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Depletion forces in colloidal mixtures
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Depletion forces are accounted for by a contraction of the description of colloidal mixtures based on the
integral equations theory of simple liquids. The applicability of this treatment is illustrated for binary mixtures
of hard spheres, in the bulk and near a hard wall. The Asakura and Oosawa potential is obtained as the dilute
limit of our equations. At higher concentrations the depletion potential has an oscillatory behavior and becomes
more long ranged. If charge is put on the small particles there are energy-driven depletion forces in addition to
those of entropic origin, which result in repulsive interaction at contact.

PACS numbd(s): 82.70.Dd, 61.20.Gy

[. INTRODUCTION mixture as separate species, their influence on the structure
of the remaining particles has to be included in the interac-
The phase of a colloidal suspension can be changed jon potential. This is obtained by demanding the spacial
adding a macromolecular solution. Although this knowledgedistribution of the remaining particles to be the same as in
has been applied for centuries, the mechanisms according tge original mixture. Technically, this is done by rewriting
which this happens are nowadays subject of intensive rethe Ornstein-Zernike equation for the original mixture as an
search. In the case of nonadsorbing macromolecules effe€ffective Ornstein-Zernike equation for the remaining par-
tive depletion forces between the colloidal particles may oclicles, and connecting the latter with the effective interaction
cur. As first predicted by Asakura and Oosafdd, such Potential using one of its closure relations. This idea was first
forces result from the expulsion of added macromoleculedMPlemented by Medina-Noyola and McQuarrie in order to
from the gap between two approaching particles, giving riséalculate the interaction between two charged macroions im-
to a decrease of the free energy, and thus to an effectiv@ersed in a bath of small counterions and salt iar®. We
attraction. This may induce an entropy driven phase separ&onsider here the case of large hard spheres immersed in a
tion of asymmetric binary hard-sphere fluid, which has  bath of charged or uncharged small hard spheres in order to
been taken as a model for colloid-polymer mixtures. Thisdescribe depletion forces, in the bulk and near a hard wall.
hard spheres model has been extensively studied using inte- In the following section the general formulation of deple-
gral equations theory3,4], perturbation theories,6], and  tion forces in multicomponent systems is presented. Its ap-
density functional theorie7,8]. The measured phase dia- Plicability is then illustrated in the third and fourth sections
grams have been qualitatively reproduced by these agtudying binary mixtures of charged and/or uncharged hard
proaches. spheres. Also the case of the enhanced depletion potential
Some attempts to account for polymer nonideality beyond'€ar @ hard wall is considered. Finally, the paper is closed
the hard spheres model have recently been reported in seW¥ith a section of conclusions.
eral papers using extensions of perturbation thed@8ek0]
and self-consistent mean field calculatiqdd]. Indeed, in ll. GENERAL FORMULATION
many cases the macromolecules are charged, or interact o )
softly with one another. Thus, energetic corrections to the 1he structure of an homogeneous liquid mixture pof
entropic forces have to be considered. If, for example, charge®MpPonents is given by the Ornstein-Zern{kiz) equations
is put on the small particles of a mixture of hard spheres!
these like to be at contact with the big particles, since the 0
latter represent a large volume without charge. Therefore, the -~ ~ ~ ~ -
energy of the system increases when two big spheres ap- hii(Q):CiJ(quZl nehi(@)cii(a); 1,i=1, ... p, (1)
proach each other expelling the small spheres from the gap
between them. This can lead to repulsive contributions to thyitten here in the Fourier spacthis feature is indicated by

depletion forces. In this paper we present a general formulg,e tilde, and by the functional dependence on the wave

tion of depletion forces based on the integral equations - ~
theory of simple liquids, which allows for a simultaneous humberq). The functionshy;(q) andc;;(q) are the total and

: . direct correlation functions, respectively. The coefficiamts
study of entropic and energetic effects. . o : ) .
o ) : : are the partial number densities. This equation can be rewrit-
The basic idea of this approach is that depletion forces ar

; S . n as
a special case of the more general effective interactions re-

sulting from a contraction of the description of liquid mix- - ~ off - ~off .

tures. Thus, if we do not consider certain components of a hi(@)=ci(a)+nihi(aci(a); i=1,...p, (2
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with ¢§(q) given by hyy(@)=c5T(q) +n;hya(g)csn(q) (5)

~ ~ % MiCir(@)Chi( Q) and
Cﬁﬁ )=cii(q)+ k*
(d q g‘ [1-nCi(a)] e B N,C2,(q)

e ) = Cag() + — e 6
Ep NN Cir () Cii () Cii(A) C11(q) =ca1(q) 1—n,Co5(q) ©

ki [1=nCy(q)I[1—NCil(a)]

MU

+

=

#i |

+

These equations describe the structure of particles of species

P P P 1 immersed in a bath of particles of species 2, but the latter
+ 2 E E do not appear as a separate species; their effects are included
k#i I1#k,i m#l,i
in cn(q) The effective pair interaction potentlaf (r) can
= r = = be obtained from Eq4) using Eq.(6). For binary mixtures
NNy, C c c c
k~ i) mliq) (@) k'(ﬂ) of hard spheres, one obtains in the infinite dilute liminef
[1=NmCmm(D) 11— nCy (o) ][ 1~ NiCyu(a) ] up to linear terms im,,
+... (3) L~
fa(r)=—nF e}, )

The total correlation functioh;;(q) in Eq. (1) is the same as
in Eqg. (2), but in Eq. (2) the speciek=1,... p#i no
longer appear as separate species. Instead, their effects on &?a
structure of the componehare included irc2"(q). Equation

(3) can be written in closed form by usmg matrix notation
[14]. Its present form however makes easier its application in fq(r)=—¢5
the following sections, since it straightforwardly takes a very

simple closed form in the case of binary mixtures. Therefore
Eq. (2) represents an effective OZ equation for the compo]tor Ul\r<‘rl+“2' and 0 for larger distances. Here,
nenti. In addition, an effective pair interaction potential ~ mn,03/6 is the volume fraction of particles of species 2,

eff(r) can be obtained from Eq€2) and (3) by using a and n= o4 /0, the ratio of diameters. This potential is purely

closure relation. Taking for example the mean spherical apdtiractive with a minimum of amplitudéy(a,+) = —¢5(1

with ¢co(r)=—1 for r<oq,=(01+ 0,)/2, and 0 elsewhere
1 denotes an inverse Fourier transfornThus, the
kura and OosawgO) potential is obtained:

3

(7+1) ——(n+1)2L+5r— ®
20-2

proximation(MSA) [13], the result is +3#/2) at contact. Equatio8) was first derived by Vrij
just calculating the difference of the osmotic pressures acting
Busli(r)=+w if r<o, on the inner and outer faces of two big particles separated by
a gap thinner than the diameter of the small particles, mod-
=fq(r) if r=0y, (4) eling the latter as an ideal gbE5]. It is here recovered as the
dilute limit of our equations.
with f4(r)=—cf f(r) being the depletion potential, ans In order to extend the previous result to higher orders in

the diameter of the particles of speciesThe distance be- the densities, Eq6) has to be expanded in powersmof to
tween the centers of the particles is denotedrbyn the give
following we use Eq.4) together with other closure rela-

tions used to obtain the direct correlation functions of the fo(r)=—cqi(r) —n,F~Hc2,(q)[ 1+ Nn,Con(q)
uncontracted system.
As we can see from the previous equations, an evaluation + ngf:gz(q) +--- 1} (9)

of uf (r) requires a complete knowledge of the structure

funct|onsh,J(r) andc;j(r) of the original mixture. To pro- In addition, expansions afy4(r),c15(q), andc,,(q) in terms
ceed along these lines makes sense when the contraction @f n; andn, are required as inputs. For these, the analytic
the description is imposed, for example, by experimentaPercus-Yevick direct correlation functions obtained by Hi-
technigues unable to detect all the components. Theri4tq. roike could be usefl16]. However, to avoid the rather com-
allows for an interpretation of the results in terms of modelsplicated expressions we obtain them instead by solving the
including the experimentally “invisible” species. On the complete problem of Eq1) numerically by means of a five
other hand, our approach apparently makes no sense whearameters version of the Ng methidd], together with the
the goal of the contraction of the description is to simplify Percus-Yevick(PY) [13] and the Rogers-YoungRY) [18]

the problem. However, we can learn much about depletiorlosure relations.

forces just evaluatingﬁﬁ(r) in the cases in which the com- We consider first corrections am, for the infinite dilute
plete problem can be solved. Furthermore, simple approxilimit of n;. The results are shown in Fig. 1, which displays
mation forh;; (r) andc,J(r) could lead to useful expressions f4(r) for three systems witly=>5, and¢,=0.05, 0.1, and

for ug; (r) as we show in the next sections. 0.2. The full lines correspond to PY, and the dashed lines to
the AO potential. As expected, the attraction at contact be-
1. BINARY MIXTURES comes deeper with increasing concentration of small par-

ticles. In addition, a potential barrier develops in front of the
In the case of binary mixtures Eq&) and (3) reduce attractive well, and the interaction becomes more long-
exactly to ranged, oscillating around zero, at larger separations. This is
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FIG. 1. The figure showgy(r) for three binary mixtures of hard
spheres withp=5, and¢,=0.05, 0.1, and 0.2, for the infinite di-
lute limit of n,. The full lines correspond to PY, and the dashed
lines to the AO potential.

FIG. 3. The figure displays a comparison between computer
simulations results of Bibemt al. [4] (circles and integral equa-
tions theory for a binary mixture of hard spheres wijk 10 and
¢,=0.477/6, for the infinite dilute limit ofn,. The full line corre-
due to the correlation between the small particles, which isponds to PY, the dashed line to RY, and the dotted line to the AO
not included in the AO approximation, but it is in PY. potential.

We now consider the effects of increasing results for o
two systems withy=5, ¢,=0.2 ande;=0.05 and 0.15 are  1he accuracy of our approximations f6§(r) has been
shown in Fig. 2. Comparison with the PY result of Fig. 1 for tested by a comparison with computer simulation results of
contact values and to increasing barriers. The dashed lines ;=10 ande,=0.4/6, for the infinite dilute limit ofn;. The

Fig. 2 have been obtained by using the previous results folull line corresponds to PY, the dashed line to RY, and the
the infinite dilute limit ofn,, but replacing the volume frac- dotted line to the AO potential. It is seen that there are con-

tion @, by ©3=@,/(1—¢,), as if the only effect of putting siderable differences at very small separations but that the

more particles of species 1 into the system were to decreadi€Sent approximation reproduces the effective interaction
the volume accessible to the particles of species 2 in a quaf€"y Well at larger distances, including the oscillatory part.
tity equal to the volume occupied by the firstp3N,/6 (N, We now investigate the effects_of replacing the hard core
is the number of particles of species The differences be- mteracnon among the small partlc[es by long-range repul-
tween the full and dashed lines in Fig. 2 show that the corSIONS: the repulsive Yukawa potential

relations including th rticl f ies 1 me impor- .
elations including the particles of species 1 become impo Upo(F) = +20, if 1 <0y,

tant.
; Q?[exp(ko,/2) | exp(— kr)
=— , ifr=o0y,,
e | 1+ko,/2 r
(10
with
4
2= N2, 11
2 g0z A I (11)
; = === ¢',=0,/(1-9,)
8t [ 0,=0.15 e =0/(1-9, is taken instead, keeping hard core for(r) and u;o(r).
Such systems represent a simple model of colloidal mixtures
4 of charged and uncharged particld®,20. The charge on

0.0 0'5 To 15 : 2 the small spheres is denoted Qyand the dielectric constant
(r-6.)/c of the solvent by. In expressior{11) for the Debye-Hukel
172 screening parameter the sum runs over the small iolisi)

FIG. 2. The figure show§y(r) for two binary mixtures of hard in the system, '_'ej' Counter'ons, and salt_'ons' It .Should be
spheres withy=5, ¢,=0.2, ande,=0.05 and 0.15. All lines cor- noted tha’uz_z(r) is itself an e_ffectlve potential resulting from
respond to PY, but the dashed lines were obtained taking the vof€ contraction of the small ions and of the solvent molecules
ume fractionsp)= ¢, /(1— ¢;) ande,—0, as if the only effect of ~from the description of the original systefi2,14. Their
putting more particles of species 1 into the system were to decreagfects are contained ir and ine, respectively.
the volume accessible to the particles of species 2 in a quantity In order to calculate the depletion forces between two
equal to the volume occupied by the firsto3N,/6 (N, is the large uncharged hard spheres immersed in a bath of small
number of particles of species.1 charged particles the direct correlation functions of the bi-
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~ ~ N3C13(0) Caxl Q)
cSi(a) =)+ — = (13)
1—-n3c33(q)
and
= Coo(d)=CoA )+ (14

1- nszss(Q) .

The effective interaction potentiajfg(r) can again be ap-
proximated by applying MSA:

Buig(r)= +oo, if r<oy,,

15
(r-o,)o,

3.0

=f4(r), if r=0y,, (19

with fq(r)=—cSf(r).
When the ternary mixtures consist of hard spheres, we get
for the infinite dilute limit ofn,, up to linear terms ims,,

FIG. 4. The figure shows4(r) for four binary mixtures of
charged and uncharged hard spheres wjth5, ¢,=0.2 and va-
lenceZ=0,50,100, and 150, in the infinite dilute limit of,. All
lines correspond to PY-HNC. - -
fa(r)=—nsF Y{cia(a)Caxa)}, (16)

nary mixture are calculated solving Ed,) together with PY

for c44(r) andcq,(r), and the hypernetted chain approxima-
tion (HNC) for c,5(r) (this hybrid closure relation is known
as PY-HNC[20]), and they are then used in E&) to obtain

with c133{r)=—1 forr<oi33,, and 0 elsewhere. Thus, the
AO potential is extended to particles of different diameters

3
fq(r) from Eq.(4). Only the infinite dilute limit of the den- f4(r)=— s (;Jr 1)3— E(;+ 1)2L+ E -
sity of large spheres; is considered. Monovalent counteri- 2 o3 243
ons and no salt are assumed. The valugs=50 nm, T 3 5
=300 K, ande =78.2 (waten are used in all cases. + ¢3 — )2 (m+1)— I 1
Figure 4 showsfy(r) for four systems withn=5, ¢, 8(!‘/0'3)(771 72)°| (1) o3 (17)

=0.2 and valenc&=0,50,100, and 150. The charging of the )
small spheres has dramatic effects on the depletion potentidP’ 012<r <o+ 03, and 0 for larger distances. Here,
As the comparison of results for uncharged and for chargedyj=0;/03 and n=(n,+7,)/2. The contact value is
small spheres shows, the depletion potential between thig(o,t)=—@3[1+3n17,/(n1+ 72)]. Therefore, fixing
large spheres is now strongly repulsive at contact, but it igshe value ofy, and comparing with the contact value of Eq.
attractive for separations such that one small sphere fits itB), we find that the leading effect of the size asymmetry is to
between two large ones. At somewhat larger separations it iscrease (reduce the depletion attraction ifn;> 7,(74
again repulsive. In contrast to binary mixtures of hard< %,). Furthermore, takingy;—, the AO potential for a
spheres, where the depletion forces are entirely of entropiparticle near a hard wall is obtained, a result also derived by
nature, energetic corrections have been included here b&otzelmannet al. [6] by a rather different method:
cause of the range of the Yukawa potential. When charge is
put on the small particles, they try to be at contact with the
big particles, because the latter represent a large volume
without charge. Thus, the energy of the system increases
when two uncharged spheres approach each other expellingr O<h< o3, and 0O for larger distances. Hetes-r — oy, is
the charged spheres from the gap between them, leading tbe distance from the surface of one particle of species 2 to
repulsive contributions to the depletion forces. The influencéhe wall. The contact valugéy(h=0+)=—¢@3(1+37,) is
of the energetic corrections on the phase behavior of binarthe maximal depletion attraction between two particles of
mixtures of hard spheres has been studied in a previous pap@ifferent diameters immersed in a bath of other particles, up
[21]. to linear order in the volume fraction of the latter. In the
opposite limit, »;,—0, the expected contact valugy(r
=01,1+)=— @3 is recovered; the energy lost by filling a
) . ) hole of volumewa3/6 between particles 1 dn2 . If o
Also for ternary mixtures it is straightforward to contract — 5, Eq. (17) reduces to Eq(8). Recently, expressiofL8)
Eq. (1), if at least one of the components is extremely dilute.has been found to be an excellent approximation by compari-

Thus, if n,—0, the effective OZ equation describing the son with direct measurements of depletion potentials in mix-
crossed correlation functiohyy(r) of particles of species 1 tyres of colloid and nonionic polymef&2].

and 2 immersed in a bath of particles of species 3 reads

h
—=—1
g3

2 h
fd(h)=—<p3( ) (l+3772+20_—3) (18

IV. TERNARY MIXTURES AND WALL EFFECTS

~ ~oif = e V. CONCLUSIONS
h12(q) = c15(q) +nzhi(d)c33(a), (12) _ . _
It has been shown how depletion potentials arise from

with contracting the full integral equation theory of a
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p-component mixture to an effective description on a levelof the mixture. Furthermore, energetic corrections to the en-
which includes explicitly less thamcomponents. In the sim- tropic forces can also be included in order to describe more
plest case of a binary mixturgp&2) one obtains as effec- realistic systems than that composed by only hard spheres.
tive description a one-component system of particles inter- The integral equation approach can straightforwardly be
acting through a potential depending parametrically on thextended to mixtures of more thas=2 components as dem-
contracted component. The approach developed in this papenstrated in Sec. IV. In addition to giving results for the
is of the same spirit as the one used by Metaal. [10]. depletion potentials between two kinds of large particles in a
Instead of integrating over the degrees of freedom of thesea of small particles it is also possible to obtain the deple-
small particles in the partition function we rewrite the full set tion potential of one kind of large particles near a wall, in a
of coupled Ornstein-Zernike equation$) in the form of  sea of small particles.
Egs. (2). The effects of the contracted components is then Finally, our approach assumes that depletion forces are
taken care of in the direct correlation functiofl{(r) of the  pairwise additive. Direct computer simulations by Dijkstra
contracted system. The depletion potential is obtained fronet al. [23] have recently shown the correctness of this as-
cflfflf(r) by employing a closure relation; for reasons of sim-sumption for hard spheres mixtures, even in regimes where
plicity we have used the mean-spherical approximatiorPn€ might expect the approximation of pairwise additivity to
(MSA), but any other more Sophisticated closure re|ationfai|. A|th0Ugh it was still not proven for mixtures of charged
could have been used as well. and uncharged particles, we also neglect effective triplet in-
The effective direct correlation functiaf'(r) is given in  teractions in that case.
terms of the direct correlation functions of the contracted
com.ponents. Introducing simple approximations for the lat- ACKNOWLEDGMENTS
ter, it has been shown that the Asakura-Oosawa results fol-
low immediately. But our main interest has been to show This work was supported by CONACYT-Mexia@rant
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