize the above expression to

f/

m N B
X,X,)\p)—)\f(m,N,p). 9

These observations can now be summarized in the followin

scaling form:

1
f(m.N,p)=Nh(y,X) (10

where
m
y= N’ x=2pN.

By fixing x, we have observed the scaling collapsef @h)
for different values o andp. This is demonstrated numeri-
cally for x=10 in Fig. 3. Our simulations indicate that for
any giveny, this scaling collapse holds for smalland large
enoughN.

It is interesting to note that the scaling properties’afan
be derived from the scaling form ¢{m). Using the defini-

tion of / [Eq. (4)] and the scaling form fof(m), we get

/= (11)

L 1
_ _ _ 2
7|1 fo dy(1—y)°h(y,x)

=Lg(x), 12
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FIG. 4. f(m) vs mfor x=pL=250 andL =2000. The solid line
is the Gaussian fit to the calculated data. The inset shows the Gauss-
ian fit for x=500 andL=2000. Note that with increasing the
Gaussian becomes more sharply peaked.

which is consistent with the scaling form proposed in previ-
ous works. Similar scaling forms hold fef?, (/(N)), and
(72(N)).

We now consider the limit of large system sizes such that
x>1. In this limit, we have observed numerically that we
can approximatd (m) by a Gaussian distribution function:

1

f(m)= —e (e, (13

270

«

whereuy and O'S are, respectively, the mean and variance of

the distribution. The corresponding fit for=250 andx
=500 is shown in Fig. 4. Our simulations indicate thatxas

%fcreases,/(Lg/ag) also increases, as can be seen from the
gure.

Using the Gaussian approximation ffm), we are now
able to calculate the functiofr’(n)), which has been dis-
cussed elsewhefé4,15. From Eqs(3) and(13) in the limit
mg>0g, We obtain
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FIG. 5. The mean distancg”/(n)) between two sites having
Euclidean separation for x=pL=250. Results are shown for nu-
merical simulation ©O) and analytic expressiofEg. (14)] (solid
line). The analytic expression is an excellent fit for 1.
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/ 1 ® n— gy 1 </(n)> n, n<</(N)> a7
/(n)y=n—3(n— + / =\, ,
e (SN, n=(/N)).
" 99— (n—pg)220> 14 . ) , . . .
\/Ewe e 149 This expression fof/'(n)) is consistent with that previously
derived exactly in Refd.14,15 in the same limit.
where we have assuméd,ug/\/fcrg) =1. In this limit, sub- In conclusion, we have studied the probability distribution
stituting the above form off(m) into the definitions of for minimal path lengths in small-world networks. We have
(Z/(N)) and(/?(N)), we get presented arguments for the general analytical form this dis-
tribution must take, and have verified this numerically. Using
mg=(/(N)), (15  this form, we have also derived some exact relations. We
5 Y , ) have obtained an approximate scaling form for this probabil-
og=(/“(N))=(/(N))=~. (16) ity distribution in the limit of large system sizes. It is our

hope that further efforts along these lines will provide a bet-

In particular, these equations imply tha andoq have o ynderstanding of the structure of small-world networks.

the following scaling formsu,~Lg;(X) and og~Lga(X).

Using these relations, we see that the Gaussian ansatz for This work has been supported by NASA through Grant
f(m) [Eq. (13)] is consistent with the scaling form proposed No. NCC8-152 and NSF through Grant No. DMR97-31511.
in Eq. (10). In Fig. 5, we compare Eq14) to results from Computational support was provided by the Ohio Supercom-
our simulations forx=250. In the limitL—«, we have puter Center, the San Diego Supercomputer Center, and the
(0g/mg)—0, which upon substitution into E¢14) gives us  Norwegian University of Science and Technolo@yTNU).
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