PHYSICAL REVIEW E VOLUME 61, NUMBER 4 APRIL 2000

Global exponential stability and periodic solutions of cellular neural networks with delay
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Center for Nonlinear Science Studies, Kunming University of Science and Technology, Kunming 650093, People’s Republic of China
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In this paper, some sufficient conditions for the global exponential stability and the existence of periodic
solutions of cellular neural networks with del@CNN) model are obtained by means of a Lyapunov func-
tional approach. These conditions can be used to design globally stable DCNN'’s and periodic oscillatory
DCNN's and thus have important significance in both theory and applications.

PACS numbd(s): 87.18.Sn

I. INTRODUCTION bility of the DCNN model(1) in some special casg¢$—7].
The purpose of this paper is to establish some sufficient con-
Consider the following cellular neural networks with de- ditions for the global exponential stability and the existence
lay (DCNN) model: of periodic solutions of the DCNN modé€ll). Our results
. . extend and improve the corresponding results in the above
works.
X (t)= _Ci><i('f)+121 aijfj(xj(t))+j21 bij fi(ox;(t— 7))
Il. STABILITY ANALYSIS
+1;(t), ¢>0, i=12,...n (1) ) )
Consider the special case of the DCNN mod#l as
in which n corresponds the number of units in a neural netd;(t)=1;, i.e.,
work, x;(t) corresponds to the state vector of fltle unit at N
time t, f;(x;(t)) denotes the output of thgh unit at time ,
t, aj, b]i-(,J(Ti)-), o, C;j are cogstants,aﬁ- denotes the i (1= _Cixi(t)+§1 aiifi(xj(t))’L;l bij fj(orjxj(t—7ij))
strength of thgth unit on theith unit at timet, b;; denotes
the strength of thejth unit on theith unit at timet +li, >0, i=12,...n, ()
—7j, li(t) denotes the external bias on tith unit at time
t, 7j; corresponds to the transmission delay in the commu )
nication from theith unit to thejth unit and is non-negative, = L€mMma 1.Assume that the output of the cell function
o; denotes the amplifier gain, awd represents the rate with i (i=1,2,...n) satisfies the hypothesdsil) and (H2)
which theith unit will reset its potential to the resting state in 200Ve. Then there exists an equilibrium for the DCNN model
isolation when disconnected from the network and external®: L . .
inputs. The proof is similar to that of Lemma 1 in RéR] and is
In the following, we assume that each of the relationsomitted. )
between the output of the cefl (i=1,2,...n) and the Remg_rk .1Lemma 1 doe.s not guarantee the uniqueness .Of
state of the cell possess the following properties. thg equilibrium. However, in th|§ paper, we derive some cri-
(H1) f, (i=12,...n) is bounded orR. teria on the DCNN mode(lS)_, _Whlch will guarantee not only
the uniqueness of the equilibrium but also the global expo-
nential stability. The uniqueness of the equilibrium will fol-

n

wherel;, i=1,2,...n are constant numbers.

(H2) There is a numbeg;>0 such that

[fi(u)—fi(v)|<milu—v] low from the global exponential stability to be established
below.
for anyu,v eR. Lemma 2.The following inequality holds:
The initial conditions associated with E@L) are of the " "
form o 1 1
yII Xpes — > pxic+—y  for any
Xi(s)=¢i(s), se[—70], 7= max 7, 2 k=1 k=1
1<i,j=<n

a>1, x=0 (k=1,2,...m), y=0;
where it is usually assumed tha#; is continuous, ¢; :

[-70]—R, i=1,2,...n. where p,>0 (k=1,2,...m) are constants, an&y_,p
Recently, the study of the DCNN modél) has received =a—1. .
much attention. See, for instance, Réfs-8] and the refer- Proof. For fixedx,=0 (k=1,2,...m), let

ences cited therein. However, most of these papers only ob-

m m
tained the sufficient conditions for the global asymptotic sta- 1 o 1,
Jobaasymp o)== 2 ety -yl e
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Clearly, (0,0...,0)" is an equilibrium of Eq(4). There-
g'(y)=y* - H X<, g'(y)=(a—1)y* ?>0 fore, to prove the global exponential stability of the DCNN
model (3), it is sufficient to prove the global exponential
stability of Eq.(4).

>0. . . .
for y=0 From hypothesigH3), we know that there exists a posi-
From Theorem 1 in Ref.10], we get tive constant <c; such that
m m
1
a l(a— @
H Py /( 1 _1;1 DX . L
- - )\>_ 2 |alj|2 Pk Maakl/pk
Therefore,
m
B . }\Ti’ aﬂk'/pk
inf g(y)= 9( [T e ) *loyllenfe 2, ps ™
Osy<+o
1 m m
_ a apy/(a—1) aamyqj
_E(I(Zl kak—(a—l)k[[l X ) +_E (|ayi[djp "™t
=0.
. ) +|bji||0’i|e)\7—jidj,u,iaﬁm+l’i), i=12,...n
This leads to the conclusion of Lemma 2.
Theorem 1.Suppose that the output of the cell function
fi (i=1,2,...n) satisfies the hypothesdsil) and (H2)
above. Assume, furthermore, that the system parameters sat-
isfy the following condition.
(H3) There exist constanta>1, d;>0, i=1,2,...n
such that .
z(H=yi(he' (i=1,2,...n).
1 m
> aay; Ipg apy; Pk
Ci=> JE |a,J|Z Pt *[by ||UJ|Z Pit Substituting them into Eq4) and simplifying, we get
1 n
a—d”:l (i dj e ™ 2+ [l | o dl o P24, ]
. Z ()= —c)z(t)+eMi > a[f(xF +e Mz(1)
i=12,...n =1
where «jj , Bij (| .m+1, j= . n) are con- n
1
stants, and={Ty" a” Em pi=1 (J_l 2, N P _fi(xf)]JrZ‘l bij{fj(aj[xr+e7x(t77”)zj(t—7ij)])

>0 (k=1,2,...m) are constants, anHk_lpk—a—l.

Then the equilibrium<* of the DCNN model(3) is glo-
bally exponentially stable.

Proof. The existence of solutions of Eq&) and (2) for — f,-(ajxj?*)}}. (5)
all t=0 is an immediate consequence of Corollary D in Ref.
[9]. If x*=(x},x5,...x5)T is an equilibrium of the
DCNN model(3), one can derive from Ed3) that the de-

viations Consider the following Lyapunov functional defined by

yi)=x(t)—x (i=12,...n)

1 " .
satisfy V(t)= - 21 di[lzi(t)l“+j21 |bij||0'j|e)\7ijll«jaﬁm+ld
yi’(t):_CiYi(t)Jerl ;[ ;067 +y;(1))—1;0)] XJ:_ |Z]-(s)|"‘ds} ©
le

n
+ 21 bij{fj (o[ X +y;(t— ) —fi(ox] )}
= Calculating the upper right derivative "V of V along the
(4)  solutions of Eq(5), we get
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n

1 B
D+V:i§l di[ lzi(H)]* D" |z (t)]+ - le |bij||0'j|eM”Mj ﬁm+l'1[|2j(t)|a_|Zj(t_Tij)|a]J

n

ﬁ;l di[ ()\_Ci)|zi(t)|a+e)\t|zi(t)|a_lel |a | ;06 +e_“2j(t))—f;(xf)l

n

1 B
+j21 |bij|[f5(or X+ zg(t— ) 1) — F1(oyx})| +Zj21 |bijlorj| €7 ] Bm+l’J[|Zj(t)|a_|Zj(t_7'ij)|a]J

n n
241 |aij||Zi(t)|a71Mj|Zj(t)|+jZl |bij||0'j|e>\fijl’“j|zi(t)|a1|Zj(t_7ij)|}

<2 di[ (A—cplz(t]“+

i=1

1 B
+- 121 |bij|orj| €7 ] BmHJHZj(t)la_|Zj(t_7'ij)|a]]

n m

i v
2 a2z L %z ()P
j=1 k=1

=i§1 di[(x—ci>|zi<t>|“+

1 n
+j§1 |bij||Uj|e“”|#fm+l']zj(t_Tij)|k1;[1 |Mjﬁk’ Pkz, (1)| P | + - jzl |bij||(Tj|9M”Mja'8m“"[|zj(t)|a—|Zj(t—Tij)|a]]-

By Lemma 2, we get

" 1 1
aayiIp aa ;
jleaiH(;kZl Py 9z (O] — g "‘”“|Zj(t)|“>

D+V$Zl di[()\—ci)|zi(t)|“+

n m
1 y 1 _
+2 Ibullajle””<— > PP p"lzi(t)l“+—Mfﬁ”‘“"lzj(t—ri;)l"”
=1 a k=1 [e4
n

1 a
+ . 121 |bij||0j|eM”Mj Bm“”[|2j(t)|a_|2j(t_ Tij)|a]]

m m
! . !
|aij|k§=:l Pr; kar|bij||Uj|e}"”k§=:1 Pkﬂ}wk' pk)

1 n
<> di[)\—ci+— >
i o =1

i=1
1 n
*ad ;1 (|aji|djﬂfmm+l’i+|bji||(Ti|em“djﬂfzﬁm+l’i)] |zi(t)|*
=<0.
Thus, we have
V(t)=V(0), t=0.

Therefore, we get

n n n
0
2, diz(*=<2, di{lzi<0>|“+j§l |bi,-||aj|e“iwfﬁm+“f |zi(s)|“ds

= 7jj
n

[610) =1+ 3, Joy |y pusniiny sup |gy(9)-x|"

—7ij =<s=<0

S

$' di
i=1

n

. di|bij||0'j|e)\rijﬂjaﬂm+lj7-ii}¢a’

Il
s
Il
.
Il
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Where({b: Max_<s<o maxlsisn|¢i(s)_xi* |
Hence, we have

lyi(t)]=

(z 43,3, dlbylo]

la

d)e*)\t

X e)\Tij Mjaﬁm+1,j T|J )

t=0, i=12,...n

This implies that the equilibriune* of the DCNN model3)
is globally exponentially stable.
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a—1
C>_E |a|J|,Uqa “ l+|blj||UJ|Ma/(a l)

1 o .

which is the special case of hypotheslHS) asm=1, ay;

=pB1j=1, ay= /32 =12,.

Condltlon (III) is the speC|aI case of hypothegld3) as
m=1, a=2, di=1 (i=1,2,.

Condition(IV) is the special case of hypothegld3) as
m=2, a=3, p1=p,=1, di=1 (i=1,2,...n).

Remark 2.

(1) Corollary (1) extends and improves Proposition 1 in

Corollary 1. Suppose that the output of the cell function Ref. [1], Conclusion(i) of Theorem in Ref[2], Conclusion

fi (i= . n) satisfies the hypothesds$il) and (H2)

above Assume furthermore, that the system parameters s

isfy one of the following conditions:

i=12,...n

n
i
(1) C>—.I_2 (layildj+[bjil|aild)),
d| J=]_

n

() ci>j§1<|ai,-|u,-+|bu||oj|m>, i=12,...n;

n n
2a¥ 2a: 28*
(1) 2Ci>j21 (|aij|Mj “ +|bjj [ ol ] “J)+le (lajilm; A

2 .
JF|bji||¢Ti|MiB'),

where «;,8;,a B L af

+BF=1,i=12,...n

are constants, andy;+ B;=

n
3af 367 3q;
(V) 3Ci>j21 (N +|aij|ﬂj'BJ +|bij| o

+|blj||0'1|:“ ﬁ])+z (|ajl|ﬂ
3
+|b]|||0'||:“ y' )s

where «;,B;,vi o B,y are constants, and;+ B;+ v;
=1, af +BF+¥=1,i=12,...n

Then the equilibriunx* of DCNN model(3) is globally
exponentially stable.

Proof. Assume condition(l) holds; then there exists a
numbera>1 such that

1 n
C>—2(|a”|+|b.,||0,| _dz (|ajil dj i

+|b]|||0-||d]/“l“| i=12,...n;

which is the special case of hypothe$H3) as aij

= Bij
=0 (i:]-!zr m) am+1 _Bm+1 1 J n.

Assume condmor(ll) holds then there eX|sts a number

a>1 such that

(I) of Theorem 1 in Ref[3]; and extends Theorem 1 in Ref.

(2) Corollary(ll) extends and improves Theorem 1 in Ref.
[5].

(3) Corollary(ll) extends Theorem 1 in Rd#], Theorem
1 in Ref.[6].

(4) Corollary (Ill') extends and improves Conclusions
(ii)—(v) of Theorem in Ref[2], Theorem 2 in Ref{6], Con-
clusions(Il)—(IV) of Theorem 1 in Ref[3], Theorem 1 in
Ref. [7].

(5) Corollary (IV) extends and improves Theorem 2 in
Ref. [7].

IIl. EXISTENCE OF PERIODIC SOLUTIONS

In this section, we study the periodic solutions of the
DCNN of the type

n

x{<t>=—cixi<t>+j§l ai;f(x;(t )+2 bijf;(ajx;(t—7i)))

+1(t), ¢>0, i=1,2,...n )

in which 1,:R"—R, i=1,2,...n are continuously peri-
odic functions with periodw, i.e., I;,(t+)=1,(t). Other
symbols possess the same meaning as thatliq.

Theorem 2Suppose that the output of the cell functifin
(i=1,2,...n) satisfies the hypotheseHl) and (H2)
above. Assume, furthermore, that the system parameters sat-
isfy the condition(H3), as given earlier. Then there exists
exactly onew— periodic solution of Eq(7) and all other
solutions of Eq.(7) converge exponentially to it as—
+oo,

Proof. Let C=C([ —7,0],R") are the Banach space of
continuous functions which majp— 7,0] into R" with the
topology of uniform convergence. For anyeC,
we define |4l =sup .<4<o/#(0)], in which |$(0)|
= MaXy<j<n|#i(6)|-

For V ¢,/eC, we denote the solutions of Ed7)
through (0¢) and (0y) as

X(t1¢):(xl(t!¢)!x2(tv¢)v LR ixn(tv¢))T!
X(t,) =1 (t, ) Xa(t, ), - . . Xn(t, )T,

respectively.
Define

Xt(¢):X(t+01¢)l 06[_710], tBO,
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Thenx(¢) e C for V t=0.
Thus, we follow from systen(7) that

[Xi(t, ) —xi(t, )] = —ci[ Xi(t,) — X (t,4)]

#3105t 6)~ 0 (1,)]

+j21 bij[fj(o;x;(t—Tij , )
—fi(ox;(t=7;,4))] (8

fort=0, i=12,...n.

Let

zi(t)=[x(t, ) —x;(t, ) ]eM

where\<C;, as given earlier.

(i=1,2,...n),

Substituting them into E¢8) and simplifying, we get

n

Z/()=(A—c))z(t) +eM 21 ay [ f;0(t, ) +e Nz (1))
e

—fj(Xj(t,l/f))]JF]Zl bij{fj(oj[xj(t—7ij , %)

+e Mz (t— 1) D= fi(opx(t— 7 )} (-

Consider the Lyapunov function®(t), as given earlier.
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a—1

o

C1> (|lagg +]ags +[byql[oq| +[b1al| 5] )
1
+ a,_dl(|all|d1+ |agy|da+ [byyf[ | dy + [ b2yl 4] dp),

(10
a—1

a

Co> (laga| +|ag +boal| 1|+ b2 o5])

1
+ a—d2(|a12|dl+ |aga|da+[byg|o5|dy+ byl 02| dy).

Consider the special case of the mot®l as

C1:0.6, C2:0.7, a11=0.1, a12:0.1,

a21= 02, 322: 01,

bll: 02, b12: 05, b21: 04, b22:0.5,
g1=0.5, 0,=04,

1,=0.1, 1,=0, 7,=0.2, 7,=0.3.

In this case, Eq(10) can be reduced to
(0.1#+0.3)d;>0.4d,, 0.4d,>0.3d;.
Therefore, if we takev=2, d,;=d,=1, then Eq(10) holds.

Thus by Theorem 1, the equilibrium of the mod@) is
globally exponentially stable. It is easy to verify tHatl) is

By a minor modification of the proof of Theorem 1, one an equilibrium of the mode(9).

can easily get

Xi(t, @) —Xi(t, )| <Ke || p— ],

whereK>1 is a constant.
The rest of the proof is similar to that of Theorem 4 &).
We omit it here to avoid repetition.

Remark 3Theorem 4 in Ref[8] is an immediate conse-

guence of Theorem 2 above.

IV. EXAMPLES

Example 1.Consider the following neural networks with

delays

X1(1) ==Xy (t) +ayf (X1 (1)) +aof (Xo(1))

+b11f (01X, (t— 71)) + byof (TXo(t— 7)) + 14,

9
X5(1) == CoXp(t) +anf (X1 (1)) +azf (Xo(1))

+boif (01X1(t— 71)) + boof (X (t— 7)) + 15,

Example 2.Consider the following neural networks with

delays

X1(t)=—Cyx1(t) +agsf (X1 (1)) + ag f (xx(1))

+011f (1X1(t— 71)) + D1of (TXa(t—72)) +14(1),
(11
Xo(t) = — CoXa(t) +ansf (X (1)) + agf (Xx(1))

+021f (01X, (1= 71)) + boof (02X (1 — 7))+ 15(1),

where the relation between the output of the cell and the state

of the cell is described byf;(x)=f(x)=tanh§), =0, i
=1,2. Itis easy to see that the functibrclearly satisfies the
hypothesegH1) and (H2) above, andu,=u,=1. Hence,
the condition(H3) in Theorem 2 can be reduced to Eg0).

Consider the special case of the mo@El) as
¢, =1,

C2:0.9, a11=O.1, a1220.2,

ar= 01, aoo= 01,

b]_]_: 04, b12: 05, bz]_: 06, b22:O.5,

where the relation between the output of the cell and the state

of the cell is described by a piecewise-linear functiefx)

=f(x)=3(|x+1|—|x—1]), 7,=0, i=1,2. Itis easy to see

that the functionf; clearly satisfies the hypothesg41) and
(H2) above, andu;=pu,=1. Hence, the conditiofH3) in
Theorem 1 can be reduced to

(7120.5, 0'220.8, 7120.3, 7'2=0.4,

| ,=cost+sint—0.1tanfisint) — 0.2 tanticost)

—0.4tanlp0.5sint— 7;)]—0.5tanf0.8 cogt— 75,) ],



PRE 61 GLOBAL EXPONENTIAL STABILITY AND PERIODIC . .. 4217

[,=0.9 cog—sint—0.1tanksint) — 0.1 tankcost)
—0.6tanh0.5sir(t—71)]—0.5tanf0.8 cogt— 75,)].
In this case, Eq(10) can be reduced to
(0.1 +0.6)d,;>0.4d,, 0.4d,>0.6d;.

Therefore, if we takea=3, d;=1, d,=2, then Eq.(10)
holds. Thus by Theorem 2, the moddll) has a unique

2gr-periodic solution, and all other solutions of the model

(11) converge exponentially to it as—+«. It is easy to
verify that (sint,cost) is the 2m-periodic solution of the
model (11).

V. CONCLUSION

All of the obtained criteria are independent of delays.
Since the conditions of Theorems 1 and 2 include some ad-
justable parameters, the results have a wider adaptive range.
Specially, the conditions of Corollary 1 are easily verified.
These factors play an important role in the design of uncon-
ditioned globally exponentially stable DCNN'’s and periodic
oscillatory DCNN's.
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