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Stochastic resonance tuned by correlations in neural models
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~Received 7 May 1999!

The idea that neurons might use stochastic resonance~SR! to take advantage of random signals has been
extensively discussed in the literature. However, there are a few key issues that have not been clarified and thus
it is difficult to assess that whether SR in neuronal models occurs inside plausible physiology parameter
regions or not. We propose and show that neurons can adjust correlations between synaptic inputs, which can
be measured in experiments and are dynamical variables, to exhibit SR. The benefit of such a mechanism over
the conventional SR is also discussed.

PACS number~s!: 87.19.La, 05.40.2a, 84.35.1i
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I. INTRODUCTION

The stochastic resonance is referred to the phenome
that the input-output signal relationship is optimized by t
assistance of noise. Due to the ubiquitous noise in ne
systems, this idea is very illuminating and might be help
for understanding how the brain codes information, a qu
tion that has been studied for a century and remains elu
@1–3#. It is argued in the literature that the tunable noise t
causes the SR can stem from either the input or the fluc
tion of membrane potential~see for example,@4# on p. 259!.
A few authors~@4# and references therein! have shown that
the stochastic resonance does happen in neuronal mo
ranging from the integrate-and-fire model to biophysi
models, by exclusively adjusting the noise level.

In order to apply the SR to neurobiology, however, the
are three key issues, as partly discussed in@5# that have to be
clarified. ~a! There is a consensus that a neuron@6–9# re-
ceives signals in the form of Poisson processes, or m
generally, renewal processes, i.e., the signal strength is
portional to its noise level, although in recent years ma
other approaches have been proposed@10#. In the Poisson
process case, it is impossible to adjust the noise level al
while leaving the signal unchanged.~b! At the single neuron
level, membrane potential fluctuations are governed b
large number of ionic channels and it is hard to tune suc
large number of ionic channels so that the cell operates in
regions where the SR occurs~however, see@11#!. ~c! There is
no evidence to show that the parameter regions where the
happens are inside physiologically plausible parameter
gions of neuronal models.

In this paper we overcome all the three shortcomin
mentioned above: we consider neuronal models with Pois
inputs, assume that the stochastic resonance is tuned b
correlation between synapses that is a dynamical variabl
verified from experimental data, and confine ourselves ins
the physiological parameter regions of neuronal models.

*Electronic address: jf218@cam.ac.uk; URL: http
www.cus.cam.ac.uk/˜jf218
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simplicity of expression here only results from the integra
and-fire model are presented.

Correlations between synapses have been observed
exactly calculated from experimental data@12#. It is not dif-
ficult to imagine that due to the large number of affere
synapses, a tiny change of the correlation between syna
can result in a dramatic change in the model behavior. B
theoretically and experimentally, the impact of positive co
relation between synapses has been studied and its rol
information processing has been explored@13–15#. Here we
reveal the functional role of the negative correlation: the
ferent signals might be optimized by adjusting the negat
correlation.

II. THE MODEL

Suppose that a cell receives excitatory postsynapstic
tentials ~EPSPs! at p excitatory synapses and inhibitor
postsynaptic potentials~IPSPs! at q inhibitory synapses. The
activities among excitatory synapses and inhibitory synap
are correlated but, for simplicity of notation here, we assu
that the activities of the two classes are independent of e
other. When the membrane potentialVt is between the rest
ing potentialVrest and the thresholdVthre ,

dVt52
1

g
Vtdt1a(

i 51

p

dEi~ t !2b(
j 51

q

dI j~ t !, ~2.1!

where 1/g is the decay rate,Ei(t),I i(t) are Poisson processe
with ratelE(t) andl I(t), respectively, anda,b are magni-
tude of each EPSP and IPSP. OnceVt crossesVthre from
below, a spike is generated andVt is reset toVrest . This
model is termed the integrate-and-fire model. Thei th inter-
spike intervalTi of the efferent spike process is

Ti5 infH t2(
j , i

Tj :Vt>VthreJ
with T050.

We further assume that the correlation coefficient b
tween i th excitatory~inhibitory! synapse andj th excitatory
~inhibitory! synapse is
4207 © 2000 The American Physical Society
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c5
Š@Ei~ t !2^Ei~ t !&#@Ej~ t !2^Ej~ t !&#‹

AŠ@Ei~ t !2^Ei~ t !&#2
‹Š@Ej~ t !2^Ej~ t !&#2

‹

,

wherec is constant.

III. RESULTS

The integrate-and-fire model without reversal potentia
i.e., Eq.~2.1!, can be approximated by

dv t52
1

g
v tdt1a(

i 51

p

lEdt2b(
i 51

q

l Idt

1aAlE (
i 51

p

dBi
E~ t !2bAl I (

i 51

q

dBi
I~ t !, ~3.1!

whereBi
E @Bi

I # are Brownian motions corresponding toEi(t)
@ I i(t)#. Since the summation of Brownian motions is again
Brownian motion, we can rewrite the equation above as
lows:

dv t52
1

g
v tdt1~aplE2bql I !dt

1Aa2plE1b2ql I1a2lEp~p21!c1b2l Iq~q21!c

3dB~ t !, ~3.2!

FIG. 1. Signal-to-noise ratio~SNR! of inputs vsp. When the
mutual correlation between neurons is aroundc520.01, around
100 active neurons will ensure the SNR goes to infinity and s
perfect signal can be extracted. When the correlation is aboutc5
20.02, only 50 neurons are needed for extracting a perfect sign
correlation ofc520.03 requires 33 neurons for a perfect sign
However, for independent neuronal activitiesc50.00, we have to
resort to infinity the number of neurons to obtain a perfect sign
,

a
l-
where B is a standard Brownian motion. Whenc50, Eq.
~3.2! gives rise to the same results as in the literature@16# for
independent inputs. Whenq50, the signal-to-noise ratioR
~SNR! of inputs given by Eq.~3.2! is

R5
plE

AplE1p~p21!lEc
, ~3.3!

a

; a
.

.

FIG. 2. C vs ~a! the correlation and~b! s defined by Eq.~3.5!.
Only q571,72,73 are shown here. Equation~3.2! is solved by the
Euler scheme using step size 0.001. One thousand spikes are
erated to estimate the instantaneous firing rate.
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which coincides with that in@12#, Fig. 3~a!. It is reported that
c is between20.5 and 0.5@12#. In this paper we only con-
sider the casec<0, in comparison to the authors in@12# who
only take into account positive correlations.

They conclude that for fixedc.0 there isp0 such that
when p.p0, SNR is optimized and finite. Although the
data clearly show negative correlations, they have not
dressed its functional consequence. In fact, it is easily s
from Eq.~3.3! and Fig. 1 that for fixedc, whenp approaches
121/c, SNR→`, there is no bound on SNR at all. Ther
fore negative correlations in input signals play a totally d
ferent role, compared to positive correlations.

In the following, as in the literature@17–19,14#, we as-
sume thatlE(t)5l I(t), fix p5100, and takeg520.2 msec.
In the literature, two quantities are introduced to measure
output signals: SNR of efferent signals and the similar
between input and output signals@11,4#. We simply use the
latter one as the measurement of efferent signals bec
here even without the drift term in Eq.~3.2! v t is still a
nonhomogeneous process~see below!. Hence it is difficult to
estimate the interspike intervalsTi ~see@20# and reference
therein on estimatingTi), which are needed to calculate th
SNR of efferent spike trains.

In Fig. 2 numerical simulations withq571,72,73 are
shown with

lE~ t !5@21cos~2pt/100!#/30. ~3.4!

The input signallE(t) is chosen so that each synapse fires
a maximum rate of 100 Hz, which is inside the physiologic

FIG. 3. A comparison between the dynamics Eq.~3.2! with
dxt52xt /gdt1sdBt , wheres is given by Eq.~3.5!. Results ofxt

are indicated by homogeneous noises~HN!.
d-
en

e

se

t
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region of cell recordings. For the efferent spike trainsTi we
calculated the instantaneous firing rate with a bin of 1 ms
denoted asr (t). Define

FIG. 4. C vs ~a! the correlations and~b! s with lE(t) given by
Eq. ~3.6!.
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where overline represents the temporal average@11# and C
reflects the similarity between input and output signals. F
ure 2~a! shows clearly the stochastic resonance phenome
with respect to the correlation: for example, whenq571 and
the correlation is20.0113, C reaches its maximum value
Too small or too large a correlation will not optimize th
signal transmission. In Fig. 2~b!, C vs

s5max
t

Aa2plE1b2ql I1a2lEp~p21!c1b2l Iq~q21!c

~3.5!

is depicted, which corresponds to the familiar pictures of S
However, we emphasize here that the noise term in Eq.~3.2!
is a dynamical variable, proportional to input signals.

Another interesting phenomenon is the dependence oC
on q, the number of active inhibitory synapses. From Fig
we could expect that whenq becomes smaller (q,71), the
maximum point ofC moves toward small correlation, i.e
with smaller noise. This could be understood from the d
namics Eq.~3.2!. The smaller theq is, the stronger the inpu
signals. Hence the input signal gradually becomes a su
threshold stimulation and so the smaller the noise, the be
the quality of signal transmission. On the other hand, wheq
becomes larger, the neuron will become almost silent. On
large noise will push the membrane potential across
threshold and so a large noise, which carries signals as w
is required to have a better signal transmission. Figur
clearly shows this phenomenon.

It is a natural and interesting question to compare
stochastical resonance phenomena observed above with
of the homogeneous noise case, i.e., the conventional
Figure 3 shows such a comparison. An interesting find
here is that the model with signal-dependent noise is m
widely tuned for optimizing output. Commencing from sma
correlations~Fig. 3!, we see that the system with or witho
signal-dependent noise has similarC value. After passing
through the optimal point ofC for the correlations, the sys
tem with signal-independent noise drops much more rap
than that with signal-dependent noise. In fact, this pheno
enon can be easily understood and might reflect one of
functional roles of noises in the neuronal systems. Ess
tially, the stimulation we consider here is subthreshold. T
,
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neuron is most likely to fire when the input signal reaches
maximum value, particularly if a strong, positive noise sign
is presented concurrently. When the signal is weak, an
the noise is weak as well, the neuron is less likely to fire.
other words, for the dynamics of Eq.~3.2! there is a signal
inside the noise term@see Eq.~3.2!# and we would naturally
expect a better signal transmission to be attained, comp
to the case of constant noise.

We have considered the case of a fast varying input sig
in the discussion above, i.e., Eq.~3.4!, which oscillates at a
rate of 10 Hz. How does this compare to slowly varyin
signals? In Fig. 4 we show numerical results with a slow
varying signal, oscillating at a rate of 1 Hz,

lE~ t !5@21cos~2pt/1000!#/30. ~3.6!

Similar phenomena are observed as for the fast varying
nals.

In summary, we show the existence of the SR pheno
enon in the integrate-and-fire model with all its parameters
physiologically plausible regions and with Poisson inpu
Our novel approach where the SR is tuned by the nega
correlation in synaptic inputs opens up a few issues to
discussed further. For example, how does the SR depen
q, what is the optimal input signal frequency at which t
largestC could be attained, etc.? Furthermore an applicat
of the present approach to biophysical models would be
teresting, in particular when reversal potentials@16# are in-
cluded in the model. These are the subject of another st
and will be reported elsewhere. Finally we want to emph
size that although we show in this paper the parameter
gions in which the SR occurs are physiologically plausible
does not imply neurons do use it to transmit signals: it mi
be just epiphenomena and a final answer to this question
only be provided by experiments.
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