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Clipped random wave analysis of isometric lamellar microemulsions
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We have made small angle neutron scattering studies ¢&,€D,O-octane isometric microemulsions in the
lamellar phase at the hydrophile-lipophile balance temperature. The scattering intensity distributions were then
analyzed with a particular choice of a spectral density func{®DF) derived by maximization of generalized
entropy. The model agrees well with the measured intensities on an absolute scale, and allowed us to derive
various length scales associated with the microemulsion mesoscopic structure as well as the average interfacial
curvatures. We also used the experimentally determined SDF to generate a three-dimensional snapshot of the
fluctuating microemulsion microstructure. Unlike conventional pictures of extended lamellar planes, we ob-
served small domains which were internally lamellar but randomly oriented with respect to each other. Finally,
we computed the probability distributions of the mean curvatdrand the Gaussian curvatuke on the
oil-water interface. The former showed a symmetric distribution centered ardurdO, while the latter
showed a skewed distribution peaked at a negative vall€ bfit with a wing extending to positive values.

PACS numbegps): 82.70-y

I. INTRODUCTION is large, the repulsive force is weak and thermal fluctuations
in the oil-water interface may become significant enough to
Microemulsions are amphiphilic solutions containing oil, disrupt the smectic order. For amphiphilic membranes,
water and surfactant which appear macroscopically misciblavhich are characterized by low interfacial tension and a
but in reality are phase separated on a microscopic scalsmall bending constant, thermal fluctuations are even more
with the oil and water domains held in contact by the surfacimportant and can give rise to many topological defects in
tant molecules. Depending on external parameters such #ise lamellar structure, such as intermembrane passages. It
temperature and the relative volume ratios of oil, water, andhas further been shown theoretically that these passages in-
surfactant, they exhibit a rich variety of internal structuresduce entropic attractive interactions that compete with the
including globular micelles, disordered bicontinuous mem-Helfrich steric repulsion, thus promoting the collapse of the
branes, and stacked lamellar planes. regular lamellar structure when fluctuations are strong
In recent years, techniques such as light, x-ray, or neutrornough[4].
scattering have yielded a wealth of information about these When the formation of passages between membranes be-
different structures. In particular, tHe, lamellar phase has come common, a disordered lamellar phase characterized by
attracted a lot of interest because it is fairly common in am-short range positional order may res[fl. To investigate
phiphilic systems and is easily characterized by its rotatiorihis possibility, we conducted neutron scattering experiments
of polarized light. Since th& , phase consists of alternating on a series of GE,-D,0-octane lamellar microemulsions
sheetlike domains of water and oil stacked at regular interwhere the surfactant volume ratios were fairly low so tthat
vals, a Bragg peak is typically observed in the scatteringvould be on the order of £0A if a stacked structure were
pattern, corresponding to the repeating distance of the lametermed. The clipped random wave model was then used to
lar planed1,2]. analyze the scattering data in order to generate a real-space
At moderate concentrations of surfactant where the repicture of the microemulsion as well as derive the probability
peating distance is greater than the range of ordinary molecwhistributions of the Gaussian and mean curvatures on the
lar interactions between neighboring lamellar sheets, the pepil-water interface. From our results, it was clear that at high
sistence of thé., phase is usually explained by an effective dilutions the regular lamellar structure broke down due to the
steric repulsion between the sheets resulting from the corproliferation of topological defects induced by thermal fluc-
straint of nonintersection. This constraint lowers the configutuations.
ration entropy and therefore raises the free energy, leading to
an effective repulsive force between lamellar sheets that Il. CLIPPED RANDOM WAVE MODEL
maintains the smectic order. Per unit area, the free energy

change has the forf8] Small angle neutron scattering has traditionally been used
as a noninvasive technique for probing the length scales and
AF/Acx1/d?, (1) the specific interfacial area of disordered bicontinuous mi-
croemulsions on a scale of several hundred angstféing
whered is the lamellar repeating distance. Consequently, if recent years, through the use of the clipped random wave
model (CRW) [7], it has become possible to analyze the
scattering intensity distribution of these microemulsions to
*Electronic address: sowhsin@mit.edu obtain, in addition, various average interfacial curvatures and
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their interfacial morphologieg8]. In this paper, we shall use clipping level[10]. In particular, the total interfacial area per
the CRW model with a spectral density functi®DF) cho-  unit volume is proportional to the square root of the second
sen according to the principle of maximum entropy to anamoment(k?). For an isometric microemulsion whete=0,
lyze the scattering profiles of the dilute lamellar microemul-the average mean curvature is alwaip =0 and

sions.

In the CRW model[7], the order parameter field of a Ky— — 1 K2 -
microemulsion system is first expanded in a series of spheri- (K)= €< ) (7a)
cally symmetric cosine waves with the magnitude of wave
vectorsk, (isotropically distributeglchosen from a distribu- 1 6 (k%
tion function f(k), and with random phase,, uniformly <H2>:5<k2> T 2 2—1). (7b)
distributed within the intervall0,2r) (k%)

2 N Ill. THEORY FOR SDF
df(r)=\/%§ cosky 1+ n). 2)

Previous studies of bicontinuous microemulsions have
The order parameter field is normalized in such a way thatised inverse polynomial forms df(k) [8] consistent with
{|#]?>y=1. The oil-water interface is then generated by clip-the Gaussian approximation within the Landau-Ginzburg
ping the order parameter at a level determined by the framework. Although these spectral functions have produced
relative volume fractions of each component, resulting in argood fits to experimental data, there has not been sufficient

oil-water interface that is mathematically defined as theoretical justification for their functional forms. In this pa-
per, we shall use entropy considerations to derive a func-
p(r)=a. (3)  tional form of f(k).

For the purpose of calculating the Debye correlation func- We begin by considering the expression for generalized
. ne purp 9 ye cor . _~entropy associated with the probability distribution function
tion [9] in a bulk contrast experiment, the clipping operation

) - . f(k) [11],

generates a two-level fielf{r) from the original, continuous
field (r) by assigning(r)=1 (oil region when¢(r)= «,
and(r)=0 (water region when (r)<a. Then the Debye s 1—f fa(k)d3k
correlation function is the normalized form of the two-point B —
correlation function(Z(0){(r)). For an isometric micro- Ke q-1
emuision, where the Xolume fractions of the oil and WaLeT vhich, in the limit ofg—1, reduces to the familiar Boltz-
regions are equala=0. In order to treat the three-

; . . ann expression
component microemulsion as an effective two-componen[[n P

®

system, we partition halftail) of the surfactant into the oil

region and the other halhead into the water region. The S= —ka f(k)In f(k)d3k. 9
scattering intensity and various geometrical quantities asso-

ciated with the surface defined by Hg) can then be calcu-  \we require thatf(k) be normalizable and that its gener-

lated using the spectral functiof(k). First, by taking its  alized second and fourth moments exist, so as to preserve the
Fourier transform, the two-point correlation functigfir;  Legendre-transformation structure of thermodynanfits]
—1o|)=(4(r1)¢(r)) is obtained, and also produce a nonzero peak in the SDF. Following the
method of Tsallig12], these constraints can be expressed as

=sin(kr
g(r)=f r:((r ) 47k?f (k) dk. (4)
0 1= f f(k)d3k,
The Debye correlation function for isometric microemul-
sions can then be calculated fray(r),
<k2>q=f k2f9(k)d3k, (10
2
T(r)=—sin"*{g(r)], (5)
<k4>q=f k4f9(k)d3k.
from which the theoretical scattering intensity is derived as
[9] Maximizing the entropy subject to these constraints, we ob-
- tain an expression for the functional form fofk),
I(Q)_<77 > Qr 4ar (r) r, (6) 1 1/(q—1)
where(7?)=(Ap)?@,0,, Ap being the difference between f(k)= q (11)
the scattering length densities of component 1 anddh- —q ’
. . . : —— + uqk?+ vgk?*
trash, ande,, ¢, being their respective volume fractions. g-1

The CRW model also allows us to calculate the average
Gaussian and mean square curvatures of the oil-water intewhere\, u, andv are the Lagrange multipliers for each of
face from the moments of the spectral functid) and the the constraints.
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1/(g—1) is restricted to positive integer values, since g}
negative indices would produce an unnormalizable spectra _
function, and noninteger indices would result in fractional = 2
powers ofk, which is inconsistent with a Landau-Ginzburg  2f
description of the system. Also, for the ordinary second and _,|

fourth moments to exist, the spectral function must be of at$ 30
least inverse eighth order, henced{1) has to be greater %]
than 1. ‘ézo—
The values ofj are thus restricted to 1,3/2,4/3, and soon. 8|
For this study, we ignored the higher order functional forms &
. =
and chosg=1 andq=23/2, thereby generating an exponen- = ' 2
tial form and an inverse eighth order polynomial form 1l - .
f1(k)=exp(\ + uk®+ vk?), e l
10 B
4N+ 2)2 (12) ’ o Surfac?t:lnt Volumeoi;iaction > o

Fard0= S it k=27
(v M ) FIG. 1. Phase diagram of the,§E,-octane-DO system.

For mathematical simplicity, we dropped tké term in ) )
the exponential to reducg, (k) to Gaussian form. This is while the ordinary second and fourth moments are calculated
equivalent to dropping the constraint of the fourth moment into be
Eq. (10), which is unnecessary since the Gaussian exponen-
tial possesses all even-order moments anyway. Furthermore, 2 9 21 12
it can be observed thdt; (k) is the square of an inverse (k%)=3Boic+(1-pB)(a°+b%),
fourth order polynomial. For microemulsions, the normal- (17

ized Teubner-Strey spectral function
ysp (k*y=15807+(1— B)(a’+b?)(a%+5b?).
b/ w2

frs(k)= (13
k*—2(a?~b?)k?+(a+b?)? IV. EXPERIMENTS

is a useful functional form that relates the domain size The validity of our proposed spectral function was then
=2m/a and the correlation length=1/b to the two param- tested by using it to analyze the scattering patterns of
etersa andb in the spectral function. Since the two Lagrange C,¢E4-octane-DO microemulsions in the lamellar phase.
multipliers « and v can be recast into the two parametars The scattering experiments were conducted using time-of-
and b without loss of generality, we therefore chookg, flight spectroscopy on the SAND instrument at the Intense
~(fr9)?, resulting in the normalized spectral functions Pulsed Neutron Source, Argonne National Laboratories. The
surfactant volume fraction of the samples was varied from
1 k2 17.3 to 21.9 % and they were all maintained at a temperature
fi(k)=———=,exp — —2) : of 22.5°C, as shown in the phase diagram above.
(2may) 20} Proper analysis of the sharp scattering peak of lamellar
systems require@-resolution correction, and this was ac-
b3(a?+b?) complished by convolving the theoretical scattering intensity
Fara(k) = ; [k4—2(a2—b2)k2+(a2+b2)2]2' (14 with a Gaussian resolution function. Values for Qeavidth
of the resolution function were supplied by Thiyagarajan
The final spectral function is then taken to be a linear supert13l- After subtracting the background due to incoherent
position of the two forms scattenng,_relatlvely good fits were obtained by analyzing
the data with the spectral function in Eq44) and (15), as
f(K)=BF,(K)+ (1= B)fsK). (15) shown_in F_igs. 1_a_1nd 2. From t_he inset, which compares the
scattering intensities of bicontinuoy$3.2% and lamellar
With this form of the spectral function, the two-point cor- (21.9%9 microemulsions, it is also clear that lamellar sys-

relation functions can be expressed as tems have a much sharper scattering peak.

Looking carefully at the scattering pattern, however, there

Uirz were already clues that our highly dilute lamellar microemul-

gl(r)—ex% — T) sions did not possess the usual stacked structute, ahi-

croemulsions. The 2D scattering pattern was isotropic, which

o) is not expected for thé , phase, and the radially averaged
exp(—br . 1D scattering peak was rather broad, even after correcting for

9aralr) = 2 [(a*+b*+a’br)sin(ar) resolution(see Fig. 3 This meant that our samples did not

possess a regular layered structure, otherwise a Bragg peak
—ab?r cogar)], (16) would have been observed.
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Eq. (15), is thus expected as the system gains local order. At
the same time, the increasing valuesagf reflects the de-
creasing importance of long wavelength contributions to the
overall scattering intensity.

Figure 4 also shows that the mean Gaussian curvékire
becomes more negative with, while the mean square cur-
vature(H?) increases. The declining value (K) is likely
due to the increasing number of topological defects in the
lamellar surfaces as more and more surfactant molecules are
packed into the surfaces. The tighter packing also results in a
slight increase in surface fluctuations, which accounts for the
rising values of(H?). However, compared to previously
measured values gfH?) for bicontinuous microemulsions
[8], these values are smaller by almost a factor of 5, indicat-
ing the relative smoothness of the interface.

We also found an empirical linear relationship between

Q A the domain size 2/a and the inverse of the surface-volume
ratio, as shown in Fig. 4. This relationship can be used to-

FIG. 2. Scattering intensities of lamellar samples and their fitsgether with the equation
(solid lines. In the inset, we compare the scattering intensities of
bicontinuous(13.2%9 and lamellan21.9% samples.

S 2 [k%)

c=—\ 3 (18
V. RESULTS AND DISCUSSION V. 7V 3

Figure 4 summarizes the variation of the fitted parameters, gjiminate one of the four fitting parameters, effectively

as a function of surfactant volume fraction, and clear trend§.educing the number of independent parameters to three for
can be observed from the plots. The degree of local order 8 mellar microemulsions

be expressed as the ratio of the correlation length to the
domain size,&/d, which is equivalent tea/27b. The first

graph in Fig. 4 thus shows that local order increases as the VI. MORPHOLOGY VISUALIZATION
surfactant volume fractiopg is raised, which is consistent

with the fact that the steric interaction between neighboringcOm uter renderina. allowing us to visualize the moroholo
surfaces increases as the domain size decreases. P 9 9 p 9y

The increasing order of the microemulsion system as ég;linlst!g\r’:’ate;'r}Freerafs_edef'rgzg kéy(zr)) :aLSY' ;O; er:]isg 2];
function of ¢ is also reflected in the increase an and the wavgvel:to’rsvi\;]stelad of in(;(i\eidual coqsine waves uresuI;/in in
decrease irB. A spectral function centered arouke-0 is ' 9

characteristic of disordered scattering due to the dominant oo

contribution from long wavelength fluctuations. The falling _ 2m Ty iK1+ (k)
values of 8, which describes the relative contribution of the y(r)= Re; T 6f(k)Ak)e . (19
zero-mean Gaussian (k) to the overall spectral function in

The clipped random wave model also lends itself easily to

whereL is the length of the real-space lattice we want to
generate ané\(k) is a random number uniformly distributed
within the interval[0,1]. Here we have used the complex
exponential representation of the cosine function, and each
term is weighted by the aggregate wave vector distribution
function y6f (k). The additional factoA(k) takes into ac-
count the possibility of destructive interference in Eg)
between cosine waves with the same wave vector but differ-
ent phases.

Y(r) is thus readily calculated by performing an inverse
discrete Fourier transform over a sufficiently large 3D lattice
of k values, with each wavevector assigned a randomly gen-
erated (k) and A(k). The resulting order parameter field
can then be clipped at the appropriate leweto generate
distinct oil-water domains.

The result of one such computation is shown on the next
page, using the SDF from Eqd.4) and(15). At first glance,
the structure shown above is surprising because it does not

FIG. 3. Theoretical scattering intensity of a lamellar microemul-resemble the conventional picture of extended lamellar
sion (¢=21.9%) before resolution correctignolid line) and after ~ planes. However, upon closer inspection, small domains can
correction(dashed ling be seen where the internal structure is locally lameldrite
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FIG. 4. Variation of parameters for lamellar samples.

lines), but the orientations of the lamellar sheets differ across
domains. Also, there seems to be many “holes” in the
lamellar planes. 3

This structure is actually consistent with the results from
Figs. 4 and 5 which show th&fd~2, thus the local order o
should only persist for about 2 or 3 domain lengths before
decaying away. Furthermore, the highly negative mean oY & b
Gaussian curvature indicates the proliferation of passages bQ 52'
tween lamellar sheets, which is readily observed in Fig. 6. - -

In addition to elucidating the real space structure of the
microemulsion, this method also allows us to derive the
probability distributions of the Gaussian and mean squarg
curvatures, rather than merely knowing their average values
from Fig. 4. Using Eq(19), the spatial derivatives aof(r) :
can be easily calculated. Since the microemulsion interface i ,
represented bys(r)=0, we can make use of well-known

=
equations in differential geometry to calculate the Gaussiar
and mean curvatures at each surface pfdidt & o ‘
— - — |

FIG. 5. 2D slice(size 2048 2048 A) of a lamellar microemul-
sion in real space¢;=21.9%). Small domains with a lamellarlike
internal structure can be observed, some of which are marked with
+ (permutationg] (200  white lines.

1
K=l Uxtlyy e — W o+ 20 (g = iy
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small but significant probability that positive values of
Gaussian curvature can be found at some points on the inter-
face. This means that an arbitrary point of the interface may
not always have a saddle-point configuration, but may in-
stead have locally spherical curvatures.

VII. CONCLUSION

We have made measurements of the scattering intensity of
highly dilute lamellar microemulsions and analyzed the re-
sults using a spectral density function derived by maximiza-
tion of generalized entropy. Indeed, the morphology of the
lamellar structure we observe in Figs. 5 and 6 is surprising at
first sight. However, the fact that this morphology is com-
pletely consistent with the scattering pattern observed leads
us to conclude that in this type of dilute lamellar microemul-
sion the structure may in fact contain a large number of
defects. These defects are due to the small bending constant
of the surfactant film and vanishing interfacial tension of the
oil-water interface which result in large thermal fluctuations.

FIG. 6. Section of a lamellar microemulsion in real spage (Since the intermembrane distance is too great, these fluctua-
=21.9%). A passage defe¢arked by arrowscan be clearly —tions are not compensated by the usual Helfrich steric repul-
observed. The disordered nematic structure is the result of a prolifsion. Furthermore, our findings are in agreement with studies
eration of such defects. Length scales are marked in angstroms. of lamellar systems near a sponge-lamellar transition using

freeze-fracture electron microscofiys], which show clearly
the existence of membranes perforated by a large number of
= — [ ¢§+ Y2) — 24 b, i+ PErMutationss passage defects. It is thus reasonable to conclude that ex-
2M tended lamellar planes are actually not stable in this region

. o . . of the phase diagram close to the boundary between the
where “permutations” indicates additional terms obtained|gmeliar and disordered bicontinuous phases.

by cyclic permutation, and where
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the negative values, which is natural for an interface with a
negative average Gaussian curvature. However, there is @ APPENDIX: DERIVATION OF ORDER PARAMETER

P(H) P(K) EQUATION FOR MORPHOLOGY VISUALIZATION

To apply Fourier techniques when using the computer to
generate the order parameter field, we first need to re-express
Eqg.(2) as a sum over the wave vectdrsather than as a sum
over individual cosine waves. This is accomplished by per-
forming the sum over cosine waves with the sakndut
different ¢,, .

Using the complex exponential representation of the co-
sine, we can rewrite the order parameter equation as

40F
2000

1500

1000 -

N
W(r)= %E eikn THidn 4 g ikn T-idy
1

500

-0.04 -0.02 0o 0.02 004 0 -0.002 —0.0010 0 0.001 1 ) ) ) )
H (AT K (A =\/=—2>, > elknr*idnpg-iknr—idn (A1)
2N K=k
FIG. 7. Distribution of the mean curvaturé(H) (left) and
Gaussian curvaturB(K) (right) for a ¢,=21.9% sample. The val- For the inner sum, the common factor ekp(r) can be
ues of(K) and(H?) calculated from these distributions agree with factored out, leaving a sum of unit vectors on the complex
the results given in Figi4) which were obtained from Ed7). plane
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) ) ) ) ) ) 2
kE:k gknrHidn=glkr(gidryglidatgiday ...y (A2) ; §|02(|<):1. (A8)

Since the phaseg, are completely random, the superposi- i thjs equation is compared to the normalization condition
tion of these unit vectors results in a vector also with randomy, f(k) in Eq. (10), we can immediately see that

magnitude and phase. The magnitude of this net vector, how-

ever, has a maximum valug(k), given by the number of 2

cosine waves with the same wave vediorthe case where > —pA(k)= f f(k)d3k, (A9)
all the phasesp, are exactly equal The sum can therefore k3

be succinctly represented as ) ) ) )
which results in the identity

kzk eikn~r+i¢n:p(k)A(k)eik»r-%—iqﬁ(k), (A3) ) 2\ 32 30
n p(k)— T T (AlO)

whereA(k) is a random number uniformly distributed in the

interval [0,1] and ¢ (k) also a random number in the range sypstitution of Eq(A10) into Eq. (A4) yields
[0,27).

Supstituting these results into EGAL), we arrive at the 2m\32 [3f(k) o) e
equation w(r)=>, . ——AK) (e Ak 4 @miker =ik
K
r= KYA(K eik-r+i¢(k)+efik-r7i¢(k) , Ad 2 3/2 _ )
9(r) =2 PIOAK( ), (Ad) _ReS) TW) STIOAK)Ek 190 (AL)
k
where we have absorbed other normalization factors into
p(k). We then normalize EqA4) by calculating which was the equation used in the paper, &§).
The correctness of this expression can then be checked by
, , calculating the two point correlation functiorg(r
(012)=3 p(kp(k (AK)AK") o P B
koK' (¥(r)(0)),

> [ei(k+k’)~r<ei ¢(k)ei¢(k’)>

2m\%3
9N=3 (T”) SVTIOTRARAK)

+ 26/ (k=K1 gidKIg=19(K")y kK
P 10 TSN (aS) X [ek (/e A7) 1 2glkT (@l 1k))
Since(e'?™) = 0, therefore e (e e 1)), (A12)
(e ¢Mel ¢y =0, which, using the relations given in EGA6), reduces to
ib(k)g=id(k)y = 2m\3 :
(e = e (A9) oN=3 T) 3f((AK)ERT (A13)
k

(e*i¢(k)e*i¢(k')>:(),
, Since(A%(k)) = 1/3, therefore we can see thg(r) is just
which reduces EQIAS) to the Fourier transform of the spectral functibk),

2 _ 2 2 8
(%)= 2 2p%(k)(A%(K)). (A7) 9= (?) f(kyel, (A14)

Also, (A?(k))=1/3 sinceA(k) is uniformly distributed be-
tween 0 and 1. Imposing the normalization constraint ofwhich is equivalent to Eq4) for a continuous isotropic dis-
{|#]?>y=1, we now obtain tribution of wave vectors.
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