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Universal and nonuniversal features of glassy relaxation in propylene carbonate

W. Götze and Th. Voigtmann
Physik-Department, Technische Universita¨t München, D-85747 Garching, Germany

~Received 23 November 1999!

It is demonstrated that the susceptibility spectra of supercooled propylene carbonate as measured by
depolarized-light scattering, dielectric-loss, and incoherent quasielastic neutron-scattering spectroscopy within
the GHz window are simultaneously described by the solutions of a two-component schematic model of the
mode-coupling theory~MCT! for the evolution of glassy dynamics. It is shown that the universal
b-relaxation-scaling laws, dealing with the asymptotic behavior of the MCT solutions, describe the qualitative
features of the calculated spectra. But the nonuniversal corrections to the scaling laws render it impossible to
achieve a complete quantitative description using only the leading-order-asymptotic results.

PACS number~s!: 64.70.Pf, 61.20.Lc
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I. INTRODUCTION

In this paper the evolution of structural relaxation as o
served upon cooling the van-der-Waals liquid propylene c
bonate ~PC! from above the melting temperature (Tm
5218 K) to the glass-transition temperature (Tg5160 K)
will be analyzed. It will be shown that the spectra, as m
sured within the four-decade frequency window belo
800 GHz by depolarized-light scattering, by dielectric-lo
and by neutron-scattering spectroscopy can be quantitati
described by the solutions of a two-component schem
model of the mode-coupling theory~MCT!, where the drift
of the various spectral features over several orders of m
nitude due to temperature changes can be fitted by sm
variations of the model parameters. The results of the d
fits will be used to demonstrate in detail which features c
be explained by the universalb-relaxation-scaling laws o
the asymptotic MCT-bifurcation dynamics, and which a
caused by either preasymptotic corrections to this scalin
by crossover phenomena to microscopic oscillatory moti

Glassy PC spectra within the full GHz window have fir
been studied by Duet al. @1# using depolarized-light-
scattering spectroscopy. It was shown that the data ca
interpreted with the universal laws predicted by MCT. In
basic version, which is also referred to as the idealized M
this theory implies an ideal liquid-glass transition at a ch
acteristic temperatureTc . In an extended version,Tc marks a
crossover from the high-temperature regime, where the
namics is dominated by nonlinear-interaction effects
tween density fluctuations, to a low-temperature regim
where the dynamics deals with activated-hopping trans
in an effectively frozen system. For temperaturesT nearTc ,
the MCT equations can be solved by asymptotic expans
for the so-calledb-relaxation regime. This results in formu
las for universal features of the MCT dynamics as reflec
in the appearance of dynamical scaling laws, power-la
decay processes, and in algebraically diverging time sca
The different anomalous exponents and also
b-relaxation-master functions are determined by a syst
dependent number that is called the exponent parametl
@2#. The data analysis of Ref.@1# suggestedTc'187 K and
l'0.78. Relaxation curves measured for PC within the pi
second window in solvation-dynamics studies@3# and
PRE 611063-651X/2000/61~4!/4133~15!/$15.00
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dielectric-loss spectra determined within the GHz windo
@4–6# have also been analyzed with the MCT-scaling-la
formulas using parametersTc and l consistent within the
experimental uncertainties with the values cited above. T
critical temperature for PC has first been determined toTc
'180 K @7# by interpreting thea-relaxation time for den-
sity fluctuations measured by neutron-scattering spect
copy with the MCT-power-law prediction for this quantity
A similar analysis of the viscosity@1,7# suggests a value o
Tc near 190 K. The effective Debye-Waller factor for th
elastic modulus has been measured for PC by Brillou
scattering spectroscopy@8#. Interpreting this quantity with
the asymptotic formula of the idealized MCT, a critical tem
perature considerably higher than 190 K has been s
gested. However, since the data interpretation is not com
ling @1#, this finding cannot be considered to be a falsificati
of theTc'187 K result. Thus one could conclude, that MC
describes some essential features of the glassy dynamic
PC qualitatively correct, a statement which also holds fo
series of other glass-forming systems@9#.

In order to arrive at a more stringent assessment of MC
Wuttkeet al. @10# have re-examined the above cited PC d
for T.Tc . In addition, they have studied incoheren
neutron-scattering spectraS(q,v) for a two-decade window
in frequencyv and for wave vectorsq between 0.7 and
2.3 Å21. The data exhibited the predicted factorization in
q-dependent butv-independent amplitudehq , and a
q-independent term describing the frequency and temp
ture variation:S(q,v)}hqx9(v)/v. The susceptibility spec-
trum x9(v) showed the subtle dependence onv and on (T
2Tc) predicted by the MCT-scaling laws for theb-process,
providedTc'182 K andl'0.72 was chosen. These param
eters are marginally compatible with the values found in
above cited earlier work on PC. The depolarized-lig
scattering spectra have been remeasured within
b-relaxation window forT.Tc . The spectrometer used i
Ref. @10# incorporated several improvements over the o
used in the original study@1#, resulting in improved signal-
to-noise ratios. Furthermore, the use of a narrow-band in
ference filter eliminated the possibility of higher-order tran
mission effects, which have recently been recognized a
potential source of artifacts@11,12#. But the new spectra
agree with the old ones within the error bars of the latter. T
4133 © 2000 The American Physical Society
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4134 PRE 61W. GÖTZE AND TH. VOIGTMANN
remeasured spectra could be fitted convincingly with the u
versal asymptotic results using the newly found values forTc

and l. It was shown in addition that also the solvatio
dynamics results@3# and the dielectric-loss spectra@4–6#
could be fitted within the same frame using the new val
for Tc andl. Actually, the new fit to the dielectric-loss da
@10# is more convincing than the original one@4–6#, since
the fit interval expands with decreasing (T2Tc), as re-
quested by MCT. The size of the (T2Tc) interval and the
window for the frequency where leading-order-asympto
results describe the MCT-bifurcation dynamics, depend
the probing variable@13,14#. It was assumed in Ref.@10# that
the range of validity of the asymptotic analysis is smaller
the dielectric-loss spectra than for the light-scattering sp
tra. It also had to be anticipated that preasymptotic corr
tions can account for a 35% offset of theb-relaxation-time
scale of the neutron-scattering data relative to the one for
light-scattering data.

To corroborate the cited MCT interpretations of glassy
spectra, the previous work shall in this paper be extende
three directions. First, thea-relaxation peaks will be in-
cluded in the analysis, so that the low-frequency limit for t
fit interval can be decreased to 1 GHz or lower. Thereby
crossover froma- to b-relaxation and the nonuniversa
a-peak shapes can be described as well. Second, the c
over from relaxation to vibrational dynamics will be in
cluded in the analysis, so that the high-frequency limit
the fit interval can be increased by about a factor of fo
Third, an extended form of the MCT instead of the idealiz
one will be used, so that the spectra for depolarized-li
scattering and dielectric loss forv>1 GHz can be de-
scribed also for temperatures belowTc . The specified goals
will be achieved by studying the full solutions of an MC
model.

The paper is organized as follows: In Sec. II, the ba
formulas for the schematic model to be used will be summ
rized, and then~Sec. III! the experimental data sets are fitt
using this model with smoothly drifting parameters. After
short introduction to the necessary equations for
asymptotic analysis for the model~Sec. IV!, the b-scaling
laws are tested against the data in Sec. V. In Sec. VI, it
be shown that for the studied model a properly defined
electric modulus is more suited for a description by scal
laws than the dielectric function. Section VII presents so
conclusions.

II. A SCHEMATIC MODE-COUPLING-THEORY MODEL

The idealized MCT is based on closed equations of m
tion for the auto-correlation functions of the density fluctu
tions fq(t), which are positive definite functions of timet,
depending on the wave-vector modulusq @15#. The extended
MCT also includes couplings of the density correlatorsfq(t)
to the auto-correlation functions for the currents@16#. The
general equation of motion expresses the density corre
in terms of relaxation kernels. It is formulated most transp
ently with Laplace-transformed quantities. For the latter,
conventionF(z)5 i *0

`exp(izt)F(t)dt with complex frequency
z, andF(v)5F8(v)1 iF 9(v) for z5v1 i0 will be used.
i-
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fq~z!5
21

z1Cq~z!
, ~1a!

Cq~z!5Nq~z!2
Vq

2

z1Mq
reg~z!1Vq

2mq~z!
. ~1b!

Here, Vq denotes a characteristic frequency given by
thermal velocityv and the static structure factorSq : Vq

2

5q2v2/Sq . The general current-flow kernelCq(z) describes
density-fluctuation decay via two parallel channels. Phon
assisted hopping is given byNq(z). The relaxation due to
nonlinear interactions of density fluctuations is described
a force-fluctuation kernel which consists of a sum of a re
lar term Mq

reg(z) and a mode-coupling termmq(z). The
former deals with normal-liquid dynamics, and the latt
with the slow motion caused by the cage effect. It is obtain
as a polynomialFq of the density correlatorsfq(t):

mq~ t !5Fq@fq~ t !#. ~1c!

The coefficients of the polynomial are non-negative; they
given by the equilibrium structure and hence depe
smoothly on external control parameters like temperatureT.
Systematic studies of the kernelsNq(z) andMq

reg(z) are not
available. The theory shall be simplified by Markov appro
mations of these quantities:Mq

reg(z)5 inq , Nq(z)5 iDq . The
friction constantsnq>0 and hopping coefficientsDq>0
shall be treated as model parameters, which depend smo
on T.

Equation~1! can exhibit bifurcation singularities. Gener
cally, if as a single control parameter the temperature is c
sidered, the singularity occurs for a critical temperatureTc if
all hopping coefficientsDq vanish. If someDqÞ0, the sin-
gularity is avoided. However, for smallDq and small uT
2Tcu the singularity causes an anomalous dynamics:
glassy dynamics studied by MCT. At the singularity the co
relators do not decay to zero but to a positive valuef q

c ,
which is called the plateau. It is approached by an algeb
decay law, called the critical decay, which is specified by
anomalous exponenta, 0,a<1/2:

fq~ t !2 f q
c5hq~ t/t0!2a1O~ t22a!;

~2!
T5Tc , Dq50.

The quantityhq.0 is called the critical amplitude, and it ca
be determined from the mode-coupling functionalFq for T
5Tc . The time scalet0 is determined by the transient dy
namics forT5Tc . For Dq50 and small but negative (Tc

2T), the correlator falls below the plateauf q
c according to

the von Schweidler lawfq(t)2 f q
c}2tb1O(t2b), character-

ized by a second anomalous exponentb, 0,b<1. FromFq
for T5Tc , one can calculate the above mentioned expon
parameterl, 0,l<1/2, which determines the critical expo
nent a and the von Schweidler exponentb via G(1
2a)2/G(122a)5l5G(11b)2/G(112b). In the so-called
b-relaxation window, implicitly defined byufq(t)2 f q

cu!1,
MCT predicts that the dynamics is in leading order co
trolled by merely two smooth functions ofT: the separation
parameters and the hopping parameterd. The former is
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PRE 61 4135UNIVERSAL AND NONUNIVERSAL FEATURES OF . . .
determined byFq , and its zero defines the crossover te
perature Tc : s5C(Tc2T)/Tc1O@(T2Tc)

2#. The latter
obeysd>0; generically,d vanishes only ifDq50 for all q.
The shape of the correlation functions in the asymptotic
gime of theb-relaxation window is fully determined by th
exponent parameterl; as can be inferred from Ref.@2# and
the original papers cited therein.

Testing the relevance of MCT by comparing the leadin
order results for theb-relaxation with data is however ham
pered by a great difficulty. Without detailled microscop
calculations one cannot determine the size of the correct
to the asymptotic formulas, and therefore their range of
lidity is not known. In addition, the optimal choice ofl,
fixing the shape of the logx9-versus-logv graph is tedious
to decide upon and might well depend on the choice of the
interval. The difficulty of fixingl from ab-relaxation study
alone was demonstrated recently for the hard-sphere sy
@17#. A set of density correlatorsfq(t) calculated for various
wave vectors and packing fractions was considered. A fi
them with the asymptotic predictions for a significan
wrongl was by a standard fitting procedure not distinguis
able from the correct fits within typical experimental wi
dows.

A different route for data interpretation is based on co
parison of the measured spectra with the complete solut
obtained from schematic MCT models. This procedure w
studied first by Alba-Simionescoet al. @18–20#. Schematic
models are truncations of the complete set of Eq.~1! to a set
dealing with a small number of correlators only. Thus t
mathematical complexity of the problem is reduced cons
erably. Alas, the connection of the mode-coupling-functio
coefficients with the microscopic structure gets lost; the
efficients are to be treated as fit parameters. The main ad
tage of this approach is that one does not rely on the ap
cability of asymptotic formulas; one is sure that all results
crossover phenomena and preasymptotic corrections
logically consistent with the MCT.

The simplest schematic model deals with a single c
relator only, which shall be denoted byf(t). The first MCT
equation is equivalent to Eqs.~1a! and ~1b! with q indices
dropped

f~z!5
21

z1 iD2V2/@z1 in1V2m~z!#
. ~3a!

For the mode-coupling functional, a quadratic polynom
that can reproduce all valid values for the exponent par
eterl is used@21#:

m~ t !5v1f~ t !1v2@f~ t !#2. ~3b!

For D50, ideal liquid-glass transitions occur on a line in t
v1-v2 plane of coupling constants. One can usel to param-
eterize this line of critical coupling constants:

v1
c5~2l21!/l2, v2

c51/l2, 1/2<l,1. ~4!

Thus this model is specified by two control paramet
(v1 ,v2), by two frequencies (V,n) quantifying the transien
dynamics, and one rateD for the activated transport pro
cesses. The model has many nongeneric features, and t
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fore one cannot expect it to describe a measured spectrum
the present paper, the correlatorf(t) is introduced to mimic
in an overall fashion the combined effect of all structu
fluctuations in producing the bifurcation point and the exp
nent parameterl of the system.

The dynamics of some probing variableA coupling to
density fluctuations shall be described by a second correla
to be denotedfA

s (t). It obeys an equation analogous to E
~3a!:

fA
s ~z!5

21

z1 iDA
s 2VA

s 2/@z1 inA
s 1VA

s 2mA
s ~z!#

. ~5a!

Again the microscopic dynamics is quantified by two fr
quencies referred to as microscopic parameters (VA

s ,nA
s ).

The activated relaxation processes are described byDA
s . The

mode-coupling functional shall be specified by a coupling
f(t) quantified by a single coupling constantvA

s :

mA
s ~ t !5vA

s f~ t !fA
s ~ t !. ~5b!

It is a peculiarity of this model, that the dynamics of th
probing variableA is influenced byf(t) but not vice versa.
Thus the position of the transition is not modified by t
introduction of the second correlator nor is the value ofl.
The model was motivated by Sjo¨gren@22# for the description
of tagged-particle motion in a glassy environment, and it w
be used here in the same context for the interpretation of
neutron-scattering data. The MCT for the reorientational
namics of a nonspherical probe molecule suggests the s
schematic model for the dipole and quadrupole relaxat
@23#; an observation that motivates the application of t
model for the description of the dielectric-loss an
depolarized-light-scattering spectra, respectively. For
incoherent-neutron-scattering cross section the fit will
done using the model parameters forfA

s (t) different for dif-
ferent wave vectors. For the indexA the abbreviations ls, de
and ns for light scattering, dielectric loss, and neutron sc
tering, respectively, will be used. The specified tw
component schematic model has been used earlier for
interpretation with the restriction toD5DA

s 50. Depolarized-
light-scattering spectra within the full GHz band have be
described for glycerol for all temperatures aboveTg @24#,
and for ortho-terphenyl forT.Tc @25#. Rufflé et al. @26#
were the first to simultaneously describe glassy spectra
several probing variablesA. Within theb-relaxation regime,
they fitted coherent-neutron-scattering spectra for sev
wave vectors and also the longitudinal elastic modulus
Na0.5Li 0.5PO3.

The single coupling constantvA
s determines all features o

the structural-relaxation part of the second correlator. Th
the a-peak strengths, widths, and positions are correla
These correlations follow the same pattern as found and
plained for thea peaks of the hard-sphere system@13,14#.
Nevertheless, it is not obvious from the beginning, and th
truly remarkable, that such a simple model will be sufficie
not only to explain the trends found in the data, but even
reproduce structural relaxation for PC quantitatively.

Equation~3a! is equivalent to
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f̈~ t !1~D1n!ḟ~ t !1~V21D•n!f~ t !1V2E
0

t

m~ t2t8!

3@ḟ~ t8!1D•f~ t8!#dt850, ~6!

to be solved with the initial conditionf(t50)51, ḟ(t
50)52D. This equation, together with Eq.~3b!, is solved
numerically with a similar algorithm as used in the preced
work for the caseD50. Equations~5! are treated in the sam
manner, butf(t) has to be used as input for Eq.~5b!. From
the result forfA

s (t), a Laplace-transformation yieldsfA
s (z).

The fluctuation-dissipation theorem then determines the
namical susceptibilityxA(z) of variableA:

xA~z!/xA5zfA
s ~z!11. ~7!

Here, xA},A2. is the thermodynamic susceptibility. I
particular, the imaginary part of Eq.~7! determines the nor
malized susceptibility spectrum,xA9 (v)/xA5vfA

s 9(v), the
quantity of main interest in the following. In our data anal
sis,xA enters as an additional fit parameter, which we tre
for the sake of simplicity, as a temperature-independent n
malization constant.

III. DATA ANALYSIS

A. Fits to the data

The result of our fits to the measured PC spectra
shown by the full lines in Figs. 1 and 2. Since one can
expect the schematic model to provide a description of
microscopic band, the fits have been restricted to frequen
below 500 GHz for the light-scattering and neutro
scattering spectra. The fit range for the dielectric spe
could be extended up to 1 THz. For the neutron-scatte
data, a set of spectra for 3 representativeq vectors out of 10
analyzed is shown. The analyzedq-range is 0.5 Å21<q
<1.4 Å21; outside this range, experimentally accessi
frequency windows become too small to gain meaning
information for MCT parameters. In Ref.@1#, light-scattering
spectra aboveT5250 K have been published, but show a
parent violation ofa scaling. We were able to fit thes
curves with the same quality as the ones shown by assum
a slightly varying static susceptibilityx ls , which has the ef-
fect of shifting curves up and down in the log-log plot. The
curves were omitted in Fig. 1 to avoid overcrowding.

All model parameters should be used as temperat
dependent fit parameters in our analysis. Within the stud
temperature interval, there are no structural anomalies
ported for PC. Thus, the fits are done with the constraint
the parameters drift smoothly and monotonously. In the
lowing part of this section, the parameters used for the t
oretical curves in Figs. 1 and 2 shall be discussed.

One experiences a considerable flexibility in choosing
path @v1(T),v2(T)# followed by the coupling constants i
the v1-v2-parameter plane for the interpretation of the d
as emphasized earlier@24#. To arrive at an overview of the
possibilities for fitting the many spectra, we started with
first step, where the path was varied but biased to so
smooth curve. Applying the general theory@27# to Eq. ~3b!,
one derives the formula for the above-mentioned separa
parameters,
g
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s5~12 f c!@~v12v1
c! f c1~v22v2

c! f c2#. ~8!

In our first step of the analysis, we also force thev1 ,v2 to
obey the asymptotic linear (Tc2T) dependence ofs cited
above. In the second step, this latter restriction is elimina
and a free fit is started by examining small corrections to
result of the first step. The thus obtained results also acco
for an inevitable uncertainty in the determination of the e
perimental temperatures. The fit yieldsTc'180 K, andl
'0.75, corresponding toa'0.30 andb'0.56. The value for
l is between the values reported in Refs.@1# and @10# and
falls within the error bars of both. The linear interpolation
the founds versusT values givess5C(Tc2T)/Tc with
C'0.069. The found distribution of (v1 ,v2) points is shown
in the upper part of Fig. 3. Upon loweringT, bothv1 andv2
increase, which is consistent with the physical reasoning
the system’s mode-coupling coefficients becoming large
lower temperatures. The lower diagram in Fig. 3 demo
strates that the asymptotic formula fors is well obeyed for
150 K<T<285 K. It should be stressed that the glas
transition line is just crossed by a regular drift, i.e., there
no accumulation of (v1 ,v2) points close to it. This demon
strates how the critical phenomena predicted by the M
originate from the mathematical structure of its equations
motion. In particular, the schematic model illustrates th

FIG. 1. Susceptibility spectra for propylene carbonate~PC, Tm

'218 K, Tg5160 K! as measured by depolarized-light-scatteri
~upper panel, data from Ref.@1#!, and dielectric-loss spectroscop
~lower panel, data from Ref.@6#!, normalized with a temperature
independent static susceptibility. Temperatures are in steps
10 K, unless indicated otherwise; in the dielectric measurem
T5243, 263, 273, 283 K are missing, for the light-scattering e
periment, the highest temperature is 250 K~see text for details!.
The full lines are fits by solutions of the two-component schema
MCT model defined in Sec. II with parameters as described in
text. The dashed lines indicate a white-noise spectrum,xwh.n.9 (v)
}v; the dash-dotted line in the upper panel exhibits the asymp
of the critical spectrumx9(v)}va according to Eq.~15!, with a
50.30 corresponding to the value ofl50.75. The dotted line
shows the solution of the model forT5Tc and hopping terms ne
glected.
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within MCT no subtleq interferences or hydrodynamic phe
nomena are responsible for the glass-transition dynamic

The fitted mode-coupling coefficientsvA
s (T) for the light-

scattering and dielectric data, and the corresponding co
cients vns

s (q,T) for the neutron-scattering experiment a

FIG. 2. Susceptibility spectra for PC as measured by incohe
neutron scattering for three wave vectorsq, from Ref. @10#. Tem-
peratures areT5210, 220, 230, 240, 251, 260, 285 K, where a
ternating open and filled symbols have been used to help di
guishing different data sets. For lower temperatures, data po
below 10 GHz are seriously affected by the spectrometer’s res
tion function and therefore not shown. Full lines are fits as in Fig

FIG. 3. Verticesv1 ,v2 for the first mode-coupling functional
Eq. ~3b!, used for the fits shown in Figs. 1 and 2. In the abo
diagram, the thick line represents the curve of glass-transition
gularities, Eq.~4!, while the thin line serves as a guide to the e
indicating the chosen path. Each dot corresponds to one tem
ture. The lower diagram shows the separation parameters, Eq. ~8!,
as a function ofT; the critical temperatureTc'180 K is deter-
mined from the zero of the shown regression line.
fi-

shown in Fig. 4. Again, we find monotonically increasin
couplings with decreasing temperature. The coupling coe
cients vns

s (q) describing the incoherent-neutron-scatteri
data are decreasing with increasingq. This is equivalent to
the plateau valuesf q

s,c decreasing with increasingq, which
agrees qualitatively with the findings for incoherent-neutro
scattering results discussed within the microscopic M
@14#.

The parametersVA
s ,nA

s , which specify the transient dy
namics of fA

s are shown in Fig. 5. The results from th
neutron-scattering analysis reflect the behaviorVns

s (q,T)}q
•AT to a good approximation, which is in agreement w
the result of the microscopic theory. But drawing more co
clusions from the microscopic parameters would be over
terpreting the model. They are shown here mainly to dem
strate that there are no abnormal variations occurring.
find much larger uncertainties for the microscopic fit para
etersV,n,VA

s ,nA
s , than for those parametersv1 ,v2, andvA

s ,
ruling the structural-relaxation part of the spectra. In partic
lar, it was possible to use for the parameters that specify

nt

n-
ts
u-
.

n-

ra-

FIG. 4. ~a! Coupling coefficientsvA
s for the second mode-

coupling functional, Eq.~5b!, used for the fits shown in Figs. 1 an
2 as functions of temperature. The squares refer to the lig
scattering data and the circles to the dielectric-loss spectra; the
through the symbols are guides to the eye. The lines without s
bols connect thevns

s (q) used for the neutron-scattering data for 1
wave vectorsq50.5,0.6, . . . ,1.4 Å21 ~from top to bottom!. The
vertical dashed line indicates the critical temperatureTc . ~b! Coef-
ficients vns

s (q,T) for the neutron-scattering data as functions ofq
for various fixedT. From top to bottom, the temperatures increa
from T5210 to 285 K~as given in Fig. 2!. The dashed lines indi-
cateA/q1B/q2 laws to visualize the difference to a 1/q-law behav-
ior, which is shown as a dot-dashed line; see text for details.
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transient of the first correlatorf(t) temperature independen
valuesV51 THz andn50 THz.

The hopping coefficientD in Eq. ~3a! determines the po
sition of the susceptibility minimum belowTc . This mini-
mum cannot be seen in the light-scattering data, thus
chosen values are not unambiguously determined. The li
scattering spectra in the upper panel of Fig. 1 are fitted w
the hopping parameterDA

s for the second correlator ignored
D ls

s 50. The fits to the dielectric-loss spectra in the low
panel of Fig. 1 are done with a non-vanishingDde

s . For the
whole temperature range investigated,D(T) can be assumed
to follow an Arrhenius law,D(T)}exp(2EA /T), which
would be expected for thermally activated hopping over b
riers. Figure 6 shows the values used for the fit. AlthoughD
increases by an order of magnitude, the calculated curve
temperatures higher than 190 K show no influence from h
ping effects on the spectra. This is demonstrated in Fig
The irrelevance of the increasing hopping coefficientsDq for
temperatures increasing aboveTc can be understood on th
basis of a discussion of the asymptotic formulas@28#. It is
the reason, why the idealized theory can be used for d
analysis forT sufficiently larger thanTc . In the analyzed
neutron-scattering experiment, the dynamical window a
the studied temperature intervals are too small to investig
hopping effects, and therefore the curves in Fig. 2 are ca
lated withDns

s 50.
AboveTc , the spectra including hopping show deviatio

from the idealized ones only for smallT2Tc . BelowTc , the
crossover to the white-noise spectrum is suppressed, a
minimum occurs as hopping starts to be the dominant re
ation effect. Because of the insensitivity of the main body
the analyzed data to choices ofD, the activation energy can
not be determined very precisely from the fit; the upp
straight line in Fig. 6 corresponds toEA5811 K. This value
is in reasonable agreement with the one found in an ea

FIG. 5. Oscillator frequenciesVA
s and damping constantsnA

s in
THz specifying the transient motion for the second correlator
functions of temperature as used for the fits shown in Figs. 1 an
The squares refer to the light-scattering spectra, circles to the
electric loss spectra; lines through the symbols are guides to
eye. For the neutron-scattering spectra,nns

s was takenq independent
~diamonds in the lower panel!, and the Vns

s exhibit the
q•AT-behavior shown in the upper panel~lines without symbols,q
range as in Fig. 4!. The vertical dashed lines indicate the critic
temperatureTc .
e
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asymptotic analysis @1#. Dielectric-loss spectra show
hopping-induced minima at higher frequencies than the lig
scattering spectra, and this we have accounted for by in
ducing a second hopping parameterDde

s there. In a similar
way, (Vde

s /V)2Dde
s (T) follows an Arrhenius law and has n

influence on the spectra aboveTc ; this second hopping term

s
2.
i-

he

FIG. 6. In the upper part, the hopping coefficientD entering Eq.
~3a! for the first correlator used for the fits shown in Fig. 1 to t
dielectric ~circles! and light-scattering~squares! data is exhibited.
The values follow an Arrhenius-type temperature dependence, i
cated by a straight line. For the fit to the neutron-scattering data
same values could be used, but show no influence on the fit cu
in Fig. 2 ~see text for details!. For the fit to the dielectric data, a
additional hopping coefficientDde

s for the second correlator had t
be used, shown by the circles in the lower part of this figure; he
the values (Vde

s /V)2Dde
s follow an Arrhenius law indicated by a

straight line. The vertical dashed line indicates 1000/Tc with Tc

5180 K.

FIG. 7. The solid lines reproduce the susceptibility spec
xA9 (v) from Fig. 1 used for the fit to the light-scattering~upper
panel! and the dielectric-loss spectra~lower panel!, respectively.
Dashed lines are solutions using the same model parameters
with hopping effects ignored:D5Dde

s 50. Notice that the dashed
lines for temperaturesT below Tc exhibit a ‘‘knee’’ which is lo-
cated between 10 and 100 GHz and moves to higher frequen
with decreasingT.
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has already been included in the comparison studied in
7. Here, the activation energy is of the order of 2000
which makes the result more striking, since (Vde

s /V)2Dde
s is

allowed to vary over three orders of magnitude. In bo
cases, activation energies as well as the prefactors ar
reasonable magnitude. It should be stressed that, altho
the treatment of hopping by a frequency-independentD is
rather crude, the resulting frequency range in which the sc
matic model gives a good fit to experimental data, is
larged by about one decade forT,Tc relative to the fit in-
terval, which can be treated by the idealized-MCT mode

In the measurements of the dielectric functions, inform
tion on both the imaginary and the real part of«(v)
5«8(v)1 i«9(v) have been obtained@6#. The fit to the«9
data shown above was performed using«9(v)54pxde9 (v)
54pxdevfde

s 9(v), thus obtaining the proportionality facto
«054pxde as a byproduct. Then, the real part is given
«8(v)2 «̂5«0•@11vfs

de8 (v)#. The new parameter«̂ has to
be determined by shifting the curves, and it can differ fro
«`51 in both directions: The liquid exhibits microscop
oscillations, which contribute to«8(v) as some shiftD«micr.

exp

with respect to«`51 for the structural part of the respons
function. The schematic model uses a single damped o
lator, giving someD«micr.

fit , which may be either too small o
too large. Depending on the temperature, we find value
«̂5«`1(D«micr.

exp 2D«micr.
fit ) between 3 and21, which are of

reasonable magnitude. Figure 8 shows the result of tes
our fit against the accordingly shifted real part of the m
sured dielectric function. It is clear from the theory that t
real and imaginary parts of the calculated curves are c
nected by Kramers-Kronig relations. But for the experime
both quantities have to be regarded as almost indepen
data sets, since the measurements are restricted to a
frequency range. Thus, Fig. 8 provides more than just a
ferent view on the fit shown in Fig. 1, and it is an importa

FIG. 8. Measured values for the real part«8(v) of the dielectric
function from Ref.@6# for T5173 K throughT5233 K in steps of
10 K, and forT5253 K ~from left to right!. Experimental data
have been shifted by«̂ to account for an unknown background; s
text for details. TemperaturesT5163 K and below, andT
5293 K are not shown in order to avoid overcrowding of the fi
ure. For the same reason, the data points for frequencies a
1 GHz have been partially removed for all but the highest temp
ture and are only shown in the inset. The full lines are the real p
of the calculated susceptibilities for the same model paramete
used for the curves in Fig. 1.
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point that the real-part data can be fitted with the schem
model as well, introducing only one additional fit parame
«̂. In the minimum region of the spectra, we find this to
confirmed, and for higherT, the a-relaxation step can be
described by the schematic model, too. The discrepancie
thea peak in the glass are the analogue to what can be s
in the «9 fit. Similar observations hold for the high
frequency dynamics, where one has to notice in addition,
experimental error bars are relatively large for frequenc
above 300 GHz. A slightly better fit of the«8 data could
have been achieved by allowing the static susceptibilityxde
to vary with temperature. This possibility is not examin
here, since the shift is only small, and since we do not w
to introduce assumptions on theT dependence of the stati
quantity«0.

B. Summary of the data analysis

Glass-forming liquids exhibit temperature-sensitive sp
tra for frequencies well below the band of microscopic ex
tations. These precursors of the glass transition are refe
to as structural-relaxation spectra. The full lines in Fig. 1 a
2 demonstrate that the evolution of structural relaxation
PC, including the crossover to the microscopic regime,
described well by a schematic MCT model. The descript
holds for all spectra obtained by the depolarized-lig
scattering spectrometer; in this case it deals with the th
decade dynamical window between 0.3 and 500 GHz, an
accounts for the change of the spectral intensity by a fa
of 103 if the temperature is shifted between the glass tran
tion Tg and 30 K above the melting temperatureTm . It ac-
counts for the measureda-peak-maximum shift by a facto
of 10 if T is changed by 30 K. A similar statement holds f
the description of the dielectric-loss spectra, where
a-peak shift from 40 GHz down to 0.02 GHz is describe
This shift is caused by a temperature decrease from 293
5Tm175 to 243 K.

Between thea peak and the vibrational excitation pea
near 1 THz, the susceptibility spectra in Figs. 1 and 2 exh
a minimum at some frequencyvmin . It shifts to smaller fre-
quencies as the temperature is lowered, but less than
a-peak position. Its intensityxmin5x9(vmin) exceeds the
white-noise spectrum one would expect for the dynamics
normal liquids by more than two orders of magnitude. Su
white noise would yield susceptibility spectra varying li
early with frequency,xwh.n.9 (v)}v, as is indicated by the
dashed lines in Fig. 1. These anomalous minima are
treated properly by the model.

Neutron-scattering data are available for a series of w
vectors q, and hence the dynamics is probed on vario
length scales. Theq dependence is in the schematic mod
described by that of the coupling coefficientvns

s (q). The data
description in Fig. 2 is possible using aq dependence in
qualitative agreement with the results expected from the
croscopic theory of simple systems.

It appears nontrivial that the used schematic model
deal with the mentioned spectra of PC. The success of
fits indicates that the studied glassy dynamics is rather ins
sitive to microscopic details of the systems. Apparently
evolution of glassy dynamics within the GHz window r
flects, above all, only quite general features of the nonline
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interaction effects, which can also be modelled by sim
truncations of the full microscopic theory. These conclusio
require some reservation. The explanation of the PC dat
the used model is based on the choice of the model par
eters, in particular on the choice of the drift of all paramet
with changes of temperature, which is documented in F
3–6. Only a full microscopic theory can show whether or n
the chosen parameters are in accord with the fundame
microscopic laws.

Furthermore, it has to be emphasized that the stud
model cannot reproduce the spectra for frequencies belo
GHz if the temperature is below the critical valueTc . Such
spectra can be measured accurately using dielectric-
spectroscopy, and the lower panel of Fig. 1 exhibits some
this data forT5173 andT5183 K. The lack of success o
our work in handling these spectra is clearly connected w
the improper treatment of hopping processes. It remains
clear at present whether this is due to the stochastic app
mation,Nq(z)5 iDq , or due to restricting ourselves to a on
component schematic model, or whether the whole exten
of MCT to a theory including hopping transport is ina
equate.

IV. SOME ASYMPTOTIC FORMULAS

Let us list some of the asymptotic results for the stud
MCT model, which will be needed below in Sec. V. The
results are obtained by straightforward specialization of
general formulas discussed in Ref.@27#. We will focus on the
b-relaxation regime forT>Tc , with hopping effects ne-
glected. A comprehensive discussion of the asymptotic
sults can be found in Ref.@13#.

From the full MCT Eqs.~1!, a leading-order expansion i
Ausu gives rise to the asymptotic predictions for th
intermediate-time window of theb relaxation. A central re-
sult is the factorization theorem,fq(t)2 f q

c5hqG(t), where
the so-calledb correlator G(t) is independent ofq. This
result still holds, in the generic case, for the tagged-part
density-fluctuation correlator or the correlator dealing w
light scattering or dielectric response:fA

s (t)5 f A
s,c1hA

s G(t),
with the sameG(t) as above. The Fourier-cosine transfor
of G(t) is called theb spectrumG9(v). One gets for the
normalized susceptibility spectra

xx9~v!5vfx9~v!5hxx9~v!, ~9!

wherex9(v)5vG9(v) is called theb-susceptibility spec-
trum. Here, the indexx denotes either the wave-vector mod
lus q, or x5(s,A). The functionG depends ont/t0 , s, andd
only: it is uniquely determined by the exponent parametel
as the solution of the equation

s2dt1l@G~ t !#25
d

dtE0

t

G~ t2t8!G~ t8!dt8, ~10!

to be solved with the initial conditionG(t→0)5(t/t0)2a.
The so-called hopping parameterd has to be calculated from
Dq , and for the studied model it reads

d5D f c2/~12 f c!. ~11!
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In this context, the numbersDA
s only enter as corrections to

scaling.
The plateau valuesf x

c , and the critical amplitudeshx can
be calculated from the mode-coupling functionals. In t
case of the schematic model studied, the values for the
correlator are given byl

f c512l, h5~12 f c!. ~12!

The relation between the exponent parameterl and the
a-peak strengthf c is one of the nongeneric features of th
model. For the second correlator, the plateau value and c
cal amplitude read

f A
s,c512

1

vA
s f c

, hA
s 5

12 f c

vA
s f c2

. ~13!

ChangingvA
s , thea-peak strengthf A

s,c can be varied. Again,
these equations establish a nongeneric relation between
f A

s,c and thehA
s . In our fits to the neutron-scattering data, aq

dependence off ns
s,c andhns

s can arise only through aq depen-
dence of thevns

s .
From Eq.~10! one identifies for the cased50 the time

scale for theb relaxation:ts5t0usu21/2a. Going over to re-
scaled times,t̂5t/ts , and rescaled frequencies,v̂5vts ,
one gets from Eq.~9! the scaling law for theb-susceptibility
spectra

xx9~v!5hxcsx̂~v̂ !, ~14!

wherecs5Ausu. The master spectrumx̂ is s-independent. It
is fixed through the exponent parameterl, and thus through
the static structure alone. For large rescaled frequenciev̂
@1, one obtains the critical-power-law spectrum. This e
tends to all frequencies ass→0:

xx9~v!5hx•sin~pa/2!G~12a!~vt0!a, T5Tc . ~15!

For small rescaled frequencies, one gets the v
Schweidler-law fors,0, x̂(v̂!1)}1/v̂b, and thusx̂ ex-
hibits a minimum at some frequencyv̂min with x̂min

5x̂(v̂min). Due to the scaling law, Eq.~14!, the variation of
the spectral minima with temperature is, in the asympto
region, given by

vmin5v̂min /ts , xmin5x̂min•cs , s,0. ~16!

The point (v̂min ,x̂min) is completely fixed byl, and for l

50.75 one gets:v̂min51.733,x̂min51.221.
On the glass side,s.0, the idealized theory yields for th

b correlator for large rescaled times a constant,G( t̂@1)
51/A12l. Thus the signature of the MCT-fold bifurcatio
are ATc2T anomalies of the nonergodicity parametersf x
5fx(t→`)

f x~T!5 f x
c1hxAs/~12l!, T,Tc . ~17!
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If the correlators deal with density fluctuations or tagge
particle densities, the quantityf x is the Debye-Waller factor
or Lamb-Mößbauer factor, respectively. Fors,0, corre-
sponding toT.Tc , the long-time limits of the correlator
vanish, as is the case forT,Tc but dÞ0. But if s andd are
sufficiently small, the correlators still exhibit plateaus f
times exceeding the transient scalet0 before the decay to
wards zero sets in. The heights of these plateaus are
given by f x for T,Tc , and by f x

c for T.Tc , then called
effective nonergodicity parameters. The decay from the p
teau is thea process, and thus the strength of thea peak in
the susceptibility spectra is given byf x . This also corre-
sponds to the height of the relaxation step exhibited by
real part of the susceptibility, when the frequency is shif
through thea-peak window.

The preceding Eqs.~9!–~17! establish universality fea
tures of MCT. They provide the basis of a general expla
tion of the glassy MCT dynamics by means of features of
spectra not depending on the specific microscopic prope
of a given system.

V. SCALING LAW ANALYSIS

In this section it shall be studied how well the abo
calculated MCT solutions can be described by the MC
b-relaxation-scaling laws summarized in the preceding s
tion. It has been demonstrated earlier@13,14#, that the range
of validity of these equations can be analyzed by evalua
the next-to-leading-order corrections. Here, we will study
combined effect of all corrections due to structural relaxat
as well as due to vibrational-transient-dynamics effects. O
the solutions referring to the parameter sets used in Fig
and 2 will be discussed. Thus the following analysis refers
control parameters and dynamical windows representa
for state-of-the-art experimental studies of the evolution
glassy dynamics.

A. The critical decay

Solving the equations of motion forT5Tc , D50, and
Ds50 for times up to 1015 ps, the critical power law, Eq
~2!, was identified. The common time scale was determi
to t050.035 ps. The leading-order resultf̂x(t)5(t/t0)2a,
where f̂x(t)5@fx(t)2 f x

c#/hx , is shown in the double-
logarithmic representation of Fig. 9 by straight dash-dot
lines with slope2a. For the two temperatures closest toTc ,
the full lines in this diagram exhibit the solutionsf̂x(t).
Dashed lines demonstrate the correspondingb correlators
G(t), determined from Eqs.~8!, ~10!, and~11!. The approach
of the first correlatorf(t) towards the plateauf c is well
described by the scaling law forT5180 and 190 K. ForT
5180 K the critical power law is exhibited within
1.5-decade time window for times exceedingtc with tc /t0
'300, while for t,tc the vibrational transient dynamic
masks the structural relaxation. In this case, the validity
the critical power law for larger times is restricted by t
onset of hopping effects. Hopping plays no significant r
for the b relaxation of T5190 K ~compare Fig. 7!. But
there, the deviations ofG(t) from the short-time limit
(t/t0)2a set in already fort,tc . Thus this power law canno
be identified anymore for distance parameters«5(Tc
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2T)/Tc with u«u*0.06. This scenario is in semiquantitativ
agreement with the one discussed in Ref.@29# for the density
correlators of a hard-sphere system. Let us reiterate tha
correlator f(t) drives the glass transition for the studie
model, but that it is not the quantity measured.

The two lower sets of curves in Fig. 9 show that t
decrease off ls

s (t) andfde
s (t) towards their plateausf ls

s,c and
f de

s,c , respectively is described qualitatively by the dash
lines, i.e., by the scaling laws. However, there are rema
able quantitative deviations between the solutionsf̂A

s (t) and
their asymptotic formG(t). These appear as if the amplitud
experiences some offset. The reason is that the transien
namics influences the correlatorsfA

s (t) also for times which
exceedtc by up to two orders of magnitude. This means th
the dynamics of the two probing variables is strongly infl
enced by oscillations within that window, where the drivin
correlatorf(t) exhibits thet2a law. Therefore, the powe
law f̂A

s (t)5(t/t0)2a cannot be identified accurately in th
curves shown forA5 ls andA5de. This is also demonstrate
by the straight dash-dotted line in the upper panel of Fig
which represents the asymptotic low-frequenc
susceptibility spectrum at the critical point, Eq.~15!.

Within the 1.5-decade window, where the logf̂-versus-
log(t/t0) curve for 180 K in Fig. 9 demonstrates the critica
decay asymptote, the graphs of logf̂ls

s and logf̂de
s versus

log(t/t0) for 180 and 183 K, respectively, also appear
nearly straight lines, so that they can be described very w
in this window by some effective power law. One thus e
pects an effective power-law spectrum, which is describ
by Eq. ~15!, but with a and hA replaced by someaeff and
hA

eff , respectively. This phenomenon also was observed
the susceptibility spectra of the hard-sphere system@29#. For
the light-scattering result, one infersaeff,a and hls

eff,hls
s .

The dotted line in the upper panel of Fig. 1 corroborates t
conclusion. It exhibits the solution for the model evaluat
for T5Tc with hopping effects ignored. This line can b
fitted well between 1025 and 1023 THz by an effective

FIG. 9. The full lines showf̂x(t)5„fx(t)2 f x
c
…/hx for times

where f̂x(t).0. The dash-dotted straight lines exhibit (t/t0)2a,
with t050.035 ps anda50.30. The dashed lines show th
b-correlatorsG(t) for the indicated temperatures~see text!. The
uppermost set of curves refers to the first correlator of the schem
model. The other two sets refer to the light-scattering and the
electric response studied in Fig. 1. The sets are shifted verticall
one~light scattering!, respectively two~dielectric response! decades
for clarity.
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4142 PRE 61W. GÖTZE AND TH. VOIGTMANN
power-law following Eq.~15! with aeff/a'0.92 andheff/h
'0.7. The crossover from this effective power law to t
asymptotic critical law, Eq.~15!, occurs only at frequencie
around 1 MHz.

B. The nonergodicity-parameter anomaly

Figure 10 shows effective nonergodicity parameters of
three correlators underlying the curves in Fig. 1, which w
determined from the plateau heights of thefx(t)-versus-logt
diagrams. The crosses in the lower panel show the va
deduced in Ref.@6# from the step size of the measured re
part of the dielectric function, divided by the value of«0
assumed in the fit to the susceptibility spectra. Figures 1
8 demonstrate that the present model describes the diele
function of PC reasonably, and so it is not surprising that
calculated values~dots! reproduce the measured on
~crosses! reasonably well. The discrepancies between d
and crosses are anticipated to be mainly due to difficultie
determining the step size accurately in the experiment, wh
one carefully has to eliminate contributions from theb re-
laxation.

Full lines in Fig. 10 exhibit the asymptotic laws, i.e., th
values f x from Eq. ~17! for T,Tc and the constantf x

c for
T>Tc . Figure 10~a! demonstrates that the 60% variation
the effective nonergodicity parameterf of the first correlator
is described well by the asymptotic formula. This holds
temperatures down toTg . On the other hand, the results fo
the light scattering and for the dielectric response do
exhibit the asymptotic behavior; there is no evidence for
ATc2T anomaly at all to be noticed in the data. There a
two reasons for this finding. The obvious one reflects
large size off A

s,c , i.e., it results from the observation that th
a peaks of the susceptibility dominate over the remain

FIG. 10. Effective nonergodicity parameters determined fr
the calculatedfx-versus-logt curves for the spectra shown in Fig
1: f (T) for the first correlatorf(t) ~open circles!, andf A

s (T) for the
correlatorsf ls

s (t) and fde
s (t) ~filled squares and circles, respe

tively!. The solid lines exhibit the leading-order-asymptotic la
for f x from Eq. ~17! for T<Tc and f x

c for T>Tc . The vertical
dashed line indicates the crossover temperatureTc5180 K. The
crosses in the lowest panel are estimations off de

s obtained in Ref.
@6# by fitting the measured«8(v) data with a Cole-Davidson func
tion. The dashed lines through the solid symbols connect the va
calculated from Eq.~18b! ~see text for details!.
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susceptibility spectrum~compare Fig. 1!. Equation~17! for
the probing-variable correlator is equivalent to

~12 f A
s !5~12 f A

s,c!2hA
sAs/~12l!. ~18a!

Since (12 f A
s ) andhA

s are positive and (12 f A
s,c) is less than

0.1 for the two correlators discussed, the wholeATc2T ef-
fect is below 10%. Therefore it is difficult to separate t
ATc2T anomaly from the scatter of the data. The less ob
ous reason results from the smooth but appreciable temp
ture drift found for the coupling coefficientvA

s ~compare Fig.
4!. This coupling determines the nonergodicity parameter
the second correlator of the schematic model in terms of
parameterf: (12 f A

s )51/(vA
s f ). The square-root singularity

is due to that inf, and expanding (1/f ) one reproduces Eq
~18a!, but with effective terms

~12 f A
s,c!eff5RA~12 f A

s,c!, hA
eff5RAhA

s ,

RA~T!5vA
s,c/vA

s ~T!. ~18b!

Replacing the renormalization coefficientRA(T) by its value
at the critical point,RA

c 51, one reproduces the leading-ord
result, Eq.~17!. However, within the temperature interva
considered, the smooth drift of (12 f A

s,c)eff overwhelms the
small variation of theATc2T term. This is demonstrated in
Figs. 10~b! and 10~c! by the dashed lines. The numerical
found circles are well described by this line. One conclud
that the drifting coupling coefficientvA

s (T) is responsible for
the deviations from the leading-order asymptotics. Unfor
nately, thevA

s (T) are not available directly from experi
ments.

C. Scaling of theb-relaxation minima

Figure 11 shows the susceptibility master spectrumx̂ for
l50.75 andd50 as dashed curves. The upper set of so
lines in this figure are the spectra of the first correlator
scaled, according to Eq.~14!, as vf9(v)/(Ausuh).
Asymptotic validity of scaling is demonstrated: the windo
of rescaled frequenciesv̂5vts , for which the rescaled
spectra are close to the master spectrumx̂, expands with
decreasing (T2Tc). Convincing agreement betweenx̂ and
the 180 K result can be found as long as hopping effects
ignored. For higher temperatures, whereu«u5uT2Tcu/Tc
>0.06, strong deviations are found. TheT5210 K spec-
trum, for which u«u50.17, does not even show a minimum
The demonstrated deviations from the scaling laws are s
lar to what was explained in Ref.@13# for the MCT solutions
for the hard-sphere system.

Preasymptotic-correction effects for the variables d
cussed for PC in Figs. 1 and 2 differ from those for t
auxiliary correlatorf. This is demonstrated in the lower pa
of Fig. 11 for «520.17. Deviations of the rescaled spect
xA9 (v)/(AshA) from the master spectrumx̂(vts) are larger
for the dielectric loss than for the light scattering, and t
latter are larger than those for the neutron-scattering res
While the predicted probe independence ofxA9 (v)/hA holds
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rather well for v,vmin , deviations from the factorization
theorem are observed mainly for higher frequencies. As
cussed above in connection with Eq.~18a!, the large size of
f A

s,c leaves only a 10% decay of the correlator from the init
value unity to the plateau, and this decay is influenced
vibrational motion. This leads to the strong disturbances
the susceptibility spectra forv.vmin . For the neutron-
scattering data for intermediate wave vectors, this problem
not so severe, since the critical Lamb-Mo¨ßbauer factorf q

c

decreases with increasingq. Therefore, the shape of the su
ceptibility minimum, which is exhibited by the two neutron
scattering results shown in Fig. 11, is closer to the one of
master spectrum.

The q dependence of the critical amplitudehq
s for the

incoherent-neutron-scattering spectra has been measure
byproduct of the test of the factorization theorem,fq

s9(v)
}hq

sx9(v)/v. A linear law, hq
s}q, was found within the

studied wave-vector interval@10#. Such a strictly linear law
is not compatible with the microscopic MCT, which predic
that thehq-versus-q graph exhibits a broad asymmetric pe
near the positionqmax of the first sharp diffraction peak o
the structure factor. For smallq, the critical amplitude in-
creases regularly ashq}q21O(q4) @14#, and thushq exhib-
its an inflection point for someq,qmax. Whether the found
linear q dependence of the experimental values is due
multiple-scattering effects, is not clear@10#. Our schematic-
model fit, however, suggests that, even ifhq

s can be approxi-
mated by a linear law, theq-dependence is not strictly linea
but rather given by some intermediate crossover around
inflection point. Equation~13! relateshq

s to the inverse ofvq
s ;

thus a strictly linear law forhq
s would imply vq

s}1/q. Such
result is added as a dash-dotted line in Fig. 4~b!, and it shows
that this is not consistent with our data analysis. An ad-h
expression, reflecting the crossover from the small-q asymp-
tote through the inflection point ishq

s}q2/@11(q/q!)#. The

FIG. 11. The upper part of the figure~scale on right axis! shows
the rescaled susceptibility spectra for four temperatures for the
correlator of the schematic model,vf9(v)/hAusu, as a function of

v̂5vts . Hopping terms have been set to zero. The lower p

~scale on the left axis! shows thevfA
s 9(v)/hAAusu-versus-v̂

curves forT5210 K for the light-scattering~line with squares! and
neutron-scattering correlators atq51.0 andq51.1 Å21 ~lines!,
and forT5213 K for the dielectric correlators~line with circles!.
The dashed lines indicate the master spectrum forl50.75 with the

minimum position (v̂min ,x̂min) marked by a diamond.
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resulting expression forvq
s is added in Fig. 4~b! as dashed

lines for two temperatures, and it provides a reasonable
terpolation of the found fit parameters. One would need m
surements for wave vectors of the order of 0.2 Å21 and less,
in order to test for the small-q2 behavior predicted by the
microscopic MCT.

There is a most bothersome preasymptotic-correction
fect, which can be seen in the lower part of Fig. 11: t
positionsvmints of the susceptibility minima are not ident
cal; and they are all larger than the asymptotic valuev̂min ,
which is shown by a diamond. Since the bands of mic
scopic excitations of the correlator spectrafs

A9 (v) are lo-
cated at much lower frequencies than that of the spect
f9(v), the spectra of the test variables cross over
quickly to the transient to be able to develop the univer
relaxation pattern forv.vmin . As a result,vmin gets an
offset to larger frequencies. Figure 12 exhibits this result a
rectification diagram. The asymptotic result is shown a
full straight line: vmin

2a 5(v̂min /t0)
2ausu5Ĉ(T2Tc) with the

constantĈ5(v̂min /t0)
2a
•C/Tc'0.004. The positions of the

observed minima can still be interpolated reasonably
straight lines, shown in dashed. However, the slopes of
dashed lines differ from those of the asymptotic line. In
clear violation of the asymptotic factorization theorem, t
lines for different probing variables are different. The line
interpolations lead to intersections with the abscissa, wh
differ somewhat from the correct value ofTc . For the
neutron-scattering data, this interpolation has been omitte
Fig. 12, since the error bars obtained byq averaging do not
allow for a well-determined estimate here.

There is also a strong temperature-dependent offset o
amplitude scale relative to the scaling-law prediction. This
demonstrated in Fig. 13 for the light-scattering spectra.
four rescaled minimaxmin /Ashls are far belowx̂min , which

st

rt

FIG. 12. Rectification diagram for the minimum positionsvmin

of the dielectric-loss ~circles!, light-scattering ~squares!, and
neutron-scattering~triangles! fit. The neutron-scattering data hav
been averaged over the investigatedq range, and error bars indicat
the smallest and highest values. The vertical dashed line marks
critical pointTc . The solid line is the asymptotic-formula result fo
the minimum positions calculated from theb-relaxation-scaling law
for the fit parameters of the model used in Figs. 1 and 2. The das
lines show the linear interpolation through the data points, restric
to the regime 190 K<T<250 K, for the dielectric-loss and for the
light-scattering data, respectively.
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4144 PRE 61W. GÖTZE AND TH. VOIGTMANN
is indicated by a diamond. Moreover, with decreasingT
2Tc), the discrepancy between rescaled curves and expe
asymptote does not decrease, rather it increases. Such b
ior is not anticipated from the leading-order corrections
the scaling laws@13,14#, but it can be explained as a highe
order effect because of the important role played by the t
perature dependence of the coupling coefficientvA

s . This
drift can be eliminated by introducing an effective amplitu
hls

eff , as discussed above in connection with Eq.~18b!. The
result is given by the upper set of curves in Fig. 13. Inde
the discrepancies between asymptotics and rescaled cu
are reduced, and they now decrease with decreasingT
2Tc). But even forT5190 K, i.e., foru«u50.06, there is a
considerable offset of the minimum intensity from the sc
ing result. The 180 K curve demonstrates the approach
wards the asymptotic limit, would hopping be absent. Th
still is a clear deviation between rescaled spectrum
scaling-law result, which increases with increasingv for v
.vmin . But the sign and size of this effect are similar
what was found for the hard-sphere system for wave vec
yielding a plateauf q

c as large asf ls
c @13#.

D. Summary of the scaling-law analysis

It is, of course, more satisfactory to interpret data
glassy dynamics with the set of universal formulas provid
by MCT for the asymptotic dynamics near a glass-transit
singularity than to explain experimental findings within sch
matic models. The more probing variablesA are taken into
account, the more convincing such an analysis is, since
universal results also imply connections between spe
measured for differentA. The preceding work on PC@1,4–
6,10# exemplifies these statements. However, the data
influenced by preasymptotic effects, and one cannot ju
the relevance of these correction effects, if one does
know the underlying microscopic MCT equations. Forci
data into the universal formulas can thus lead to s

FIG. 13. Scaling-law analysis of the MCT solutions shown
Fig. 1 for the fit of the light-scattering spectra. The lower set
curves shows the rescaled spectrax ls9 (v)/hlsAusu for T5220, 210,
200, 190 K~from top to bottom!. The upper set of curves shows th
same spectra, but now rescaled withhls replaced by the effective
amplitudehls

eff from Eq. ~18b!. Notice that the order of the rescale

spectra is now inverted. The asymptotic resultx̂ is plotted as a
dashed line with the minimum position marked by a diamond. T
result forT5180 K with hopping effects ignored is added to dem
onstrate the approach towards the scaling limit.
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contradicting results, as the preceding subsections have d
onstrated. While the spectral shapes are rather robust an
rectification diagram for the scales appears correct and le
to a reasonable estimation ofTc , as shown by the dashe
lines in Fig. 12, the prefactors for the asymptotic formu
extracted from the data can be quite wrong. This error can
be noticed if one studies a single probing variableA only, but
it appears as a violation of the factorization theorem if o
compares spectra for differentA. One concludes that the
problems with the analysis discussed in Ref.@10# are neither
due to inadequate application of MCT results nor due
failures of MCT. Rather they reflect the properties of MC
more precisely, they exemplify the limitations for the app
cation of asymptotic laws.

A general rule @13,14# for the test of the
b-relaxation-scaling law is corroborated by the pres
analysis: if the nonergodicity parameterf A

c is large, i.e., if the
a-peak strength is large compared to the strength of
microscopic-excitation peak of the susceptibility spectru
the preasymptotic corrections are very important. This is
pecially true for the discussed light-scattering and dielect
loss spectra. Neutron-scattering spectroscopy has the ad
tage thatf q

c can be shifted by changing the wave vectorq.
Therefore, we found the scaling-law analysis to work best
the neutron-scattering data of Ref.@10#. It would be very
informative to corroborate this finding by a measurement
the expectedATc2T anomaly of the Debye-Waller o
Lamb-Mößbauer factor.

VI. THE DIELECTRIC MODULUS

Since the memory kernelmq
s(t) in the mode-coupling ap-

proach is expressed as a polynomial of the density corr
tors, Eq.~1c!, this quantity shows the same asymptotic sc
nario as the correlators themselves. From the factoriza
theorem for the correlators one concludes in leading or
for the kernels:mA

s (t)5 f M ,A
s,c 1hM ,A

s G(t). Equations~5b!,
~12!, and ~13! determine the plateauf M ,A

s,c and the critical
amplitudehM ,A

s for the memory kernel of probing variableA:

f M ,A
s,c 5vA

s f cf A
s,c ,

~19!

hM ,A
s 5vA

s ~ f chA
s 1 f A

s,ch!5vA
s h.

While in the above discussionf A
s,c was found to be larger

than 90%, such that the square-root singularity is suppres
to a below-10% effect, the situation for the memory kerne
different. The coupling coefficientvA

s now plays the role of a
normalization constant. If one introduces the normaliz
memory kernel in analogy to the normalized correlato
fx(t), m̂A

s (t)5mA
s (t)/vA

s , such thatm̂A
s (t→0)51, one gets

for the normalized plateau:

f̂ M ,A
s,c 5 f cf A

s,c . ~20!

In cases wheref A
s,c is close to unity, like in our analysis o

the dielectric-loss and light-scattering data, one can appr
matem̂A

s (t). f c1hG(t). This equals the asymptotic expre
sion for the first correlator. Thus, we can expectb scaling for

f

e
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the memory kernel of the probe-variableA to work equally
well as for the first correlator and thus better than for
corresponding probe-variable correlator. Let us examine
in detail for the memory kernel offde

s underlying the fit to
the dielectric-susceptibility spectra. For the light-scatter
data, qualitatively the the same picture arises.

In the upper part of Fig. 14, three spectra of the mem
kernels for the dielectric function, rescaled
2vmde9 (v)/Ausu, are plotted as solid lines for three tem
peratures aboveTc . The asymptoticb-susceptibility spec-
trum for l50.75 is again shown as a dashed line. While
picture shows some similarity to the situation found in t
upper part of Fig. 13 for the light-scattering susceptibilitie
the reason for the deviations from the scaling law are diff
ent. This can be inferred from the lower part of Fig. 1
where the same scaling is shown for the normalized mem
functions. Here, the solid lines represent2vm̂de9 (v)/Ausuh.
One notices that thea-peak strength is remarkably small
than in the dielectric susceptibility, and comparable to t
for the first correlator of the model. Similarly, we find th
standard scenario for the approach of the rescaled spect
the master curve. The deviations from the asymptotics
qualitatively the same as exhibited in the upper part of F
11 for vf(v). Thus, one concludes: the deviations fro
scaling seen in the upper part of Fig. 14 are mainly due to
T-dependent normalizationvA

s , and not, as in the case dis
cussed in connection with Fig. 13, due to microscopic cro
over effects.

The question of normalization becomes even clearer
the effective nonergodicity parameters. Figure 15~a! shows
the unnormalized valuesf M ,de

s as open circles. The full line
exhibits the asymptotic prediction f M ,de

s 5 f M ,de
s,c

1hM ,de
s As/(12l) for T,Tc and f M ,de

s 5 f M ,de
s,c for T>Tc .

Again, the drifting coupling coefficientvde
s is responsible for

masking the predicted square-root law. But, unlike in F
10, this is only true for the unnormalized quantity. The n

FIG. 14. Scaling-law analysis of the spectra for the mem
kernel from the MCT solutions shown in Fig. 1 to interpret t
dielectric function. The upper set of solid curves shows the unn
malized rescaled spectra,2vmde9 (v)/Ausu, for temperaturesT
5193, 203, 213 K. In the lower part of the figure, the scaling

shown for the normalized rescaled spectra2vm̂de9 (v)/Ausu ~see
text for details!. The dashed lines are the master spectra, with
minimum positions marked by diamonds.
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malized functionf̂ M ,de
s , shown as filled circles in Fig. 15~b!,

exhibits good agreement with the asymptotic law. As for t
values discussed for the tagged-particle density correlat
the drift of vde

s still results in a temperature dependence

f̂ M ,de
s for T.Tc , but this drift is now reduced to a 10%

effect. The asymptotic value off̂ M ,de
s,c differs only about 5%

from the one for the first correlator,f c, which is shown as a
dash-dotted line in Fig. 15~b!. It is remarkable, that even fo
the unnormalized quantity the position ofTc can be esti-
mated better than it could be done for the plateau value
the tagged-particle density correlators. This can be done
noticing that the slope of a linear interpolation of the da
changes when going over fromT,Tc to T.Tc .

From the MCT Eq.~1! with the hopping kernel set to
zero, one derives the expression for the dynamic suscept
ity, Eq. ~7!, in terms of the memory kernelmA

s (z),

xA~z!52VA
s 2xA /@z22VA

s 21zMA
reg~z!1VA

s 2zmA
s ~z!#.

~21!

Let us define a dynamical susceptibilityxM ,de(z) corre-
sponding to the kernelmde

s (t) in analogy to Eq.~7!:

xM ,de~z!5zmde
s ~z!1mde,0

s , ~22!

with mde,0
s 5mde

s (t50). Then one can write for the dielectri
function «(z)5«`14pxde(z)

«~z!2«`5
24pxde

~z/Vde
s !2212mde,0

s 1@ iznde
s /Vde

s 21xM ,de~z!#
.

~23a!

The inverse of the dielectric function, 1/«(z), is occasionally
considered as the dielectric modulus@30#. The exact Mori-
Zwanzig representation, Eq.~21!, suggests to rather conside
@«(z)2«`#21, i.e., xde

21(z). This function consists of a qua

y

r-

e

FIG. 15. ~a! Unnormalized nonergodicity parametersf M ,de
s for

the memory kernel from the fit to the dielectric spectra~open
circles!. The asymptotic prediction is plotted as a solid line, t
vertical dashed line indicatesTc . ~b! Same as in~a!, but normalized

valuesf̂ M ,de
s ~filled circles!. The dash-dotted line indicates the crit

cal plateau value for the first correlator of the schematic model,f c.
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dratic polynomial in the frequency, (z/Vde
s )2212mde,0

s , a
white-noise background,iznde

s , and a nontrivial part
xM ,de(z). The latter has all the standard properties of a s
ceptibility, in particular it obeys Kramers-Kronig relation
There is the trivial relation between the spectrumxM ,de9 (v)
and the dielectric function

Im†@ «̂2«~v!#21
‡5

1

4pxde
•@v~nde

s /Vde
s 2!1xM ,de9 ~v!#.

~23b!

Here,«` was replaced by the constant«̂, discussed above in
connection with the fit of«8(v).

The full lines in Fig. 16 exhibit the right-hand side of E
~23b!, evaluated with the model parameters used for the
terpretation of the dielectric-loss spectra in Fig. 1. The sy
bols exhibit the left-hand side of Eq.~23b! calculated with
the data from Ref.@6# and «̂ determined in connection with
the fits of«8(v) in Fig. 8. Figure 16 shows that the fit is o
equal quality as the ones shown for the direct analysis of
dielectric loss spectra. However, to produce the result in F
16, one has to be careful to subtract the right value of«̂. The
error bars shown in the figure forT5253 K indicate the
influence of subtracting«̂61 instead of«̂ to estimate the
uncertainty introduced by this procedure. One notices
the shape of the curves for the high-frequency part is in
enced. Thus, an analysis based on@ «̂2«(v)#21 is only prac-
ticable, if one can avoid these problems of the invers
procedure. Up to trivial terms, the left-hand side of Eq.~23b!
is identical with the spectrumvmde9 (v) discussed in Fig. 14
This quantity can be explained well by th

FIG. 16. The lines show the dielectric-modulus spectra defi
by the right-hand side of Eq.~23b!. The circles exhibit Im†@ «̂
2«(v)#21

‡ calculated from the dielectric-function data of Ref.@6#.
The curves and the data sets have been shifted vertically to a
overlapping; temperatures and shift factors are~183 K, 1!, ~193 K,
0.316!, ~203 K, 0.1!, ~213 K, 0.0316!, ~223 K, 0.01!, ~233 K,
0.00316!, ~253 K, 0.001!. For the highest temperature, an estim
tion of the uncertainty introduced by inverting the experimen
data is given as error bars; see text for details.
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b-relaxation-scaling laws. Thus, for PC, the corrections
the asymptotic laws are smaller for„@«(v)2 «̂ #21

…9 than for
«9(v). In particular it is shown by Fig. 15 that the squar
root singularity can be identified from a discussion
xM ,de(v).

VII. CONCLUSION

It was exemplified for propylene carbonate as a typi
glass-forming van-der-Waals system, that the susceptib
spectra measured by three different experimental techniq
can be described well by a schematic MCT model. Seve
decades of intensity change in the GHz frequency window
seen in light-scattering and dielectric-loss experiments wit
sensitive temperature dependence typical for glass-form
liquids are fitted. Also, the results from incoherent neutr
scattering, probing the dynamics for different wave vect
could be included in this simultaneous fit. Real-part d
from the dielectric experiment have been successfully a
lyzed as well to further corroborate the consistency of
schematic-model fit. For temperatures ranging from the c
cal valueTc'180 K to well above the melting point, th
range of applicability of the model includes botha- and
b-relaxation windows, as well as the crossover to the mic
scopic spectrum. BelowTc and down to the glass-transitio
temperatureTg , a rather simple approach to account for ho
ping phenomena improves the fit for theb-minimum regime,
but fails to describe thea peak belowTc .

The schematic model used in the fit captures the gen
features of the glass-transition scenario predicted by the
microscopic theory. Still, it allows to go further than a
analysis based on the asymptotic predictions of MCT on
In particular, we have used the schematic model to inve
gate which features of the measured spectra can be desc
by asymptotic laws, and where preasymptotic corrections
in. We find that the asymptotic formulas qualitatively give
adequate description of the data. Thereby the preceding s
ies @1,3–7,10# are corroborated. But we demonstrated al
that preasymptotic-correction effects cause important qua
tative differences between the data and the scaling-law
sults. One aspect of this is theT drift of the critical amplitude
hls

s noted in an earlier analysis of PC light-scattering data@1#.
The drift of the coupling constantv ls

s is not sufficient to
explain this, as was demonstrated in Figs. 9 and 13. Also,
crossover to the microscopic excitations influences the he
of the spectra at theb minimum. For the measurements an
lyzed, scaling works best with the neutron-scattering da
due to the relatively low-plateau valuesf q

s,c . An asymptotic
analysis of the dielectric modulus could even work better
this respect. But due to uncertainties in the inversion of
dielectric function, such analysis is not practicable unless
modulus itself is measured directly.
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