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Depletion forces in colloidal mixtures
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Depletion forces are accounted for by a contraction of the description of colloidal mixtures based on the
integral equations theory of simple liquids. The applicability of this treatment is illustrated for binary mixtures
of hard spheres, in the bulk and near a hard wall. The Asakura and Oosawa potential is obtained as the dilute
limit of our equations. At higher concentrations the depletion potential has an oscillatory behavior and becomes
more long ranged. If charge is put on the small particles there are energy-driven depletion forces in addition to
those of entropic origin, which result in repulsive interaction at contact.

PACS number~s!: 82.70.Dd, 61.20.Gy
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I. INTRODUCTION

The phase of a colloidal suspension can be changed
adding a macromolecular solution. Although this knowled
has been applied for centuries, the mechanisms accordin
which this happens are nowadays subject of intensive
search. In the case of nonadsorbing macromolecules e
tive depletion forces between the colloidal particles may
cur. As first predicted by Asakura and Oosawa@1#, such
forces result from the expulsion of added macromolecu
from the gap between two approaching particles, giving r
to a decrease of the free energy, and thus to an effec
attraction. This may induce an entropy driven phase sep
tion of asymmetric binary hard-sphere fluids@2#, which has
been taken as a model for colloid-polymer mixtures. T
hard spheres model has been extensively studied using
gral equations theory@3,4#, perturbation theories@5,6#, and
density functional theories@7,8#. The measured phase dia
grams have been qualitatively reproduced by these
proaches.

Some attempts to account for polymer nonideality beyo
the hard spheres model have recently been reported in
eral papers using extensions of perturbation theories@9,10#
and self-consistent mean field calculations@11#. Indeed, in
many cases the macromolecules are charged, or inte
softly with one another. Thus, energetic corrections to
entropic forces have to be considered. If, for example, cha
is put on the small particles of a mixture of hard spher
these like to be at contact with the big particles, since
latter represent a large volume without charge. Therefore,
energy of the system increases when two big spheres
proach each other expelling the small spheres from the
between them. This can lead to repulsive contributions to
depletion forces. In this paper we present a general form
tion of depletion forces based on the integral equati
theory of simple liquids, which allows for a simultaneo
study of entropic and energetic effects.

The basic idea of this approach is that depletion forces
a special case of the more general effective interactions
sulting from a contraction of the description of liquid mix
tures. Thus, if we do not consider certain components o
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mixture as separate species, their influence on the struc
of the remaining particles has to be included in the inter
tion potential. This is obtained by demanding the spac
distribution of the remaining particles to be the same as
the original mixture. Technically, this is done by rewritin
the Ornstein-Zernike equation for the original mixture as
effective Ornstein-Zernike equation for the remaining p
ticles, and connecting the latter with the effective interact
potential using one of its closure relations. This idea was fi
implemented by Medina-Noyola and McQuarrie in order
calculate the interaction between two charged macroions
mersed in a bath of small counterions and salt ions@12#. We
consider here the case of large hard spheres immersed
bath of charged or uncharged small hard spheres in orde
describe depletion forces, in the bulk and near a hard wa

In the following section the general formulation of depl
tion forces in multicomponent systems is presented. Its
plicability is then illustrated in the third and fourth section
studying binary mixtures of charged and/or uncharged h
spheres. Also the case of the enhanced depletion pote
near a hard wall is considered. Finally, the paper is clo
with a section of conclusions.

II. GENERAL FORMULATION

The structure of an homogeneous liquid mixture ofp
components is given by the Ornstein-Zernike~OZ! equations
@13#

h̃i j ~q!5 c̃i j ~q!1 (
k51

p

nkh̃ik~q!c̃k j~q!; i , j 51, . . . ,p, ~1!

written here in the Fourier space~this feature is indicated by
the tilde, and by the functional dependence on the w
numberq). The functionsh̃i j (q) andc̃i j (q) are the total and
direct correlation functions, respectively. The coefficientsnk
are the partial number densities. This equation can be rew
ten as

h̃i i ~q!5 c̃i i
eff~q!1nih̃ii ~q!c̃i i

eff~q!; i 51, . . . ,p, ~2!
4095 © 2000 The American Physical Society
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with c̃i i
eff(q) given by

c̃i i
eff~q!5 c̃i i ~q!1(

kÞ i

p
nkc̃ik~q!c̃ki~q!

@12nkc̃kk~q!#

1(
kÞ i

p

(
lÞk,i

p
nknl c̃il ~q!c̃lk~q!c̃ki~q!

@12nl c̃ll ~q!#@12nkc̃kk~q!#

1(
kÞ i

p

(
lÞk,i

p

(
mÞ l ,i

p

3
nknlnmc̃im~q!c̃ml~q!c̃lk~q!c̃ki~q!

@12nmc̃mm~q!#@12nl c̃ll ~q!#@12nkc̃kk~q!#

1•••. ~3!

The total correlation functionh̃i i (q) in Eq. ~1! is the same as
in Eq. ~2!, but in Eq. ~2! the speciesk51, . . . ,pÞ i no
longer appear as separate species. Instead, their effects o
structure of the componenti are included inc̃i i

eff(q). Equation
~3! can be written in closed form by using matrix notatio
@14#. Its present form however makes easier its applicatio
the following sections, since it straightforwardly takes a ve
simple closed form in the case of binary mixtures. Therefo
Eq. ~2! represents an effective OZ equation for the com
nent i. In addition, an effective pair interaction potenti
uii

e f f(r ) can be obtained from Eqs.~2! and ~3! by using a
closure relation. Taking for example the mean spherical
proximation~MSA! @13#, the result is

buii
eff~r !51` if r ,s i ,

5 f d~r ! if r>s i , ~4!

with f d(r )52cii
eff(r ) being the depletion potential, ands i

the diameter of the particles of speciesi. The distance be-
tween the centers of the particles is denoted byr. In the
following we use Eq.~4! together with other closure rela
tions used to obtain the direct correlation functions of
uncontracted system.

As we can see from the previous equations, an evalua
of uii

eff(r ) requires a complete knowledge of the structu
functionshi j (r ) and ci j (r ) of the original mixture. To pro-
ceed along these lines makes sense when the contracti
the description is imposed, for example, by experimen
techniques unable to detect all the components. Then Eq~4!
allows for an interpretation of the results in terms of mod
including the experimentally ‘‘invisible’’ species. On th
other hand, our approach apparently makes no sense w
the goal of the contraction of the description is to simpl
the problem. However, we can learn much about deple
forces just evaluatinguii

eff(r ) in the cases in which the com
plete problem can be solved. Furthermore, simple appr
mation forhi j (r ) andci j (r ) could lead to useful expression
for uii

eff(r ), as we show in the next sections.

III. BINARY MIXTURES

In the case of binary mixtures Eqs.~2! and ~3! reduce
exactly to
the
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h̃11~q!5 c̃11
eff~q!1n1h̃11~q!c̃11

eff~q! ~5!

and

c̃11
eff~q!5 c̃11~q!1

n2c̃12
2 ~q!

12n2c̃22~q!
. ~6!

These equations describe the structure of particles of spe
1 immersed in a bath of particles of species 2, but the la
do not appear as a separate species; their effects are inc
in c̃11

eff(q). The effective pair interaction potentialu11
eff(r ) can

be obtained from Eq.~4! using Eq.~6!. For binary mixtures
of hard spheres, one obtains in the infinite dilute limit ofn1,
up to linear terms inn2,

f d~r !52n2F 21$c̃12
2 ~q!%, ~7!

with c12(r )521 for r ,s125(s11s2)/2, and 0 elsewhere
(F 21 denotes an inverse Fourier transform!. Thus, the
Asakura and Oosawa~AO! potential is obtained:

f d~r !52w2F ~h11!32
3

2
~h11!2

r

s2
1

1

2

r 3

s2
3G ~8!

for s1<r ,s11s2, and 0 for larger distances. Here,w2

5pn2s2
3/6 is the volume fraction of particles of species

andh5s1 /s2 the ratio of diameters. This potential is pure
attractive with a minimum of amplitudef d(s11)52w2(1
13h/2) at contact. Equation~8! was first derived by Vrij
just calculating the difference of the osmotic pressures ac
on the inner and outer faces of two big particles separated
a gap thinner than the diameter of the small particles, m
eling the latter as an ideal gas@15#. It is here recovered as th
dilute limit of our equations.

In order to extend the previous result to higher orders
the densities, Eq.~6! has to be expanded in powers ofn2 to
give

f d~r !52c11~r !2n2F 21$c̃12
2 ~q!@11n2c̃22~q!

1n2
2c̃22

2 ~q!1•••#%. ~9!

In addition, expansions ofc11(r ),c̃12(q), andc̃22(q) in terms
of n1 and n2 are required as inputs. For these, the analy
Percus-Yevick direct correlation functions obtained by H
roike could be used@16#. However, to avoid the rather com
plicated expressions we obtain them instead by solving
complete problem of Eq.~1! numerically by means of a five
parameters version of the Ng method@17#, together with the
Percus-Yevick~PY! @13# and the Rogers-Young~RY! @18#
closure relations.

We consider first corrections onn2, for the infinite dilute
limit of n1. The results are shown in Fig. 1, which displa
f d(r ) for three systems withh55, andw250.05, 0.1, and
0.2. The full lines correspond to PY, and the dashed line
the AO potential. As expected, the attraction at contact
comes deeper with increasing concentration of small p
ticles. In addition, a potential barrier develops in front of t
attractive well, and the interaction becomes more lon
ranged, oscillating around zero, at larger separations. Th
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PRE 61 4097DEPLETION FORCES IN COLLOIDAL MIXTURES
due to the correlation between the small particles, which
not included in the AO approximation, but it is in PY.

We now consider the effects of increasingn1; results for
two systems withh55, w250.2 andw150.05 and 0.15 are
shown in Fig. 2. Comparison with the PY result of Fig. 1 f
w250.2 shows that an increase ofw1 gives rise to deepe
contact values and to increasing barriers. The dashed line
Fig. 2 have been obtained by using the previous results
the infinite dilute limit ofn1, but replacing the volume frac
tion w2 by w285w2 /(12w1), as if the only effect of putting
more particles of species 1 into the system were to decr
the volume accessible to the particles of species 2 in a q
tity equal to the volume occupied by the first;ps1

3N1/6 (N1

is the number of particles of species 1!. The differences be-
tween the full and dashed lines in Fig. 2 show that the c
relations including the particles of species 1 become imp
tant.

FIG. 1. The figure showsf d(r ) for three binary mixtures of hard
spheres withh55, andw250.05, 0.1, and 0.2, for the infinite di
lute limit of n1. The full lines correspond to PY, and the dash
lines to the AO potential.

FIG. 2. The figure showsf d(r ) for two binary mixtures of hard
spheres withh55, w250.2, andw150.05 and 0.15. All lines cor-
respond to PY, but the dashed lines were obtained taking the
ume fractionsw285w2 /(12w1) andw18→0, as if the only effect of
putting more particles of species 1 into the system were to decr
the volume accessible to the particles of species 2 in a qua
equal to the volume occupied by the first;ps1

3N1/6 (N1 is the
number of particles of species 1!.
is
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The accuracy of our approximations forf d(r ) has been
tested by a comparison with computer simulation results
Biben et al. @4#. This is shown in Fig. 3 for a system wit
h510 andw250.4p/6, for the infinite dilute limit ofn1. The
full line corresponds to PY, the dashed line to RY, and
dotted line to the AO potential. It is seen that there are c
siderable differences at very small separations but that
present approximation reproduces the effective interac
very well at larger distances, including the oscillatory par

We now investigate the effects of replacing the hard c
interaction among the small particles by long-range rep
sions; the repulsive Yukawa potential

u22~r !51`, if r ,s2 ,

5
Q2

« Fexp~ks2/2!

11ks2/2 G2 exp~2kr !

r
, if r>s2 ,

~10!

with

k25
4p

kBT« (
si

nsqs
2 , ~11!

is taken instead, keeping hard core foru11(r ) and u12(r ).
Such systems represent a simple model of colloidal mixtu
of charged and uncharged particles@19,20#. The charge on
the small spheres is denoted byQ, and the dielectric constan
of the solvent by«. In expression~11! for the Debye-Hu¨ckel
screening parameterk the sum runs over the small ions~si!
in the system, i.e., counterions and salt ions. It should
noted thatu22(r ) is itself an effective potential resulting from
the contraction of the small ions and of the solvent molecu
from the description of the original system@12,14#. Their
effects are contained ink and in«, respectively.

In order to calculate the depletion forces between t
large uncharged hard spheres immersed in a bath of s
charged particles the direct correlation functions of the

l-

se
ity

FIG. 3. The figure displays a comparison between compu
simulations results of Bibenet al. @4# ~circles! and integral equa-
tions theory for a binary mixture of hard spheres withh510 and
w250.4p/6, for the infinite dilute limit ofn1. The full line corre-
sponds to PY, the dashed line to RY, and the dotted line to the
potential.
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nary mixture are calculated solving Eq.~1! together with PY
for c11(r ) andc12(r ), and the hypernetted chain approxim
tion ~HNC! for c22(r ) ~this hybrid closure relation is known
as PY-HNC@20#!, and they are then used in Eq.~6! to obtain
f d(r ) from Eq. ~4!. Only the infinite dilute limit of the den-
sity of large spheresn1 is considered. Monovalent counter
ons and no salt are assumed. The valuess2550 nm, T
5300 K, and«578.2 ~water! are used in all cases.

Figure 4 showsf d(r ) for four systems withh55, w2
50.2 and valenceZ50,50,100, and 150. The charging of th
small spheres has dramatic effects on the depletion poten
As the comparison of results for uncharged and for char
small spheres shows, the depletion potential between
large spheres is now strongly repulsive at contact, but i
attractive for separations such that one small sphere fit
between two large ones. At somewhat larger separations
again repulsive. In contrast to binary mixtures of ha
spheres, where the depletion forces are entirely of entro
nature, energetic corrections have been included here
cause of the range of the Yukawa potential. When charg
put on the small particles, they try to be at contact with
big particles, because the latter represent a large vol
without charge. Thus, the energy of the system increa
when two uncharged spheres approach each other expe
the charged spheres from the gap between them, leadin
repulsive contributions to the depletion forces. The influen
of the energetic corrections on the phase behavior of bin
mixtures of hard spheres has been studied in a previous p
@21#.

IV. TERNARY MIXTURES AND WALL EFFECTS

Also for ternary mixtures it is straightforward to contra
Eq. ~1!, if at least one of the components is extremely dilu
Thus, if n1→0, the effective OZ equation describing th
crossed correlation functionh12(r ) of particles of species 1
and 2 immersed in a bath of particles of species 3 reads

h̃12~q!5 c̃12
eff~q!1n2h̃12~q!c̃22

eff~q!, ~12!

with

FIG. 4. The figure showsf d(r ) for four binary mixtures of
charged and uncharged hard spheres withh55, w250.2 and va-
lenceZ50,50,100, and 150, in the infinite dilute limit ofn1. All
lines correspond to PY-HNC.
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c̃12
eff~q!5 c̃12~q!1

n3c̃13~q!c̃32~q!

12n3c̃33~q!
~13!

and

c̃22
eff~q!5 c̃22~q!1

n3c̃23
2 ~q!

12n3c̃33~q!
. ~14!

The effective interaction potentialu12
eff(r ) can again be ap-

proximated by applying MSA:

bu12
eff~r !51`, if r ,s12,

5 f d~r !, if r>s12, ~15!

with f d(r )52c12
eff(r ).

When the ternary mixtures consist of hard spheres, we
for the infinite dilute limit ofn2, up to linear terms inn3,

f d~r !52n3F 21$c̃13~q!c̃32~q!%, ~16!

with c13,32(r )521 for r ,s13,32, and 0 elsewhere. Thus, th
AO potential is extended to particles of different diamete

f d~r !52w3F ~ h̄11!32
3

2
~ h̄11!2

r

s3
1

1

2

r 3

s3
3G

1
3w3

8~r /s3!
~h12h2!2F ~ h̄11!2

r

s3
G2

~17!

for s12<r ,s121s3, and 0 for larger distances. Here
h i5s i /s3 and h̄5(h11h2)/2. The contact value is
f d(s121)52w3@113h1h2 /(h11h2)#. Therefore, fixing
the value ofh2 and comparing with the contact value of E
~8!, we find that the leading effect of the size asymmetry is
increase ~reduce! the depletion attraction ifh1.h2(h1
,h2). Furthermore, takingh1→`, the AO potential for a
particle near a hard wall is obtained, a result also derived
Götzelmannet al. @6# by a rather different method:

f d~h!52w3S h

s3
21D 2S 113h212

h

s3
D ~18!

for 0<h,s3, and 0 for larger distances. Here,h5r 2s12 is
the distance from the surface of one particle of species
the wall. The contact valuef d(h501)52w3(113h2) is
the maximal depletion attraction between two particles
different diameters immersed in a bath of other particles,
to linear order in the volume fraction of the latter. In th
opposite limit, h1→0, the expected contact valuef d(r
5s121)52w3 is recovered; the energy lost by filling
hole of volumeps3

3/6 between particles 1 and 2 . If s1

5s2 Eq. ~17! reduces to Eq.~8!. Recently, expression~18!
has been found to be an excellent approximation by comp
son with direct measurements of depletion potentials in m
tures of colloid and nonionic polymers@22#.

V. CONCLUSIONS

It has been shown how depletion potentials arise fr
contracting the full integral equation theory of
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p-component mixture to an effective description on a le
which includes explicitly less thanp components. In the sim
plest case of a binary mixture (p52) one obtains as effec
tive description a one-component system of particles in
acting through a potential depending parametrically on
contracted component. The approach developed in this p
is of the same spirit as the one used by Maoet al. @10#.
Instead of integrating over the degrees of freedom of
small particles in the partition function we rewrite the full s
of coupled Ornstein-Zernike equations~1! in the form of
Eqs. ~2!. The effects of the contracted components is th
taken care of in the direct correlation functionc11

eff(r ) of the
contracted system. The depletion potential is obtained fr
c11

eff(r ) by employing a closure relation; for reasons of si
plicity we have used the mean-spherical approximat
~MSA!, but any other more sophisticated closure relat
could have been used as well.

The effective direct correlation functionc11
eff(r ) is given in

terms of the direct correlation functions of the contrac
components. Introducing simple approximations for the
ter, it has been shown that the Asakura-Oosawa results
low immediately. But our main interest has been to sh
how these results change when the assumptions of the
theory no longer apply. From the numerical solution of t
full set of OZ equations it is possible to calculate the dep
tion potentials for arbitrary concentrations of all compone
tte
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e
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d
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l-

O

-
s

of the mixture. Furthermore, energetic corrections to the
tropic forces can also be included in order to describe m
realistic systems than that composed by only hard spher

The integral equation approach can straightforwardly
extended to mixtures of more thanp52 components as dem
onstrated in Sec. IV. In addition to giving results for th
depletion potentials between two kinds of large particles i
sea of small particles it is also possible to obtain the dep
tion potential of one kind of large particles near a wall, in
sea of small particles.

Finally, our approach assumes that depletion forces
pairwise additive. Direct computer simulations by Dijkst
et al. @23# have recently shown the correctness of this
sumption for hard spheres mixtures, even in regimes wh
one might expect the approximation of pairwise additivity
fail. Although it was still not proven for mixtures of charge
and uncharged particles, we also neglect effective triplet
teractions in that case.
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