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Orientational phase transitions in the hexagonal phase
of a diblock copolymer melt under shear flow
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We generalize the earlier theory by Fredrickddn Rheol.38, 1045 (1994] to study the orientational
behavior of the hexagonal phase of diblock copolymer melt subjected to steady shear flow. We use symmetry
arguments to show that the orientational ordering in the hexagonal phase is a much weaker effect than in the
lamellae. We predict the parallel orientation to be stable at low and the perpendicular orientation at high shear
rates. Our analysis reproduces the experimental results by &tegde]l Macromolecule®8, 3008(1995] and
explains the difficulties in experimental observation of the different orientations in the hexagonal phase.

PACS numbegps): 61.25.Hq, 64.60.Ht, 64.76p, 47.20.Hw

[. INTRODUCTION nal phase of a diblock copolymer melt subjected to steady
simple shear flow. The symmetry pattern of this phase con-
Polymeric liquids subjected to shear flow demonstrate ists of hexagonally packed cylinders made up of blocks of
very peculiar phase behavior. Their phase diagrams not onlgne type immersed in the surroundings of the other blocks
contain regions of stability of the different symmetry types(see Fig. 1 In equilibrium this phase appears in between
(lamellae, hexagonally packed cylinders, and sp bat also  lamellae and body-centered cubic ph4S¢|. The experi-
these regions have an internal structure. Application of shedP€nts under shear flow show an analogy with the orienta-
breaks the rotational symmetry selecting the preferable diredional behavior of the lamellar phage-9]. In slow flow the
tion. Thus, at given external parametdtsmperature and SYmmetry patiern has “2 dots up,” while in the faster flow

shear ratga certain orientation of the symmetry pattern with the "1 dpt up”l.?rlentauo”ntﬁppe:t:lr:esee Flllg.IZ Ig ct)rr]der to
respect to the selected direction is more stable than the othelf ep universality we call them the paraliel and the perpen-
icular orientations, respectively. There have been many ob-

[1]Experimentally this phenomena was first observed for th servations of the ordering of the hexagonal pha_se subjected
; . o shear flon{ 7-9]. Recently, Tepeet al. have varied tem-

lamellar phase{2]. In this work a mmrophqse separated perature and shear rate and observed both orientations of the
poly(ethylene-propylenepoly(ethylethyleng diblock co- o a00nal pattern in a  nonsymmetric  polyethylene-
polymer melt was subjected to an oscillatory shear. Near thﬁoly(ethylenepropyler’ite(PE-PEF? diblock copolymer melt.
order-disorder transitiofODT) the lamellae have their nor- g schematically present their results in Fig. 2. Our goal is
mal parallel to the velocity gradiefithe parallel orientation g reproduce this dynamical phase diagram theoretically.
at low shear frequencies, while at high shear frequencies the e start with a speculative analogy with lamellae. Both
lamellae have their normal paraIIeI to the vorticity direction orientations of the hexagonal pattern could be considered as
of the shear flowmthe perpendicular orientatipnAt lower  parallel lamellae with different interlamellar distanceee
temperatures the parallel orientation is always the mosFig. 3). High shear squeezes the pattern and the lamellae
stable one. with the smallest interlayer distance are favorable. In very

The first theoretical attempt to study the orientationalslow shear the intermolecular forces resulting in microphase
phase transition was by Cates and Milfi&t. They consid- separation will play the predominant role and lamellae with
ered the equation of motion for the order parameter with @he biggest interlayer distance are stable. Such simple rea-
coupling of applied steady shear to the composition fluctuasoning already reproduces the main features of Fig. 2.
tions. They found that flow completely changes the fluctua- We proceed with more exact and motivated analysis. In
tion spectrum. As a result, the fluctuations of the order pa-
rameter are suppressed and the ODT temperature is raised.
The authors suggested that the perpendicular orientation is
stable near the ODT since the composition fluctuations with
wave vectors normal to both the velocity and the velocity
gradient are the least affected by shear.

Later Fredrickson has shown that the angle dependence of
the fourth order vertex function is crucial for construction of
a realistic nonequilibrium phase diagram. Within this frame-
work Fredrickson reproduced the experimental observation
by Koppi et al.[2]. The theory fails to describe the selection
of the parallel orientation at higher frequencjds.

In the present paper we generalize the Fredrickson theory
to describe the orientational phase transitions in the hexago- FIG. 1. The molecular structure of a cylinder.
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A ! ary state,P[#] reduces to the Boltzmann distributio®
: ~exp(~H[#]) in the limit D=0 [13].
2 : In the derivation of the Eq2.1) we assumed the standard
3 o0 . ® .
] . o o £ flow geometryv=D y g,. It means that we ignored any al-
é o0 0 : P ® PY o teration of the velocity profile caused by the internal struc-
e o0 Py E ture of the melt. Fredrickson has showéd that by taking
: into account different viscosities of the two blocks one can
[l E L approximate the real velocity profile by the same functional
: - form v=DxYy .. HereD is a renormalized shear rate
shear rate D= D[ 1+ (corrections]. (2.3
FIG. 2. Schematic dynamical phase diagram of hexagonal phase
under shear flow: the parallel¢=0) and perpendicular & In lamellar phase at high shear, the lamellae are perpen-
= 7/6) orientationgdsee Eq(2.11)]. dicular at high temperatures, and parallel at low tempera-

tures. Fredrickson has shown that the orientation-dependent
Sec. Il we formulate a dynamical model and study its equi-hydrodynamic corrections are needed to explain this transi-
librium limit. In Secs. Il and IV we apply the methods of tion. In hexagonal phase such an effect at high shear is not
Fredrickson[1] to analyze the high-shear and low-shear beknown, and we postpone hydrodynamic corrections to future
havior. In the conclusion we compare the orientational beanalysis. Here we approximalz. by D.
havior of the hexagonal and lamellar phases and explain the We take the first and the second cumulants to obtain the
origin of difficulties in experimental study of this behavior. equations for

Il. DYNAMIC EQUATIONS C(p)=(¥(p)),

Let us consider a diblock copolymer melt. The starting S(p) = (#(P) (= p)) = (P(P))(¥(—p))-
point of our analysis is the dynamic equation for an order , i o
parameters(r), which we choose to be a deviation of a local 1€ resulting equations can be greatly simplified if we use
density of monomers of one block from its average véfile the _prmmple-harmomc approximation for the mean density
In the present work we use the Fokker-Planck equation foProfile:

an incompressible block copolymer mglt,3,10;: n
P f 5 ( 5 sH ) C(P)= 2, &L 3,901 Fp,qqn0]; 25
- - +
1= ) sum | su—p) T su-p)

where the set of vectors") determine the lattice symmetry.

9 Equation(2.5) says that all structures in the system have the
-D Pxgo, lﬁ(p)}P[df’t], (2.)  same typical size~1/q,, whereq, corresponds to the pri-
y mary peak of the structure fact®&(p) [see the first term in
whereH[ ] is the Landau-Ginzburg Hamiltonian Eq. (2.2].

For the steady state the equations transform to

1
= — — 2 —
H[ 4] ZL[T'F(Q do)“1¥(a)¥(—q) hi:Tai+Qli+%aif (o™, — qon, g, — q) S(q) + B,
q

1 (2.6)
+_|f f £(01.,92,93) ¥(d1) ¥(d2) (d3)

3! 1702703 D 3

1=~ 5—py>—S(p)+S(p)| 7+(P—do)*

1
+_|f f f J' N(01,02,03,04) (A1) 21" Py

4! q1/0d2J0d37/ 04 1
X h(Q2) $(ds3) ¢(As) (2.2 +§fq7\(p,q,—p,—q)8(q)+¢ : 2.7

andu is the Onsager mobility coefficient, which we assumewhere we defined the structure constants
to be constantsee Refs[1,11,17 for discussion

For a certain configuration of the fielg{q), the function 1 0
P[] gives the probability of its realizations. In the station- mi:ifq ng(—qon 1. G2) A, CLE),
1
0 000 1J J J _
5 Bi=or N(—don®,01,02,03)C(q1)C(g2) C(qa),
0 000 % =TI Y O (—don*”,01,092,03)C(01)C(0d2)C(qa)
0000 > (2.9

FIG. 3. Conventional subdivision of hexagonal pattern in lamel- ¢= EJ A(p,q,—p,—q)C(q)C(—Qq).
lar layers. 2)q
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In Eq. (2.6) we introduced artificial external fields; . 3
This is equivalent to an introduction of the additional term in r—p-8-p=r+a(p)+r> af1-p(p-nM)?],
the Hamiltonian Hex= —Jqh(@)¢(—q), h(q) =1 5
=E{‘=1hi[5q'qon(i>+ 8q,—qon], Which describes the interac- (2.14

tion with an external fieldh(q). The fieldsh; will allow us to A& o 27-1

construct a potentiab governing the dynamics. In equilib- So(P)=Lr=p-&pt(p=do)] 219

rium the potentiakb has the meaning of the free energy of and rewrite the steady-state equations in the final form

the system. Thus, by introducing the fieldswe obtain an

analytic continuation of the free energy to the dynamic case D J L

[1]. This is possible because our model is conservdiivi - ﬂpxﬁs(pHS(p)So (p=1, (2.19
As our last simplification we introduce an approximation y

for the vertex functiong and\. Since we use the principle-

s ) 1
harmonic approximation in Eq2.5, we assume that all hi:(r—n(')~§-n('))ai+§aka,—z)\a?(l—ﬁ),
wave vectors have the same modula$=q,. Moreover, 21
following Refs.[15-17, we take into account the weak (2.17
angle dependence in the fourth-order vertex funchorso i £ k£
£(01,92,03) = £(A1+ 02+ A3), (2.9 Notation(2.13—(2.15 has a clear physical meaning. The

A A fluctuation integral2.13 takes into account the fluctuations
NO1,02, =01, —G2) =A[1-B(q1-A2)°], (210 of the order parametéL8] and renormalizes the temperature
in the system. Because of the angle-dependence of the
B<1, fourth-order vertex function. [Eq. 2.10], the renormalized
- . ) o temperature also has a angle dependence. Expanding it to the
whereq=q/q denotes the unit vector in the dlrectl_o_n of first order in B8 [one can easily check that the anisotropy
To make the general equatio(s6) and(2.7) specific for tensore;; is of orderO()], we extract this angle depen-
the hexagonal phase one needs to calculate the structure cQfnce and get Eq2.14), wherer denotes th@-independent
stants(2.8) taking into account the symmetry of the phase. art of the renormalized temperature ang- - p adsorbs
The average density profile for the hexagonally packed CyI!tahe other terms. FinallySy(p) pis an equilibriurrrlj structure

. . . . |)
inders is given by Eq(2.5), where the basis vectors? are factor, which in the limit3= 0 reduces to the one studied by

nM={0,cose,sin e}, Brazovskii[18] and Fredrickson and Helfari@].
Equilibrium analysis Equations(2.16) and (2.17) de-
1 scribe the behavior of the hexagonal phase at any shear rate.
n<2>:§{0,— COS¢— \/§sin¢,\/§cos¢>—sin ¢}, For the particular casd) =0, B=0) these equations were
2.11) studied in a number of articl¢§,12,1§. Before studying the
' dynamics we want to show the influence of the angle depen-

1 dence in\ (2.10 on the equilibrium phase behavior, so we
n(3)=§{0,—cos¢+ J3sing, — \/3cosp—sin ). construct the free energy at equilibrium=0. Equation
(2.16) reads
The angle¢ defines the orientation of the hexagonal pattern. B B A oA o1
The casap=0 corresponds to the parallel orientation in real S(p)=So(p)=[r—p-Bp+(p—qo)] " (218

space(see Fig. 2

Using Eqs(2.8), (2.1 and(2.9), (2.10 we obtain for the Performing the integration in E2.13 up to the first order

structure constants in B we get
2= Sayay , L aN[ 1L ey
o(P)=0eq=" |13 AP P T 5| (219
Bi=a\ 21_E+ Zl—é +£ 201—
AN A 4" 4 Za‘( B Heree;; denotes the trace of the anisotropy tensoiSepa-

(212 ratingp-dependent terms ir(p) with the help of Eq(2.14)

R R we obtain
e=Maj[1-B(p-n)?]+aj[1- B(p-n?)?]
5 < a2 a\ a\ s 2. 2
+ag[1-B(p-n™)7}, r=T+W+—6r3,zen+>\(a1+a2+a3), (2.20
i#k#l.

o\ B 2 11 (D4 22 1 @) 4 32 n3) n(3)

We introduce the notation eij:fg‘sijﬂm‘[alni nj+apnT T+ azni ngr.
Y . (2.21

=-1S 1- : , 2.1

o(p) ZL (@Li=Ap-a)] 213 The equations of motion fog; (2.17) have a potential form
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To integrate Eq(2.22 one needs to take into account depen-
dence ofr ona; and treat an integral of a compaosite function

faida»(-~-)=frdr@(m) (2.23
o ro or ' '

where the Jacobiafg; /dr can be found from Eq2.20), and

ro is a temperature at which the disordered phase loses ste

bility, given by Eq.(2.20 with a;=a,=a3=0. Integrating
Eq. (2.22 we obtain the free energy

P=D'+ Dy, (2.24
re-rg B
= —ta 1—5)<ﬁ—@
+1 s 1 1 +1 2)\,8(1 1)
~AAaAT =S ~a e
2 Jr \/E 6 rro
(2.25
1 4 4 4
b= 7M1+ B)(artaztag)+28aia,83
1 2,2 2,2 2,2
- Z,B)\(ala2+ ajas+asas), (2.26

MOROZOQOV, ZVELINDOVSKY, AND FRAAIJE

PRE 61

50

Z,30

10
0.15

0.25 0.35 0.45

f

FIG. 4. The spinodal temperatufsolid line: 3=0, dashed line:
B£=0.5).

equilibrium phase diagram. In Figs. 4 and 5 we show that the
approximation(2.10 results in a nonsignificant quantitative
shift of values. The effect o3 on the equilibrium phase
diagram is tiny, but in the next section we will demonstrate
that 8 is dominant in explaining the dynamical orientational
ordering.

Ill. STRONG-SHEAR BEHAVIOR

where we have separated terms determined by the structure 10 Study the orientational dynamics in the strong-shear

constants.

The amplitudesa; that minimize the potentiatb are
found by solving the set of equatiohs=0. Its most impor-
tant feature is that- does not depend on th€!). Thus, the
resulting equations are isotropic with respectatoand the
solution has the forna,=a,=az=a.

regime we need to solve EqR.16 and (2.17) in the limit
D—oo. In this case it is impossible to obtain a solution of
Eqg. (2.16 as a perturbation series inl/ Instead, we use
approach developed by Cates and Milf&r One can apply
the RG method$10] to find the asymptotic behavior of the
structure factorS(p,D—»)=S,(p). Then, at large shear

To explore the stability region of the hexagonal phase wdat€s the structure factor can be approximated by interpolat-
need to solve the resulting system of equations for given

temperature and composition

aN  (a\)? aN?

r=7+-—+ —a?B+3Nd?,  (2.27)
\/F 6r2 2r3/2 ’B
+ al +(a)\)2 (2 28)
=7+ — ) ’
e erd
3
=0~ ;\a*(1+28)+2¢a’. (2.30

The calculation technique of Fredrickson and Helfd6dl
allows us to demonstrate the influence of héerms on the

50
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FIG. 5. The transition temperature between lamellae and cylin-
ders(solid line: =0, dashed lineB=0.5).
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ing betweenSy(p) andS..(p). Cates and Milner introduced breaks the symmetry of the equations and allows for the

the following approximation: nonequal amplitudes. We construct the solutions of(Bdp)
as a perturbation series in two small parameterand 3.
S Yp)=S, (p)+S.t(p) The highest order in the perturbation series for the ampli-
213 tudes is determined by the following argument. Our goal is
—r—p B pH(p—gg)2+ i D|pxpy|) to obtain an angle-dependent free energy. This angle depen-
0 Co\ ua'? ' dence can only appear via various but symmetric combina-

3.3 tions of the basis vectoms'). Let us discuss an example:
) Va1 ' ' n§/1) 2x+ n§/2) 2x+ n§/3) 2x )
where cy=3(48m7)""T'(5). To the leading order iD the
fluctuation integral is equal tol] This combination is angle dependenki#3. One can easily
. o ~y O, check that it is also true for the other symmetric combina-
a(p)=(aM)?®*D[11—B(1p5+12py+13p7)], (32 tions. The only way for such a combination to enter the
equation for the free energy is via a term suchvdswhich

where is proportional toB%®3. Thus, in what follows we keep
JCo [D*\u3 terms up toO(B393). Solving Eq.(3.3) for the amplitudes
= 0 (_) , *=u\a, and substituting them into E@3.4), we obtain
(48m)13\ D
D=0+ D9+ D,0%+ D03, (3.6
and
) The coefficientsb; are given by
r{3)rls AERERE
__\2) \3 __\2/ 13/ \3 —2+15(2—5x)x—2(1— 10x)%? &
= L 02 =t T 0, _ &
oot 7 T 13 0 125 Eh
™16 ™16
3 §2a2/3
2 _ _ 2
r(%)r(%) ®y=oly(1+ V1-10x) a
l3= : r<13) ~0.9. . 1
T =
6 ®,=— 12| 1+ ——— | (a*\) 2B,
2=l m)( )
For the external fieldg; Eq. (2.17) results in
|3
_ 1 = -t —1.)3
hi: T+O’(n(|))+)\A(1_ZB a; (1)3 |: (1_10X)3/2+(|3 IZ)
1 1 J1—10x(122- 5x) + 27(14— 5x) ( a)\) 2
+éa,as— - a1+ = ) 3.3 x B3 cos — .
where Here we have introduced the dimensionless temperature

=7\/&% and kept only the leading terms i@ for a given
order in®. The second term iP5 is the angle-dependent
contribution we were looking for.

The spinodal temperature is obtained from the condition:
<I>|T:Ts=0. It reads

A=al+a3+a3.

The potential® is given by Eq.(2.22). Unlike the equilib-
rium situation we do not have any problem with integration
[Eg. (3.3) does not depend on bothande;;], and the equa-
tion for the free energy is straightforward:

, T= Téo)-F 7(31)334— r§2)©2+ ng)CDS, (3.7
: 1 1
d=7A+ >, o(n)aZ+ SN 128 A2+ 2¢aja,a, where
i=1
2
1,3, o4&
- ZM1+358 ;l aj. (3.4) 9(5—28) \
. _ . . 1
The amplitudes; are the solutions of the equations 7_gl): _{M_ Eﬁ(lz“s) (an)??,
. 25 2 _ 2 _A4I3y 7/3
In the absence of the term(n('))aj2 these equations have a 7(2):9'8 (5=2B)(13=12)" &\

uniform solution a;=a,=az. The presence of this term s 64(13-7p) e
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A combination. So, one would expect the free energy to be
’CS(O) angle-dependent starting from t¥ 8°©°) order.

We illustrate the concept with the following example in
which we calculate the free energy of systems with other

o N rotational symmetry. We consider for the moment an artifi-
% Ts cial phase which the average density is given by
@ 2
Q
g ! C(K)= 2, (S o+ dic,—qun) (3.9
=~ S i=1
T, wheren; are two vectors lying in the plane perpendicular to

the velocity directionn®.n(®)=cosf. We consider two
cases(a) 6= m/2, which describes square packed cylinders
and(b) 6= /12, which describes highly nonsymmetric cy-
lindrical pattern. Calculating the structure consta¢gsl?

FIG. 6. Region of stability of the hexagonal phase in high shear

flow. and integrating Eq(2.17 with the help of Eq.(3.2), we
33 s 5\ 2 obtain for the free energies
o BUIs12°B%5-2p)° [ad?)"
° 51213-78)° & o 27% 4ly7a®®

Finally, we calculate the transition temperature between

cylinders and lamellae. Up to the first orderanwe obtain 4/3)\1/3
[2|1— —(13—1,)?B?cos 4p D2,
_ 736 & 1,(7+3\6 2Bp. (3.8
Ty=— 5 + 1(7+3V6)(al) (3.9 (3.10
Now we summarize our results. In the high-shear limit the 272 a2

@[—4|1+§{—4(4+ V3)14

hexagonal phase is found to be stable in the temperature ®9=w/12=_§+m

range fromrg to 7, (see Fig. 6. Here we suppose that hex-

agonal phase is the first phase appearing at cooling down _

from melt. If this is not a case, the temperature range T1Alat 1)+ 302 |3)[(2+\/§)COSZ¢

(75, m,) transforms to ¢, ,7,), where r, is a transition .

temperature from a hypothetibcc, gyroid, ..) to the hex- —sin 2¢]}]- 319

agonal phase. The factor in front of cos & the equation

for 7(53) is negative. This means that the spinodal temperaturén case(a) the structure deviates from a circle in the second

is higher for the orientation withp=w/6. Moreover, the order (@p=a;=0, @,#0), while in casgb) already in the

free-energy is minimal for this orientation for all values of first order. This g|ves,6’2 and B standing in Eqs(3.10 and

temperature from the ranger(, 7). Thus we predict the (3.1)) in front of the angle-dependent terms. Both cases have

perpendicular orientation to be the only stable orientation irthe same power dD as 8 because of Eq.3.2). In the next

the high-shear limit. section we shall see how a different expression for the fluc-
We emphasize that the appearance of the angle depetuation integral will produce the different lowest possible

dence in the free energy only in i@ 3°©%) is not a coin-  power ofD.

cidence. It reflects the internal symmetry of the system. Any

figure on plane can be oriented with respect to the particular IV. WEAK-SHEAR BEHAVIOR

direction only if its shape deviates from circle. In other

words, if one expands the figure’s shape into the plane waves In this section we consider the other linid— 0. In this

around circler (¢)=Ro[1+ S a,e"?], the interaction with a  case the solution of Eq$2.16 and(2.17) only slightly de-

selected direction will appear in the first nonzero order. Foviates from the equilibrium one and we can construct a per-

hexagons it gives=3. Thenth order in the expansion cor- turbation theory with a small paramet@r Thus the structure

responds to the interaction betweedifferent wave vectors. factor is given by the equation

Taking into account that the parametgr introduces the

parewiseinteraction between vectofsee Eq.(2.10], we . n n

conclude that the angle-dependent terms in the free energ§( P)= ) sV(p), SM(p)= [sto(p) } So(P).

should be at leasD(B%). The role of the paramete®d is (4.1

different. Shear breaks the rotational symmetry in the sys-

tem, stipulating the preferre@radienj direction and allow- whereSy(p) is the equilibrium structure factor.

ing for a discrimination between orientations. Thus the Following the conclusions of the previous section we

angle-dependent terms in the free energy should be propoevaluateS(p) up to O(B°%) and the lowest possible order in

tional at least to the lowest possible powerf This lowest D, which isO(D). However,S*)(p) does not contribute to

possible power is determined by the concrete form of thehe fluctuation integral. Therefore, we ke&#)(p) in the

structure factoiS(k). In Eqg. (3.2 8 and® enter as a one expression for the structure factor. Performing the integra-
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tion in Eqg. (2.13 with S(p) given by Eq.(4.1) and using
(2.15 for Sy(p) we obtain the fluctuation integral

W(a)\)3< D )2

U(p):Ueq(p)_W o*

X{1+by+by+---},
bi<O(B"), (4.2

where

2p2-3
7 L

1
b1=§(3exx+ 3eyyt+€,)+ 6

3
b2=¥[2eij eji + eii(3exx+ 38yy— ezz)]

Bl -~ 1 ~o =2
3 pieijpj+Eeii+(1_pz)(exx+eyy)_ezﬂ32 ’
~ al 1 (SH a\ 1 2
Ueq(p)=w 1-3B8+ 5| 1092 27 (G T2€ij€)
B ..
—g(eii+2l3ieijpj) +o

and o is an extension of E¢2.19 to the higher orders in

B. Here we assumed the summation over repeated indices.

In Eq. (4.2) and in what follows the terms d(3°) are

cumbersome and we do not present them here. However, we

did use them in our calculations.
The p-independent terms in Ed4.2) contribute to the
equation forr:

al
r=7+NA+—=R

D | *(an)’m
where
R,=1+ 3exx+ 3eyy+ ezz+3eii(3exx+ 3eyy— eZZ)+2eijeji
2 8r?
4.

For the anisotropy tensd#.2) together with Eq.(2.14)
gives a closed set of equations. lterating them u@(®?)
andO(8°%) we obtain

D

D*

2
_EM_ (an)’
&ij = &ij 24r7/2

( 2y ...
ij ij

where
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a\
3\r

2 3
E ag[ﬁu +2ni(s)n1(3)(2_ 5”)]] t

(1) : 2(5)(9) o) (aV)?
E(MN=p8 5ij+>\s§=‘,l aZn®n® + . 8

8r2

al
+

30r 325

al

2 _'B 2
E) == {360+ 30 8y + 0521+ B ‘ To5 725X i

3
N
+ 8y Syy) + 228,81+ o 521 aZ[ 8+ 2n{9%( 8,6

+28,,8y) +4nn{d(1- 5”-)]} +oen

Equations4.3) and(4.4) are enough to construct the free
energy® as a solution of E(2.22, whereh;, r, ande;; are
given by(2.17), (4.3), and(4.4), respectively. Integration of
Eqg. (2.22 using Eq.(2.23 leads to the following equation
for the free energy:

2 4 3ma’\® &
a coS 6,
12805

D

—E_ n3
P=F-p|

(4.5

where a is the equilibrium amplitude given by Eq&.29
and (2.27). In Eq. (4.5 F stands for the angle-independent
part of the free energy.

The spinodal temperature, is given by

4 ma*\8 &5
a COos ,
640,

D

TS=t+,83 D+

(4.9

wheret includes the angle-independent terms. The spinodal
temperature is maximal fap=0. At the same time, the free
energy is minimal for the same orientation. It means that
only the parallel orientation is stable under low shear.

To finish our symmetry analysis we note that in principle
the fluctuation integral{4.2) contains all possible combina-
tions of powers ofg and D?. According to the symmetry
arguments the angle dependence appears in the lowest pos-
sible order inD (which isD? in this cas¢ and the third order
in B. This is in agreement with Eq$4.5) and (4.6).

V. CONCLUSIONS

In the present paper we have shown how the orientational
behavior of the hexagonal phase under simple shear flow can
be described in the framework of the dynamical model first
developed by Fredrickson for the lamelldg. In this model
the angle-dependence of the fourth order vertex function
[see EQg.(2.10] plays a crucial role, although it is of no
importance in equilibriumsee Sec. Il for details The pa-
rameterB introduces the interaction between structure and
shear flow and allows for the rotational symmetry breaking.
The character of the interaction depends on the shear rate and
the resulting phase diagram has a complex structure. We
predict the parallel orientation to be stable at low and the
perpendicular orientation at high shear rates. Our results are
in agreement with the experimental dynamical phase dia-
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gram(Fig. 2) for the PE-PEP systef7]. Our analysis shows Taken into account they would probably lead to the same
that experimental study of the hexagonal phase orientation igansition in the hexagonal phase. However, this is not an

actually very difficult to perform. Because of the symmetry easy task because one should keep terms @(®*9°3) in
arguments, the difference in the free energies of the differensrder to have an angle-dependent value.

orientationsA® =&, — @ is proportional to Another remaining problem concerns the stability of
. transversal cylinders, i.e., cylinders with their axis oriented
ﬁsD_ D—o, not in the direction of flow[4]. Our model cannot describe
D’ stability of the transversal orientatidB8]. Another approach
Ad= D \2 should be developed to complete our study.
B3 E , D—0.
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