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Density correlations in lattice gases in contact with a confining wall
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A discrete version of classical density functional theory applicable to lattice gases or Ising spin systems is
proposed, which accounts for the requirement of particle-hole symmetry in the presence of pairwise forces.
Results of our theory for density profiles and two-particle correlation functions in two-dimensional strip
geometries compare favorably with Monte Carlo simulations. Some problems with standard “weighted-
density” approximation schemes, when applied to lattice gases, are pointed out.

PACS numbd(s): 61.20—p, 05.50+q, 68.35-p

[. INTRODUCTION as a functional of the average occupation numigergp;};
pi={n;). The free-energy function&[ p], which is indepen-
In recent years, density functional thed®FT) has been dent of¢;, can be decomposed into an “ideal” part which
developed sufficiently far to become a quantitative, micro-describes a noninteracting lattice gas,
scopic method in studies of the equilibrium properties of
nonuniform fluids[1,2]. In numerous applications the DFT _
has proved not only to account for the gas-liquid and the F‘d[p]_kBTZ [pilpi+(1=p)in(1=p)l. @)
freezing transition in the bulk of three-dimensioiaD) flu-
ids [3-9], but also for various phenomena at surfaces and irand an excess paR,,J p] due to interactions. For a given
systems with restricted geometries. Examples are surface etemperaturel, chemical potentia, and external potential
richment in mixtures[10], wetting phenomendll], and ¢, the equilibrium occupation is obtained by minimizing
phase transitions in fluids confined between hard wal®§ [p], the minimum value representing the thermodynami-
and in narrow porefl3] as well as two-dimensional melting cal grand free energy. The conditiaf)/dp;=0 immedi-
[14]. The DFT thus appears to constitute a quite general toddtely yields an expression of the type of a Fermi-Dirac dis-
in the investigation of small confined systems, which is atribution,
problem of growing interest in view of the potential techno-
logical importance of artificial nano-sized structures. pi=@1+ exp{ﬁ(ei—u)—cfl)[p]})*l, 4
Most of the underlying models are naturally formulated in
continuous space. There are, however, important physicaith the “correlation potential”
situations, e.g., metallic alloys or submonolayer adsorbate )
systems, suggesting a coarse-grained description in terms of —kgTGV[p]= dF exc/ ap; . 5)
discrete molecular configurations. This poses the problem of o
formulating a discrete analog of density functional theory,In order to proceed, one needs an approximatiorcfof p]

based on a lattice gas Hamiltonian of the form or Fexd P]. The simplest approximation, analogous to the
freezing theory of Ramakrishnan and Yussyaff], consists

1 of an expansio_n OfF o, d p] up to terms of second ordeLin the
H=3 %: Vijninj+§i: (=N, (1) deviationsp;— p from some uniform reference density
. o kgT — — =
where the occupation numbers for lattice sitese denoted Fexd P1=— - ; Cij(P)(Pi—P)(P;—P)- (6)

by n; . In a “fermionic” lattice gas, which we consider here,
a site is either vacann{=0) or singly occupiedifj=1), so
thatn?=n;. In Eq. (1), Vj; are the two-particle interaction
parameterse; the site energies due to an external potential
and u is the chemical potential. As shown previously, all
formal steps in DFT for continuous fluids are readily adapted Hii(p)=(nin;)—p? )
to the discrete case described by E). [15]. The central b v

feature of the lattice version of DFT is a variational principle py the Ornstein-ZernikéOZ) relation, which in our discrete
based on the grand free energy theory can be written in the form

Here ¢;;j(p) denotes the Ornstein-Zernike direct correlation
function, assumed to be known. It is related to the pair cor-
relation function

ne[|o]=2i (&—w)pi+FIp] 2 Hij(p)=p(1—p) a,—@ c(PHE(P)|- (8
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Within the above scheme, ordering transitions in lattice gasesave been treated by Roblef29] for the discrete case and

can be treated in analogy to the freezing transition in conGotzelmannet al. [26] for continuous fluids. Section IV

ventional DFT for continuous fluidg15]. In addition, the = summarizes our results.

discrete DFT has successfully been applied to interfacial

properties in lattice gases, including the thermodynamics of [l. SEMILINEAR DFT

ﬁtigzeges::as%iivinfoS;;La;uen;c’:lgszepﬂu'\r/lfg::ee r(seggrr]égation Let us firs_t of all assess the behavior of the excess free-
ffects in fcc alloyd18]. However, all practical calculations ehergy functionak e,d p] V-Vlth respect to the excr_]ange of

etiec y ' » all practical L particles and holesvacancies Clearly, the expression

performed so far made use of the approximat@®nwhich is

clearly insufficient for a treatment of some important circum-

stances. For example, it fails to account for any realistic bulk ; Vii”i”i_Vozi ni ©)

phase diagram in the presence of competing interactions and,

generally, for surface phase diagrams including wetting phewith V,==,;V;; is invariant if we replace; with 1—n; on

nomena[19]. Dealing with these problems requires termsevery sitei. Since the form of the functiond .. J p] is de-

higher than second order iR.,.. Truncated higher-order termined only by the pair interactions but is independent of

expansions oF .. in powers of the density inhomogeneities, the single-particle terms in Ed1), it follows that the func-

however, may lead to intricate problems of convergencdional

[20]. In continuum theories, various forms of the “weighted-

density gpproximat?onj(WDA) [1], \.N'hiCh f(.)rnjalllly involve Fg)([p]= Fexc{p]_lvoz P, (10)

powers in the density inhomogeneities to infinite order, have 275

been developed in treatments of the freezing transjer?)],

interfacial properties and wetting phenomégga,22, capil-

lary condensation13], particle density profiles of hard

spheres at hard wallg23,24], triplet direct correlations in

homogeneous fluid§24,25, and pair correlations of hard

spheres near planar wa(l26] and in slit geometrief27].

By immediately applying standard WDA schen{egich
involve only one weight functiorto the lattice gas, however, 1
one is faced with the problem of incorporating particle-hole FSUP) = fexd P) — 5 VoP (13)
symmetry. This symmetry is an inherent property of the
Hamiltonian (1) based on pairwise interactions. While this obeys the symmetry relation
problem is discussed in some detail in the Appendix, we
pursue a different line in the main part of this paper. We fSp) =S 1—p). (12
propose and analyze a simple form for the free-energy func- . . L
tional which preserves particle-hole symmetry and simulta- B‘?fOfe we introduce our basic approximationFig,d p],
neously constitutes an important conceptual and practical imc_:on5|der the representation
provement over the “linear DFT” scheme contained in Eq. p o~
(6). —Bfexdp)= f dp’ f dp"co(p”) (13

Our paper is organized as follows. In Sec. Il we introduce 0 0
our basic approximation, whose structure is closely related tgf t_ (p) in terms of the zero wave-vector component

the work by Gezelmannetal. [26], and which we call Eo(p)Zchij(p) of the direct correlation function. Together

which is F.,. minus the average of the second term in Eq.
(9), does not change with respect to the replacenpentl

—p; . Note thatF (S p] is zero for both a completely empty
and a completely filled lattice. Correspondingly,fif,{p)
denotes the excess free energy per site in a homogeneous
phase with average density the function

“;emilir)ear DFT.” In S_ec. 11 we apply it to. a twq- with the symmetry relatiori12) and
dimensional lattice gas with attractive nearest-neighbor inter-
actions in a strip geometry, where the confining walls exert a cij(p)=c;;(1—p), (14)

potentiale,y to their adjacentoutermosklayer. As usual, we 5

need the direct correlation function for uniform states as ouig. (13) yields a condition force(p) worth noting. Since
basic input. This quantity is obtained from the Ornstein-f)(0)=f3)(1)=0, we havefq,(1)=V,/2 which can be
Zernike equation in connection with the Kramers-Wanniercombined with Eq(13) and Eq.(14) to give

approximation, which allows us to compare the semilinear .

DFT with Monte Car_lo S|mulat|o.ns in & quantitative manner. f dpCo(p)=—BVs. (15)
Besides the calculation of density profiles, our main concern 0

is two-point correlation functions, describing density corre- 5

lations which are parallel and perpendicular to the confininglhis sum rule forcy(p) provides a test for any approximate
walls. Generally, these correlation functions directly entercalculation ofc;;(p) in a lattice gas.

the cross section in surface scattering experimg2® A Under the assumption that E€LS) is satisfied, we now
detailed Monte Carlo study of density patterns and two-poinfonstruct an approximate free-energy functional consistent
density correlations of Ising systems in strip and film geom-with the symmetry of Eq(10) under the exchangp;«1
etries has been published before by Bindaral. [10],  —pi. Writing FIp]=3f, we require the excess free
whereas correlations of inhomogeneous hard-core systenemergyfi(s) related to sitd to consist of a local term deter-
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mined by the exact free energy per site of a uniform state 1 - -
[Eq. (13)], and additive contributions from neighboring sites a)
J, which arelinear in the occupation differencep;—p; . 1071 il
Hence, kgT/[V|=0.80
keT 2 1072 1
FpI=3 | (o)~ 5 3 ai,-<pj—pi>] a9 =
. . . 10°® ]
The p;-dependent coefficients;; are determined by requir-
ing that 4
© 10 . . 1
9*(~ BFex 0 5 10 15
( piop; €ii(P) 0
1
hold for uniform states witHarbitrary constant densityp. b)
This gives 107+ _
kgT/|V| =0.70
Pi _
aij:f dp’cij(p’). 7 102 x=19
1/2 =
I
The advantage of the expressitb) over the “linear” 102t
DFT, Eq.(6), is that it involves the correct free energy of
uniform states but no particular reference state. The form of 10 .
Eq. (16) is analogous to that derived in previous work by
Gotzelmannet al. on continuous hard core systerfi6]. 0 5 10 15
Their “linear-weighted density functional theory” is based
on an expression of the same type as Bd), where the 1 '
densitiesp; andp; are replaced by weighted densities. c)
107
lll. MODEL CALCULATIONS IN TWO DIMENSIONS kgT/|V| =065
We now apply the above scheme to particles with nearest-;; 102
neighbor attractionV<0 on a two-dimensional square lat- =
tice. In order to obtain the input quantities (p) for that 103 |
model, some further approximation is required. We shall use
the Kramers-Wannier cluster approximation, in which the 4
elementary squares of the square lattice are used as the bas 1071 e MC .
clusters. This method is known to give a fair representation 0 5 10 15

of the phase diagram of the nearest-neighbor Ising model
and its accuracy is regarded as sufficient for the present pur-
pose[30]. Specifically, it yields a critical temperature given  FIG. 1. Lateral pair correlation functioH(x,y) in a strip of
by ksTK"/|V|=0.606 while the exact critical temperature width L=40 versus lateral coordinagein the first row &=0) and
satisfieskgT./|V|=0.567. From the Kramers-Wannier ap- far from the wall = 19) resulting from Monte Carlo simulations
proximation we obtain the excess free enefgyy(p), which ~ and the semilinear DFT. Energetically neutral walks, ¢ 0) were
in connection with Eq(11) satisfies the symmetry condition assumed, with constank{ndependentdensityp,=0.5.

(12). In addition, by appropriate summations over cluster

variables we also obtain the pair-correlation functibhg p) p(1—p)ce(p)+4c,(p)H.(p)=0. (19
for nearest and next-nearest neighbors, denotedH pip)
andH;(p), respectively. Here we have useH;;(p)=p(1—p), so thatZ,cyH,;=0.

In order to determine thath-neighbor direct correlation The remaining equation®) (i) can be used as a con-
function, denoted by, (p), we take advantage of the fact gjstency check of this procedure. For example, one can cal-
that, generallyc;(p) becomes very small at distances be-¢yjateH,(p) in terms ofc,(p) from Eq.(8) by taking Fou-
yond the interaction rangesee, however, Ref31]). Hence e transforms and then compare the result withobtained
we takec,(p) =0 forn=2 and are left with two unknowns, - girectly from the Kramers-Wannier approximation. Calcula-
cy(p) andco(p)=c;i(p). These are determined most easily ions show that as long deT/|V|=0.7 the difference be-

by using the compressibility sum rule tween both methods amounts to less than 5% fopabut
o2 differences increase at lower temperatures.
~ _ - Knowing f..{p) andc,(p), the excess free-energy func-
= +4 = f 18 ex n
Co(P)=Co(P) +4C1(P) Bygz edP) (18) tional, Eq. (16), is completely specified and we can now

calculate density profilep; and pair-correlation functions
and the OZ equatiofB) for i =j: (nin;) for inhomogeneous systems by using Eg$.and(5).
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3 r——— kaT 7 IV = 0.80 TABLE |. Parameters used to calculate the density profiles in
: kgT/ Vi ;0:70 Fig. 3 and lateral correlations in Fig. 4.
P kgT /|[V| = 0.65
2 7.‘/" ______ ‘W“,’,‘V,’ B S . 3 kBT/|V| 6W/|V| ILL/|V|
N ‘/" 0.80 -0.7 -0.4
z kA kA A 0.70 -0.4 -0.2
S A 0.65 -0.3 -0.1
1} &7 E
:: I
L
purely random wittp; = 0.5 (which corresponds to zero mag-
0 s s netization in the equivalent Ising modlel
0 5 10 To start our discussion, consider a half-filled lattice with

x constant(zero site energies. Then for the boundary condi-

FIG. 2. Decay length\(x), see Eq(22), of lateral correlations tions chosen we simply obtain a constant dengify-0.5

for neutral walls f,=0.5) and three different temperatures, follow- (“neu_tral” walls). Howeverl, becayse of the missing neigh-
ing from the SLDFT(cf. also Fig. 1. bors (in the language of Ising spihat surface sites, corre-

lations among near-surface sites become weaker than in the
bulk. This is demonstrated in Fig. 1, which shows the lateral
decay of the functiorH(x,y) at the surfaceX=0) and in

the middle &=19) of a strip of widthL=40 for several
temperatures above the critical temperaflige Data points

According to Percus’ test-particle methd82], (nin;)/p;
with i #] is regarded as the density at siteobtained from
Eqg. (4), under the condition that a particle is fixed at gite

which means that in solving E¢4) for p; we setp;=1. X ; .
In applying this formalism, our primary goal is to inves- obtained from Monte Carlo simulation are shown for com-

tigate wall-induced correlations in confined systems. As afParison. For temperaturdesT/|V|=0.75 [Fig. 1(a)] good
example, we study in the following a strip geometry, where@greement with the semilinear DRSLDFT) (solid lines is

the lattice consists of points=(x,y) with perpendiculafdi- ~ found over the main decay of the functioi(x,y). As
mensionlesscoordinatex(0<x<L) and lateraldimension- ~ €XPected, ak=0 the decay is considerably faster tharxat
less coordinatey(—<y< +). Translational invariance =19, where the curves reflect bulk behavior. For lower tem-
is assumed in the direction parallel to the strip. Lateral anderaturegFigs. Ib) and Xc)] we still find agreement with
perpendicular correlations are characterized by Mopte Carlo data inside the bulk. Howeyer, the DFT under-
estimates the range of lateral correlations at the surface
(20) =0. The reason may be seen in the fact that the influence of
the occupational environment on the behavior of the two-
particle correlation function is basically a multiarger-than-
two) particle correlation effect, whose strength is underesti-
H, (X) = (Nogyo) — PoPys 21) $$Sgra?lﬁe.the DFT when we approach the critical

In Fig. 2 we plotted the characteristic length

H||(X:Y) = <nx0nxy>_ p>2<

and

where in the latter case one point is fixed at the surface. For
the density profile perpendicular to the walls we have used
the notationp,=(n, ,) which in the strip geometry consid-

ered is independent gf Boundary conditions with respect to y;o yH|(x.y)
the x direction are such that occupations outside the strip are ANX)=———— (22
Hi(x,y)
1.0 . y;o %y
I O KkgT/[V[=080
A kgT/|V|=0.70
""""""""" & kgT/|V|=0.865 ' —m— kgT/|V|=0.80
10 ¢ —a KkgT/|V|=0.70]
’ ...... 4. ......... P — kBT/ |V| =0.65
_ t a A SUEPGIPGIPUPUIP ¢
x, &7 A
< 05 .
| [ ST N S G G S S— —
& \.'\»
= === I:I"”% - | R S N W M R ——
0.0 :
0 5 10
x 0.0 ; :
0 5 10

FIG. 3. Density profilep, according to the SLDFTlines) in
comparison with MC datéopen symbolsfor three different cases
satisfyingp,=0.5 andp,=0.1 in the bulk. See Table | for values of FIG. 4. Decay length\(x) of lateral correlations for the same
ew and w. set of parameters as in Fig.(Bom SLDFT).

X
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1.0 . T
A T O KgT/|V|=0.80 1ol o = kgT/IVI-080)]
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FIG. 5. Same as Fig. 3, but with stronger attraction to the walls, FIG. 6. Decay length\(x) of lateral correlations for the same
such thatp,=0.9 (cf. Table ). set of parameters as in Fig.(Bom SLDFT).

for the lateral decay of the correlation functiet)(x,y), de-  files and MC data. Clearly, particle-hole symmetsge Sec.

rived from the semilinear DFT for the same set of parameter#l) is a necessary requirement for any theory capable of de-

as in Fig. 1. Inside the bulk (x) can be identified with the scribing density profiles of this type. The range of lateral

bulk correlation length¢, but when moving in the outward correlations\ (x) now is expected to vary witlx in a non-

direction it substantially decreases in a ranxgeé near the  monotonic fashion and to display a maximum negrwhich

surface, reflecting weaker correlations. This trend is clearlys confirmed in Fig. 6 by our calculations based on the

enhanced as the temperature gets lower. SLDFT.
A quite different situation arises in systems with small

bulk occupation, but an attractive interaction with the con-

fining wall. Let us represent this particle-wall interaction by

a potentiale,y<<0 associated with sites in the outermost rows A density functional theory for discrete lattice gases with
x=0 andx=L. For example, choosing the chemical poten-two-particle interactions has been formulated that respects
tial  such thatp,=0.1 in the bulk, a wall energy,/|V|  particle-hole symmetry. The theory is based on an approxi-
=—1.2, andkgT/|V|=0.8, we obtain an enrichment profile mate free energy per site which contains the local free energy
with a densityp,=0.5 for the outermost row. Profiles calcu- of a homogeneous system and additive terms linear in the
lated from the SLDFT quantitatively agree with correspond-occupation of neighboring sites. Within this “semilinear
ing Monte Carlo(MC) data; see Fig. 3. This figure includes DFT” we calculated density profiles and two-point correla-
two further cases with lower temperatures where in each cason functions for particles subjected to a nearest-neighbor
w1 and ey, are chosen such thap=0.5 andp,=0.1 in the  attraction on a two-dimensional square lattice confined be-
bulk (see Table)l To discuss correlations, let us note thattween two parallel walls. The required input quantity, the
near the surface the system locally is closer to critical conQrnstein-Zernike direct correlation function of the two-
ditions than in the bulk and hence we expk¢x) to increase  dimensional homogeneous lattice gas, was calculated by
when approaching the surface. This is confirmed in Fig. 4ombining the Kramers-Wannier approximation with the OZ
again for several temperatures. However, the aboveequation. (This procedure may be termed ‘“Kramers-
mentioned effect of missing neighbors outside the wall iswannier closure” for the OZ equation.
also visible: at the two lower temperatures the leng(R), Good quantitative agreement between calculated density
after passing through a maximum, becomes smaller wheprofiles and Monte Carlo simulations has been achieved. In
approachingc=0. particular we discussed the range of lateral correlations in the
It is instructive to study cases with an even stronger atpresence of different forms of the enrichment profile induced
traction to the wall, where the density profilg passes the by the walls. For temperatures sufficiently abdyethe lat-
value 0.5 already at some distanggfrom the wall. Situa- eral correlation functions show satisfactory agreement with
tions with p,=0.1 in the bulk andpy=0.9 are presented in simulation data. Our study suggests that the proposed
Fig. 5 for the same temperatures as in Figf@ the corre- method may serve as a useful tool in studies of real physical
sponding values o&,, and u, see Table ). Again we ob- systems, e.g., of two-dimensional confined adsorbate sys-
serve excellent agreement between calculated density préems or of three—dimensional thin films of metallic alloys.

IV. SUMMARY

TABLE Il. Parameters used to calculate the density profiles in

Fig. 5 and lateral correlations in Fig. 6. ACKNOWLEDGMENTS
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APPENDIX: WEIGHTED-DENSITY APPROXIMATION instead of Eq(A2). Numerical studies reveal that for attrac-
SCHEMES FOR LATTICE GASES tive interaction,V<0, this equation generally does not per-
.mit real solutions for all temperatures and densmes Let us

WDA methods have become a standard tool in the equ'lllustrate this by considering the dilute limit=+ 3 at low

librium theory of continuous fluids. Numerous applications

to the structure of geometrically confined fluids, interfacialterm).eratures Using the compressibility sum r(), we

properties, and also the freezing transition have successfullryewme Eq.(A4) as

been worked out. Yet we would like to point out that one

must be careful when adapting this concept to discrete lattice
as models incorporating the site exclusion principle. Con-

glder a lattice gas?/wth tw% particle mteractlong Iea\F/)lng ther" the dilute limit the coefﬁuentso andc, in Eq. (18) are

modynamical properties invariant under the exchange of paidiVen by co(= 2)=0 andc,(* ;) =exp(~pV)—1, hence for

ticles and holes. In the spirit of the Curtin-Ashcroft version 'OW temperatureglarge 8) we have the estimate

of the WDA [4], we may choose the following ansatz for the

—kgTCq=2W'[Wq—W;]—KgTCq oW (A5)

: . ) . . . _ 1
symmetrized functiona{10), written in terms of Ising spin ¢ +_) <exn — BV) — 1=ex vV A6
variabless; = p; — 1/2: 472 P=BY) RAIVD. (A6)
£ s) which will become large for low temperatures. To estimate
Fexdsl—Fexd 0= 2 sV (s), (A1) pr(+1) in Eq. (A5) we observe that Eq(AL) demands

W(s)=s f)(s)—f5)(s=0)]. Using Egs.(11) and(13),
with FOIs]=F3] —s] and FJ0] being determined by We obtain
the conditionF{}.=0 for an empty or a completely filled

1 _1
lattice. The quantity¥(s) is defined such thaf(>)(0) W' (s=£3)=4f((s=0)+Vo=4f e p=3)

exc
+sW(s) is equal to the symmetrized excess free energy per

no _ _ p—1% i
site of a uniform system with average spirFurthermores; Since for attractive interactiofie, =~/ Co<10’ we de
is a weighted spin, duce from Eq.(13) and the fact thaf.,(1)=35V,<0 the

inequalities 3Vop=fedp)<0. Now we have an upper
_ _ bound for the magnitude o¥’ (= %) which is independent
SI:; HEIEE of temperature:

re+1
with w;; a (translationally invariantnormalized weight func- W' (£32)[<[Vol.

tion: =;w;;=1. Following the standard proceduféd], the o o - L
condition (17) leads to a first-order differential equation for Therefore, in view of Eq(A6), [W'(+3)[<|cq(*3)]| for
the Fourier componenqu(s) of the weight function, which low temperatures and E(AS) yields

is formally equivalent to the Curtin-Ashcroft WDA equation: ~

)
~ ~ d - = 1 (A7)
—kpTcy(s)=2¥'(s)Wy(S)+ Sd—s{‘lf’(s)[wq(s)]z}. Cq-o(*2)

(A2)  which is negative if we choose near the boundary of the
_ first Brillouin zone of our lattice. A related problem also
Here cq(s) is the qth Fourier component of the OZ direct exists for the differential equatiofi2).
correlation function. Since?:q(s) :Eq(—s) and ¥(s)= This problem does not exist for repulsive interactions, fa-
—W(—s), Eq. (A2) allows symmetrical solution§vq(s) yoring. ordered states of thg Iatti(;e gas. The possibility to
investigate ordering transitions in lattice gases by this
Ll o o o method still needs to be explored. Note also that E48)
satisfywq-o(s)=1, WhICh |s_the normalization condition. In 54 (A4) as used in the WDA and HWDA for continuous
the case of a half-filled lattices=0, we have for the sym- fjids reduce to Eq(A3) in the dilute limit, notto Eq. (A7).
metrical solution(assuming differentiability of W'w?] ats  This is due to the fact that for continuous fluids, the spin

=Vvq(—s). Note that the physical solution of E¢A2) must

=0) densitys must be replaced by the particle dengityn Egs.
N (A2) and(A4).
- kgTCq(0) An alternative expression fd¥5){ p] might be
Wq(0)=———% — (A3)
2V’ (0)
FEdPl=2 pi(1=p) P (p), (A8)

which can be used as initial condition in the integration of
Eq. (A2).

A simplified version of this type of theory is the “hybrid which in the case of a dilutéor nearly filled lattice gas
weighted-density functional approach’{HWDA) [23], should yield properties similar to the continuum theory for a
which in our case yields system of particlegor holes. Here p; again is a weighted

5 _ 5 density, andb (p) =®(1—p). Instead of Eqs(A2) and(A4)
- kBTCq(s)=211f’(s)wq(s;)+s\If”(s)[wq(s)]2 (A4)  we now obtain
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—kgTCq(p)=—2D(p)+2(1~2p)D’ (p)Wq(P) the normalization conditiomv,_o(p)=1. Choosing this so-
lution as initial condition to integrate E¢A9), the resulting

+p(1- p)i{qy(p)[qu(p)]z} (A9) Vvq(p) does not converge ﬁvq(O) on approaching=0 and
dp p=1, but diverges. A related problem of the HWDA equa-

for the WDA and tion (A10) is that correctly normalized squtioerq(p) be-
come discontinuous at some densjy , for any q#0.
—kBTEq(p)z —2<I>(p)+2(1—2p)<1>’(p)\7vq(p) Hence, Eq(A8) can be used, if at all, only in cases where
_ the densitiep; show little spatial variation and do not come
+p(1-p)@"(p)[Wq(p)]? (A10)  close top, .

o _ ) Basically, the difficulties with the above WDA schemes,
for the HWDA. In Eq.(A9), the coef1:|C|ent olwg vanishes  gqs (A1) and (A8), arise from the fact that by solving the
for p=0 (andp=1) as well as fop=3 (due to the symme- yqqociated first-order differential equation for the weight
try of @). Thus, we have function, the correct low-density limit and the symmetry
20(0) — kg TE,(0) condition generally cannot be satisfied simultaneously. How-

B xa*/ ever, these shortcomings may not arise in more general
20'(0) WDA methods involving more than one weight function
_ [9,24-28. Note also that an exact density functional exists
On the other hand/,vq(%) is obtained from a quadratic equa- for hard rods in one dimension, which involves two different
tion as that solution which on continuation ¢e=0 satisfies weight functiong33—-35.
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