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Method for efficient shape parametrization of fluid membranes and vesicles

Malcolm I. G. Bloor and Michael J. Wilson
Department of Applied Mathematics, The University of Leeds, Leeds LS2 9JT, United Kingdom

~Received 27 October 1999!

In this paper we describe a method for the parametrization of the shapes adopted by fluid membranes and
vesicles. The method is based upon a boundary-value approach to geometry description in which smooth
surfaces are produced as the solution to an elliptic partial differential equations. Shape parameters are intro-
duced through the boundary conditions, which control the shape of the vesicle models. In combination with a
model for the surface energy and a method for numerical minimization, it is shown how the method can
accurately approximate the shapes of both axisymmetric and nonaxisymmetric vesicles over a wide range of
control parameters. The particular value of the method lies in its ability to parametrize complicated shapes
efficiently, a feature that becomes especially valuable when seeking shapes of minimal energy using direct
optimization techniques.

PACS number~s!: 87.10.1e, 87.16.Ac, 87.16.Dg
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I. INTRODUCTION

A lipid molecule typically consists of a polar hydrophili
head and an hydrophobic tail consisting of hydrocarb
chains. Such amiphiphilic molecules when placed in aque
solution can spontaneously aggregate to form encapsula
bags called vesicles. The membrane forming the walls of
vesicle consists of two monomolecular layers held toget
by weak noncovalent forces, where the lipid molecules ori
themselves so that the hydrophilic heads are turned outw
towards the surrounding aqueous environment whilst the
drophobic tails are turned inwards. This structural arran
ment of the molecules forming the membrane is usually
ferred to as a bilayer, and by organizing themselves in
way the lipid molecules greatly reduce the surface energ
the membrane. Even though a membrane is typically on
few nanometers thick, the vesicles themselves can be of m
roscopic proportions of up to 100mm @1#.

In fact, depending upon the chemical and physical pr
erties of their molecules, as well as that of their environme
amphiphilic compounds can assemble into a wide range
different types of aggregates: spherical micelles, elonga
micelles, branched micelles, flat or discoidal miscelles, r
bons, etc., as well as bilayers@2#. However, bilayers have
received a great deal of study in recent years, since this
of membrane is the fundamental structural component of
boundaries of all cells and cell organelles. Consequently
havior of vesicles composed of lipid bilayers under the
fluence of different chemical and physical environments
been used as a simplified model for the behavior of cells

Despite the relatively simple structure of their wal
vesicles can adopt a wide variety of different shapes
even topologies@1#. Theoretical explanations for the con
figurations adopted by vesicles have tended to follow a c
tinuum model in which the dominant effect is the bendi
elasticity of the membrane, in contrast to other types of fl
interfaces where surface tension plays the primary role.
first such models were put forward in the 1970s~Canham
@3#, Helfrich @4#, Evans@5#!, and although refinements hav
been put forward since—see, for example, Svetinaet al. @6#,
Seifert et al. @7#, or the comprehensive review of Seife
PRE 611063-651X/2000/61~4!/4218~12!/$15.00
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@1#—all assume that vesicles acquire the shape for wh
their surface energy is minimal~in a local sense at least!,
subject to appropriate constraints. As far as these models
concerned, on the length scales of the vesicles the prope
of the lipid molecules are important only insofar as th
determine the various elastic constants of the continuum
ergy model; although whether or not a bilayer is formed
the first place, as opposed to micelles, for example, is dep
dent on the structure of the lipid molecules@1#. It is also
commonly assumed that nonequilibrium effects and ther
fluctuations can be neglected except near shape transi
@1#. Where the various models differ is in their estimate
the functional relationship between the energy of the surf
and its shape. In a review, Seifert@1# gives a detailed sum
mary of the various theoretical models, but their main fe
tures may be summarized briefly as follows.

In 1970 Canham@3#, seeking to explain the shape o
erythrocytes, suggested that the local energy density of
membrane was proportional to the sum of the squares of
principal curvatures, a model which is appropriate for
vesicle consisting of a symmetric bilayer. Helfrich@4# sub-
sequently modified this model and introduced the so-ca
spontaneous curvatureC0 to reflect a possible asymmetr
between the two layers of the membrane. Such an asym
try could arise because of different environments on eit
side of the membrane, or else because of differences in
chemical composition between the two monolayers. The
ergy functional for the surface is given in Eq.~7!. According
to this model, the shape adopted by a vesicle is such a
locally minimize the energy functional subject to the co
straints of constant area and volume.

In some ways similar to the spontaneous curvature~SC!
model is the bilayer couple model~@6,8,9#! in which there is
an additional constraint on the integrated mean curvatur
the membrane, which turns out to have the effect of mak
the spontaneous curvature unimportant@1#. The model is
based on the assumption that each layer of the bilaye
incompressible but can be bent, and therefore can store
tic energy. Finally there is the area-difference-elastic
~ADE! model ~Seifert et al., @7#, Wiese et al. @10#, Bozic
et al. @11#! in which the energy functional for a membran
4218 © 2000 The American Physical Society
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PRE 61 4219METHOD FOR EFFICIENT SHAPE PARAMETRIZATION . . .
contains a local contribution from the curvature energy an
nonlocal contribution from the deviation in the area diffe
ence between the two monolayers from a reference value
the ADE model the energy functional is minimized subject
constraints upon the area and volume.

When it comes to calculating the shapes of vesicles th
are, broadly speaking, three categories of method use
calculate the shapes of vesicles:~a! solving the Euler-
Lagrange equations associated with the integral expres
for the total surface energy;~b! using a parametrized mode
for the shape of a vesicle and then choosing the values o
various parameters in the model so as to obtain the sh
with lowest energy; and~c! ‘‘brute-force’’ minimization of
the surface energy of a triangulated surface model of
vesicle.

As noted by Seifert@1#, most work has been done in th
context of the first approach, where the Euler-Lagran
equations yields a set of solutions for which the first var
tion of the appropriate functional, combining both the ene
of the surface and imposed constraints, vanishes. These
tionary solutions correspond either to locally stable shape
saddle points~which can be identified by stability analysis!.
Seifert @1# reviews this approach and in particular consid
the derivation of the appropriate Euler-Lagrange equa
which is a fourth-order nonlinear partial differential equati
~originally derived by Ou-Yang and Helfrich@12#!. The so-
lution of this equation in full generality is a formidable tas
and has not yet been achieved, hence most work has con
trated upon the solution of the axisymmetric case, where
Euler-Lagrange equation is a nonlinear ordinary differen
equation. The usual approach to obtaining and solving
equation is to substitute a parametrization of an axisymm
ric shape into the energy functional, and a number of par
etrizations have been considered in the context of vari
energy models, e.g., Helfrich@4#, Svetina and Zeks@9#, Miao
et al. @13#, and Seifertet al. @14#.

The second approach, that of approximating a vesic
shape using a parametrized model with a restricted param
set, and then choosing the parameters in order to minim
the surface energy, is sometimes referred to as the variati
approach. An example of this type of method can be foun
the work of Canham@3#, who used Cassini ovals to param
etrize the shape of red blood cells; another example is
work of Heinrichet al. @15# who used spherical harmonics
parametrize the vesicles.

The third approach is that of minimizing the curvatu
energy of a triangulated surface model. The parameter
this model are in effect the positions of the vertices of
surface triangles, of which there can be a large number
in consequence the computational cost of numerically m
mizing the surface energy can be enormous. However,
approach has been employed successfully by a numbe
workers to find nonaxisymmetric shapes, e.g., Refs.@16–18#.

The approach to predicting vesicle shape adopted in
paper falls into the category of using a parametrized surf
model to represent the vesicle surface and then choosing
values of various ‘‘shape’’ parameters introduced in t
model so as to obtain the surface of lowest energy subje
appropriate constraints. This method for surface parametr
tion was developed in the context of industrial comput
aided design~CAD!, where the problem is to devise mat
a
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ematical methods with which to describe the geometry
objects with complex ‘‘freeform’’ shapes such as aircra
ships, engine components, etc., with a view to compu
based design, analysis, and optimization of the objects be
they are eventually manufactured. In CAD there is a tre
towards ‘‘simulation-based design,’’ where many of th
changes to a design are made as the result of computer a
sis of the appropriate physics, and are made automatic
using the methodology of numerical optimization. There
therefore, a requirement for a method for shape represe
tion that can parametrize efficiently complex shapes, in
sense of requiring only a limited set of design variables.

The method for shape parametrization is described in
tail in Sec. II, but basically it adopts a boundary-value a
proach to shape generation, and produces a description o
object’s surface shape as a mapping from a simple space
complex surface embedded in 3-space. The mapping
achieved by solving an elliptic partial differential equatio
@19#, unlike conventional methods for surface description
CAD which are based on polynomial splines@20#. For the
sake of example, the method is presented in the contex
the spontaneous curvature~SC! model of Helfrich@4#, where
it is used in combination with a method for numerical op
mization to find the shape of vesicles not only qualitative
but also quantitatively, The purpose of this paper is to
scribe the method rather than to undertake any system
investigation of vesicle shapes for a particular energy mo
However, the method is validated by producing phase d
grams for various test cases that can be compared with
earlier work of others, e.g.,@14#.

Section III describes a simple model of a vesicle sha
produced from a single surface patch, which is capable
producing both axisymmetric oblate and prolate shapes.
sults are presented which show how the surface energ
both the prolate and oblate branches vary as a function
reduced volume. In Sec. IV the model is refined by using t
surface patches to represent the shape of a vesicle. Aga
the case of zero spontaneous curvature it is demonstr
how the surface parametrization is capable of reproduc
not only the oblate and prolate branches but now the sto
tocyte branch of the phase diagram. As a further test of
model, the phase diagram for a nonzero value of the spo
neous curvature is calculated. Finally, in Sec. V, the surf
model is used to calculate some nonaxisymmetric shapes
both the SC model and the area-difference-elasticity~ADE!
model.

II. METHOD FOR SHAPE PARAMETRIZATION

In the context of industrial CAD the method for shap
parametrization presented in this paper is referred to as
partial differential equation~PDE! method. As mentioned in
Sec. I, the method views surface generation as a bound
value problem and it generates surfaces as mappings
the solutions of elliptic partial differential equations. Wh
this means in geometric terms is that a surface patch is g
erated from data specified around its edges, the data typic
taking the form of a mathematical parametrization of t
curves around the edges of the patch, along with deriva
information which controls how the surface patch meets
edge curves. By a suitable choice of boundary conditions
method is able to generate a wide variety of object shap
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In mathematical terms, a PDE surface is found in a
function X(u,v) which is the solution to a boundary-valu
problem formulated in parameter space. More specifica
we introduce two scalar variablesu andv as the coordinates
of a point in a regionV of a two-dimensional paramete
space, and the functionX(u,v) as a mapping fromV to a
patch of surface in Euclidean 3-space, whereX(u,v) satisfies
boundary conditions imposed on]V. To satisfy these re-
quirements we regardX(u,v) as the solution of a partia
differential equation of the general form

Duv
m ~X!5F~u,v !, ~1!

whereDuv
m () is a partial differential operator of orderm in

the independent variablesu andv, while F(u,v) is a vector
function ofu andv. Since we are adopting a boundary-val
approach, it is natural to consider the class of elliptic par
differential equations. The elliptic PDE acts as an averag
operator and produces the surface patch as a smooth tr
tion between the boundary conditions. In contrast, in conv
tional CAD systems, the mapping effected by Eq.~1! is
achieved by expressing the functionX(u,v) a finite sum of
polynomial basis functions, so that a surface is controlled
a net or polygon of ‘‘control’’ points distributed around th
surface in 3-space. However, because the data require
specify a PDE surface is specified around its edges, ra
than across its surface, a much smaller number of shape
rameters are needed to describe a complex surface usin
PDE methodology. So, for example, in the case of a comp
object such as a swirl inlet-port for a diesel engine, about
shape parameters are needed, whereas for a conven
CAD system many hundreds if not thousands of con
points are required@21#.

In CAD one is often seeking to generate surface patc
that meet neighboring surfaces with a specified degree
continuity. Since the level of continuity is often confined
continuity of tangent plane, most work using the PD
method in CAD has been done using a fourth-order ellip
equation. Even so, just by the specifying the function and
first derivative at the boundaries, shapes of considera
complexity have been produced, e.g.,@21#. If curvature con-
tinuity across patch boundaries is required in addition, the
sixth-order equation must be solved, and since curva
continuity is a requirement for the surface descriptions u
in this paper, vesicle shapes are generated from solution
the following sixth-order elliptic partial differential equation

S ]2

]u2
1a2

]2

]v2D 3

X50, ~2!

which is solved independently for thex, y, andz components
of points on the surface.

The partial differential operator in Eq.~2! represents a
smoothing process in which the value of the function at a
point on the surface is, in a sense, an average of the
rounding values. In this way a surface is obtained a
smooth transition between the boundary conditions impo
on the function and its parametric derivatives. The param
a, which we will refer to as the smoothing parameter, co
trols the relative rates of smoothing between theu and v
parameter directions.
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Although the justification for using this equation in th
present application is ultimately its usefulness, some wo
of explanation for the choice of Eq.~2! are in order. Equation
~2! is not chosen as being in some way a linearized appr
mation to the shape equations. In the present situation, w
vesicle shapes will be constructed by joining more than o
patch of PDE surface together, and where the surface en
is a function of curvature, one would like a surface descr
tion where the curvature is continuous across patch bou
aries. Hence the boundary conditions used to solve the g
erating PDE need to specify not only the functionX but also
its first and second parametric derivatives, which is the r
son why Eq.~2! is sixth order. Furthermore, the bounda
conditions are the means by which the surface shape ca
controlled, and the more derivatives one can specify
greater the control one can exercise over the shape, e
within the constraints set by continuity conditions at t
boundaries. Here, being able to specify the second deriva
as well, gives an even degree of control.

From a solution to Eq.~2! a generic parameteric model o
a vesicle shape can be constructed which is capable of
ducing a wide range of possible geometries. The model c
tains a number of ‘‘shape’’ parameters that are introduc
through the boundary conditions~see below!. The values of
the shape parameters determine the specific geometry o
vesicle, and in this paper the values of the shape parame
are selected to give a surface with minimum energy. T
parametrization can be made hierarchical in the sense th
first, only parameters that produce large-scale features o
shape are introduced; then, later, the geometry model ca
refined, and additional shape parameters introduced, to
ture finer detail in the shape. In this way the computatio
cost of numerical optimization can be reduced. This a
proach has been used in Sec. V where nonaxisymme
vesicle shapes are considered, and in the CAD area, a
archical approach has been used to design wings@22#.

Finally, Eq. ~2! has the advantage that the surfaces p
duced are quick and easy to generate. They respond i
intuitive fashion to changes in the boundary conditions a
can be manipulated in ‘‘real-time’’ by a user sitting at
workstation or PC. The relevant physical characteristics
the object in question can be calculated from the surf
description using software for the specific analysis, and
surface can be quickly changed in order to optimize the
sired properties. Thus, even though the parametrization
vesicle shapes described in this paper are approximation
the actual shape in a particular situation, the approximati
are accurate, surprisingly so given the small number
patches actually used.

To find a solution to Eq.~2! we can specify along]V
boundary conditions on the functionX and its first and sec-
ond ~parametric! derivatives in a direction normal to th
boundary]V in parameter space. The parametrizations c
sidered in this work are periodic in one of the parame
directions, which we shall take to be thev direction, and in
the discussion that follows we will consider solutions ov
the (u,v) region@0,1#3@0,2p#. Restricting the discussion to
such surfaces does not unduly reduce the range of sur
shapes that we can generate and, furthermore, a very
method for generating such surfaces can be used. Thus
boundary conditions used to solve Eq.~2! are of the form
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X~0,v !5 f 0~v !, ~3a!

X~1,v !5 f 1~v !, ~3b!

Xu~0,v !5 f u
0~v !, ~3c!

Xu~1,v !5 f u
1~v !, ~3d!

Xuu~0,v !5 f uu
0 ~v !, ~3e!

Xuu~1,v !5 f uu
1 ~v !. ~3f!

The boundary conditionsf 0(v) and f 1(v) give the two
curves that form the edges of the surface patch in term
the periodic variablev; the boundary conditions on the firs
parametric derivativesf u

0(v) and f u
1(v) determine the

‘‘speed’’ and direction in which the surface leaves the ed
curves~and hence the direction of the surface normal at
edges of the patch!, whilst the boundary conditions on th
second parametric derivativesf uu

0 (v) and f uu
1 (v) control the

surface curvature at the edges of the patch. Note that
shape parameters that control the surface are introdu
through the boundary conditions~see below!.

For periodic boundary conditions which can be rep
sented by a finite Fourier decomposition, we can write do
the solution to Eq.~2! in closed-form, thus

X~u,v !5A0~u!1 (
n51

M

$An~u!cos~nv !1Bn~u!sin~nv !%.

~4!

Note that in more general situations a solution can be fo
using a pseudospectral method@23#. The functionsAn(u)
andBn(u) are of the form

A0~u!5a001a01u1a02u
21a03u

3, ~5a!

An~u!5an0eanu1an1e2anu1an2ueanu1an3ue2anu

1an4u2eanu1an5u2e2anu, ~5b!

Bn~u!5bn0eanu1bn1e2anu1bn2ueanu1bn3ue2anu

1bn4u2eanu1bn5u2e2anu. ~5c!

The constant vectorsan0 ,bn0, etc., are determined by th
boundary conditions. Note that there is a further param
used to control the shape and this is the smoothing param
a that occurs in the governing partial differential equati
@Eq. ~2!#. By adjusting the value ofa one can change th
properties of the surface, either propagating the effects of
boundary conditions over substantial parts of the surface
confining their effects to regions near the edges of the
face. For largea, changes in theu direction occur over a
relatively short length scale, namely 1/a times the length
scale in thev direction over which similar changes tak
place. Note that it is possible to associate different value
a with features on the surface of different length scales,
though at the cost of adding additional parameters to
problem.

By a suitable choice of boundary conditions, and by jo
ing together more than one surface patch, a wide rang
of
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surface shapes can be created. For example, work in the
of industrial design has shown how the method can e
ciently parametrize the surface of such objects as airc
@24#, ships @25#, propellers, and engine components@21#.
Note that the boundary conditions have an intuitive geom
ric interpretation, and in fact software has been written t
enables a designer, knowing nothing of the underlying ma
ematics, to design complicated shapes at a workstation
PC. In the present application the choice of shape parame
is made on the basis of minimizing the surface energy of
vesicle subject to suitable constraints, a process which
carred out automatically using an algorithm for numeric
optimization described in more detail below.

In the next section we shall illustrate how the method m
be applied to the present problem by parametrizing a sim
vesicle shape and showing how the parameters may be
sen in order to obtain the shape with a locally minimu
energy.

III. SIMPLE PARAMETRIZATION
OF A VESICLE SHAPE

In this section we will use a periodic solution to Eq.~2! to
parametrize the shape of a vesicle in terms of a single p
odic surface patch. We take the boundary curvesX(0,v) and
X(1,v) to be points~degenerate curves! at the ‘‘poles’’ of the
vesicle, and use the derivative boundary conditions
Xu(0,v), Xu(1,v), Xuu(0,v), Xuu(1,v) to produce an appro
priate shape for the surface. The boundary conditions
illustrated in Fig. 1. The function boundary conditions a
shown as closed curves of finite size, whereas in reality t
are points~or at least very small!. The first-derivative bound-
ary conditions are shown as vector fields distributed aro
the boundary curves. Note that the magnitude and direc
of the vectorsXu(0,v), Xu(1,v) can vary around the bound
aries. The first derivative boundary conditions have an in
tive effect on the shape, forcing the surface away from
boundaries in a particular direction. Note that care should
taken in the choice of the first derivative conditions to ens
that the surface normal is continuous at the poles. T
boundary conditions on the second derivativesXuu(0,v),
Xuu(1,v) can be represented in a similar way as vector fie
distributed around the boundaries, but for the sake of cla
they have been omitted from Fig. 1.

FIG. 1. Boundary conditions for a single-patch vesicle.
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Being periodic, the boundary conditions can be expres
as Fourier series

f 0~v !5C0
01 (

n51

M

$Cn
0cos~nv !1Sn

0sin~nv !%, ~6a!

f 1~v !5C0
11 (

n51

M

$Cn
1cos~nv !1Sn

1sin~nv !%, ~6b!

f u
0~v !5Cu,0

0 1 (
n51

M

$Cu,n
0 cos~nv !1Su,n

0 sin~nv !%, ~6c!

f u
1~v !5Cu,0

1 1 (
n51

M

$Cu,n
1 cos~nv !1Su,n

1 sin~nv !%, ~6d!

f uu
0 ~v !5Cuu,0

0 1 (
n51

M

$Cuu,n
0 cos~nv !1Suu,n

0 sin~nv !%,

~6e!

f uu
1 ~v !5Cuu,0

1 1 (
n51

M

$Cuu,n
1 cos~nv !1Suu,n

1 sin~nv !%,

~6f!

whereM is finite by choice, and theC0
0 , Cn

0 , Sn
0 , etc. are

constant vectors. Expressing the boundary conditions in
way allows the solution for the surface to be readily obtain
in closed form. As mentioned above, a method has b
devised for obtaining the solution in closed form for gene
periodic boundary conditions@23#. However, in the presen
work, restricting the boundary conditions to a finite Four
series does not appear to restrict the range of surface sh
that can be obtained. The Fourier coefficientsCn

0 , Sn
0 etc.,

along with the smoothing parametera, form the shape vari-
ablespi that control the shape of the vesicle surface. In fa
many of these parameters are zero and fixed during the
timization that takes place to find the shape of minimu
energy. So, for example, in the results described below,
boundary curves are taken to be points which can only m
along a single axis~the z axis!, so consequently the onl
nonzero Fourier coefficients for the function boundary co
ditions ~6a! and~6b! are the zeroth-orderz coefficients. Fur-
thermore, the zeroth-order coefficients for the first derivat
boundary conditions~6c! and~6d! are taken to be zero, sinc
otherwise a singular surface would be produced at the po

An example shape is shown in Fig. 2~a! for which the
nonzero Fourier coefficients are given in Table I. The eff
of changing some of the shape parameters is shown in F
2~b!–2~d!. In Fig. 2~b! the z separation of the two boundar
curves has been increased; in Fig. 2~c! the magnitude of the
first derivative boundary conditions has been increased, f
ing the surface outwards away from the boundaries; while
Fig. 2~d! the value of the smoothing parameter has be
increased. Thus it can be seen that the effect of these pa
eters upon the surface shape has a straight forward geom
effect.

The surfaces shown in Fig. 2 have been produced by g
erating a quadrilateral mesh on the surface from a rectan
lar mesh in (u,v) parameter space, and this mesh is th
rendered as a shaded surface using standard computer g
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ics techniques. Although each surface patch is infinitely d
ferentiable within its interior, some of the computer imag
have a curve running along their surface across which th
appears to be a discontinuous change in the direction of
surface normal. This curve corresponds tov50,2p and the
apparent jump in the surface normal is an artifact of
shading algorithm.

Note that having a closed-form expression for the solut
means that the surfaces can be generated in a fraction
second, and that the surface properties such as curvature
be calculated explicitly at all points on the surface as a fu
tion of u andv.

A. Surface optimization

As mentioned above, the SC model for surface energ
used in this paper~with the exception of some results for th
ADE model given in Sec. V A!, so that the surface energy o
the vesicle is given by a surface integral of the form

W@S#5
k

2E dA~C11C22C0!21
kG

2 E dA~C1C2!, ~7!

where C1 and C2 are the principal curvatures,C0 is the
spontaneous curvature,dA is an element of surface, andS
denotes the shape of the object. The value of the sur
energyW will change as the shape changes in response
changes in the values of shape parameters (p1 ,p2 , . . . ,pn),

FIG. 2. The effect of boundary conditions and smoothing p
rameter upon vesicle shape.

TABLE I. Nonzero shape parameters for Fig. 2~a!; smoothing
parameter51.

Fourier coefficient x component y component z component

C0
1 0 0 1.5

Cu,1
0 3 0 0

Cu,1
1 23 0 0

Su,1
0 0 3 0

Su,1
1 0 23 0
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so thatW is a function of the shape parametersW(p) where
p5(p1 ,p2 , . . . ,pn). Although the surface is given in close
form, which allows the values of the the principal curvatur
and the Jacobian relating an element of area in param
spacedudv to the corresponding area elementdA on the
surface to be calculated exactly, the value ofW must be
estimated numerically and here this was done using the
pezium or Simpson’s rule. Note that the boundary conditio
are such that at the poles the surface curvature is contin
so that, as the vesicle has constant topological genus, the
term in Eq.~7! is ignored during the surface optimization.

The next step is to select values for the shape parame
such that the surface energy of the vesicle is minimized. T
is done automatically using a technique for numerical m
mization, of which there are many to choose. The particu
method used for this work was an implementation of
well-known Broyden-Fletcher-Goldfarb-Shanno~BFGS! al-
gorithm. BFGS is a quasi-Newton method and uses suc
sive line minimizations in parameter space to find a~local!
minimum in the objective function, which in this case co
sists of the surface energy plus constraint terms. The se
directions are calculated from the gradient of the object
function in parameter space, and here these gradients
calculated by using second-order finite differences. Fo
quadratic objective function ofN variables, the BFGS algo
rithm will find the function minimum using no more thanN
line minimizations. In the present application, the object
function is more complicated than quadratic, and there ex
more multiple local minima. The details of the BFGS alg
rithm are extensively documented; however, one particula
useful description from a practical point of view is given
Presset al. @26#.

The optimization is carried out subject to the constrai
of constant surface area and constant enclosed volume.
constraint of constant area arises due to the strong hydro
bic effect of the hydrophobic tail which means that ind
vidual molecules will not leave the bilayer in order to en
solution; the constraint of constant volume arises from
condition that no osmotic pressure builds up across the
layer. These two constraints are justified in more detai
@1#. The constraints were imposed using the method
Lagrange multipliers~see, for example,@27#!, so that the
objective function used in the optimization was of the for

W@S#5
k

2E dA~C11C22C0!21PE dV1lE dA,

~8!

where dV is an element of the volumeV enclosed by the
vesicle, andP andl are Lagrange multipliers.

The optimization is started at some point in parame
space. Due to the nonlinear nature of the problem, the ob
tive function has more than one local minimum in parame
space, and therefore the optimization can find differ
~stable! stationary states depending on where the optim
tion is started. In the results described below, the metho
used to find the surface energy as a function of the relev
dimensionless control parameters such as reduced volu
This was achieved by beginning the optimization at a p
ticular point in parameter space, finding a stationary state
a given value of the control parameter, then starting a n
s
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optimization for a new value of the parameter using the p
viously found stationary state as the starting point for
new optimization. If the two values of the control paramete
are close, then the stationary vesicle configuration found
the new optimization will often, but not necessarily, be
the same branch as the previous one. This process is
repeated and so the given branch on the phase diagram
be mapped out.

B. Phase diagram for zero spontaneous curvature

For the SC model, due to the scale invariance of the s
face energy, the phase diagram for axisymmetric shapes
pends only on two dimensionless control parameters, the
duced volume given by

y[V/S 4p

3
R0

3D , ~9!

where

R0[A4pA0, ~10!

whereA0 is the surface area of the vesicle, and the redu
spontaneous curvaturec0 is given by

c0[C0R0 . ~11!

.
In this section we will concentrate upon vesicles havi

zero spontaneous curvature in order to validate the met
against previously obtained results. The shape parame
that were allowed to vary in the optimization were th
smoothing parametera, and the following Fourier coeffi-
cients: (C0

1)z , Cuu,0
1 , Cuu,0

0 , (Cu,n
1 )x , (Cu,n

1 )y , (Cu,n
0 )x ,

(Cu,n
0 )y , (Su,n

1 )x , (Su,n
1 )y , (Su,n

0 )x , (Su,n
0 )y , Cuu,n

1 , Cuu,n
0 ,

Suu,n
1 , Suu,n

0 , wheren<M . Thus, during the optimization the
shape of the vesicle could be changed by varying
smoothing parameter, the length of its axis, the curvatur
the poles, and the length of the vectorsXu(0,v) andXu(1,v)
at the poles. Note, however, that the surface normal at
poles remains continuous and parallel to thez axis.

In the initial choice of parametrization it is advisable
keep the number of shape parameters as low as possib
order to reduce the computational cost of optimization. If t
model needs to be refined at a later stage, in order to prod
localized features in the geometry, for example, a hierarc
cal approach can be adopted by adding higher-order Fou
modes gradually or by adding more surface patches~see
@22#!. Here, to keep down the cost of the optimization, t
maximum mode numberM was set at one. However, besid
the results described below, simulations were carried
with M54 in order to test the code. The presence of th
higher-order modes would allow nonaxisymmetric shapes
appear if they represented a state of minimal energy. Ne
theless, the optimization returned axisymmetric shapes,
ting the amplitude of the higher modes effectively to zero

The results are presented in Fig. 3 which gives the ph
diagram calculated forc050. The results show the surfac
energy in units of 8pk as a function of reduced volume fo
both the oblate and prolate branches. The prolate branch
found by taking a long and thin, but otherwise arbitra
ellipsoid for the starting shape, whilst the oblate branch w
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found by taking an arbitrary squat ellipsoid for the starti
shape. Both optimizations used a starting reduced volumy
of 0.55 and then, after a stationary shape had been fo
started again with an increased reduced volume~using the
previous found stationary shape as the starting point!, and so
on, until a value ofy51.0 had been reached. Figure 4 sho
some representative shapes. Figures 4~a! and 4~b! show two
shapes from the prolate branch with reduced volumes of 0
and 0.758 respectively; Figs. 4~c! and 4~d! show two shapes
from the oblate branch with reduced volumes of 0.55 a
0.85, respectively.

These results of Fig. 3 can be compared with those
tained by Seifertet al. @14# ~their Fig. 8!. One can see tha
despite the simple nature of the parametrization, there
fairly good agreement both qualitatively and quantitative
between the two sets of results. However, one feature
this simple surface model is unable to detect is the stom

FIG. 3. Phase diagram for an axisymmetric, single-patch ves
(C050).

FIG. 4. Sample shapes for a single-patch vesicle (C050): ~a!
y50.55; ~b! y50.758;~c! y50.55; ~d! y50.85.
d,

s

5

d

b-

is

at
o-

cyte branch of the phase diagram. The surface model is
pable of producing stomatocytelike shapes, but they
rather distorted and hence not stationary states in sur
energy space. To find these it is necessary to refine the
face parametrization.

IV. REFINED PARAMETRIZATION
OF A VESICLE SHAPE

In order to increase the range of shapes that the sur
model is capable finding, it is necessary to refine the par
etrization by adding more surface patches, and an obv
way to do this is indicated in Fig. 5 where the bounda
conditions for a surface model using two surface patches
shown. One patch forms the ‘‘upper half’’ of the vesicle a
the other patch the ‘‘lower half.’’ The patches meet at
plane curve which lies in thez50 plane. The other boundar
for each patch is a point which is free to move along thz
axis; as before the boundary conditions here are such tha
tangent plane for each patch is horizontal and continuous
Fig. 5 the boundary curves for the upper patch are labe
u50 and u51, while the boundary curves for the lowe
patch areu51 andu52; thus the upper patch is obtained b
solving over the (u,v) domain @0,1#3@0,2p#, while the
lower patch is obtained by solving over the domain@1,2#
3@0,2p#. For obvious reasons, theu50 andu52 bound-
aries will be referred to as the poles of the surface para
etrization.

At their common boundary curve, both patches meet w
tangent plane and curvature continuity, which is enforced
ensuring continuity of parametricu derivatives across the
boundary curve. Although parametric continuity is certain
a sufficient condition to ensure geometric continuity, it is n
strictly necessary, and in principle is somewhat restrictive
the range of shapes that can be obtained. However,
straightforward to implement and in practice does not se
to restrict the range of obtainable shape.

The shape parameters in the problem are now the Fou
coefficients of the boundary conditions imposed at the th

le

FIG. 5. Boundary conditions for two-patch vesicle parametri
tion.
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boundary curves, subject to the following constraints wh
reduce the number of Fourier coefficients that are allowe
vary in the optimization:~a! the u50 andu52 boundaries
can only move along thez axis; ~b! at the poles the surface’
tangent plane remains parallel to the (x,y) plane;~c! there is
continuity of parametric derivatives across theu51 curve.

A. Phase diagram for zero spontaneous curvature

In this section the optimizations of Sec. III B are repea
using the refined surface parametrization. The resul
phase diagram is shown in Fig. 6 with surface energy gi
in units of 8pk, and some representative shapes are sh
in Fig. 7. Now it is possible to find not only the prolate an
oblate branches, but also the stomatocyte branch. Figure~a!
shows a prolate withy50.6; Fig. 7~b! shows an oblate with

FIG. 6. Phase diagram for an axisymmetric two-patch ves
(C050).

FIG. 7. Sample shapes for a two-patch vesicle (C050): ~a!
prolate:y50.6; ~b! oblate:y50.6; ~c! stomatocyte:y50.39.
h
to

d
g
n
n

y50.6; while Fig. 7~c! shows a stomatocyte withy50.39.
By comparing the phase diagram Fig. 6 with that obtained
Seifertet al. @14#, one can see that the surface model is a
to to represent the states of minimum energy quite ac
rately. Note that like the prolate and oblate branches
stomatocyte branch was found by using a starting sh
qualitatively similar to the shapes one was trying to dete
so that in the case of the stomatocyte branch this was a s
that was slightly ‘‘cup-shaped.’’ Note also that in the op
mization the value of the maximum Fourier modeM number
was limited to 1.

B. Phase diagram forc0Ä2.4

As a further test of the shape parametrization, the valu
the reduced spontaneous curvature was set to 2.4 and an
sequence of optimizations was run, this time starting from
reduced volume ofy51. This was done in order to compar
the results with Seifertet al. @14# ~cf. their Fig. 11!. The
phase diagram for the present calculations is shown in Fi
which plots surface energy in units of 8pk against reduced
volume; some representative shapes are shown in Fig. 9.
shape in Fig. 9~a! has a reduced volume of 0.751; the sha
in Fig. 9~b! has a reduced volume of 0.72; the shape in F
9~c! has a reduced volume of 0.68; and the shape in Fig. 9~d!
has a reduced volume of 0.6.

Comparing these results with those of Seifertet al. @14#,
show that the method has found the states of lowest en
in the following ranges of reduced volumes:y51→y
'0.72 ~prolates!; y'0.72→y'0.69 ~pears!; y'0.69→y
50.6 ~prolates!. Note that these branches apparently cor
spond to Seifertet al. prolates-1, C1

pear , and prolate-2
branches, respectively. The reason why shapes from
Cpear branch are not detected, despite having lower ener
than shapes on theC1

pear branch, is probably due to the fac
that the limits set on the permissable parameter variation

e FIG. 8. Phase diagram for an axisymmetric two-patch ves
with C052.4.
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4226 PRE 61MALCOLM I. G. BLOOR AND MICHAEL J. WILSON
the optimization routine did not allow the type of shap
with very thin ‘‘necks’’ that occur on theCpear branch.

C. Phase diagram forc0Ä3.0

This section gives presents results for axisymme
vesicles for whichc053.0. The phase diagram for th
present calculations is shown in Fig. 10 which plots surfa

FIG. 9. Sample shapes for an axisymmetric vesicle withC0

52.4: ~a! y50.751;~b! y50.72; ~c! y50.68; ~d! y50.6.

FIG. 10. Phase diagram for an axisymmetric vescile withC0

53.0.
c

e

energy in units of 8pk against reduced volume; some re
resentative shapes are shown in Fig. 11. The shape in
11~a! has a reduced volume of 0.826; the shape in Fig. 11~b!
has a reduced volume of 0.763; the shape in Fig. 11~c! has a
reduced volume of 0.698; the shape in Fig. 11~d! has a re-
duced volume of 0.652; the shape in Fig. 11~e! has a reduced
volume of 0.541; and the the shape in Fig. 11~f! has a re-
duced volume of 0.4. Comparison with the results of Seif
et al. @14# show that the method has detected the states
lowest energy in the range of reduced volumesy51.→y
50.4; namely the prolates-1, pears, and prolates-2. Note
near to the crossing point of the prolates-1 branch and
lower of the pear branches aty'0.82, the stable states foun
by successive optimizations jump between the two branc
This is due to the fact that the optimization algorithm,
searching for an energy minimum in parameter space doe
by taking a finite step in its chosen search direction. Th
when two branches are close in energy the optimization
gorithm is affected by numerical noise in the estimate of
search direction and is liable to end up on either branch. A
note that in the regiony'0.748→y'0.707, some stationary
pear shapes are obtained whereas one would expect no s
pears to exist@14#. The probable reason for this is that the
are finite parameter bounds set on the curvature boun
conditions that prevent the geometry at the neck from
coming too extreme, the effect of which is to stabilize shap
in this region. Nevertheless, elsewhere in the phase diag
the method is able to represent accurately the expected s
shapes.

V. NONAXISYMMETRIC VESICLE SHAPES

The previous results have been confined to relativ
simple stationary states by limiting the Fourier mode num
varied in the optimization toM51 ~except to test the opti-
mization!. Most previous work on vesicle configurations h
concentrated upon axisymmetric shapes, but there have
observations and simulations of nonaxisymmetric sha

FIG. 11. Sample shapes for an axisymmetric vesicle withC0

53.0: ~a! y50.826; ~b! y50.763; ~c! y50.698; ~d! y50.652; ~e!
y50.541;~f! y50.4.
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~e.g.,@28,29,15–17#!. Numerical simulations of such shape
have usually been carried out through the procedure of m
mizing the curvature energy of a triangulated surface
proximation to the vesicle, e.g.,@17,18#, ~although other
methods have been used, e.g.,@16,29,15#!. The triangulated
surface approach is computationally very expensive since
number of shape parameters that must be varied in the
ergy minimization is effectively the number of surface gr
points, which is typically a few thousand. However, nona
symmetric shapes can be obtained using the parameteriz
method described above, certainly by increasing the num
of Fourier modes that are varied in the optimization so t
M.1, but also in principle for the caseM51. Of course,
whether or not these nonaxisymmetric shapes are statio
depends on the model for the surface energy. The impor
point is that the present method can represent nonaxis
metric shapes using a much smaller set of design varia
~by an order of magnitude!, which greatly reduces the com
putational expense of numerical optimization. In the resu
presented next, the nonaxisymmetric shapes were found
result of optimizations run, in a few hours on a UNIX wor
station, or overnight on a fast PC, although the timing
pends on the accuracy required. Note that to find a non
symmetric branch it was sometimes necessary to us
nonaxisymmetric starting shape.

A. ADE model

In this section we show some results obtained using
area-difference-elasticity~ADE! model and compare them
with those obtained by Jaric´ et al. @16#. The surface energy
W@S# in the ADE model is given by an expression of th
form @1#

W@S#[
k

2E dA~C11C22C0!21
k̄

2

p

AD2
~DA@S#2DA0!2.

~12!

Like the spontaneous curvature model the first term rep
sents the local bending energy, whereas the second term
resents the cost in elastic energy of causing the area di
ence between the inner and outer layers of the membran

DA@S#52D R dAH ~13!

„whereH is the local mean curvature@ 1
2 (C11C2)#…, to de-

viate from the ‘‘relaxed’’ valueDA0 @16#; k̄ is the nonlocal
bending modulus andD is the thickness of the bilayer. Fo
lowing Jarićet al. @16# the area difference and relaxed ar
difference can be nondimensionalized thus

m@S#[
DA

2DR0
~14!

and

m0[
DA0

2DR0
~15!

so that the surface energy may then be written in the follo
ing convenient form:
i-
-

he
n-

-
ion
er
t

ry
nt
-

es

s
s a

-
i-
a

e

e-
ep-
r-

-

W@S#[kS 1
2 E dA~2H !21a~m@S#2m̄0!21w0D ~16!

wherea[k̄/k, w0 is a constant and

m̄0[m01
2c0

a
. ~17!

Thus, to change from the SC model to the ADE mode
is a simple matter to replace the energy functional in Eq.~8!
with the energy functional of Eq.~16! ~whilst retaining the
constraints on area and volume!. The relevant control param
eters are nowm̄0 andy. Jaricet al. @16# describe the various
locally stable branches of the phase diagram of this mo
which in the main consist of axisymmetric shapes, i.e., ob
and prolate ellipsoids, pears, and stomatocytes. Howe
they also find, in relatively small regions of the phase pla
regions where locally stable nonaxisymmetric shapes ex

Figure 12 presents a plot of energyW against effective
reduced area differencem̄0 for a fixed value ofy at a51.4 in
a region where locally stable nonaxisymmetric shapes ex
Two branches are shown: the axisymmetric oblates and
nonaxisymmetric ellipsoids which bifurcate from them ju
below m̄0/4p51.08. Figure 13 shows a representative sha
from the oblate branch~cf. the shapes found by Heinric
et al. @15#!. Each branch has been calculated using

FIG. 12. EnergyW as a function of the area differencem̄0 for an
ADE model aty50.7.

FIG. 13. A representative nonaxisymmetric ellipsoid for AD

results shown in Fig. 12:y50.7; m̄051.09.
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4228 PRE 61MALCOLM I. G. BLOOR AND MICHAEL J. WILSON
method described in this paper. Note that if the nonaxisy
metric branch is followed beyondm̄0/4p about 1.11, the
calculated shapes jump to the prolate branch. In the num
cal calculation of the nonaxisymmetric branch, a value
M55 was used for the number of Fourier modes in
solution. These results compare favorably with Fig. 4 of Ja´
et al. @16#, bearing in mind the fact their nonaxisymmetr
shapes were calculated using brute-force energy minim
tion over a triangulated surface shape having 4000 g
points that represented~at the time of writing! the practical
limits of their computational facilities; whereas the prese
results, which only have 193 free parameters, can be ca
lated in a few hours on a workstation or fast PC.

These results provide an illustration of the hierarchi
approach in that, at first, only two modes were used in
optimization. This produced nonaxisymmetric shapes tha
furcated from the axisymmetric oblates at the correct po
~just belowm̄0/4p51.08), but which were not of quite th
correct shape and consequently their surface energy co
ued to increase monotonically withm̄0 ~like the axisymmet-
ric oblates!. In order to refine the geometry model, the op
mization was repeated using an increasing number of mo
until the caseM55 was found to produce a variation o
energy withm̄0 of the correct form. The starting point fo
these subsequent optimizations was a nonaxisymm
shape produced by theM52 case, i.e., a starting geomet
which was correct on long length scales but which requi
small scale refinement.

B. Starfish

As a final, rather more challenging, example of nona
symmetric shapes that can be calculated, some calcula
of starfish vesicles are presented. It is now well establish
both experimentally in the laboratory@28# and numerically
@17#, that under certain conditions vesicles can assume s
fish shapes. Wintzet al. @17# present results for starfish wit
up to seven arms using the ADE model for the surface
ergy produced using a triangulated surface model with 2
grid points. In this section we present results of calculatio
of starfish using the SC model for the surface energy with
value ofc0 being 1.35. The starfish shapes where calcula
over a range of reduced volumes fromy50.5 to y50.33.
The maximum number of Fourier modes in the solution
M55 which makes the maximum number of free parame
193. The initial optimization was started with a fairly di
torted shape having four arms~or rather bulges!, although as
can been seen from the representative shapes shown in
14 the stable shapes found have three arms: the shape in
14~a! has a reduced volume of 0.545; the shape in Fig. 14~b!
has a reduced volume of 0.435; the shape in Fig. 14~c! has a
reduced volume of 0.352; and the the shape in Fig. 14~d! has
a reduced volume of 0.31. Note that not all of the sha
have a threefold mirror symmetry, although they do app
to have threefold rotational symmetry. This may be an a
fact of the parametrization, in particular the number of Fo
rier modes used, although these results are consistent a
culation carried out withM56. In fact, some of the result
presented by Wintzet al. @17#, would suggest that it is pos
sible to find starfish shapes without any symmetry at
Figure 15 shows a plot of surface energy against redu
-
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volume for these shapes. The results presented in Fig.
which represent the stable shapes at 20 different redu
volumes, using a 61361 surface mesh to evaluateW, can be
calculated overnight on a Silicon Graphics R1000 works
tion.

VI. DISCUSSION

We have presented a method for producing a generic
rameteric model of the shape of a vesicle which is capabl
producing a wide range of shapes. Moreover, the results
sented above indicate that this approach to shape param
zation, in combination with a method for numerical optim
zation, is capable of accurately approximating the shape
vesicles and their surface energies. In all the cases discu
above, a hierarchical approach to the shape parametriza
was adopted in which the geometry model of successiv

FIG. 14. Sample shapes for three-armed starfish vesiclesC0

51.35): ~a! y50.545;~b! y50.435;~c! y50.352;~d! y50.31.

FIG. 15. EnergyW as a function of the reduced volume fo
starfish vesicles using the SC modelC051.35.
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refined to produce features on shorter and shorter len
scales, by a combination of adding more surface patches
increasing the number of Fourier modes.

It is unreasonable to expect it to be as accurate or effic
as the numerical solution of the ordinary differential equ
tion to which the shape equations reduce in the axisymme
case. However, on the other hand, the main advantage o
method is in the nonaxisymmetric case where numerical
lution of the shape equations has not proved possible
shapes that differ markedly from axisymmetry. Two e
amples have been used to demonstrate its ability to find n
axisymmetric vesicle shapes: starfish vesicles in the con
of the SC model and pinched dumbells in the context of
ADE model.

The ability of the method to parametrize efficiently no
axisymmetric shapes, i.e., represent them in terms of a r
tively small set of shape parameters, gives it an advantag
terms of speed over the triangulated surface approach th
most often used to find highly nonaxisymmetric shapes
this approach, the shape parameters are effectively the c
dinates of the vertices of the surface triangles of which th
tends to be a large number for a complicated shape.
example, Wintzet al. @17# quote a figure of 2500, Jieet al.
@18# used between 2000–3000 grid points for their simu
tions, while Jaric´ et al. @16# report that about 4000 grid
points is the largest they could practically attempt. For
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results presented in this paper, the number of free parame
is at most 193~used in the calculations of the starfish shap
described in Sec. V B!, thus such shapes can be calculat
much more rapidly than by using a triangulated surface
proach. Each shape parameter used in the PDE approac
a global effect on the shape of the surface, thus there
fewer parameters than for a triangulated surface model, e
of whose parameters exerts only a local influence on
surrounding surface.

However, it is possible to imagine a hybrid approach
which the PDE method is used in combination with a tria
gulated surface model, since a surface triangulation can
obtained from the PDE description by a simple gridding
(u,v) parameter space. Thus a PDE model could be use
obtain an approximation to an optimum shape relatively r
idly, from which a triangulated surface model could be pr
duced and used as the starting point for a brute-force opt
zation over the vertices to obtain a very accurate model.

This paper has only described the parametrization
shapes that are the topological equivalent of spheres, bu
extension of the method to more complicated shapes, in
sense of higher genus and/or complex shape, is straigh
ward because shapes with handles can easily be constru
from multiple surface patches as work in the CAD area h
demonstrated@30#.
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