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Method for efficient shape parametrization of fluid membranes and vesicles
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In this paper we describe a method for the parametrization of the shapes adopted by fluid membranes and
vesicles. The method is based upon a boundary-value approach to geometry description in which smooth
surfaces are produced as the solution to an elliptic partial differential equations. Shape parameters are intro-
duced through the boundary conditions, which control the shape of the vesicle models. In combination with a
model for the surface energy and a method for numerical minimization, it is shown how the method can
accurately approximate the shapes of both axisymmetric and nonaxisymmetric vesicles over a wide range of
control parameters. The particular value of the method lies in its ability to parametrize complicated shapes
efficiently, a feature that becomes especially valuable when seeking shapes of minimal energy using direct
optimization techniques.

PACS numbes): 87.10+e, 87.16.Ac, 87.16.Dg

I. INTRODUCTION [1]—all assume that vesicles acquire the shape for which
A lipid molecule typically consists of a polar hydrophilic thelr surface energy Is mmm&ln a local sense at legst
. . . subject to appropriate constraints. As far as these models are
head and an hydrophobic tail consisting of hydrocarbon ; .
) A . concerned, on the length scales of the vesicles the properties
chains. Such amiphiphilic molecules when placed in aqueous

solution can spontaneously aggregate to form enca sulatinOf the lipid molecules are important only insofar as they
P y aggreg P (getermine the various elastic constants of the continuum en-

bag_s called vesicles. The membrane forming the walls of th%rgy model; although whether or not a bilayer is formed in

e . “the first place, as opposed to micelles, for example, is depen-
by weak noncovalent forces, where the lipid molecules orienfiant on the structure of the lipid moleculgs]. It is also

themselves so that the hydrophilic heads are turned outwargg,mmonly assumed that nonequilibrium effects and thermal
towards the surrounding aqueous environment whilst the hyfyctuations can be neglected except near shape transitions
drophobic tails are turned inwards. This structural arrangef1]. Where the various models differ is in their estimate of
ment of the molecules forming the membrane is usually rethe functional relationship between the energy of the surface
ferred to as a bilayer, and by organizing themselves in thigind its shape. In a review, Seiféft] gives a detailed sum-
way the lipid molecules greatly reduce the surface energy ofnary of the various theoretical models, but their main fea-
the membrane. Even though a membrane is typically only aures may be summarized briefly as follows.
few nanometers thick, the vesicles themselves can be of mac- In 1970 Canhan{3], seeking to explain the shape of
roscopic proportions of up to 100m [1]. erythrocytes, suggested that the local energy density of the
In fact, depending upon the chemical and physical propmembrane was proportional to the sum of the squares of the
erties of their molecules, as well as that of their environmentprincipal curvatures, a model which is appropriate for a
amphiphilic compounds can assemble into a wide range ofesicle consisting of a symmetric bilayer. Helfrip] sub-
different types of aggregates: spherical micelles, elongategequently modified this model and introduced the so-called
micelles, branched micelles, flat or discoidal miscelles, rib-spontaneous curvatur€, to reflect a possible asymmetry
bons, etc., as well as bilayef&]. However, bilayers have between the two layers of the membrane. Such an asymme-
received a great deal of study in recent years, since this typigy could arise because of different environments on either
of membrane is the fundamental structural component of theide of the membrane, or else because of differences in the
boundaries of all cells and cell organelles. Consequently beshemical composition between the two monolayers. The en-
havior of vesicles composed of lipid bilayers under the in-ergy functional for the surface is given in E@). According
fluence of different chemical and physical environments haso this model, the shape adopted by a vesicle is such as to
been used as a simplified model for the behavior of cells. locally minimize the energy functional subject to the con-
Despite the relatively simple structure of their walls, straints of constant area and volume.
vesicles can adopt a wide variety of different shapes and In some ways similar to the spontaneous curvat&e)
even topologied1]. Theoretical explanations for the con- model is the bilayer couple mod#6,8,9)) in which there is
figurations adopted by vesicles have tended to follow a conan additional constraint on the integrated mean curvature of
tinuum model in which the dominant effect is the bendingthe membrane, which turns out to have the effect of making
elasticity of the membrane, in contrast to other types of fluicthe spontaneous curvature unimportaht. The model is
interfaces where surface tension plays the primary role. Thbased on the assumption that each layer of the bilayer is
first such models were put forward in the 197@anham incompressible but can be bent, and therefore can store elas-
[3], Helfrich [4], Evans[5]), and although refinements have tic energy. Finally there is the area-difference-elasticity
been put forward since—see, for example, Svetinal.[6], (ADE) model (Seifert et al, [7], Wiese et al. [10], Bozic
Seifert et al. [7], or the comprehensive review of Seifert et al. [11]) in which the energy functional for a membrane
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contains a local contribution from the curvature energy and &matical methods with which to describe the geometry of
nonlocal contribution from the deviation in the area differ- objects with complex “freeform” shapes such as aircratft,
ence between the two monolayers from a reference value. I18hips, engine components, etc., with a view to computer-
the ADE model the energy functional is minimized subject tobased design, analysis, and optimization of the objects before
constraints upon the area and volume. they are eventually manufactured. In CAD there is a trend
When it comes to calculating the shapes of vesicles thert®owards “simulation-based design,” where many of the

are, broadly speaking, three categories of method used fg1anges to a design are made as the result of computer analy-
calculate the shapes of vesicle& solving the Euler- SiS Of the appropriate physics, and are made automatically

Lagrange equations associated with the integral expressidfsind the methodology of numerical optimization. There is,
for the total surface energyb) using a parametrized model therefore, a requirement for a method for shape representa-

for the shape of a vesicle and then choosing the values of thtéOn thatf can pz_irametlrlzel_eff_lz:lzntlyt ccf)r(rjlple_x shapeks)l, in the
various parameters in the model so as to obtain the shapseense orrequinng only a fimited Set ot design variables.
with lowest energy; andc) “brute-force” minimization of .T.he method for sha_pe parametrization is described in de-
the surface energy of a triangulated surface model of théall in Sec. Il, but basmglly it adopts a boundary-yalge ap-
vesicle. pr(_)ach to shape generation, and produces a glescrlptlon of an
As noted by Seiferf1], most work has been done in the object’s surface shape as a mapping from a simple space to_ a
context of the first approach, where the EuIer—Lagrangecompk':'X surface. embeddtl—:td. n 3—§pac_e. The_ mapping 1S
equations yields a set of solutions for which the first varia-aCh'eved by solving an elliptic partial differential equation
19], unlike conventional methods for surface description in

tion of the appropriate functional, combining both the energ . ; ;
of the surface and imposed constraints, vanishes. These st%’-A‘D which are based on polynomlal splmEﬁO]. For the
ake of example, the method is presented in the context of

tionary solutions correspond either to locally stable shapes .

saddle pointswhich can be identified by stability analysis 'C Spor:jt"’?“eousg“r‘i?t“@?hm"de' tﬂf E'?”“Ch[“]* ‘f"h‘fre ;
Seifert[1] reviews this approach and in particular considers :ialtjisoi té)n fi%c:jmthg]as;]c;r;)gvgf \?egi]flesono?ggll;/n;irglzﬁatci)\?e:;/
h ivati f th i Euler-L i o . .

the derivation of the appropriate Euler-Lagrange equatio but also quantitatively, The purpose of this paper is to de-

which is a fourth-order nonlinear partial differential equation™~". .
(originally derived by Ou-Yang and Helfrici12]). The so- scribe the method rather than to undertake any systematic
: investigation of vesicle shapes for a particular energy model.

lution of this equation in full generality is a formidable task ] ; . .
and has not yet been achieved, hence most work has Concelﬂgwever, the.method is validated by producing phase. dia-
! rams for various test cases that can be compared with the

trated upon the solution of the axisymmetric case, where thé i K of oth [14]
Euler-Lagrange equation is a nonlinear ordinary differentiale"’lrs'ert\.NOr |||Od0 ers, €9 1. : | del of icle sh
equation. The usual approach to obtaining and solving this ection escribes a simpie model of a vesiCle Shape

equation is to substitute a parametrization of an axisymme roduced from a single surface patch, which is capable of

ric shape into the energy functional, and a number of paramprOdUCing both axisymmetric oblate and prolate shapes. Re-
etrizations have been considered in the context of variou ults are presented which show how the surface energy of

energy models, e.g., Helfridd], Svetina and Zeki9], Miao oth the prolate and oblate branches vary as a function of
et al. [13], and ,Se;ifé,net al [14j ' reduced volume. In Sec. IV the model is refined by using two
The sécond approach, that of approximating a vesicle’ urface patches to represent the shape of a \_/e5|cle. Again in
shape using a parametrized model with a restricted paramet e case of zero spontaneous curvature It is demonstre_lted
ow the surface parametrization is capable of reproducing

set, and then choosing the parameters in order to minimiz t onlv the oblat d orolate b hes but the st
the surface energy, is sometimes referred to as the variatioanP only the oblate and prolate branches but now the stoma-

approach. An example of this type of method can be found i ocyte branch of the phase diagram. As a further test of the
the work of Canhanfi3], who used Cassini ovals to param- model, the phase diagram for a nonzero value of the sponta-

etrize the shape of red blood cells; another example is th@eous curvature is calculated. Finally, i_n Sec. V'. the surface
work of Heinrichet al.[15] who used spherical harmonics to model is used to calculate some nonaxisymmetric shapes for

parametrize the vesicles both the SC model and the area-difference-elasticMyE)

The third approach is that of minimizing the curvature model.
energy of a triangulated surface model. The parameters in Il. METHOD EOR SHAPE PARAMETRIZATION
this model are in effect the positions of the vertices of the
surface triangles, of which there can be a large number and In the context of industrial CAD the method for shape
in consequence the computational cost of numerically miniparametrization presented in this paper is referred to as the
mizing the surface energy can be enormous. However, thipartial differential equatiodPDE) method. As mentioned in
approach has been employed successfully by a number &ec. I, the method views surface generation as a boundary-
workers to find nonaxisymmetric shapes, e.g., Rédf6§—18.  value problem and it generates surfaces as mappings from
The approach to predicting vesicle shape adopted in thithe solutions of elliptic partial differential equations. What
paper falls into the category of using a parametrized surfacthis means in geometric terms is that a surface patch is gen-
model to represent the vesicle surface and then choosing tlezated from data specified around its edges, the data typically
values of various “shape” parameters introduced in thetaking the form of a mathematical parametrization of the
model so as to obtain the surface of lowest energy subject tourves around the edges of the patch, along with derivative
appropriate constraints. This method for surface parametrizanformation which controls how the surface patch meets the
tion was developed in the context of industrial computer-edge curves. By a suitable choice of boundary conditions the
aided designCAD), where the problem is to devise math- method is able to generate a wide variety of object shapes.
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In mathematical terms, a PDE surface is found in as a Although the justification for using this equation in the
function X(u,v) which is the solution to a boundary-value present application is ultimately its usefulness, some words
problem formulated in parameter space. More specificallypf explanation for the choice of E¢R) are in order. Equation
we introduce two scalar variablesandv as the coordinates (2) is not chosen as being in some way a linearized approxi-
of a point in a region() of a two-dimensional parameter mation to the shape equations. In the present situation, where
space, and the functioX(u,v) as a mapping fronf) to a  vesicle shapes will be constructed by joining more than one
patch of surface in Euclidean 3-space, wh¢(e,v) satisfies  patch of PDE surface together, and where the surface energy
boundary conditions imposed off). To satisfy these re- s a function of curvature, one would like a surface descrip-
quirements we regar&(u,v) as the solution of a partial tjon where the curvature is continuous across patch bound-
differential equation of the general form aries. Hence the boundary conditions used to solve the gen-

m erating PDE need to specify not only the functXrbut also
Dy (X)=E(u,v), @) its first and second parametric derivatives, which is the rea-
son why Eq.(2) is sixth order. Furthermore, the boundary
conditions are the means by which the surface shape can be
controlled, and the more derivatives one can specify the
reater the control one can exercise over the shape, even

whereD{]' () is a partial differential operator of orden in
the independent variablesandv, while F(u,v) is a vector
function ofu andv. Since we are adopting a boundary-value

approach, it is natural to consider the class of elliptic partial ithin the constraints set by continuity conditions at the

differential equations. The elliptic PDE acts as an averaginq)_oundaries_ Here, being able to specify the second derivative
operator and produces the surface patch as a smooth trangk || gives an even degree of control.

tion between the boundary conditions. In contrast, in conven- .00 3 solution to Eq(2) a generic parameteric model of

tional CAD systems, the mapping effected by Bd) iS  , \egjcle shape can be constructed which is capable of pro-
achieved by expressing the functigtfu,v) a finite sum of ,cing 5 wide range of possible geometries. The model con-
polynomial basis functions, so that a surface is controlled by,ins 3 number of “shape” parameters that are introduced
a net or _polygon of “control” points distributed around _the through the boundary conditiorisee below: The values of
surface in 3-space. However, because the data required {Re shape parameters determine the specific geometry of the
specify a PDE surface is specified around its edges, rathgfegicle and in this paper the values of the shape parameters
than across its surface, a mugh smaller number of shape Pife selected to give a surface with minimum energy. The
rameters are needed to describe a cpmplex surface using (i& ametrization can be made hierarchical in the sense that at
PDE methodology. So, for example, in the case of a comple¥qt only parameters that produce large-scale features of the
object such as a swirl inlet-port for a diesel engine, about 5 hape are introduced: then, later, the geometry model can be

shape parameters are needed, whereas for a conventionglineq, and additional shape parameters introduced, to cap-
CAD system many hundreds if not thousands of control, e finer detail in the shape. In this way the computational

points are requi.reﬁ21]. . cost of numerical optimization can be reduced. This ap-
In CAD one is often seeking to generate surface patChe(’groach has been used in Sec. V where nonaxisymmetric
that meet neighboring surfaces with a specified degree Qfggjcle shapes are considered, and in the CAD area, a hier-
continuity. Since the level of continuity is often confined to 4. hical approach has been used to design wiggs
continuity of tangent plane, most work using the PDE " ginaiy "Eq.(2) has the advantage that the surfaces pro-
methqd in CAD ha§ been done using a fourth—order e”'pt,'cduced are quick and easy to generate. They respond in an
equation. Even so, just by the specifying the function and it$,itive fashion to changes in the boundary conditions and
first derivative at the boundaries, shapes of considerablg,, pe manipulated in “real-time” by a user sitting at a
complexity have been produced, e{@1]. If curvature con- \qrystation or PC. The relevant physical characteristics of
tmwty across patqh boundaries is required in qddltlon, then the object in question can be calculated from the surface
sixth-order equation must be solved, and since curvaturgescription using software for the specific analysis, and the
pontmwty is a reqwrement for the surface descrlptlong used,;rface can be quickly changed in order to optimize the de-
in this paper, vesicle shapes are generated from solutions gre properties. Thus, even though the parametrizations of
the following sixth-order elliptic partial differential equation: | agicle shapes described in this paper are approximations to

) )\ 3 the actual shape in a particular situation, the approximations
&—+a2ﬁ— X=0 ) are accurate, surprisingly so given the small number of
au? w? T patches actually used.

To find a solution to Eq(2) we can specify along(Q)

which is solved independently for they, andz components boundary conditions on the functiof and its first and sec-
of points on the surface. ond (parametri¢ derivatives in a direction normal to the

The partial differential operator in Eq2) represents a boundaryd() in parameter space. The parametrizations con-
smoothing process in which the value of the function at anysidered in this work are periodic in one of the parameter
point on the surface is, in a sense, an average of the sudirections, which we shall take to be thedirection, and in
rounding values. In this way a surface is obtained as ahe discussion that follows we will consider solutions over
smooth transition between the boundary conditions imposethe (u,v) region[0,1] X[ 0,27 ]. Restricting the discussion to
on the function and its parametric derivatives. The parametesuch surfaces does not unduly reduce the range of surface
a, which we will refer to as the smoothing parameter, con-shapes that we can generate and, furthermore, a very fast
trols the relative rates of smoothing between thand v method for generating such surfaces can be used. Thus, the
parameter directions. boundary conditions used to solve E@) are of the form



PRE 61 METHOD FOR EFFICIENT SHAPE PARAMETRIZATION . .. 4221

X(0p)=1v), (39 X0V
X(l,v):fl(l)), (3b) u:O
Xu(00)=13(v), (39) 4
Xu(1p)="f(v), (3d)
Xuu(00) =fiy(v), (3¢
Xuu(1p) = Fl(v). (3f) X9
The boundary condition§®(v) and f1(v) give the two u=1
curves that form the edges of the surface patch in terms of /
the periodic variable ; the boundary conditions on the first
parametric derivativesf(v) and fi(v) determine the FIG. 1. Boundary conditions for a single-patch vesicle.

“speed” and direction in which the surface leaves the edge
curves(and hence the direction of the surface normal at thesurface shapes can be created. For example, work in the area
edges of the patghwhilst the boundary conditions on the of industrial design has shown how the method can effi-
second parametric derivativé§,(v) andfj,(v) control the ciently parametrize the surface of such objects as aircraft
surface curvature at the edges of the patch. Note that tH@4], ships[25], propellers, and engine componeml].
shape parameters that control the surface are introducedote that the boundary conditions have an intuitive geomet-
through the boundary conditiorisee below. ric interpretation, and in fact software has been written that
For periodic boundary conditions which can be repre-enables a designer, knowing nothing of the underlying math-
sented by a finite Fourier decomposition, we can write dowrematics, to design complicated shapes at a workstation or
the solution to Eq(2) in closed-form, thus PC. In the present application the choice of shape parameters
is made on the basis of minimizing the surface energy of the
. vesicle subject to suitable constraints, a process which is
X(U,v)=Ao(U)+nZl {An(u)cognu) +Bn(u)sin(nv)}. carred out automatically using an algorithm for numerical
(4)  optimization described in more detail below.
In the next section we shall illustrate how the method may
Note that in more general situations a solution can be fountbe applied to the present problem by parametrizing a simple
using a pseudospectral meth@2i3]. The functionsA,(u) vesicle shape and showing how the parameters may be cho-
andB,(u) are of the form sen in order to obtain the shape with a locally minimum
energy.

M

Ao(U) = agg+ agyU + agou? +agsu®, (58

B =B 2 g s S Ao
+an,U%e™ M+ asu’e Y, (5b) In this section we will use a periodic solution to E8) to
parametrize the shape of a vesicle in terms of a single peri-
odic surface patch. We take the boundary cuXé3y) and
+bpaued i+ b sule Y, (5¢)  X(1p) to be pointsdegenerate curvgat the “poles” of the
vesicle, and use the derivative boundary conditions on
The constant vectorga,g,bng, etc., are determined by the X,(0p), Xy (1p), X,u(0p), X,u(1p) to produce an appro-
boundary conditions. Note that there is a further parametepriate shape for the surface. The boundary conditions are
used to control the shape and this is the smoothing paramet#ustrated in Fig. 1. The function boundary conditions are
a that occurs in the governing partial differential equationshown as closed curves of finite size, whereas in reality they
[Eqg. (2)]. By adjusting the value o& one can change the are pointgor at least very small The first-derivative bound-
properties of the surface, either propagating the effects of thary conditions are shown as vector fields distributed around
boundary conditions over substantial parts of the surface, dhe boundary curves. Note that the magnitude and direction
confining their effects to regions near the edges of the suref the vectorsX,(0pv), X,(1,v) can vary around the bound-
face. For largea, changes in thai direction occur over a aries. The first derivative boundary conditions have an intui-
relatively short length scale, namelyaltimes the length tive effect on the shape, forcing the surface away from the
scale in thev direction over which similar changes take boundaries in a particular direction. Note that care should be
place. Note that it is possible to associate different values dfaken in the choice of the first derivative conditions to ensure
a with features on the surface of different length scales, althat the surface normal is continuous at the poles. The
though at the cost of adding additional parameters to th&oundary conditions on the second derivativeg,(0p),
problem. Xuu(Lp) can be represented in a similar way as vector fields
By a suitable choice of boundary conditions, and by join-distributed around the boundaries, but for the sake of clarity
ing together more than one surface patch, a wide range dghey have been omitted from Fig. 1.

Bp(u) =bnoe"'+ by e 4"+ boue™+ bygue M
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Being periodic, the boundary conditions can be expressed
as Fourier series

M
fo(0)=CB+ 2, {Cqeodnu) +Sisin(no)},  (62)

M
fH(0)=Ci+ 2, {Creosnu) +Sisin(no)},  (6b)

(b)
M
fo(0)=Cf ot 2 {C{ ncosnu) + ) ysin(nv)},  (60)
- n=1
M
fi0)=Ciig* 2 {Clincosnv) + 8] sin(no)},  (6d)
M
fluv)=Cluot nzl {Councognv) + S, sin(no)}, (e) (d)
(6¢) FIG. 2. The effect of boundary conditions and smoothing pa-
M rameter upon vesicle shape.
1 _~1 1 1
flu)=Cluot 2 {ClunCosnv) + Sy, pSin(no)}, ics techniques. Although each surface patch is infinitely dif-

(6fy  ferentiable within its interior, some of the computer images
have a curve running along their surface across which there

whereM is finite by choice, and th€], C, So, etc. are  appears to be a discontinuous change in the direction of the
constant vectors. Expressing the boundary conditions in thisurface normal. This curve correspondsvte 0,27 and the
way allows the solution for the surface to be readily obtainedapparent jump in the surface normal is an artifact of the
in closed form. As mentioned above, a method has beeshading algorithm.
devised for obtaining the solution in closed form for general Note that having a closed-form expression for the solution
periodic boundary condition23]. However, in the present means that the surfaces can be generated in a fraction of a
work, restricting the boundary conditions to a finite Fouriersecond, and that the surface properties such as curvature can
series does not appear to restrict the range of surface shapes calculated explicitly at all points on the surface as a func-
that can be obtained. The Fourier coefficie@, S0 etc.,  tion of u andv.
along with the smoothing parametarform the shape vari-
ablesp; that control the shape of the vesicle surface. In fact, A. Surface optimization

many of these parameters are zero and fixed during the op- . .
timization that takes place to find the shape of minimum As mentioned above, the SC model for surface energy is

energy. So, for example, in the results described below, th sed in this pgpe(w_vith the exception of some results for the
boundary curves are taken to be points which can only movi DE m(.)dellgwgn in Sec. VA so that the surface energy of
along a single axi€the z axis), so consequently the only € vesicle is given by a surface integral of the form
nonzero Fourier coefficients for the function boundary con- P Ko

ditions (6a) and(6b) are the zeroth-order coefficients. Fur- W[ S]= Ef dA(C,+ C2—C0)2+7f dA(C,C,), (M)
thermore, the zeroth-order coefficients for the first derivative

boundary conditiong6c) and(6d) are taken to be zero, since where C, and C, are the principal curvature€, is the

otherwise a singular su_rface WOUl.d be: produced gt the pOIess'pontaneous curvaturd A is an element of surface, a8l
An example shape is shown in Fig(a2 for which the

nonzero Fourier coefficients are given in Table I. The effectdenOtes the shape of the object. The value of the surface

of changing some of the shape parameters is shown in Figgnergyw will change as the shape changes in response to

2(b)-2(d). In Fig. 2b) the z separation of the two boundary Changes in the values of shape parametpisfl. - . . .Pn),
curves has been increased; in Figc)2Zhe magnitude of the o )
first derivative boundary conditions has been increased, forc- TABLE I. Nonzero shape parameters for Figaz smoothing

. . ... parameter1.
ing the surface outwards away from the boundaries; while i

Fig. 2d) the vaI!Je of the smoothing parameter has beer?‘—'ourier coefficient x component y component zcomponent
increased. Thus it can be seen that the effect of these param-

eters upon the surface shape has a straight forward geometric cs 0 0 1.5
effect. co, 3 0 0
The surfaces shown in Fig. 2 have been produced by gen- cl, -3 0 0
erating a quadrilateral mesh on the surface from a rectangu- ST 0 3 0
lar mesh in (,v) parameter space, and this mesh is then st 0 -3 0

rendered as a shaded surface using standard computer graph
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so thatW is a function of the shape paramet®§p) where  optimization for a new value of the parameter using the pre-
p=(p1.P2, - - ..Pn). Although the surface is given in closed viously found stationary state as the starting point for the
form, which allows the values of the the principal curvaturesnew optimization. If the two values of the control parameters
and the Jacobian relating an element of area in parametére close, then the stationary vesicle configuration found by
spacedudv to the corresponding area elemaih on the the new optimization will often, but not necessarily, be on
surface to be calculated exactly, the valueWfmust be the same branch as the previous one. This process is then
estimated numerically and here this was done using the traepeated and so the given branch on the phase diagram can
pezium or Simpson'’s rule. Note that the boundary condition$e mapped out.

are such that at the poles the surface curvature is continuous

so that, as the vesicle has constant topological genus, the last ~ B. Phase diagram for zero spontaneous curvature

term in Eq.(7) is ignored during the surface optimization. For the SC model, due to the scale invariance of the sur-

The next step is to select values for the shape paramete_zféce energy, the phase diagram for axisymmetric shapes de-

such that the surface energy of the vesicle is minimized. Thigenqs only on two dimensionless control parameters, the re-
is done automatically using a technique for numerical mini-y,,ced volume given by

mization, of which there are many to choose. The particular

method used for this work was an implementation of the At

well-known Broyden-Fletcher-Goldfarb-ShanfBFGS al- UEV/<?R3): 9

gorithm. BFGS is a quasi-Newton method and uses succes-

sive line minimizations in parameter space to findacal)  where

minimum in the objective function, which in this case con-

sists of the surface energy plus constraint terms. The search Ro=V47Ao, (10

directions are calculated from the gradient of the objective . .

function in parameter space, and here these gradients wefd1€€Ao IS the surface area of the vesicle, and the reduced

calculated by using second-order finite differences. For &PONtaneous curvatum is given by

guadratic objective function dfl variables, the BFGS algo- co=CoRo. (12)

rithm will find the function minimum using no more thah

line minimizations. In the present application, the objective.

function is more complicated than quadratic, and there exists In this section we will concentrate upon vesicles having

more multiple local minima. The details of the BFGS algo-zero spontaneous curvature in order to validate the method

rithm are extensively documented; however, one particularlyagainst previously obtained results. The shape parameters

useful description from a practical point of view is given in that were allowed to vary in the optimization were the

Presset al. [26]. smoothing parametea, and the following Fourier coeffi-
The optimization is carried out subject to the constraintscients: (Cg),, Ciio, Couor (Ch o), (gﬁ,n)i,, (C2 )y

uu,0r *uu,0’
CO

0 1 1 0
of constant surface area and constant enclosed volume. Tf@gu'n)y, (Sin)x: (Sin)y: (Sunx: (§8‘n)y, Ciuns Couns

constraint of constant area arises due to the strong hydroph un» SO, wheren<M. Thus, during the optimization the
b_|c effect of the hydrophoblc tall Wh|ch means that indi- shaipe of the vesicle could be changed by varying the
wdugl molecules WI||'I’10'[ leave the bilayer in qrder to entergmoothing parameter, the length of its axis, the curvature at
solution; the constraint of constant volume arises from thgpe poles, and the length of the vectds(0p) andX (1)

condition that no osmotic pressure builds up across the biyt the poles. Note, however, that the surface normal at the
layer. These two constraints are justified in more detail inygles remains continuous and parallel to zhexis.

[1]. The constraints were imposed using the method of |, the initial choice of parametrization it is advisable to
Lagrange multipliers(see, for example{27]), so that the  eep the number of shape parameters as low as possible in
objective function used in the optimization was of the form oger to reduce the computational cost of optimization. If the
model needs to be refined at a later stage, in order to produce
_ K 2 localized features in the geometry, for example, a hierarchi-
WLST= Ef dA(Cy+Co=Co)™+ Pf dVH\f dA, cal approach can be adopted by adding higher-order Fourier
(8) modes gradually or by adding more surface patcteee
[22]). Here, to keep down the cost of the optimization, the
wheredV is an element of the volum¥ enclosed by the maximum mode numbevl was set at one. However, besides
vesicle, and® and\ are Lagrange multipliers. the results described below, simulations were carried out
The optimization is started at some point in parametewith M =4 in order to test the code. The presence of these
space. Due to the nonlinear nature of the problem, the objediigher-order modes would allow nonaxisymmetric shapes to
tive function has more than one local minimum in parameterppear if they represented a state of minimal energy. Never-
space, and therefore the optimization can find differentheless, the optimization returned axisymmetric shapes, set-
(stablg stationary states depending on where the optimizating the amplitude of the higher modes effectively to zero.
tion is started. In the results described below, the method is The results are presented in Fig. 3 which gives the phase
used to find the surface energy as a function of the relevardiagram calculated foc,=0. The results show the surface
dimensionless control parameters such as reduced volumenergy in units of 8« as a function of reduced volume for
This was achieved by beginning the optimization at a parboth the oblate and prolate branches. The prolate branch was
ticular point in parameter space, finding a stationary state fofound by taking a long and thin, but otherwise arbitrary,
a given value of the control parameter, then starting a newllipsoid for the starting shape, whilst the oblate branch was
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. X0

prolates /

0. 55 o.65 0.75 o.85 1 00 FIG. 5. Boundary conditions for two-patch vesicle parametriza-
reduced volume tion.

FIG. 3. Phase diagram for an axisymmetric, single-patch vesicle . .

(Co=0). g y gep cyte branch of the phase diagram. The surface model is ca-

pable of producing stomatocytelike shapes, but they are

found by taking an arbitrary squat ellipsoid for the Startingrather distorted anq hence r_10_t stationary states_ in surface
shape. Both optimizations used a starting reduced volume EN€rgy space. To find these it is necessary to refine the sur-

of 0.55 and then, after a stationary shape had been founfiC€ parametrization.

started again with an increased reduced voluoeng the

previous found stationary shape as the starting poamid so IV. REFINED PARAMETRIZATION

on, until a value ofv=1.0 had been reached. Figure 4 shows OF A VESICLE SHAPE

some representative shapes. Figures dnd 4b) show two )

shapes from the prolate branch with reduced volumes of 0.55 [N order to increase the range of shapes that the surface
and 0.758 respectively; Figs(a} and 4d) show two shapes model is capable finding, it is necessary to refine the param-

from the oblate branch with reduced volumes of 0.55 ancttrization by adding more surface patches, and an obvious
0.85, respectively. way to do this is indicated in Fig. 5 where the boundary

These results of Fig. 3 can be compared with those obconditions for a surface model using two surface pa_tches are
tained by Seiferet al. [14] (their Fig. §. One can see that shown. One patch forms the “upper half” of the vesicle and
despite the simple nature of the parametrization, there i€ other patch the “lower half.” The patches meet at a
fairly good agreement both qualitatively and quantitativelyPlane curve which lies in the=0 plane. The other boundary
between the two sets of results. However, one feature thd®" €ach patch is a point which is free to move along zhe

this simple surface model is unable to detect is the stomatd@Xis; as before the boundary conditions here are such that the
tangent plane for each patch is horizontal and continuous. In

Fig. 5 the boundary curves for the upper patch are labeled
u=0 andu=1, while the boundary curves for the lower
patch areu=1 andu=2; thus the upper patch is obtained by
solving over the (,v) domain[0,1]X[0,27], while the
lower patch is obtained by solving over the doméin2]
X[0,27r]. For obvious reasons, the=0 andu=2 bound-
aries will be referred to as the poles of the surface param-
etrization.

At their common boundary curve, both patches meet with
tangent plane and curvature continuity, which is enforced by
ensuring continuity of parametria derivatives across the
boundary curve. Although parametric continuity is certainly
a sufficient condition to ensure geometric continuity, it is not
strictly necessary, and in principle is somewhat restrictive of
the range of shapes that can be obtained. However, it is
straightforward to implement and in practice does not seem
to restrict the range of obtainable shape.

FIG. 4. Sample shapes for a single-patch vesi@g=t0): (a) The shape parameters in the problem are now the Fourier
v=0.55; (b) v=0.758;(c) v=0.55;(d) v="0.85. coefficients of the boundary conditions imposed at the three

(c) (d)
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FIG. 6. Phase diagram for an axisymmetric two-patch vesicle F|G. 8. Phase diagram for an axisymmetric two-patch vesicle
(Co=0). with Cy=2.4.

boundary curves, subject to the following constraints which . . )

reduce the number of Fourier coefficients that are allowed t¢'= 0-6; While Fig. 7c) shows a stomatocyte with=0.39.
vary in the optimization{a) theu=0 andu=2 boundaries By_comparlng the phase diagram Fig. 6 with that obtalned by
can only move along theaxis; (b) at the poles the surface’s Seifertet al.[14], one can see that the surface model is able
tangent plane remains parallel to they() plane;(c) there is  to to represent the states of minimum energy quite accu-

continuity of parametric derivatives across the 1 curve.  fately. Note that like the prolate and oblate branches the
stomatocyte branch was found by using a starting shape

qualitatively similar to the shapes one was trying to detect,
) _ S so that in the case of the stomatocyte branch this was a shape
In this section the optimizations of Sec. Ill B are repeatedihat was slightly “cup-shaped.” Note also that in the opti-

using the refined surface parametrization. The resultingnization the value of the maximum Eourier madenumber
phase diagram is shown in Fig. 6 with surface energy giveRyas limited to 1.

in units of 8r«, and some representative shapes are shown
in Fig. 7. Now it is possible to find not only the prolate and
oblate branches, but also the stomatocyte branch. Figare 7

shows a prolate with/=0.6; Fig. 7b) shows an oblate with As a further test of the shape parametrization, the value of
the reduced spontaneous curvature was set to 2.4 and another

sequence of optimizations was run, this time starting from a
reduced volume of/=1. This was done in order to compare
the results with Seiferet al. [14] (cf. their Fig. 11. The
(b) phase diagram for the present calculations is shown in Fig. 8
which plots surface energy in units ofi& against reduced
volume; some representative shapes are shown in Fig. 9. The
shape in Fig. @) has a reduced volume of 0.751; the shape
(a) in Fig. Ab) has a reduced volume of 0.72; the shape in Fig.
9(c) has a reduced volume of 0.68; and the shape in Fd). 9
has a reduced volume of 0.6.
Comparing these results with those of Seifetral. [14],
show that the method has found the states of lowest energy
{c) in the following ranges of reduced volumesi=1—uv
~0.72 (prolateg; v~0.72—v~0.69 (pears; v~0.69—v
=0.6 (prolateg. Note that these branches apparently corre-
spond to Seifertet al. prolates-1,C{®", and prolate-2
branches, respectively. The reason why shapes from the
CPe@ pranch are not detected, despite having lower energies
FIG. 7. Sample shapes for a two-patch vesiaBy€0): (a)  than shapes on th@}®?" branch, is probably due to the fact
prolate:v=0.6; (b) oblate:v=0.6; (c) stomatocytex=0.39. that the limits set on the permissable parameter variation in

A. Phase diagram for zero spontaneous curvature

B. Phase diagram forc,=2.4
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(b)

(c) (d)

FIG. 11. Sample shapes for an axisymmetric vesicle \@gh
=3.0: (a) v=0.826;(b) v=0.763;(c) v=0.698;(d) v=0.652;(e)
v=0.541;(f) v=0.4.

(d)

energy in units of &« against reduced volume; some rep-
resentative shapes are shown in Fig. 11. The shape in Fig.
11(a) has a reduced volume of 0.826; the shape in Figh)11
FIG. 9. Sample shapes for an axisymmetric vesicle V81 has a reduced volume of 0.763; the shape in Figc)lHas a
=2.4:(a) v=0.751;(b) v=0.72;(c) v=0.68;(d) v=0.6. reduced volume of 0.698; the shape in Fig(dilhas a re-
duced volume of 0.652; the shape in Fig(d)lhas a reduced
the optimization routine did not allow the type of shapesvolume of 0.541; and the the shape in Fig(flhas a re-

with very thin “necks” that occur on th&€P®2" branch. duced volume of 0.4. Comparison with the results of Seifert
et al. [14] show that the method has detected the states of
C. Phase diagram forc,=3.0 lowest energy in the range of reduced volumesl.— v

=0.4; namely the prolates-1, pears, and prolates-2. Note that
Shear to the crossing point of the prolates-1 branch and the
lower of the pear branches a#=0.82, the stable states found
eoy successive optimizations jump between the two branches.
This is due to the fact that the optimization algorithm, in
searching for an energy minimum in parameter space does so
by taking a finite step in its chosen search direction. Thus
prolates 1 when two branches are close in energy the optimization al-
gorithm is affected by numerical noise in the estimate of the
search direction and is liable to end up on either branch. Also
note that in the regiom~0.748— v~0.707, some stationary
pear shapes are obtained whereas one would expect no stable
pears to exisf14]. The probable reason for this is that there
are finite parameter bounds set on the curvature boundary
conditions that prevent the geometry at the neck from be-
coming too extreme, the effect of which is to stabilize shapes
in this region. Nevertheless, elsewhere in the phase diagram
the method is able to represent accurately the expected stable
shapes.

This section gives presents results for axisymmetri
vesicles for whichcy=3.0. The phase diagram for the
present calculations is shown in Fig. 10 which plots surfac

0.325
|

prolates 1

prolates 1

0.200
\

0.100

prolates 2

V. NONAXISYMMETRIC VESICLE SHAPES

The previous results have been confined to relatively
I T I simple stationary states by limiting the Fourier mode number
0.2 o.s 0.8 0.7 0.8 0.9 1.0 varied in the optimization tdvl =1 (except to test the opti-
reduced volume . . . . . .
mization. Most previous work on vesicle configurations has
FIG. 10. Phase diagram for an axisymmetric vescile v@ith ~ concentrated upon axisymmetric shapes, but there have been
=3.0. observations and simulations of nonaxisymmetric shapes

0.000
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(e.g.,[28,29,15—-17. Numerical simulations of such shapes
have usually been carried out through the procedure of mini-
mizing the curvature energy of a triangulated surface ap-
proximation to the vesicle, e.g[17,18, (although other
methods have been used, €[d6,29,15). The triangulated
surface approach is computationally very expensive since the
number of shape parameters that must be varied in the er
ergy minimization is effectively the number of surface grid
points, which is typically a few thousand. However, nonaxi- >
symmetric shapes can be obtained using the parameterizaticg’ﬁ
method described above, certainly by increasing the numbeg -
of Fourier modes that are varied in the optimization so thatw
M>1, but also in principle for the cadd =1. Of course, T
whether or not these nonaxisymmetric shapes are stationar -
depends on the model for the surface energy. The importan
point is that the present method can represent nonaxisym
metric shapes using a much smaller set of design variable
(by an order of magnitudewhich greatly reduces the com-
putational expense of numerical optimization. In the results
presented next, the nonaxisymmetric shapes were found as - | |

result of optimizations run, in a few hours on a UNIX work- Effoctive reduced area diiferemce
station, or overnight on a fast PC, although the timing de- .
pends on the accuracy required. Note that to find a nonaxi- FIG. 12. EnergyW as a function of the area differenog for an
symmetric branch it was sometimes necessary to use ADE model atv=0.7.

nonaxisymmetric starting shape.

.75

1

axisymmetric oblates

1.74

1.73

RN

nonaxisymmetric ellipsoids

1.70

.69

W[S]=«

A ADE model %f dA(2H)%+ a(m[S]—mg)?+w,| (16)
In this section we show some results obtained using the — _

area-difference-elasticityADE) model and compare them Wherea=«/x, wo is a constant and

with those obtained by Jariet al. [16]. The surface energy 2¢

W[ S] in the ADE model is given by an expression of the Mo= Mg+ =0 (17)

form [1] a

« w 7 Thus, to change from the SC model to the ADE model it
W[S]= _f dA(C;+C,—Cp)2+ = —Z(AA[S]—AAO)z. is a simple matter to replace the energy functional in @y.
2 2 AD with the energy functional of Eq16) (whilst retaining the
(12 constraints on area and volum@&he relevant control param-

Like the spontaneous curvature model the first term repre€ters are nown, andv. Jaricet al.[16] describe the various
sents the local bending energy, whereas the second term rd@cally stable branches of the phase diagram of this model

ence between the inner and outer layers of the membrane @nd prolate ellipsoids, pears, and stomatocytes. However,
they also find, in relatively small regions of the phase plane,

regions where locally stable nhonaxisymmetric shapes exist.
AA[S]=2D fﬁ dAH (13 Figure 12 presents a plot of enerljy against effective

reduced area differencg, for a fixed value ofv ata=1.4 in
(whereH is the local mean curvatuig;(C,;+C,)]), to de-  a region where locally stable nonaxisymmetric shapes exist.
viate from the “relaxed” valueA A, [16]; « is the nonlocal ~TWo branches are shown: the axisymmetric oblates and the
bending modulus an® is the thickness of the bilayer. Fol- nonaxisymmetric ellipsoids which bifurcate from them just
lowing Jaricet al. [16] the area difference and relaxed areabelowmy/47=1.08. Figure 13 shows a representative shape
difference can be nondimensionalized thus from the oblate branclicf. the shapes found by Heinrich

et al. [15]). Each branch has been calculated using the

m[ S] = FRO (14)
and
AA,
Mo= 55 Ro (15

so that the surface energy may then be written in the follow- FIG. 13. A representative nonaxisymmetric ellipsoid for ADE
ing convenient form: results shown in Fig. 120=0.7; my=1.09.
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method described in this paper. Note that if the nonaxisym-

metric branch is followed beyondy/47 about 1.11, the
calculated shapes jump to the prolate branch. In the numeri-
cal calculation of the nonaxisymmetric branch, a value of
M=5 was used for the number of Fourier modes in the (a)
solution. These results compare favorably with Fig. 4 of Jaric
et al. [16], bearing in mind the fact their nonaxisymmetric
shapes were calculated using brute-force energy minimiza- (d)
tion over a triangulated surface shape having 4000 grid
points that representg@t the time of writing the practical
limits of their computational facilities; whereas the present
results, which only have 193 free parameters, can be calcu-
lated in a few hours on a workstation or fast PC.
These results provide an illustration of the hierarchical (e)
approach in that, at first, only two modes were used in the
optimization. This produced nonaxisymmetric shapes that bi- (b)
furcated from the axisymmetric oblates at the correct point FIG. 14, Samble sh or th d starfish vesids (
. — - : . 14. Sample shapes for three-armed starfish vesi€@gs
(just belowmy/47=1.08), but which were not of quite the —1.35):(a u:0.5p45;(b) 5:0_435;(@ v=0.352: (d) v=0.31.
correct shape and consequently their surface energy contin-

ued to increase monotonically withy (like the axisymmet- yolume for these shapes. The results presented in Fig. 15,
ric oblates. In order to refine the geometry model, the opti- which represent the stable shapes at 20 different reduced
mization was repeated using an increasing number of modegg|ymes, using a 6161 surface mesh to evaluaté can be

until the caseM=5 was found to produce a variation of cgjculated overnight on a Silicon Graphics R1000 worksta-
energy withmg of the correct form. The starting point for tion.

these subsequent optimizations was a nhonaxisymmetric

shape produced by thd =2 case, i.e., a starting geometry VI. DISCUSSION
which was correct on long length scales but which required
small scale refinement. We have presented a method for producing a generic pa-
rameteric model of the shape of a vesicle which is capable of
B. Starfish producing a wide range of shapes. Moreover, the results pre-

] ) _sented above indicate that this approach to shape parametri-
As a final, rather more challenging, example of nonaxi-zation, in combination with a method for numerical optimi-
symmetric shapes that can be calculated, some calculatioBgtion, is capable of accurately approximating the shapes of
of starfish vesicles are presented. It is now well establisheq,esicles and their surface energies. In all the cases discussed
both experimentally in the laboratof8] and numerically  apove, a hierarchical approach to the shape parametrization

[17], that under certain conditions vesicles can assume stajpas adopted in which the geometry model of successively
fish shapes. Wintet al. [17] present results for starfish with

up to seven arms using the ADE model for the surface en- ¢
ergy produced using a triangulated surface model with 250C
grid points. In this section we present results of calculations
of starfish using the SC model for the surface energy with the
value ofcy being 1.35. The starfish shapes where calculatec
over a range of reduced volumes frows0.5 to v=0.33.
The maximum number of Fourier modes in the solution is
M =5 which makes the maximum number of free parameters
193. The initial optimization was started with a fairly dis- @ 3-armed starfish
torted shape having four arnfer rather bulges although as

can been seen from the representative shapes shown in Fi®
14 the stable shapes found have three arms: the shape in Fi
14(a) has a reduced volume of 0.545; the shape in Figh)14
has a reduced volume of 0.435; the shape in Figc)lHdas a
reduced volume of 0.352; and the the shape in Figd)1das

a reduced volume of 0.31. Note that not all of the shapes
have a threefold mirror symmetry, although they do appear
to have threefold rotational symmetry. This may be an arti-
fact of the parametrization, in particular the number of Fou-
rier modes used, although these results are consistent a ce | |

culation carried out withtVi =6. In fact, some of the results o.30 0.35 0.40 0.45 o.s0 o.s5
presented by Wintet al.[17], would suggest that it is pos- reduced volume

sible to find starfish shapes without any symmetry at all. FIG. 15. EnergyW as a function of the reduced volume for
Figure 15 shows a plot of surface energy against reducestarfish vesicles using the SC mod&=1.35.

2.93
|

1.93

0.93
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refined to produce features on shorter and shorter lengttesults presented in this paper, the number of free parameters
scales, by a combination of adding more surface patches ansl at most 193used in the calculations of the starfish shapes
incrgasing the number of Fouri.er modes. ~ described in Sec. VB thus such shapes can be calculated
Itis unreaspnable to. expect it to bg as acgurate or efficienfiuch more rapidly than by using a triangulated surface ap-

as the nu_merlcal solution of _the ordlnary_ dlfferen_tlal equa-proach. Each shape parameter used in the PDE approach has
tion to which the shape equations reduce in the axisymmetrig global effect on the shape of the surface, thus there are
case. However, on the other hand, the main advantage of thg\er parameters than for a triangulated surface model, each
method is in the nonaxisymmetric case where numerical So5¢ \whose parameters exerts only a local influence on the
lution of the shape equations has not proved possible f°§urrounding surface.
shapes that differ markedly from axisymmetry. Two ex- — ,\ever. it is possible to imagine a hybrid approach in
amples have been used to demonstrate its ability to find NONshich the PDE method is used in combination with a trian-
axisymmetric vesicle shapes: starfish vgsicles by v¥u|ated surface model, since a surface triangulation can be
of the SC model and pinched dumbells in the context of th : i L . e

obtained from the PDE description by a simple gridding in
ADE model.

(u,v) parameter space. Thus a PDE model could be used to

The ability of the method to parametrize efficiently non- biai o . h lativel
axisymmetric shapes, i.e., represent them in terms of a relg2Ptain an approximation to an optimum shape refatively rap-

tively small set of shape parameters, gives it an advantage #ly» rom which a triangulated surface model could be pro-
terms of speed over the triangulated surface approach that f§/ced and used as the starting point for a brute-force optimi-
most often used to find highly nonaxisymmetric shapes. Irzation over the vertices to obtain a very accurate model.

this approach, the shape parameters are effectively the coor- This paper has only described the parametrization of
dinates of the vertices of the surface triangles of which theréhapes that are the topological equivalent of spheres, but the
tends to be a large number for a complicated shape. Fa@xtension of the method to more complicated shapes, in the
example, Wintzet al.[17] quote a figure of 2500, Jiet al.  sense of higher genus and/or complex shape, is straightfor-
[18] used between 2000—-3000 grid points for their simula-ward because shapes with handles can easily be constructed
tions, while Jaricet al. [16] report that about 4000 grid from multiple surface patches as work in the CAD area has
points is the largest they could practically attempt. For thedemonstrated30].
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