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Stochastic resonance tuned by correlations in neural models
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The idea that neurons might use stochastic resoné®iReto take advantage of random signals has been
extensively discussed in the literature. However, there are a few key issues that have not been clarified and thus
it is difficult to assess that whether SR in neuronal models occurs inside plausible physiology parameter
regions or not. We propose and show that neurons can adjust correlations between synaptic inputs, which can
be measured in experiments and are dynamical variables, to exhibit SR. The benefit of such a mechanism over
the conventional SR is also discussed.

PACS numbds): 87.19.La, 05.40-a, 84.35+i

[. INTRODUCTION simplicity of expression here only results from the integrate-
and-fire model are presented.

The stochastic resonance is referred to the phenomenon Correlations between synapses have been observed and
that the input-output signal relationship is optimized by theexactly calculated from experimental daf]. It is not dif-
assistance of noise. Due to the ubiquitous noise in neurdicult to imagine that due to the large number of afferent
systems, this idea is very illuminating and might be helpfulSynapses, a tiny change of the correlation between synapses
for understanding how the brain codes information, a ques¢an result in a dramatic change in the model behavior. Both
tion that has been studied for a century and remains elusivéeoretically and experimentally, the impact of positive cor-
[1-3)]. It is argued in the literature that the tunable noise thafelation between synapses has been studied and its role on
causes the SR can stem from either the input or the fluctuddformation processing has been explofé8-15. Here we
tion of membrane potentidsee for exampld/4] on p. 259. reveal the functional role of the negative correlation: the ef-
A few authors([4] and references thergimave shown that ferent signals might be optimized by adjusting the negative
the stochastic resonance does happen in neuronal modégrrelation.
ranging from the integrate-and-fire model to biophysical
models, by exclusively adjusting the noise level. Il. THE MODEL

In order to apply the SR to neurobiology, however, there g5 0se that a cell receives excitatory postsynapstic po-
are three key issues, as partly discusse&]rihat have to be  ontiais (EPSPS at p excitatory synapses and inhibitory
clarified. () There is a consensus that a neuf6r9] re-  ,qtsunaptic potentialéPSP3 at q inhibitory synapses. The
ceives signals in the form of Poisson processes, or Morg.yities among excitatory synapses and inhibitory synapses
generally, renewal processes, i.e., the signal strength is proge correlated but, for simplicity of notation here, we assume
portional to its noise level, although in recent years manyy ¢ the activities of the two classes are independent of each

other approaches have been propofEd. In the Poisson ey \When the membrane potentiglis between the rest-
process case, it is impossible to adjust the noise level alonﬁqg potentialV/..; and the threshol¥,
res res

while leaving the signal unchanged) At the single neuron
level, membrane potential fluctuations are governed by a 1 P q

large number of ionic channels and it is hard to tune such a dV,=-=Vdt+aY, dE(t)—-bY, dij(t), (2.1
large number of ionic channels so that the cell operates in the Y =1 =1

regions where the SR occuisowever, segl1]). (c) Thereis — where 14 is the decay rateE;(t),;(t) are Poisson processes
no evidence tq show that t.he pgrameter regions where the SRith rate \e(t) and\,(t), respectively, and,b are magni-
happens are inside physiologically plausible parameter regde of each EPSP and IPSP. OnéecrossesVy, o from

gions of neuronal models. below, a spike is generated aM{ is reset toV,qs;. This

In this paper we overcome all the three shortcomingsyael is termed the integrate-and-fire model. Tteinter-
mentioned above: we consider neuronal models with P0'530§bike intervalT; of the efferent spike process is
I

inputs, assume that the stochastic resonance is tuned by the
correlation between synapses that is a dynamical variable as ,
verified from experimental data, and confine ourselves inside Ti=infi t— JE<. T Vi=Vinre
the physiological parameter regions of neuronal models. For
We further assume that the correlation coefficient be-
*Electronic  address:  jf218@cam.ac.uk; URL:  http:// tweenith excitatory(inhibitory) synapse andth excitatory
www.cus.cam.ac.ukf218 (inhibitory) synapse is
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FIG. 1. Signal-to-noise rati@SNR) of inputs vsp. When the
mutual correlation between neurons is arowyd—0.01, around
100 active neurons will ensure the SNR goes to infinity and so a 0.48
perfect signal can be extracted. When the correlation is atysut
—0.02, only 50 neurons are needed for extracting a perfect signal; a
correlation ofc=—0.03 requires 33 neurons for a perfect signal. 0.46
However, for independent neuronal activities 0.00, we have to
resort to infinity the number of neurons to obtain a perfect signal.

0.44
oo (EO— (EW)ITE) —(Ej(1)1)
VIE(D—(E(O)IPNE; () —(E;())1D

wherec is constant.

O 042

Ill. RESULTS 04

The integrate-and-fire model without reversal potentials, I ‘
i.e., Eq.(2.1), can be approximated b [

q.(2. pp y 0.38 3 .

q

l p
dv,=— —vdt+a>, A\gdt—b>, \,dt
Y i=1 i=1 0.36 . . ) . . .

p q
+a\e 2 dBR()—byN X dBi(1), (3.0
=1 =1 FIG. 2. C vs (a) the correlation andb) o defined by Eq(3.5).

. . . Only q=71,72,73 are shown here. Equatit?) is solved by the
whereBE [B!] are Brownian motions corr ndin ya : : q ;
ereB;” [B;] are Brownian motions correspondingt(t) Euler scheme using step size 0.001. One thousand spikes are gen-

L! i(t)]'. Since t.he summation Of. Brownian m_otlons IS agaiN 8, ated to estimate the instantaneous firing rate.

Brownian motion, we can rewrite the equation above as fol-

lows: where B is a standard Brownian motion. Wher=0, Eq.
(3.2 gives rise to the same results as in the literafdf for

1 . . a . . .
__ - + _ independent inputs. Whex=0, the signal-to-noise rati®
dot YUtdt (aphe=bah,)dt (SNR) of inputs given by Eq(3.2) is
+/a?prg+b%gN, +ahgp(p—1)c+b2\q(q—1)c DA

(3.3

R= ,
X dB(t), 3.2 VPAe+p(p—1)NgC
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FIG. 3. A comparison between the dynamics KE8.2) with
dx,= —x,/ydt+ odB,, whereo is given by Eq(3.5). Results of;
are indicated by homogeneous noigei#\).

which coincides with that ifil2], Fig. a). It is reported that
c is between—0.5 and 0.12]. In this paper we only con-
sider the case<0, in comparison to the authors[ih2] who
only take into account positive correlations.

They conclude that for fixed>0 there ispy such that
when p>py, SNR is optimized and finite. Although their
data clearly show negative correlations, they have not ad-
dressed its functional consequence. In fact, it is easily seen
from Eq.(3.3) and Fig. 1 that for fixea, whenp approaches
1-1/c, SNR—wx, there is no bound on SNR at all. There-
fore negative correlations in input signals play a totally dif-
ferent role, compared to positive correlations.

In the following, as in the literaturgl7-19,14, we as-
sume thatg(t) =\, (t), fix p=100, and takey=20.2 msec.

In the literature, two quantities are introduced to measure the
output signals: SNR of efferent signals and the similarity
between input and output signdlsl,4]. We simply use the
latter one as the measurement of efferent signals because
here even without the drift term in Eq3.2) v, is still a
nonhomogeneous procesee below. Hence it is difficult to
estimate the interspike intervalg (see[20] and reference
therein on estimating;), which are needed to calculate the
SNR of efferent spike trains.

In Fig. 2 numerical simulations witlg=71,72,73 are
shown with

Ne(t)=[2+ cog27t/100)]/30. (3.9
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FIG. 4. C vs (a) the correlations antb) o with Ag(t) given by
Eq. (3.6).

region of cell recordings. For the efferent spike tralnsve

The input signah g(t) is chosen so that each synapse fires atalculated the instantaneous firing rate with a bin of 1 msec,

a maximum rate of 100 Hz, which is inside the physiologicaldenoted as (t). Define
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C=[Ne(t)=Ae(O I —r (Ot = Ne(O12[r (1) —r(D)]2Y2

where overline represents the temporal aveildgeé andC  neuron is most likely to fire when the input signal reaches its
reflects the similarity between input and output signals. Figmaximum value, particularly if a strong, positive noise signal
ure Aa) shows clearly the stochastic resonance phenomenas presented concurrently. When the signal is weak, and if
with respect to the correlation: for example, wign71 and  the noise is weak as well, the neuron is less likely to fire. In
the correlation is—0.0113, C reaches its maximum value. other words, for the dynamics of E¢B.2) there is a signal
Too small or too large a correlation will not optimize the inside the noise terrfsee Eq(3.2)] and we would naturally

signal transmission. In Fig.(B), C vs expect a better signal transmission to be attained, compared
, , , , to the case of constant noise.
o=max/a’p\g+b“g\ +a’\gp(p—1)c+b?\g(g—1)c We have considered the case of a fast varying input signal
t

in the discussion above, i.e., E@.4), which oscillates at a
(3.9 rate of 10 Hz. How does this compare to slowly varying

is depicted, which corresponds to the familiar pictures of SRSIGNals? In Fig. 4 we show numerical results with a slowly
However, we emphasize here that the noise term inf&g) ~ V&rying signal, oscillating at a rate of 1 Hz,
is a dynamical variable, proportional to input signals.

Another interesting phenomenon is the dependenc@ of Ne(t)=[2+cog27t/1000]/30. (3.6)
on g, the number of active inhibitory synapses. From Fig. 2
we could expect that wheg becomes smallerg<71), the  Similar phenomena are observed as for the fast varying sig-
maximum point ofC moves toward small correlation, i.e., hals.
with smaller noise. This could be understood from the dy- In summary, we show the existence of the SR phenom-
namics Eq(3.2). The smaller they is, the stronger the input €non in the integrate-and-fire model with all its parameters in
signals. Hence the input signal gradually becomes a supephysiologically plausible regions and with Poisson inputs.
threshold stimulation and so the smaller the noise, the bettépur novel approach where the SR is tuned by the negative
the quality of signal transmission. On the other hand, wdpen correlation in synaptic inputs opens up a few issues to be
becomes larger, the neuron will become almost silent. Only gliscussed further. For example, how does the SR depend on
large noise will push the membrane potential across thé, what is the optimal input signal frequency at which the
threshold and so a large noise, which carries signals as welargestC could be attained, etc.? Furthermore an application
is required to have a better signal transmission. Figure 2f the present approach to biophysical models would be in-
clearly shows this phenomenon. teresting, in particular when reversal potentigl§] are in-

It is a natural and interesting question to compare thecluded in the model. These are the subject of another study
stochastical resonance phenomena observed above with tiagtd will be reported elsewhere. Finally we want to empha-
of the homogeneous noise case, i.e., the conventional SRize that although we show in this paper the parameter re-
Figure 3 shows such a comparison. An interesting findinglions in which the SR occurs are physiologically plausible, it
here is that the model with signal-dependent noise is morgoes not imply neurons do use it to transmit signals: it might
widely tuned for optimizing output. Commencing from small be just epiphenomena and a final answer to this question can
correlations(Fig. 3), we see that the system with or without only be provided by experiments.
signal-dependent noise has simil@rvalue. After passing
throug_h th_e opti_mal point o€ for_ the correlations, the sys- ACKNOWLEDGMENTS
tem with signal-independent noise drops much more rapidly
than that with signal-dependent noise. In fact, this phenom- | would like to thank David Brown and Stuart Feerick for
enon can be easily understood and might reflect one of théheir helpful comments on earlier versions of this manu-
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