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Universal and nonuniversal features of glassy relaxation in propylene carbonate
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It is demonstrated that the susceptibility spectra of supercooled propylene carbonate as measured by
depolarized-light scattering, dielectric-loss, and incoherent quasielastic neutron-scattering spectroscopy within
the GHz window are simultaneously described by the solutions of a two-component schematic model of the
mode-coupling theory(MCT) for the evolution of glassy dynamics. It is shown that the universal
B-relaxation-scaling laws, dealing with the asymptotic behavior of the MCT solutions, describe the qualitative
features of the calculated spectra. But the nonuniversal corrections to the scaling laws render it impossible to
achieve a complete quantitative description using only the leading-order-asymptotic results.

PACS numbd(s): 64.70.Pf, 61.20.Lc

[. INTRODUCTION dielectric-loss spectra determined within the GHz window
[4-6] have also been analyzed with the MCT-scaling-law

In this paper the evolution of structural relaxation as ob-formulas using parametefB. and A consistent within the
served upon cooling the van-der-Waals liquid propylene carexperimental uncertainties with the values cited above. The
bonate (PC) from above the melting temperaturel,(  critical temperature for PC has first been determined o
=218 K) to the glass-transition temperaturg,€ 160 K) ~180 K [7] by interpreting thea-relaxation time for den-
will be analyzed. It will be shown that the spectra, as measity fluctuations measured by neutron-scattering spectros-
sured within the four-decade frequency window belowcopy with the MCT-power-law prediction for this quantity.
800 GHz by depolarized-light scattering, by dielectric-loss,A similar analysis of the viscositll,7] suggests a value of
and by neutron-scattering spectroscopy can be quantitativel/. near 190 K. The effective Debye-Waller factor for the
described by the solutions of a two-component schematielastic modulus has been measured for PC by Brillouin-
model of the mode-coupling theofICT), where the drift scattering spectroscopyd]. Interpreting this quantity with
of the various spectral features over several orders of maghe asymptotic formula of the idealized MCT, a critical tem-
nitude due to temperature changes can be fitted by smootterature considerably higher than 190 K has been sug-
variations of the model parameters. The results of the datgested. However, since the data interpretation is not compel-
fits will be used to demonstrate in detail which features caring [1], this finding cannot be considered to be a falsification
be explained by the univers@-relaxation-scaling laws of of the T.~187 K result. Thus one could conclude, that MCT
the asymptotic MCT-bifurcation dynamics, and which aredescribes some essential features of the glassy dynamics of
caused by either preasymptotic corrections to this scaling dPC qualitatively correct, a statement which also holds for a
by crossover phenomena to microscopic oscillatory motion.series of other glass-forming systefi$g.

Glassy PC spectra within the full GHz window have first  In order to arrive at a more stringent assessment of MCT,
been studied by Duetal. [1] using depolarized-light- Wouttkeet al.[10] have re-examined the above cited PC data
scattering spectroscopy. It was shown that the data can Her T>T.. In addition, they have studied incoherent-
interpreted with the universal laws predicted by MCT. In its neutron-scattering spect&q,») for a two-decade window
basic version, which is also referred to as the idealized MCTin frequencyw and for wave vectors) between 0.7 and
this theory implies an ideal liquid-glass transition at a char2.3 A~1. The data exhibited the predicted factorization in a
acteristic temperaturg . In an extended versiofi, marksa  g-dependent butw-independent amplitudeh,, and a
crossover from the high-temperature regime, where the dyg-independent term describing the frequency and tempera-
namics is dominated by nonlinear-interaction effects beture variation:S(q,w)>hqx"(w)/ . The susceptibility spec-
tween density fluctuations, to a low-temperature regimetrum y”(w) showed the subtle dependence@rand on {T
where the dynamics deals with activated-hopping transport-T.) predicted by the MCT-scaling laws for th&process,
in an effectively frozen system. For temperatufesearT,, providedT.~182 K and\~0.72 was chosen. These param-
the MCT equations can be solved by asymptotic expansionsters are marginally compatible with the values found in the
for the so-calleds-relaxation regime. This results in formu- above cited earlier work on PC. The depolarized-light-
las for universal features of the MCT dynamics as reflectedcattering spectra have been remeasured within the
in the appearance of dynamical scaling laws, power-lawg-relaxation window forT>T.. The spectrometer used in
decay processes, and in algebraically diverging time scaleRef. [10] incorporated several improvements over the one
The different anomalous exponents and also thaused in the original studfl], resulting in improved signal-
B-relaxation-master functions are determined by a systemto-noise ratios. Furthermore, the use of a narrow-band inter-
dependent number that is called the exponent parameter ference filter eliminated the possibility of higher-order trans-
[2]. The data analysis of Reffl] suggested .~187 K and mission effects, which have recently been recognized as a
N ~0.78. Relaxation curves measured for PC within the picopotential source of artifactfll1,12. But the new spectra
second window in solvation-dynamics studi¢8] and agree with the old ones within the error bars of the latter. The
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remeasured spectra could be fitted convincingly with the uni- -1

versal asymptotic results using the newly found valuegfor $q(2)= 7 Cu2)’ (1a)
and \. It was shown in addition that also the solvation- a

dynamics result§3] and the dielectric-loss spectid—6] 02

could be fitted within the same frame using the new values Cq(2)=Ngy(2)— 4 5 . (1b)
for T, and\. Actually, the new fit to the dielectric-loss data z+ Mg 2)+ Qgmy(2)

[10] is more convincing than the original ofé—6], since . )
the fit interval expands with decreasing£T,), as re- Here, (), denotes a characteristic frequency given by the

P ; . 2
quested by MCT. The size of thd@ ¢ T,) interval and the tferzmzal velocityv and the static structure fact@,: (g
window for the frequency where leading-order-asymptotic~9 v /Sq- The general current-flow kern€ly(z) describes
results describe the MCT-bifurcation dynamics, depend o en.sny-ﬂuctua_tlon_dec_ay via two parallel channels. Phonon-
the probing variabl¢13,14. It was assumed in Ref10] that aSS|§ted h.ODp'ng.'S given Hy‘.l(z)' The relaxgtlon du_e to
the range of validity of the asymptotic analysis is smaller fornonlmear interactions of density fluctuations is described by

. . . : a force-fluctuation kernel which consists of a sum of a regu-
the dielectric-loss spectra than for the light-scattering Spec; re .
. : ar term MSYz) and a mode-coupling terrmy(z). The
tra. It also had to be anticipated that preasymptotic correc; q 2 =n T .
i tf 35% offset of t laxation-ti former deals with normal-liquid dynamics, and the latter
|on|s c?r:haccou? ora it 0 Odsf N | l%[i?retax;\]lon— m;e thwith the slow motion caused by the cage effect. It is obtained
scale ot the neutron-scatlering data refative to the one Tor g 4 polynomialF, of the density correlatorg(t):
light-scattering data.
To corroborate the cited MCT interpretations of glassy PC Mg(t) = Fo[ dg(D]. (10
spectra, the previous work shall in this paper be extended in
three directions. First, thex-relaxation peaks will be in- The coefficients of the polynomial are non-negative; they are
cluded in the analysis, so that the low-frequency limit for thegiven by the equilibrium structure and hence depend
fit interval can be decreased to 1 GHz or lower. Thereby thémoothly on external control parameters like temperaiure
crossover froma- to B-relaxation and the nonuniversal Systematic studies of the kerndlg(z) andMgY(z) are not
a-peak shapes can be described as well. Second, the crogdilable. The theory shall be simplified by Markov approxi-
over from relaxation to vibrational dynamics will be in- mations of these quantitieM ;4(z) =ivq, Ng(2) =iA. The
cluded in the analysis, so that the high-frequency limit forfriction constants»q=0 and hopping coefficients\ ;=0
the fit interval can be increased by about a factor of fourShall be treated as model parameters, which depend smoothly
Third, an extended form of the MCT instead of the idealized®" T- o o - .
one will be used, so that the spectra for depolarized-light Equation(1) can exhibit bifurcation singularities. Generi-
scattering and dielectric loss fap=1 GHz can be de- cally, if as a single control parameter the temperature is con-
scribed also for temperatures bel@y. The specified goals sidered, the singularity occurs for a critical temperaliyéf

will be achieved by studying the full solutions of an McT &ll hopping coefficients\, vanish. If somed,#0, the sin-
model. gularity is avoided. However, for small, and small|T

The paper is organized as follows: In Sec. I, the basic” ¢l the singularity causes an anomalous dynamics: the

formulas for the schematic model to be used will be summad!assy dynamics studied by MCT. At the singularity the cor-

rized, and theriSec. I1l) the experimental data sets are fitted "€lators do not decay to zero but to a positive vafije

using this model with smoothly drifting parameters. After aWhich is called the plateau. It is approached by an algebraic
short introduction to the necessary equations for the&lecay law, called the critical decay, which is specified by an
asymptotic analysis for the modébec. IV), the B-scaling a@nomalous exponemt 0<a=1/2:

laws are tested against the data in Sec. V. In Sec. VI, it will _ Coan.

be shown that for the studied model a properly defined di- ‘l’q(t)_fg:hq(t/to) HO(t29);

electric modulus is more suited for a description by scaling 2
laws than the dielectric function. Section VII presents some T=Tc, Aq=0.

nclusions. . . - . .
conclusions The quantityh,>0 is called the critical amplitude, and it can

be determined from the mode-coupling functiotig for T
=T.. The time scald is determined by the transient dy-
namics forT=T.. For A;=0 and small but negativeT(

The idealized MCT is based on closed equations of mo-—T), the correlator falls below the platedy according to
tion for the auto-correlation functions of the density fluctua-the von Schweidler lawg(t) — fgoc —tP+ O(t??), character-
tions ¢4(t), which are positive definite functions of tine  ized by a second anomalous exponen@<b<1. FromF,
depending on the wave-vector modutygl5]. The extended for T=T,, one can calculate the above mentioned exponent
MCT also includes couplings of the density correlateggt) parametein, 0<A<1/2, which determines the critical expo-
to the auto-correlation functions for the currefi$]. The nent a and the von Schweidler exponert via I'(1
general equation of motion expresses the density correlator a)?/I'(1—2a)=\A=I'(1+b)%T'(1+2b). In the so-called
in terms of relaxation kernels. It is formulated most transpar-g-relaxation window, implicitly defined bye(t) —fgl<1,
ently with Laplace-transformed quantities. For the latter, theMCT predicts that the dynamics is in leading order con-
conventionF(z) =i [ gexp(zt)F(t)dt with complex frequency trolled by merely two smooth functions @t the separation
z, andF(w)=F'(w)+iF"(w) for z= w+i0 will be used. parameterc and the hopping parameté: The former is

Il. A SCHEMATIC MODE-COUPLING-THEORY MODEL
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determined byF,, and its zero defines the crossover tem-fore one cannot expect it to describe a measured spectrum. In
perature To: o=C(T,—T)/T+O[(T—T.?]. The latter the present paper, the correlatpft) is introduced to mimic
obeysés=0; generically,é vanishes only ifA ;=0 for all . in an overall fashion the combined effect of all structure
The shape of the correlation functions in the asymptotic refluctuations in producing the bifurcation point and the expo-
gime of theB-relaxation window is fully determined by the nent parametex of the system.

exponent parametex; as can be inferred from Refl2] and The dynamics of some probing variabfe coupling to

the original papers cited therein. density fluctuations shall be described by a second correlator,

Testing the relevance of MCT by comparing the leading-to be denotedp;(t). It obeys an equation analogous to Eq.
order results for thgs-relaxation with data is however ham- (3a):
pered by a great difficulty. Without detailled microscopic
calculations one cannot determine the size of the corrections -1
to the asymptotic formulas, and therefore their range of va- Pa(2)= — S . — 7 s .
lidity is not known. In addition, the optimal choice of, ZHI AR QR [z + v+ QR Ma(2)]
fixing the shape of the log’-versus-logw graph is tedious
to decide upon and might well depend on the choice of the fiAgain the microscopic dynamics is quantified by two fre-
interval. The difficulty of fixing\ from a g-relaxation study quencies referred to as microscopic parametéls ,¢'z).
alone was demonstrated recently for the hard-sphere systeTihe activated relaxation processes are describesizhyThe
[17]. A set of density correlatoré,(t) calculated for various mode-coupling functional shall be specified by a coupling to
wave vectors and packing fractions was considered. A fit tqj(t) quantified by a single coupling constarj :
them with the asymptotic predictions for a significantly
wrong A was by a standard fitting procedure not distinguish- Sty _ .S s
able from the correct fits withing tF;/picaI experimentalgwin— MA() =0ad(1) $aD). (5b)
dows.

A different route for data interpretation is based on com-It iS @ peculiarity of this model, that the dynamics of the
parison of the measured spectra with the complete solutionobing variableA is influenced byg(t) but not vice versa.
obtained from schematic MCT models. This procedure wad hus the position of the transition is not modified by the
studied first by Alba-Simionescet al. [18—20. Schematic introduction of the second cgrrelator nor is the value\of
models are truncations of the complete set of @yto a set  1he model was motivated by Sjren[22] for the description
dealing with a small number of correlators only. Thus theOf tagged-particle motion in a glassy environment, and it will
mathematica| Comp|exity Of the prob'em iS reduced Considbe Used here |n the same context f0r the intel’pretation Of the
erably. Alas, the connection of the mode-coupling-functionaineutron-scattering data. The MCT for the reorientational dy-
coefficients with the microscopic structure gets lost; the conamics of a nonspherical probe molecule suggests the same
efficients are to be treated as fit parameters. The main advafchematic model for the dipole and quadrupole relaxation
tage Of th|s approach is that one does not re|y on the app'i_23], an Obsel’vation that motiVateS the application Of the
cability of asymptotic formulas; one is sure that all results onmodel for the description of the dielectric-loss and
crossover phenomena and preasymptotic corrections afiépolarized-light-scattering spectra, respectively. For the
logically consistent with the MCT. incoherent-neutron-scattering cross section the fit will be

The simplest schematic model deals with a single cordone using the model parameters &j(t) different for dif-
relator only, which shall be denoted y(t). The first MCT  ferent wave vectors. For the indéxthe abbreviations Is, de,
equation is equivalent to Eqéla) and (1b) with q indices  and ns for light scattering, dielectric loss, and neutron scat-
dropped tering, respectively, will be used. The specified two-

component schematic model has been used earlier for data
-1 39 interpretation with the restriction th=A3=0. Depolarized-
. > . > - light-scattering spectra within the full GHz band have been
ZHIA= Q% [z4 v+ Q7 m(z)] described for glycerol for all temperatures abolg [24],
For the mode-coupling functional, a quadratic polynomialand for or_tho-terphenyl forf > T [25]._Rufﬂe etal. [26]
that can reproduce all valid values for the exponent paramWere the f|r§t to smultaneogsly describe glagsy Sp?c”a for
eter\ is used[21]: severa_ll probing variable&. Within the_,B-reIaxatlon regime,
they fitted coherent-neutron-scattering spectra for several
m(t)=v1¢>(t)+v2[¢(t)]2. (3b) wave _vectors and also the longitudinal elastic modulus for
N&g sLio.sPOs.
For A=0, ideal liquid-glass transitions occur on a line in the ~ The single coupling constanf, determines all features of
v1-v, plane of coupling constants. One can ust param-  the structural-relaxation part of the second correlator. Thus,
eterize this line of critical coupling constants: the a-peak strengths, widths, and positions are correlated.
These correlations follow the same pattern as found and ex-
v$=(20—1)/A%, v5=1M2% 1/2<\<1. (4) plained for thea peaks of the hard-sphere syst¢h3,14).
Nevertheless, it is not obvious from the beginning, and thus
Thus this model is specified by two control parametergruly remarkable, that such a simple model will be sufficient
(v1,v,), by two frequenciesQ,v) quantifying the transient not only to explain the trends found in the data, but even to
dynamics, and one ratd for the activated transport pro- reproduce structural relaxation for PC quantitatively.
cesses. The model has many nongeneric features, and there-Equation(3a) is equivalent to

(5a)

#(2)=
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H()+(A+v)p(t)+(Q2+A- v)d)(t)—l—QzJ'tm(t—t’)
0
X[p(t")+A- ¢(t')]dt' =0, (6)

to be solved with the initial conditionp(t=0)=1, ¢(t
=0)=—A. This equation, together with E¢3b), is solved
numerically with a similar algorithm as used in the preceding
work for the case\ = 0. Equationg5) are treated in the same
manner, buip(t) has to be used as input for E¢b). From

the result forga(t), a Laplace-transformation yieldsa(z).

The fluctuation-dissipation theorem then determines the dy-
namical susceptibilityya(z) of variableA:

Xa(D) xa=2p(2) + 1. @)

Here, ya*x<A?> is the thermodynamic susceptibility. In
particular, the imaginary part of E¢7) determines the nor-
malized susceptibility spectrunya()/xa=w¢3" (o), the /21 [THz]

guantity of main interest in the following. In our data analy- FIG. 1. Susceptibility spectra for propylene carbon®e, T,

sis, xa enters as an additional fit parameter, which we treat,_ 0" T,=160 K) as measured by depolarized-light-scattering

for the sake of simplicity, as a temperature-independent nor; , o
malization constant. (upper panel, data from Ref1]), and dielectric-loss spectroscopy

(lower panel, data from Ref6]), normalized with a temperature-
independent static susceptibility. Temperatures are in steps of
lll. DATA ANALYSIS 10 K, unless indicated otherwise; in the dielectric measurement,
. T=243, 263, 273, 283 K are missing, for the light-scattering ex-
A. Fits to the data periment, the highest temperature is 250(d€e text for detai)s

The result of our fits to the measured PC spectra arehe full lines are fits by solutions of the two-component schematic
shown by the full lines in Figs. 1 and 2. Since one cannoMCT model defined in Sec. Il with parameters as described in the
expect the schematic model to provide a description of theext. The dashed lines indicate a white-noise spectryfp,,()
microscopic band, the fits have been restricted to frequenciesw; the dash-dotted line in the upper panel exhibits the asymptote
below 500 GHz for the light-scattering and neutron-of the critical spectrumy”(w)=w? according to Eq(15), with a
scattering spectra. The fit range for the dielectric spectra0.30 corresponding to the value af=0.75. The dotted line
could be extended up to 1 THz. For the neutron-scatteringhows the solution of the model fdr=T, and hopping terms ne-
data, a set of spectra for 3 representatjweectors out of 10  glected.
analyzed is shown. The analyzegrange is 0.5 Al<q
<1.4 A1, outside this range, experimentally accessible o=(1—f)[(v1— v+ (v,—v5)F?]. (8
frequency windows become too small to gain meaningful
information for MCT parameters. In Rdfl], light-scattering In our first step of the analysis, we also force thgv, to
spectra abov@ =250 K have been published, but show ap-obey the asymptotic linearT(—T) dependence oé cited
parent violation ofa scaling. We were able to fit these above. In the second step, this latter restriction is eliminated
curves with the same quality as the ones shown by assumirgnd a free fit is started by examining small corrections to the
a slightly varying static susceptibility,;, which has the ef- result of the first step. The thus obtained results also account
fect of shifting curves up and down in the log-log plot. Thesefor an inevitable uncertainty in the determination of the ex-
curves were omitted in Fig. 1 to avoid overcrowding. perimental temperatures. The fit yields~180 K, and\

All model parameters should be used as temperature=0.75, corresponding ta~0.30 ando~0.56. The value for
dependent fit parameters in our analysis. Within the studied is between the values reported in Rdf] and[10] and
temperature interval, there are no structural anomalies rdalls within the error bars of both. The linear interpolation of
ported for PC. Thus, the fits are done with the constraint thathe found o versusT values giveso=C(T.—T)/T. with
the parameters drift smoothly and monotonously. In the fol-C~0.069. The found distribution of( ,v,) points is shown
lowing part of this section, the parameters used for the thein the upper part of Fig. 3. Upon lowering bothv, andv,
oretical curves in Figs. 1 and 2 shall be discussed. increase, which is consistent with the physical reasoning of

One experiences a considerable flexibility in choosing thehe system’s mode-coupling coefficients becoming larger at
path[v4(T),v,(T)] followed by the coupling constants in lower temperatures. The lower diagram in Fig. 3 demon-
the v,-v,-parameter plane for the interpretation of the datastrates that the asymptotic formula feris well obeyed for
as emphasized earlig24]. To arrive at an overview of the 150 K<=T=285 K. It should be stressed that the glass-
possibilities for fitting the many spectra, we started with atransition line is just crossed by a regular drift, i.e., there is
first step, where the path was varied but biased to somro accumulation of«;,v,) points close to it. This demon-
smooth curve. Applying the general thed87] to Eq.(3b),  strates how the critical phenomena predicted by the MCT
one derives the formula for the above-mentioned separatioariginate from the mathematical structure of its equations of
parameteio, motion. In particular, the schematic model illustrates that
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FIG. 2. Susceptibility spectra for PC as measured by incoherent

neutron scattering for three wave vectggsfrom Ref.[10]. Tem-
peratures ard =210, 220, 230, 240, 251, 260, 285 K, where al-
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ternating open and filled symbols have been used to help distin-
guishing different data sets. For lower temperatures, data points
below 10 GHz are seriously affected by the spectrometer’s resolu-
tion function and therefore not shown. Full lines are fits as in Fig. 1.

within MCT no subtleq interferences or hydrodynamic phe-
nomena are responsible for the glass-transition dynamics.
The fitted mode-coupling coefficients(T) for the light-

scattering and dielectric data, and the corresponding coeﬁg

cients v;{q,T) for the neutron-scattering experiment are

Vi
1.1

0.9
0.8
0.7
(e}
* 0.01
T K]
140 160 00 220 240 260 280
-0.01
-0.02 S
-0.03 .
~0.04 .
-0.05 .

FIG. 3. Verticesvq,v, for the first mode-coupling functional,
Eq. (3b), used for the fits shown in Figs. 1 and 2. In the above
diagram, the thick line represents the curve of glass-transition si
gularities, Eq.(4), while the thin line serves as a guide to the eye

FIG. 4. (@ Coupling coefficientsvy for the second mode-
coupling functional, Eq(5b), used for the fits shown in Figs. 1 and
2 as functions of temperature. The squares refer to the light-
Scattering data and the circles to the dielectric-loss spectra; the lines
through the symbols are guides to the eye. The lines without sym-
bols connect the;(q) used for the neutron-scattering data for 10
wave vectorsg=0.5,0.6...,1.4 A1 (from top to bottom. The
vertical dashed line indicates the critical temperaflire (b) Coef-
ficientsv;(qg,T) for the neutron-scattering data as functionsgof
for various fixedT. From top to bottom, the temperatures increase
from T=210 to 285 K(as given in Fig. 2 The dashed lines indi-
cateA/q+ B/qg? laws to visualize the difference to agtlaw behav-
ior, which is shown as a dot-dashed line; see text for details.

shown in Fig. 4. Again, we find monotonically increasing
couplings with decreasing temperature. The coupling coeffi-
cients v;{q) describing the incoherent-neutron-scattering
data are decreasing with increasiggThis is equivalent to
the plateau valuei;ff decreasing with increasing, which
agrees qualitatively with the findings for incoherent-neutron-
scattering results discussed within the microscopic MCT
[14].

The parameter€); ,va, which specify the transient dy-
namics of ¢3 are shown in Fig. 5. The results from the
neutron-scattering analysis reflect the beha¥dggq,T)«q
-\T to a good approximation, which is in agreement with
the result of the microscopic theory. But drawing more con-
clusions from the microscopic parameters would be over in-

pterpreting the model. They are shown here mainly to demon-

strate that there are no abnormal variations occurring. We

indicating the chosen path. Each dot corresponds to one temperfld much larger uncertainties for the microscopic fit param-

ture. The lower diagram shows the separation paranaetéq. (8),
as a function ofT; the critical temperaturd .~180 K is deter-
mined from the zero of the shown regression line.

etersQ,»,Q4,v;, than for those parametess ,v,, andvy,
ruling the structural-relaxation part of the spectra. In particu-
lar, it was possible to use for the parameters that specify the
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T[K] FIG. 6. In the upper part, the hopping coefficidgnentering Eq.

(3a) for the first correlator used for the fits shown in Fig. 1 to the
TH s h X on for th d | dielectric (circles and light-scatteringsquares data is exhibited.
Z specifying the transient motion for the second correlator 8SThe values follow an Arrhenius-type temperature dependence, indi-

functions of temperature as used for the fits shown in Figs. 1 and 2t:ated by a straight line. For the fit to the neutron-scattering data, the

The squares refer to the light-scattering spectra, circles to the d.Eame values could be used, but show no influence on the fit curves

electric loss spectra; lines Fhrough the symbols are guides to thﬁ Fig. 2 (see text for details For the fit to the dielectric data, an
eye. For the neutron-scattering spectiig,was takerg independent additional hopping coefficiem g, for the second correlator had to

: . s e
(diamonds '|n the Iqwer panel and . the Qns exhibit the be used, shown by the circles in the lower part of this figure; here,
a- VT-behavior shown in the upper pariéhes without symbolsq the values Q5/Q)?A5, follow an Arrhenius law indicated by a

range as in Fig. ¥ The vertical dashed lines indicate the critical straight line. The vertical dashed line indicates 10Q0kith T
temperaturel . . =180 K i

FIG. 5. Oscillator frequencieQ3 and damping constants, in

transient of the first correlatap(t) temperature independent ) ) . .
valuesQ=1 THz andv=0 THz. asymptotic analysis[1]. Dielectric-loss spectra show

The hopping coefficiend in Eq. (33 determines the po- hopping-induced minima gt higher frequencies than the I_ight-
sition of the susceptibility minimum below, . This mini- scaFterlng spectra, and. this we have accounted for. by intro-
mum cannot be seen in the light-scattering data, thus th8uUcing & second hopping parametef, there. In a similar
chosen values are not unambiguously determined. The lightvay, (Q&d©)?A3{T) follows an Arrhenius law and has no
scattering spectra in the upper panel of Fig. 1 are fitted witinfluence on the spectra aboVg; this second hopping term
the hopping parametey; for the second correlator ignored:

w=0. The fits to the dielectric-loss spectra in the lower
panel of Fig. 1 are done with a non-vanishiag,. For the
whole temperature range investigatadq,T) can be assumed
to follow an Arrhenius law,A(T)x<exp(—EA/T), which
would be expected for thermally activated hopping over bar-
riers. Figure 6 shows the values used for the fit. AlthoAgh
increases by an order of magnitude, the calculated curves for
temperatures higher than 190 K show no influence from hop-
ping effects on the spectra. This is demonstrated in Fig. 7.
The irrelevance of the increasing hopping coefficiesfor
temperatures increasing abovVg can be understood on the
basis of a discussion of the asymptotic formulas]. It is
the reason, why the idealized theory can be used for data
analysis forT sufficiently larger thanT.. In the analyzed
neutron-scattering experiment, the dynamical window and
the studied temperature intervals are too small to investigate

hopping effects, and therefore the curves in Fig. 2 are calcu- 10" =i — — — -
lated withA3=0. 10710 1/02 TI(I){ 100 10
AboveT,, the spectra including hopping show deviations /2r [THe]
from the idealized ones only for smdll-T. . BelowT, the FIG. 7. The solid lines reproduce the susceptibility spectra

crossover to the white-noise spectrum is suppressed, and,a() from Fig. 1 used for the fit to the light-scatteririgpper
minimum occurs as hopping starts to be the dominant relaXpane) and the dielectric-loss specttiower pane), respectively.
ation effect. Because of the insensitivity of the main body ofpashed lines are solutions using the same model parameters, but
the analyzed data to choices &f the activation energy can- with hopping effects ignoredA =A3.=0. Notice that the dashed
not be determined very precisely from the fit; the upperiines for temperature§ below T, exhibit a “knee” which is lo-
straight line in Fig. 6 corresponds Ex =811 K. This value cated between 10 and 100 GHz and moves to higher frequencies
is in reasonable agreement with the one found in an earliewith decreasingr.
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g (w)—¢ point that the real-part data can be fitted with the schematic
' model as well, introducing only one additional fit parameter
&. In the minimum region of the spectra, we find this to be
confirmed, and for highell, the a-relaxation step can be
described by the schematic model, too. The discrepancies for
the a peak in the glass are the analogue to what can be seen
in the &” fit. Similar observations hold for the high-
frequency dynamics, where one has to notice in addition, that
experimental error bars are relatively large for frequencies
above 300 GHz. A slightly better fit of the’ data could
have been achieved by allowing the static susceptibilify
to vary with temperature. This possibility is not examined
here, since the shift is only small, and since we do not want
w/2m [THZ] to introduce assumptions on tAedependence of the static

FIG. 8. Measured values for the real paf{w) of the dielectric quantity .
function from Ref[6] for T=173 K throughT=233 K in steps of

10 K, and fo_rT=2§3 K (from left to righy. Experimental data B. Summary of the data analysis
have been shifted by to account for an unknown background; see o o N
text for details. Temperature¥=163 K and below, andT Glass-forming liquids exhibit temperature-sensitive spec-

=293 K are not shown in order to avoid overcrowding of the fig- tra for frequencies well below the band of microscopic exci-
ure. For the same reason, the data points for frequencies abo¥ations. These precursors of the glass transition are referred
1 GHz have been partially removed for all but the highest temperato as structural-relaxation spectra. The full lines in Fig. 1 and
ture and are only shown in the inset. The full lines are the real part2 demonstrate that the evolution of structural relaxation of
of the calculated susceptibilities for the same model parameters &3C, including the crossover to the microscopic regime, is
used for the curves in Fig. 1. described well by a schematic MCT model. The description
, . ) .. _ holds for all spectra obtained by the depolarized-light-
has already been included in the comparison studied in Figcattering spectrometer; in this case it deals with the three-
7. Here, the activation energy is of the orger 0; 2000 K, gecade dynamical window between 0.3 and 500 GHz, and it
which makes the result more striking, sind@{/2)“Aqe IS accounts for the change of the spectral intensity by a factor
allowed to vary over three orders of magnitude. In bothst 103 if the temperature is shifted between the glass transi-
cases, activation energies as well as the prefactors are gf, T, and 30 K above the melting temperattg. It ac-
reasonable magnitude. It should be stressed that, althougly nts for the measured-peak-maximum shift by a factor
the treatment of hopping by a frequency-independent  f 10 if T is changed by 30 K. A similar statement holds for
rather crude, the resulting frequency range in which the schgpe description of the dielectric-loss spectra, where the
matic model gives a good fit to experimental data, is €N+, heak shift from 40 GHz down to 0.02 GHz is described.
larged by about one decade for-T, relative to the fit in-  his ghift is caused by a temperature decrease from 293 K
terval, which can be treated by the |degllzed-MCT model. =T,+75 to 243 K.
_ In the measurem_ents_of the dielectric functions, informa-  gatveen thea peak and the vibrational excitation peak
tion on both the imaginary and the real part 8{w)  pear1 THz, the susceptibility spectra in Figs. 1 and 2 exhibit
=s&'(w)+ie"(w) have been obtaine®]. The fit to t”hes a minimum at some frequenay,,,. It shifts to smaller fre-
data shown above was performed usifffw) =4mx4®@)  quencies as the temperature is lowered, but less than the
=47 x4e $ge' (@), thus obtaining the proportionality factor 4-peak position. Its intensityy = x"(wm) exceeds the
go=4mxqe @S @ byproduct. Then, the real part is given bywhite-noise spectrum one would expect for the dynamics of
g'(w)—e=¢gg-[1+ w3 w)]. The new parameterhasto  normal liquids by more than two orders of magnitude. Such
be determined by shifting the curves, and it can differ fromwhite noise would yield susceptibility spectra varying lin-
£,=1 in both directions: The liquid exhibits microscopic early with frequencyxunn(w)*w, as is indicated by the
oscillations, which contribute te’ (w) as some shif\et dashed lines in Fig. 1. These anomalous minima are also
with respect tae.,=1 for the structural part of the response treated properly by the model.
function. The schematic model uses a single damped oscil- Neutron-scattering data are available for a series of wave
lator, giving someA&™,. , which may be either too small or vectorsq, and hence the dynamics is probed on various
too large. Depending on the temperature, we find values dength scales. The dependence is in the schematic model
e=e,+(AeZP —As™ ) between 3 and-1, which are of  described by that of the coupling coefficierfi(q). The data
reasonable magnitude. Figure 8 shows the result of testindescription in Fig. 2 is possible using cadependence in
our fit against the accordingly shifted real part of the mea-qualitative agreement with the results expected from the mi-
sured dielectric function. It is clear from the theory that thecroscopic theory of simple systems.
real and imaginary parts of the calculated curves are con- It appears nontrivial that the used schematic model can
nected by Kramers-Kronig relations. But for the experiment,deal with the mentioned spectra of PC. The success of the
both quantities have to be regarded as almost independefits indicates that the studied glassy dynamics is rather insen-
data sets, since the measurements are restricted to a fing#@ive to microscopic details of the systems. Apparently the
frequency range. Thus, Fig. 8 provides more than just a difevolution of glassy dynamics within the GHz window re-
ferent view on the fit shown in Fig. 1, and it is an important flects, above all, only quite general features of the nonlinear-
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interaction effects, which can also be modelled by simplen this context, the numbersy only enter as corrections to
truncations of the full microscopic theory. These conclusionsscaling.

require some reservation. The explanation of the PC data by The plateau values, and the critical amplitudel, can
the used model is based on the choice of the model parane calculated from the mode-coupling functionals. In the

eters, in particular on the choice of the drift of all parametersase of the schematic model studied, the values for the first
with changes of temperature, which is documented in Figseorrelator are given by

3—6. Only a full microscopic theory can show whether or not
the chosen parameters are in accord with the fundamental fe=1-x, h=(1-f° (12)
microscopic laws. ' '

Furthermore, it has to be emphasized that t_he studiegne relation between the exponent parameteand the
model cannot reproduce the spectra for frequencies below Qe-peak strengtf¢ is one of the nongeneric features of that

GHz if the temperature is below the critical vallig. Such a4l For the second correlator, the plateau value and criti-
spectra can be measured accurately using dielectric-logs, amplitude read

spectroscopy, and the lower panel of Fig. 1 exhibits some of
this data forT=173 andT=183 K. The lack of success of
our work in handling these spectra is clearly connected with fse_q_ 1 s 1-f°
the improper treatment of hopping processes. It remains un- AT
clear at present whether this is due to the stochastic approxi-
mation,Ny(2) =i4,, or due to restricting ourselves to a one- Changingv$, the a-peak strengthi%® can be varied. Again,
component schematic model, or whether the whole extensiofhese equations establish a nongeneric relation between the
of MCT to a theory including hopping transport is inad- 5.¢ and thehs . In our fits to the neutron-scattering datag a
equate. dependence oSS andhS, can arise only through @ depen-
dence of thev},.

From Eq.(10) one identifies for the casé=0 the time

Let us list some of the asymptotic results for the studiegscale for thes relaxation:t,=to| o] ~**. Going over to re-
MCT model, which will be needed below in Sec. V. Thesescaled timest=t/t,, and rescaled frequencies,= wt,,
results are obtained by straightforward specialization of the@ne gets from Eq9) the scaling law for thgg-susceptibility
general formulas discussed in RgZ7]. We will focus onthe  spectra
B-relaxation regime forT=T., with hopping effects ne-
glected. A comprehensive discussion of the asymptotic re-
sults can be found in Ref13].

From the full MCT Egs(1), a leading-order expansion in _ ~L
Jlo| gives rise to the asymptotic predictions for the wherec, = y|o]. The master spectrumis o-independent. It

intermediate-time window of th@ relaxation. A central re- Is fixed _through the exponent paramelgrand thus throuAgh
sult is the factorization theorermq(t)—fgthG(t), where the static strugture alon'e.. For large rescaled frequenfues,
the so-calledg correlatorG(t) is independent ofy. This >1, one obtains the_ critical-power-law spectrum. This ex-
result still holds, in the generic case, for the tagged-particld€nds to all frequencies as—0:

density-fluctuation correlator or the correlator dealing with

l A .
vaf® vafc?

(13

IV. SOME ASYMPTOTIC FORMULAS

Xa(@)=hC,x(w), (14)

light scattering or dielectric responsgi(t) = fa°+hiG(t), Xu(w)=hy-sinmal2)T(1-a)(wtg)?, T=T.. (15
with the sameG(t) as above. The Fourier-cosine transform
of G(t) is called theB spectrumG”(w). One gets for the For small rescaled frequencies, one gets the von
normalized susceptibility spectra Schweidler-law fore<0, y(@<1)x1/w®, and thusy ex-
hibits a minimum at some frequencw, With xmin
Xx(@)=wdi(w)=hx"(w), (9 =x(@m). Due to the scaling law, Eq14), the variation of

_ L the spectral minima with temperature is, in the asymptotic
where y"(w) = wG"(w) is called theB-susceptibility spec- region, given by
trum. Here, the index denotes either the wave-vector modu-
lusqg, orx=(s,A). The functionG depends ow/ty, o, andé - -
only: it is uniquely determined by the exponent paramgter @min= Omin/tys  Xmin=Xmin'Co»  0<0. (16)
as the solution of the equation . ) _
The point @min.Xmin) 1S cOompletely fixed byn, and forA

. =0.75 one getsw,=1.733, Ymin=1.221.

o— &+A[G(t)]2=§t G(t—t")G(t")dt’, (10 On the glass sider>0, the idealized theory yields for the
0 B correlator for large rescaled times a consta'.a(,f>1)
to be solved with the initial conditioi®(t—0)=(t/ty) 2. =1/y1—\. Thus th(_a signature of the MQ'_I’—foId bifurcation
The so-called hopping paramet&has to be calculated from @€ VTc—T anomalies of the nonergodicity parametéys
Ay, and for the studied model it reads = ¢y(t—=)

5=Af%/(1—f°). (12) fu(M=fi+hol(1-N), T<T. 17
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If the correlators deal with density fluctuations or tagged-
particle densities, the quantify, is the Debye-Waller factor
or Lamb-Mdbauer factor, respectively. Fer<O0, corre-
sponding toT>T,, the long-time limits of the correlators
vanish, as is the case for<T; but 6+ 0. But if o and 6 are
sufficiently small, the correlators still exhibit plateaus for
times exceeding the transient scéjebefore the decay to-
wards zero sets in. The heights of these plateaus are then
given by f, for T<T., and byf for T>T,, then called
effective nonergodicity parameters. The decay from the pla-
teau is thex process, and thus the strength of thepeak in
the susceptibility spectra is given Hy,. This also corre-
sponds to the height of the relaxation step exhibited by the . N . .
real part of the susceptibility, when the frequency is shifted FIG: 9- The full lines showg,(t) = (¢(t) —f,)/hy for times
through thea-peak window. where ¢4(t)>0. The dash-dotted straight lines gxhibﬁte)’a,

The preceding Eqs(9)—(17) establish universality fea- with t,=0.035 ps andafO._SO. The dashed lines show the
tures of MCT. They provide the basis of a general eXp|anaﬁ-correlatorsG(t) for the indicated te_mperature(see text The _
tion of the glassy MCT dynamics by means of features of th&!Ppermost set of curves refers to the first correlator of the schematic

: o : : . model. The other two sets refer to the light-scattering and the di-
spectra not depending on the specific microscopic properti . o . .
of a given system. ergectnc response studied in Fig. 1. The sets are shifted vertically by

one(light scattering, respectively twddielectric respongedecades
for clarity.

V. SCALING LAW ANALYSIS

In this section it shall be studied how well the above —T)/T; with |¢|=0.06. This scenario is in semiquantitative
calculated MCT solutions can be described by the MCT-agreement with the one discussed in R2€)] for the density
B-relaxation-scaling laws summarized in the preceding seceorrelators of a hard-sphere system. Let us reiterate that the
tion. It has been demonstrated ear(i#8,14, that the range correlator ¢(t) drives the glass transition for the studied
of validity of these equations can be analyzed by evaluatingnodel, but that it is not the quantity measured.
the next-to-leading-order corrections. Here, we will study the The two lower sets of curves in Fig. 9 show that the
combined effect of all corrections due to structural relaxationdecrease of;(t) and ¢5(t) towards their plateauf;® and
as well as due to vibrational-transient-dynamics effects. Onlygg, respectively is described qualitatively by the dashed
the solutions referring to the parameter sets used in Figs. flnes, i.e., by the scaling laws. However, there are remark-

and 2 will be discussed. Thus thg foIIov_ving analysis refers Qple quantitative deviations between the solutiéﬂia) and
control parameters and _dynamlcal vymdows representativg, .- asymptotic fornG(t). These appear as if the amplitude
for state-of-the-art experimental studies of the evolution Olexperiences some offset. The reason is that the transient dy-
glassy dynamics. namics influences the correlatagg (t) also for times which
exceed, by up to two orders of magnitude. This means that
the dynamics of the two probing variables is strongly influ-
Solving the equations of motion foF=T., A=0, and enced by oscillations within that window, where the driving
AS=0 for times up to 1& ps, the critical power law, Eq. correlator ¢(t) exhibits thet™® law. Therefore, the power
(2), was identified. The common time scale was determinedaw Qpi\(t)z(t/to)—a cannot be identified accurately in the
to t,=0.035 ps. The leading-order resupt(t)=(t/t,) "2,  curves shown foA=Is andA=de. This is also demonstrated
where ,(t)=[ ¢y(t)—fS1/h,, is shown in the double- by the straight dash-dotted line in the upper panel of Fig. 1,
logarithmic representation of Fig. 9 by straight dash-dottedVhich represents  the  asymptotic  low-frequency-
lines with slope—a. For the two temperatures closesflip, ~ SuSceptibility spectrum at the critical point, E45).
the full lines in this diagram exhibit the solutiong,(t). Within the 1.5-decade window, where the lpgersus-
Dashed lines demonstrate the correspondingorrelators 109(U/to) curve for 180 K in Fig. 9 demonstrates the critical-
G(t), determined from Eqs8), (10), and(11). The approach decay asymptote, the graphs of l¢g and logdg, versus
of the first correlator¢(t) towards the platead® is well  log(t/ty) for 180 and 183 K, respectively, also appear as
described by the scaling law far=180 and 190 K. FoiT nearly straight lines, so that they can be described very well
=180 K the critical power law is exhibited within a in this window by some effective power law. One thus ex-
1.5-decade time window for times exceedingwith t./t,  Pects an effective power-law spectrum, which is described
~300, while fort<t, the vibrational transient dynamics by Eg.(15), but with a and h, replaced by some®" and
masks the structural relaxation. In this case, the validity ohS™, respectively. This phenomenon also was observed for
the critical power law for larger times is restricted by the the susceptibility spectra of the hard-sphere sy§@®h For
onset of hopping effects. Hopping plays no significant rolethe light-scattering result, one infees™<a and h§ﬁ< hiy.
for the B relaxation of T=190 K (compare Fig. Y. But  The dotted line in the upper panel of Fig. 1 corroborates this
there, the deviations of5(t) from the short-time limit conclusion. It exhibits the solution for the model evaluated
(t/tg) 2 setin already fot<<t.. Thus this power law cannot for T=T_. with hopping effects ignored. This line can be
be identified anymore for distance parameters-(T, fitted well between 10° and 103 THz by an effective

A. The critical decay
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05— T T 71— susceptibility spectrunicompare Fig. L Equation(17) for
A1) B | (a) ] the probing-variable correlator is equivalent to
. ]
0.3F ( -
ook T (1-f)=(1—-f3)—havo/(1—N\). (183
s L L L
MD o i (b)__ Since (1-f3) andhj are positive and (% fx°) is less than
0.9 I s 0.1 for the two correlators discussed, the wholg.— T ef-
o E \Tm,r\ C fect is below 10%. Therefore it is difficult to separate the
O'Ei_ T * (c’)_ JT.—T anomaly from the scatter of the data. The less obvi-
flT) == - : ous reason results from the smooth but appreciable tempera-
0.9 | Sl ture drift found for the coupling coefficienty (compare Fig.
I | T 4). This coupling determines the nonergodicity parameters of
04,5 760 180 200 220 240 260 the second correlator of the schematic model in terms of the
T[K] parameteif: (1—f3)=1/(vaf). The square-root singularity

is due to that inf, and expanding (1) one reproduces Eg.

FIG. 10. Effective nonergodicity parameters determined from(18a) but with effective terms

the calculatedp,-versus-log curves for the spectra shown in Fig.

1: f(T) for the first correlators(t) (open circleg andfi(T) for the

correlators pi(t) and ¢S(t) (filled squares and circles, respec- (1- 159 =R, (1- 5%, hS"=R,h3,

tively). The solid lines exhibit the leading-order-asymptotic laws

for f, from Eq. (17) for T<T, and f; for T=T.. The vertical

dashed line indicates the crossover temperalire180 K. The Ra(T)=vxTvaA(T). (18b

crosses in the lowest panel are estimationggfobtained in Ref.

[6] by fitting the measured’ (w) data with a Cole-Davidson func- Replacing the renormalization coefficieRi(T) by its value

tion. The dashed lines through the solid symbols connect the valuest the critical pointRj; = 1, one reproduces the leading-order

calculated from Eq(18b) (see text for details result, Eq.(17). However, within the temperature interval
considered, the smooth drift of (1f3°)®" overwhelms the

power-law following Eq.(15) with a®"/a~0.92 andh®™n  Small variation of theyT.—T term. This is demonstrated in

~0.7. The crossover from this effective power law to theF!9s: 1ab) and 1@c) by the dashed lines. The numerically

asymptotic critical law, Eq(15), occurs only at frequencies found circles are well described by this line. One concludes

around 1 MHz. that the drifting coupling coefficientx(T) is responsible for
the deviations from the leading-order asymptotics. Unfortu-
B. The nonergodicity-parameter anomaly nately, theva(T) are not available directly from experi-
ments.

Figure 10 shows effective nonergodicity parameters of the
three correlators underlying the curves in Fig. 1, which were
determined from the plateau heights of thgt)-versus-log

diagrams. The crosses in the lower panel show the values Figure 11 shows the susceptibility master spectgufior
deduced in Ref[6] from the step size of the measured real)\ — .75 ands=0 as dashed curves. The upper set of solid
part of the dielectric function, divided by the value &§ Jines in this figure are the spectra of the first correlator re-
assumed in the fit to the susceptibility spectra. Figures 1 angcaled, according to Eq(14), as w¢"(w)/(\[o]h).

8 demonstrate that the present model describes the dielectigsymptotic validity of scaling is demonstrated: the window
function of PC reasonably, and so it is not surprising that the

of rescaled frequencieé»=wtg, for which the rescaled

calculated values(dotg reproduce the measured ones - )
(crosses reasonably well. The discrepancies between dotSPectra are close to the master spectrymexpands with
and crosses are anticipated to be mainly due to difficulties iglecreasing T—T.). Convincing agreement betwegnand
determining the step size accurately in the experiment, wheréhe 180 K result can be found as long as hopping effects are
one carefully has to eliminate contributions from there-  ignored. For higher temperatures, wheed=|T—T.|/T,
laxation. =0.06, strong deviations are found. TAe=210 K spec-

Full lines in Fig. 10 exhibit the asymptotic laws, i.e., the trum, for which|e|=0.17, does not even show a minimum.
valuesf, from Eq. (17) for T<T. and the constant{ for = The demonstrated deviations from the scaling laws are simi-
T=T,.. Figure 1Ga) demonstrates that the 60% variation of lar to what was explained in RefL3] for the MCT solutions
the effective nonergodicity parameteof the first correlator ~ for the hard-sphere system.
is described well by the asymptotic formula. This holds for ~Preasymptotic-correction effects for the variables dis-
temperatures down t@4. On the other hand, the results for cussed for PC in Figs. 1 and 2 differ from those for the
the light scattering and for the dielectric response do nofuxiliary correlatoré. This is demonstrated in the lower part
exhibit the asymptotic behavior; there is no evidence for thedf Fig. 11 fore=—0.17. Deviations of the rescaled spectra
VT.—T anomaly at all to be noticed in the data. There areX};(w)/(\/EhA) from the master spectruﬁn(wtg) are larger
two reasons for this finding. The obvious one reflects theor the dielectric loss than for the light scattering, and the
large size off 3¢, i.e., it results from the observation that the latter are larger than those for the neutron-scattering results.
a peaks of the susceptibility dominate over the remainingWhile the predicted probe independencexf{ w)/h, holds

C. Scaling of the B-relaxation minima
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FIG. 11. The upper part of the figufscale on right axisshows FIG. 12. Rectification diagram for the minimum positiong,,

the rescaled susceptibility spectra for four temperatures for the firsl; he dielectric-loss (circles, light-scattering (squares and
correlator of the schematic model”(w)/h[o], as a function of neutron-scatteringtriangles fit. The neutron-scattering data have
o=ot,. Hopping terms have been set to zero. The lower partheen averaged over the investigateeinge, and error bars indicate
(scale on the left axjs shows the w¢3"(w)/hay|o]-versuse the smallest and highest values. The vertical dashed line marks the
curves forT=210 K for the light-scatteringline with squaresand  critical pointT.. The solid line is the asymptotic-formula result for

neutron-scattering correlators g&=1.0 andg=1.1 A™! (lines), the minimum positions calculated from tjgerelaxation-scaling law
and forT=213 K for the dielectric correlator@ine with circles. for the fit parameters of the model used in Figs. 1 and 2. The dashed
The dashed lines indicate the master spectrum fe0.75 with the  lines show the linear interpolation through the data points, restricted
minimum position i .xmin) Marked by a diamond. to the regime 190 KT<250 K, for the dielectric-loss and for the

light-scattering data, respectively.

rather well for w<wp,,, deviations from the factorization ) ) ] o
theorem are observed mainly for higher frequencies. As distesulting expression fosg is added in Fig. ) as dashed
cussed above in connection with H38a), the large size of lines for two temperatur_es, and it provides a reasonable in-
£$° leaves only a 10% decay of the correlator from the initialterpolation of the found fit parameters. One would need mea-
value unity to the plateau, and this decay is influenced bypurements for wave vectors of the order of O.Z_lﬁand less,
vibrational motion. This leads to the strong disturbances of? Order to test for the smati® behavior predicted by the
the susceptibility spectra fow>w.,. For the neutron- Microscopic MCT. _ _
scattering data for intermediate wave vectors, this problem is There is a most bothersome preasymptotic-correction ef-
not so severe, since the critical Lamb-Rtmuer factof¢  f€Ct, which can be seen in the lower part of Fig. 11: the
decreases with increasimg Therefore, the shape of the sus- POSItiONSwpit, of the susceptibility minima are not identi-
ceptibility minimum, which is exhibited by the two neutron- cal; and they are all larger than the asymptotic valyg,,
scattering results shown in Fig. 11, is closer to the one of thavhich is shown by a diamond. Since the bands of micro-
master spectrum. scopic excitations of the correlator spectpds(w) are lo-
The q dependence of the critical amplituch% for the cated at much lower frequencies than that of the spectrum
incoherent-neutron-scattering spectra has been measured a¢'d ), the spectra of the test variables cross over too
byproduct of the test of the factorization theoreﬁg”(w) quickly_ to the transient to be able to develop the universal
<hSy"(w)/w. A linear law, h§xq, was found within the relaxation pattern forw>wmiy. As a result, oy, gets an
studied wave-vector intervdll0]. Such a strictly linear law offsgft to _Iarge_r frequencies. Figure 1_2 exh|b|ts.th|s result as a
is not compatible with the microscopic MCT, which predicts réctification diagram. The asymptotic result is shown as a
that theh,-versusg graph exhibits a broad asymmetric peak full straight line: 02 =(0min/te)?o]=C(T—T,) with the
near the positiorg,y of the first sharp diffraction peak of constantC = (wyn/to)?-C/T,~0.004. The positions of the
the structure factor. For smatj, the critical amplitude in- observed minima can still be interpolated reasonably by
creases regularly a%,=q?+0(q*) [14], and thush, exhib-  straight lines, shown in dashed. However, the slopes of the
its an inflection point for somg<qn.. Whether the found dashed lines differ from those of the asymptotic line. In a
linear g dependence of the experimental values is due t@lear violation of the asymptotic factorization theorem, the
multiple-scattering effects, is not clefO]. Our schematic- lines for different probing variables are different. The linear
model fit, however, suggests that, evelhnjfcan be approxi- interpolations lead to intersections with the abscissa, which
mated by a linear law, thg-dependence is not strictly linear differ somewhat from the correct value af,. For the
but rather given by some intermediate crossover around theeutron-scattering data, this interpolation has been omitted in

inflection point. Equationi13) relatesha to the inverse of)a; Fig. 12, since the error bars obtained dpyveraging do not
thus a strictly linear law fohg would imply vg>1/g. Such  allow for a well-determined estimate here.
result is added as a dash-dotted line in Figp)4and it shows There is also a strong temperature-dependent offset of the

that this is not consistent with our data analysis. An ad-ho@mplitude scale relative to the scaling-law prediction. This is
expression, reflecting the crossover from the smalsymp- ~ demonstrated in Fig. 13 for the Ilght—scattenAng spectra. All
tote through the inflection point isaoc g%[1+(q/q*)]. The  four rescaled minimamin/\'ohis are far belowyn, Which
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contradicting results, as the preceding subsections have dem-
onstrated. While the spectral shapes are rather robust and the
rectification diagram for the scales appears correct and leads
to a reasonable estimation @f,, as shown by the dashed
lines in Fig. 12, the prefactors for the asymptotic formulas
extracted from the data can be quite wrong. This error cannot
be noticed if one studies a single probing variablenly, but
it appears as a violation of the factorization theorem if one
compares spectra for differe®. One concludes that the
problems with the analysis discussed in R&f)] are neither
due to inadequate application of MCT results nor due to
failures of MCT. Rather they reflect the properties of MCT;
more precisely, they exemplify the limitations for the appli-
cation of asymptotic laws.

FIG. 13. Scaling-law analysis of the MCT solutions shown in A general rule [13,14 for the test of the
Fig. 1 for the fit of the light-scattering spectra. The lower set of 8-relaxation-scaling law is corroborated by the present
curves shows the rescaled spegifdw)/his\[o] for T=220,210,  analysis: if the nonergodicity parameféis large, i.e., if the
200, 190 K(from top to bottom. The upper set of curves shows the w-peak strength is large compared to the strength of the
same spectra, but now rescaled witQ replaced by the effective mjcroscopic-excitation peak of the susceptibility spectrum,
amplitudehfsﬁ from Eq(le) Notice that the Ol’fjer of the rescaled the preasymptotic corrections are very important' This is es-
spectra is now inverted. The asymptotic resylis plotted as a pecially true for the discussed light-scattering and dielectric-
dashed line with the minimum position marked by a diamond. Thepss spectra. Neutron-scattering spectroscopy has the advan-
result forT=180 K with hopping effects. igngrgd is added to dem- tage thatfg can be shifted by changing the wave vectpr
onstrate the approach towards the scaling limit. Therefore, we found the scaling-law analysis to work best for

is indicated by a diamond. Moreover, with decreasifg ( the neutron-scattering data of R¢fL0]. It would be very
—T,), the discrepancy between rescaled curves and expecté]a‘ormatlve to corroborate this finding by a measurement of
asymptote does not decrease, rather it increases. Such behf¥e expectedyT.—T anomaly of the Debye-Waller or
ior is not anticipated from the leading-order corrections tola@mb-Md3bauer factor.

the scaling law$13,14], but it can be explained as a higher-

order effect because of the important role played by the tem- VI. THE DIELECTRIC MODULUS

perature dependence of the coupling coefficiept This
drift can be eliminated by introducing an effective amplitude

he, as discussed above in connection with Et8h). The

Since the memory kernehfi(t) in the mode-coupling ap-
proach is expressed as a polynomial of the density correla-

o L tors, Eq.(10), this quantity shows the same asymptotic sce-
result is given by the upper set of curves in Fig. 13. Indeed a.(19 g y ymp

. ; . nario as the correlators themselves. From the factorization
the discrepancies between asymptotics and rescaled Curvgiqrem for the correlators one concludes in leading order
are reduced, and they now decrease with decreasing (

‘me(t) =S, +hS _ ;
—T,). But even forT=190 K, i.e., for|e|=0.06, there is a for the kernels:ma(t) =Ty a+ Ny AG(1). Equations (Sb),

. s.c o
considerable offset of the minimum intensity from the scal-(lz)’ _and (153) determine the plateaty;,, anc_i the c_ntlcal
ing result. The 180 K curve demonstrates the approach toé—lmpl'tUder]'V'vA for the memory kemel of probing variabfe
wards the asymptotic limit, would hopping be absent. There

still is a clear deviation between rescaled spectrum and fua=vaf°fac,

scaling-law result, which increases with increasindor (19
>wmin- But the sign and size of this effect are similar to S —uS(fehS+ f5%h)=pSh

what was found for the hard-sphere system for wave vectors MATUALETAT TA vaTl

e . ¢
yielding a plateauf; as large asi; [13]. While in the above discussiofi® was found to be larger

) ) than 90%, such that the square-root singularity is suppressed
D. Summary of the scaling-law analysis to a below-10% effect, the situation for the memory kernel is
It is, of course, more satisfactory to interpret data fordifferent. The coupling coefficient, now plays the role of a
glassy dynamics with the set of universal formulas providechormalization constant. If one introduces the normalized
by MCT for the asymptotic dynamics near a glass-transitiormemory kernel in analogy to the normalized correlators
singularity than to explain experimental findings within sche-¢, (t), rﬁ,ﬁ(t)z ma(t)/vi, such thalfnZ(t—»O)= 1, one gets
matic models. The more probing variabldsare taken into  for the normalized plateau:
account, the more convincing such an analysis is, since the
universal results also imply connections between spectra fsc cesc
measured for differenf. The preceding work on P{L,4— faa=ffa. (20)
6,10] exemplifies these statements. However, the data are sc - o .
influenced by preasymptotic effects, and one cannot judgd? €ases wheré;" is close to unity, like in our analysis of
the relevance of these correction effects, if one does ndfi€ dielectric-loss and light-scattering data, one can approxi-
know the underlying microscopic MCT equations. Forcingmatemj(t)=f°+hG(t). This equals the asymptotic expres-
data into the universal formulas can thus lead to selfsion for the first correlator. Thus, we can expgctcaling for



PRE 61 UNIVERSAL AND NONUNIVERSAL FEATURES G- . .. 4145

AT
60 :

40

20

0
T}

0.4

0.3

0.2

107 107 10° 10 10° 10

ot T K]

i
1 i 1 1
140 160 180 200 220 240 260

FIG. 14. Scaling-law analysis of the spectra for the memory FIG. 15.
kernel from the MCT solutions shown in Fig. 1 to interpret the
dielectric function. The upper set of solid curves shows the unnor
malized rescaled spectra; wmge(w)/\/m , for temperaturesT

(@ Unnormalized nonergodicity parametefi 4. for
the memory kernel from the fit to the dielectric spectmpen
circles. The asymptotic prediction is plotted as a solid line, the
vertical dashed line indicatés. . (b) Same as irfa), but normalized

=193,203, 213 K. In. the lower part of the f|Ag”ure, the scaling is vaIuesfﬁ,Lde (filled circles. The dash-dotted line indicates the criti-
shown for the normalized rescaled spectramgy(w)/V|o| (see ¢y plateau value for the first correlator of the schematic mddel,
text for detail3. The dashed lines are the master spectra, with the

minimum positions marked by diamonds. ) A ] ) o
malized functionfy, 4., shown as filled circles in Fig. 16),

exhibits good agreement with the asymptotic law. As for the

the memory kernel of the probe-variabdeto work equally | di d for the t d-particle densit lat
well as for the first correlator and thus better than for the o <> AISCUSSET T0T the tagged-particie density correlators,

corresponding probe-variable correlator. Let us examine thi£he drift of vge still resu!ts |n. a .temperature dependence of
in detail for the memory kernel b5, underlying the fit to  Ti,ae for T>Te, but this drift is now reduced to a 10%
the dielectric-susceptibility spectra. For the light-scatteringeffect. The asymptotic value df;° . differs only about 5%
data, qualitatively the the same picture arises. from the one for the first correlatof?, which is shown as a

In the upper part of Fig. 14, three spectra of the memorydash-dotted line in Fig. 16). It is remarkable, that even for
kernels for the dielectric function, rescaled to the unnormalized quantity the position @f can be esti-
— omw)/\|o], are plotted as solid lines for three tem- mated better than it could be done for the plateau values of
peratures abovd@.. The asymptoticB-susceptibility spec- the tagged-particle density correlators. This can be done by
trum for A =0.75 is again shown as a dashed line. While thenoticing that the slope of a linear interpolation of the data
picture shows some similarity to the situation found in thechanges when going over from<T. to T>T,.
upper part of Fig. 13 for the light-scattering susceptibilities, From the MCT Eq.(1) with the hopping kernel set to
the reason for the deviations from the scaling law are differzero, one derives the expression for the dynamic susceptibil-
ent. This can be inferred from the lower part of Fig. 14,ity, Eq. (7), in terms of the memory kernehz(z),
where the same scaling is shown for the normalized memory
functions. Here, the solid lines representomgy(w)/\[oTh. Xa(2) = — Q82X l[22— Q52+ ZM 2) + 0322 mi(2)].
One notices that the:-peak strength is remarkably smaller (21
than in the dielectric susceptibility, and comparable to that
for the first correlator of the model. Similarly, we find the Let us define a dynamical susceptibilityy 4{z) corre-
standard scenario for the approach of the rescaled spectrasponding to the kernehi(t) in analogy to Eq(7):
the master curve. The deviations from the asymptotics are
qualitatively the same as exhibited in the upper part of Fig. (2)=2znt z)+mS 22)
11 for w¢(w). Thus, one concludes: the deviations from XM.d € de,0r
scaling seen in the upper p";‘” of Fig. 14 are mainly due tc_) thﬁ/ith Mg, = Mi(t=0). Then one can write for the dielectric
T-dependent normalization, , and not, as in the case dis- function (2) = &.,+ 47 xed 2)

. . . . . . o Xd

cussed in connection with Fig. 13, due to microscopic cross-
over effects.

The question of normalization becomes even clearer for 2) — A7 X de
the effective nonergodicity parameters. Figurdalshows el2) 8= SV\2_1_ S (S 10)S 2 '
the unnormalized valueg, 4 as open circles. The full line (21924~ 1= M ot (1276 Ve +XM’dE(%)2]3d
exhibits the asymptotic  prediction f}; 4= fyge
+hy geVo/(1=N\) for T<T, and f}; =f} for T=T..  The inverse of the dielectric function,&{fz), is occasionally
Again, the drifting coupling coefficient$, is responsible for considered as the dielectric modulkg0]. The exact Mori-
masking the predicted square-root law. But, unlike in Fig.Zwanzig representation, E(R1), suggests to rather consider
10, this is only true for the unnormalized quantity. The nor-[£(z) —&.] "1, i.e.,Xgel(z). This function consists of a qua-
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A L I RIS B-relaxation-scaling laws. Thus, for PC, the corrections to
{ the asymptotic laws are smaller f@re (w)—&]~1)” than for

&"(w). In particular it is shown by Fig. 15 that the square-

root singularity can be identified from a discussion of

XM,dd @)-

VIl. CONCLUSION

It was exemplified for propylene carbonate as a typical
glass-forming van-der-Waals system, that the susceptibility
spectra measured by three different experimental techniques
can be described well by a schematic MCT model. Several
decades of intensity change in the GHz frequency window as
seen in light-scattering and dielectric-loss experiments with a
sensitive temperature dependence typical for glass-forming

] liquids are fitted. Also, the results from incoherent neutron

10 107 104 "”io_s' l(')4 “";'(;—3' ](')z s scattering, probing the dynamics for different wave vectors
/21 [THz] could be mclude@ in thl§ simultaneous fit. Real-part data

from the dielectric experiment have been successfully ana-

FIG. 16. The lines show the dielectric-modulus spectra definedyzed as well to further corroborate the consistency of the
by the right-hand side of Eq(23b). The circles exhibit If{e schematic-model fit. For temperatures ranging from the criti-
—&(w)] 1] calculated from the dielectric-function data of Riff].  cal valueT,~180 K to well above the melting point, the
The curves and the data sets have been shifted vertically to avoinge of applicability of the model includes boti+ and
overlapping; temperatures and shift factors @@3 K, 1), (193 K,  g-relaxation windows, as well as the crossover to the micro-
0.316, (203 K, 0.1, (213 K, 0.0316, (223 K, 0.03, (233 K,  scopic spectrum. Below, and down to the glass-transition
0.00316, (253 K, 0.00). For the highest temperature, an estima- temperaturd, a rather simple approach to account for hop-
tion Qf the uncertainty introduced by invert.ing the experimentalping phenomena improves the fit for tBeminimum regime,
data is given as error bars; see text for details. but fails to describe ther peak belowT, .

The schematic model used in the fit captures the general
dratic polynomial in the frequencyzmﬁe)z—l—mﬁeyo, a features of the glass-transition scenario predicted by the full
white-noise background,izvy,, and a nontrivial part microscopic theory. Still, it allows to go further than an
xwm.adZ). The latter has all the standard properties of a susanalysis based on the asymptotic predictions of MCT only.
ceptibility, in particular it obeys Kramers-Kronig relations. In particular, we have used the schematic model to investi-
There is the trivial relation between the spectriyffy «(»)  gate which features of the measured spectra can be described
and the dielectric function by asymptotic laws, and where preasymptotic corrections set

in. We find that the asymptotic formulas qualitatively give an
. adequate description of the data. Thereby the preceding stud-
A —17_ S 1()S 2 " ies[1,3-7,1Q are corroborated. But we demonstrated also,
Imlle—&(w)] 1= 4wxde'[w(VdJQde )+ Xm,ad )] that preasymptotic-correction effects cause important quanti-
(23b) tative differences between the data and the scaling-law re-
sults. One aspect of this is tAedrift of the critical amplitude
Here,e., was replaced by the constantdiscussed above in hj, noted in an earlier analysis of PC light-scattering dafa
connection with the fit ok’ (w). The drift of the coupling constanty, is not sufficient to

The full lines in Fig. 16 exhibit the right-hand side of Eq. explain this, as was demonstrated in Figs. 9 and 13. Also, the
(23b), evaluated with the model parameters used for the inerossover to the microscopic excitations influences the height
terpretation of the dielectric-loss spectra in Fig. 1. The symof the spectra at thg minimum. For the measurements ana-
bols exhibit the left-hand side of E¢23b) calculated with  |yzed, scaling works best with the neutron-scattering data,
the data from Ref[6] ande determined in connection with due to the relatively low-plateau valué§°. An asymptotic
the fits ofe’(w) in Fig. 8. Figure 16 shows that the fit is of analysis of the dielectric modulus could even work better in
equal quality as the ones shown for the direct analysis of thehis respect. But due to uncertainties in the inversion of the
dielectric loss spectra. However, to produce the result in Figdielectric function, such analysis is not practicable unless the
16, one has to be careful to subtract the right value.dfhe  modulus itself is measured directly.
error bars shown in the figure for=253 K indicate the
influence of subtracting+1 instead ofe to estimate the
uncertainty introduced by this procedure. One notices that
the shape of the curves for the high-frequency part is influ- We thank H. Z. Cummins, M. Fuchs, P. Lunkenheimer,
enced. Thus, an analysis based ea-¢(w)] *is only prac- M. R. Mayr, U. Schneider, A. P. Singh, and J. Wuttke for
ticable, if one can avoid these problems of the inversionrmany helpful discussions, and the authors of Refs4—
procedure. Up to trivial terms, the left-hand side of E28b)  6,10] for providing us with their files for the various
is identical with the spectrumem(w) discussed in Fig. 14. propylene-carbonate data. This work was supported by Ver-
This quantity can be explained well by the bundprojekt No. BMBF 03-GO5TUM.
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